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ABSTRACT

Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have
shown immense potential in solving complex, sequential tasks by simulating ex-
pert collaboration. However, their reliance on centralized data clashes with real-
world privacy constraints and data silos. Conversely, existing privacy-preserving
paradigms like Federated Learning (FL) typically ignore the inherent sequential
dependencies present in collaborative workflows, leading to suboptimal perfor-
mance. To bridge this critical gap, we introduce FedWave, a novel framework
for federated multi-agent collaboration. FedWave empowers LLM-based agents
to collaboratively solve complex sequential tasks under strict privacy constraints
by employing three core mechanisms: (1) a collaborative Value Chain Layer to
model sequential dependencies, enabling efficient local fine-tuning through Fed-
erated Learning with LoRA adapters; (2) an intelligent Mixture of Experts (MoE)
router at the server level for dynamic, task-aware aggregation of expert knowl-
edge, moving beyond simple averaging; and (3) a final Direct Preference Opti-
mization (DPO) stage to align the model’s collaborative outputs with human pref-
erences. Extensive experiments demonstrate that FedWave significantly outper-
forms both traditional federated learning and centralized multi-agent baselines, ef-
fectively achieving synergistic collaboration without compromising data privacy.
The codes are available at https://anonymous.4open.science/r/FedWave-111A.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a diverse range
of tasks, enabling numerous innovative applications (Webb et al., 2023; Ouyang et al., 2022; Achiam
et al., 2023; Team, 2024). Among these, frameworks based on Multi-Agent Systems (MAS) have
become particularly prominent for solving complex real-world problems by simulating collabora-
tion among experts from different domains (Zhao et al., 2024; Qian et al., 2025; Li et al., 2024).
In scenarios such as business planning (Zhao et al., 2025), financial analysis (Yang et al., 2023),
and medical diagnostics (Tang et al., 2024a), MAS effectively model and handle sequential depen-
dencies across different roles, showing immense potential. However, the success of these systems
heavily relies on massive, centralized datasets (Wu et al., 2024). This data demand faces two ma-
jor challenges: first, high-quality public datasets are projected to be exhausted by 2026 (Villalobos
et al., 2022); second, vast high-quality data is distributed among different parties, forming “data
silos” due to data sovereignty and privacy concerns (Ye et al., 2024; Fan et al., 2023). Therefore,
although MAS excel at handling process dependencies, their centralized data assumption overlooks
the critical need for privacy preservation in the real world.

Federated Learning (FL) (McMahan et al., 2023) offers a viable solution to this issue. It establishes a
privacy-preserving, distributed collaborative framework that allows multiple parties to train a model
jointly without sharing their local data, thereby greatly facilitating the secure integration of data
value across institutions. Nevertheless, mainstream FL frameworks (Kuang et al., 2024; Yao et al.,
2024) often overlook the potential sequential dependencies or causal chains that may exist between
different data sources in their design. For instance, in a typical automotive industry chain, design
data precedes production data, supply chain data is tightly coupled with the production phase, and
quality inspection data serves as the downstream validation for the entire process. Existing federated
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Figure 1: Overview of the FedWave framework. The framework consists of two main phases:
(a) The Federated SFT phase, where individual expert agents collaboratively train trainable LoRA
adapters, the Value Chain Layer (VCLayer), and a MoE Router on private data. The VCLayer
models the workflow structure through a specialized loss function, while the MoE Router learns
to dynamically coordinate experts and updates its gradients via backpropagation. Locally updated
model parameters are sent to the server for aggregation. (b) The DPO alignment phase, which uti-
lizes the trained MoE Router to automatically generate a preference dataset composed of responses
from the most relevant (winning) and less relevant (losing) experts. The final global model is fine-
tuned on this dataset using DPO to align its output with high-quality collaborative preferences.

aggregation strategies, typically based on the Independent and Identically Distributed (IID) data
assumption (Li et al., 2020; Karimireddy et al., 2021; Hsu et al., 2019), fail to effectively model and
leverage this process-aware knowledge embedded in the data, thus limiting the performance of the
federated model in complex collaborative tasks with inherent logical sequences.

To address these challenges, we propose FedWave, a novel framework for federated multi-agent col-
laboration. FedWave empowers LLM-based agents for efficient collaboration while preserving data
privacy, integrating distributed knowledge to solve complex sequential tasks. Its core mechanisms
are as follows: First, at the client level, we combine FL with the Parameter-Efficient Fine-Tuning
(PEFT) technique, LoRA. Each expert agent performs local LoRA-only fine-tuning on the base
LLM, minimizing model updates sent to the server. This design significantly enhances communi-
cation efficiency and mitigates privacy leakage risks by reducing information exchange. Second,
on the server, we designed an innovative Mixture of Experts (MoE) aggregation router. This router
discards traditional FL aggregation, acting as an intelligent coordinator that learns to dynamically
and selectively weave together knowledge from different expert agents based on the task. Finally,
we introduce a Direct Preference Optimization (DPO) (Rafailov et al., 2023) stage to align the ag-
gregated global model using preference data on collaborative outcomes. This ensures the model
generates high-quality, collaborative outputs that align with human expectations. Extensive exper-
iments demonstrate that our framework outperforms existing federated learning and multi-agent
baselines.
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The main contributions of this paper can be summarized as follows:

• Privacy-Preserving Collaboration for Workflow Tasks: We introduce FedWave, the first
framework enabling LLM agents to solve complex, sequential workflows across data silos.
Its novel Value Chain Layer, within a Federated Learning paradigm, models inter-agent
dependencies to facilitate structured, privacy-preserving collaboration.

• Dynamic Knowledge Aggregation: We designed a aggregation mechanism centered on
MoE router. This shifts from static federated averaging to dynamic, task-aware knowledge
fusion, allowing the global model to selectively leverage the most relevant expertise.

• Extensive Experimental Validation: Comprehensive experiments on business workflow
datasets validate FedWave’s superiority. It significantly outperforms federated learning
baselines and achieves competitive results against centralized multi-agent systems.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated Learning (FL) is a privacy-preserving paradigm for collaborative training on decentral-
ized data (Kairouz et al., 2021). While the foundational FedAvg algorithm (McMahan et al., 2023) is
effective, its performance often degrades with Non-IID data, prompting extensive research into so-
lutions. These improvements typically mitigate data heterogeneity through client-side optimizations
like FedProx (Li et al., 2020) and SCAFFOLD (Huang et al., 2024), or server-side aggregation re-
finements such as FedNova (Wang et al., 2020) and FedAvgM (Hsu et al., 2019). However, existing
works primarily address statistical heterogeneity, overlooking the critical issue of Sequential Depen-
dency in process-based tasks. Their static aggregation methods treat clients as independent contrib-
utors, failing to dynamically fuse knowledge based on the task’s inherent structure. In contrast, our
FedWave framework fundamentally changes this paradigm by enabling the model to understand and
leverage these sequential relationships among clients.

2.2 MULTI-AGENT COLLABORATION

The rise of Large Language Models (LLMs) has significantly advanced the development of Multi-
Agent Systems, establishing them as a powerful paradigm for solving complex problems (Akata
et al., 2023; Guo et al., 2024; Hao et al., 2023). These systems accomplish tasks by simulating
collaboration among multiple agents, each with distinct roles or capabilities. Existing works have
explored diverse collaboration models: some frameworks leverage discussion and debate (Du et al.,
2024; Chen et al., 2024; Xiong et al., 2023) to refine and enhance reasoning abilities, while oth-
ers construct hierarchical or sequential pipeline structures (Zhang et al., 2024; Zhao et al., 2024;
2025). In these structures, agents process information progressively according to a predefined work-
flow (such as a business workflow), effectively addressing complex sequential tasks in domains like
long-text processing and medical diagnostics (Tang et al., 2024b; Sun et al., 2023). However, these
frameworks’ reliance on centralized data access fundamentally conflicts with real-world, privacy-
sensitive applications where data is siloed. This reveals a critical research gap: enabling complex,
sequentially dependent agent collaboration in a decentralized, privacy-preserving setting. Our work,
FedWave, directly addresses this challenge by merging the collaborative power of multi-agent sys-
tems with the privacy guarantees of federated learning.

2.3 MIXTURE OF EXPERTS AND DYNAMIC AGGREGATION

The Mixture of Experts (MoE) architecture enhances model scalability through conditional compu-
tation, where a router dynamically selects specialized ’expert’ subnetworks for each input (Jacobs
et al., 1991; Fedus et al., 2022). After its revival in modern deep learning (Shazeer et al., 2017), this
paradigm has been instrumental in scaling Large Language Models (LLMs) to trillion-parameter
scales while maintaining computational efficiency (Lepikhin et al., 2020; Jiang et al., 2024). This
principle inspires Dynamic Aggregation in Federated Learning (FL), moving beyond the static, one-
size-fits-all approach of methods like FedAvg (McMahan et al., 2017). While Personalized FL (PFL)
adapts models for clients (Fallah et al., 2020; Arivazhagan et al., 2019; T Dinh et al., 2020; Li et al.,
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2021), it primarily addresses statistical heterogeneity rather than collaborative, sequential relation-
ships. However, a critical gap remains, as existing work has not integrated MoE’s dynamic routing
into FL aggregation to specifically solve for Sequential Dependency among clients. Our FedWave
framework is the first to introduce an MoE router as the core of federated aggregation, transforming
it into an intelligent coordinator that can orchestrate expert knowledge for complex workflows.

3 METHODS

3.1 FEDERATED FINE-TUNING WITH THE VALUE CHAIN LAYER

The first phase of our framework fine-tunes a base LLM in a federated setting where each client,
an expert agent (e.g., design, manufacturing), holds a private dataset for their role. To model the
sequential relationships between these experts, we introduce the Value Chain Layer (VCLayer). As
shown in Figure 1 (a), each expert agent i has a frozen base LLM, a trainable LoRA adapter (Wi),
and our VCLayer. This lightweight, pluggable module processes the hidden states from the LoRA-
adapted model, making them aware of the agent’s role and position in the workflow.

Given the final hidden states H ∈ RL×d from the base LLM (where L is sequence length, d is
hidden dimension), the VCLayer applies a stage-specific transformation. For an agent at stage i, this
is a specialized multi-head attention mechanism:

H ′
i = Attention(HWq,i, HWk,i, HWv,i)Wo,i (1)

where Wq,i,Wk,i,Wv,i ∈ Rd×dvc and Wo,i ∈ Rdvc×d are trainable, stage-specific projection matri-
ces. This allows each expert to focus on task-relevant aspects of the input. The resulting state H ′

i
is then passed to the LM head to produce logits. A key innovation is the collaborative loss, LV C ,
which guides the VCLayer to learn the workflow structure. During local training for agent i, the
total loss combines the standard Supervised Fine-Tuning (SFT) loss with our collaborative loss:

L(i)
total = L(i)

SFT + γL(i)
V C (2)

Here, γ is a balancing hyperparameter. LSFT is the conventional cross-entropy loss for next-token
prediction. LV C comprises three terms that enforce the value chain’s relational structure:

LV C = λposLpos + λcontLcont + λconsLcons (3)

where λpos, λcont, and λcons are weighting coefficients.

Positional Loss (Lpos): This loss enforces a geometric arrangement of experts in an embedding
space, reflecting their sequential order. It is based on the similarity between learnable embeddings
{e0, ..., eN−1} for each stage:

Lpos =

N−2∑
i=0

(
cos(ei, ei+1)− T (i)

pos

)2

(4)

where T
(i)
pos is a target cosine similarity, encouraging adjacent experts to be closer.

Continuity Loss (Lcont): This loss promotes a smooth transition of knowledge by ensuring adja-
cent experts learn similar functions. It operates on the VCLayer’s projection matrices:

Lcont =

N−2∑
i=0

(cos(vec(Wq,i), vec(Wq,i+1))− Tcont)
2 (5)

where vec(·) is the vectorization operator and Tcont is a high target similarity value, encouraging the
attention mechanisms of consecutive stages to be functionally alike.

Consistency Loss (Lcons): This loss ensures a coherent solution progression by aligning an ex-
pert’s output representation with its predecessor’s for the same input. For an agent at stage i > 0:

L(i)
cons =

(
cos( ¯fi(H), ¯fi−1(H))− Tcons

)2
(6)

where ¯fi(H) is the mean-pooled output hidden state from the VCLayer of agent i for input H .
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3.2 DYNAMIC AGGREGATION WITH MOE ROUTING

To overcome static aggregation limitations (e.g., FedAvg), we introduce a trainable Mixture of Ex-
perts (MoE) Router. This task-aware coordinator dynamically determines each expert’s contribution
based on the input prompt. As a shared global component, it is co-trained with the experts’ LoRA
adapters and VCLayers. The MoE Router, G(·), is a lightweight MLP. For any input, it computes a
representation by mean-pooling the base LLM’s hidden states, H̄ = 1

L

∑L
l=1 Hl. It then processes

H̄ to produce logits z ∈ RN over the N experts, which are converted to a probability distribution
via softmax:

α = softmax(G(H̄)) (7)
where αi is the routing weight for expert i. The MoE Router is trained implicitly via a loss weighting
mechanism during local SFT. We modulate each expert’s SFT loss for a sample by its assigned
routing weight. For expert i, the loss L(i)

SFT is multiplied by αi, strengthening the gradient signal
when the router correctly assigns a high weight to the appropriate expert.

We add two auxiliary losses to regularize the router. A load balancing loss, Lbalance, encourages even
expert utilization over a batch to prevent specialization collapse, and is formulated as the variance of
expert utilization. An entropy-based confidence loss, Lentropy, penalizes uncertain routing decisions
to encourage sparse, confident weights. The total local loss for agent i is thus:

L(i)
total = αiL(i)

SFT + γL(i)
V C + δ1Lbalance + δ2Lentropy (8)

where δ1 and δ2 are hyperparameters. This composite loss enables end-to-end training of the LoRA
adapters, VCLayers, and the MoE Router. After each local training round, the router’s updated
weights are aggregated on the server, similar to FedAvg:

W t+1
router =

∑
i∈St

ni

n
W t+1

router,i (9)

3.3 PREFERENCE ALIGNMENT WITH DIRECT PREFERENCE OPTIMIZATION

After the federated SFT phase, the aggregated model has expert knowledge and a foundational
workflow understanding. The final phase (Figure 1 (b)) refines the model’s output by aligning it with
human preferences for quality and coherence using Direct Preference Optimization (DPO) (Rafailov
et al., 2023). This phase begins by using the final SFT model, πSFT, to automatically generate a
preference dataset, Dpref = {(x, yw, yl)}. The co-trained MoE Router’s intelligence is leveraged to
create these preference pairs. For each prompt x, the following steps are taken:

1. The MoE router within πSFT computes routing weights α and ranks the N experts based on
their relevance to the prompt.

2. The top-ranked expert, cw = argmaxi αi, is selected to generate the winning (chosen)
response, yw.

3. A lower-ranked expert, cl, is selected to generate the losing (rejected) response, yl.
4. The tuple (x, yw, yl) is added to the preference dataset Dpref.

This automated process uses the router’s expertise to create a large-scale dataset favoring outputs
from the most contextually appropriate expert. The aggregated model πSFT is then fine-tuned on Dpref
using DPO. DPO directly optimizes the model for preferences without a separate reward model. The
policy model, πθ, is initialized from πSFT, and a frozen copy of πSFT serves as the reference model,
πref. DPO’s objective is to maximize the likelihood of preferred responses yw and minimize that of
rejected responses yl, constrained by a penalty term preventing large deviations from the reference
model. The loss function is:

LDPO(πθ;πref) = − log σ

(
β log

πθ(yw|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yl|x)

)
(10)

where σ is the logistic function and β controls the preference strength. Minimizing this loss over the
preference dataset aligns the policy model πθ with the collaborative logic from the SFT phase. This
final step yields the fully optimized FedWave model, adept at specialized tasks and high-quality,
human-preferred collaboration.
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Table 1: Performance comparison of FedWave and baselines across three BizWorkflow datasets and
three different backbone models. The best scores for each metric are highlighted in bold.

Baselines Automotive E-commerce Pharmaceutical
BS-F Meteor Rouge-L BS-F Meteor Rouge-L BS-F Meteor Rouge-L

Qwen2-7B
FedAvg 71.11 23.35 22.18 79.17 43.29 38.68 77.12 26.76 28.54
FedAvgM 70.66 22.02 21.74 79.51 43.09 39.23 76.87 25.57 27.51
FedProx 71.36 23.58 22.53 79.23 43.53 38.84 77.18 27.08 28.65
FedAdam 71.39 23.74 21.74 78.78 41.01 37.07 76.41 26.07 27.29
FedYogi 71.49 24.18 22.48 78.54 40.31 36.81 76.00 24.59 26.11
Scaffold 71.26 23.53 22.49 79.04 42.32 38.50 77.06 27.09 28.68

FedWave 71.90 40.35 23.46 80.17 48.28 39.63 78.34 29.82 31.89
Llama2-7B

FedAvg 69.43 17.41 20.98 72.96 16.45 22.66 70.61 10.10 14.98
FedAvgM 65.62 14.32 16.65 73.11 18.13 23.73 70.95 11.24 15.15
FedProx 69.26 17.08 20.74 72.82 16.30 22.52 70.92 10.27 15.06
FedAdam 68.90 17.03 19.55 70.83 13.49 19.88 68.79 8.75 13.34
FedYogi 69.12 17.20 19.99 70.42 13.15 19.40 68.36 8.31 12.94
Scaffold 69.25 16.78 20.64 72.95 16.62 22.72 70.97 10.39 15.25

FedWave 70.08 18.55 22.12 74.95 20.80 26.30 74.78 13.38 19.73
Llama3-8B

FedAvg 58.62 10.73 9.55 68.81 26.25 25.29 61.34 14.17 14.49
FedAvgM 56.03 7.33 6.76 64.61 24.05 21.19 61.84 14.24 14.38
FedProx 58.44 10.50 9.27 68.52 27.16 25.66 61.79 14.50 15.06
FedAdam 51.47 2.67 2.25 57.22 18.28 14.65 58.08 12.16 11.49
FedYogi 52.78 4.17 3.66 57.37 18.16 14.77 58.20 11.68 11.05
Scaffold 59.15 11.31 10.21 68.12 25.65 24.60 61.62 14.85 14.97

FedWave 70.27 24.83 17.47 79.66 44.72 38.33 77.95 24.02 28.40

4 EXPERIMENTS

Our experiments evaluate FedWave to address three questions: (1) How does its collaborative per-
formance on sequential tasks compare to standard federated learning? (2) How does the privacy-
preserving FedWave perform against a centralized multi-agent system with full data access? (3)
Which design elements are most critical to its success?

4.1 SETTINGS

Datasets and evaluation metrics. We evaluate our framework on the MSCoRe benchmark (Lei
et al., 2025), which is specifically designed for multi-stage collaborative reasoning. It provides
three challenging datasets with complex, sequential tasks representing distinct business workflows:
E-commerce, Pharmaceutical, and Automotive. To comprehensively assess the quality of the
generated outputs, we employ a diverse suite of metrics beyond simple lexical overlap. This includes
ROUGE-1/2/L (Lin, 2004) for lexical content, BLEU-4 (Papineni et al., 2002) and GLEU (Wu et al.,
2016) for fluency, and crucially, METEOR (Banerjee & Lavie, 2005) and BERTScore (Zhang et al.,
2019) to evaluate deeper semantic fidelity and contextual relevance.

Baselines. To validate our framework’s effectiveness, we compare it against two baseline cat-
egories. For federated learning, we adapt widely-recognized algorithms: the foundational Fe-
dAvg (McMahan et al., 2017); FedProx (Li et al., 2020) with its proximal term to miti-
gate heterogeneity; FedAvgM (Hsu et al., 2019), which adds server-side momentum; SCAF-
FOLD (Karimireddy et al., 2021) for client-drift correction; and the adaptive optimizers FedAdam
and FedYogi (Reddi et al., 2020). For multi-agent systems, we benchmark against centralized meth-
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Table 2: Performance comparison of FedWave against centralized multi-agent baselines on the
Qwen2-7B backbone. FedWave operates in a decentralized, privacy-preserving setting, while the
baselines have access to the full, centralized dataset. The best scores for each metric are highlighted
in bold.

Dataset Baselines BS-F GLEU BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Automotive

PMC (Zhang et al., 2025) 65.81 13.25 5.24 26.44 4.51 18.37
MedAgents (Tang et al., 2024b) 64.94 12.47 4.81 23.68 4.07 18.34
Debate(long) (Du et al., 2024) 65.56 12.92 6.49 25.49 5.91 18.03
Debate(short) (Du et al., 2024) 65.32 12.66 6.30 25.39 6.02 17.81
CoA (Zhang et al., 2024) 70.77 22.30 14.41 33.99 11.15 24.01
FedWave (Ours) 71.47 20.42 15.44 35.11 12.19 22.47

E-commerce

PMC (Zhang et al., 2025) 70.88 24.01 19.73 33.47 11.45 29.91
MedAgents (Tang et al., 2024b) 69.57 17.48 12.60 33.62 10.77 28.25
Debate(long) (Du et al., 2024) 72.89 20.81 15.46 36.43 13.12 28.04
Debate(short) (Du et al., 2024) 72.93 20.85 15.56 37.11 13.51 28.23
CoA (Zhang et al., 2024) 79.20 38.08 34.23 50.02 25.35 39.02
FedWave (Ours) 80.17 42.60 39.56 51.04 26.22 39.63

Pharmaceutical

PMC (Zhang et al., 2025) 68.55 17.34 11.67 28.16 7.52 25.93
MedAgents (Tang et al., 2024b) 65.96 10.60 4.46 25.91 6.17 21.13
Debate(long) (Du et al., 2024) 61.14 9.58 5.33 16.18 4.69 12.23
Debate(short) (Du et al., 2024) 70.57 15.78 9.11 31.76 9.60 23.03
CoA (Zhang et al., 2024) 77.26 29.92 18.18 42.38 19.93 33.70
FedWave (Ours) 78.34 26.27 19.22 43.24 20.00 31.89

ods that operate on an aggregated dataset: the hierarchical PMC (Zhang et al., 2025), discussion-
based MedAgents (Tang et al., 2024b), chain-based CoA (Zhang et al., 2024), and Debate (Du et al.,
2024), which enables collaboration through argumentative discourse by modulating agent confi-
dence through varying debate durations.

Details. Unless otherwise specified, all our experiments use 7B/8B parameter scale LLMs
(Qwen2-7B, Llama2-7B, Llama3-8B) as the base models, which are quantized to 8-bit for compu-
tational efficiency. Our framework consists of 4 expert clients, with all clients participating in each
communication round.For the federated fine-tuning phase, we run for 20 communication rounds. In
each round, every client trains locally for 10 steps using the AdamW optimizer with a batch size of
4. We apply a cosine learning rate schedule, decaying from an initial value of 5× 10−5 to 1× 10−6

over the rounds. The maximum sequence length is set to 2048. For the PEFT technique, we use
LoRA with a rank of 32 and a scalar alpha of 64. For our proposed FedWave components, the MoE
router selects the top-2 experts (k = 2), and the key hyperparameters for the VCLayer losses are set
as λpos = 0.1, λcont = 0.1, λcons = 0.2, and γ = 0.5. For the final preference alignment phase, the
aggregated model is fine-tuned using DPO for 10 epochs with a learning rate of 1× 10−5 and a β of
0.1. All experiments are conducted on NVIDIA A40 GPUs. We use the Alpaca (Taori et al., 2023)
template to format the instructions.

4.2 COLLABORATIVE PERFORMANCE OF FEDWAVE COMPARED TO FEDERATED LEARNING

We present the main experimental results in Table 1, comparing our FedWave framework against six
federated learning baselines across three business workflow datasets and three LLM backbones. The
results clearly demonstrate the consistent superiority of our FedWave framework, as it significantly
outperforms all baseline methods across all evaluation metrics, datasets, and backbone models. The
performance improvement is particularly pronounced in metrics like Meteor and BERTScore-F,
which measure semantic coherence and fluency. For instance, on the Automotive dataset with the
Qwen2-7B backbone, FedWave achieves a Meteor score of 40.35, substantially improving upon
the best baseline score of 24.18 (FedYogi). This indicates that by explicitly modeling sequential
dependencies and dynamically aggregating expert knowledge, FedWave generates outputs that are
not only more accurate but also more semantically coherent. Furthermore, this superiority is not
confined to a specific model architecture.
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Table 3: Ablation study of the key components
of FedWave on the Automotive dataset using the
Llama3-8B backbone.

Method BS-F Meteor Rouge-L
FedWave (Full Model) 70.27 24.83 17.47
- Ablation Variants -

w/o DPO 66.55 18.40 17.14
w/o MoE Router 69.00 23.65 16.99
w/o VCLayer 69.07 23.96 16.21

- Baseline -
SFT Only (FedAvg) 58.62 10.73 9.55

Table 4: Performance of the FedWave frame-
work when integrated with different federated
optimization algorithms. Experiments are con-
ducted with the Llama-8B backbone.

Aggregation Algorithm BS-F Meteor Rouge-L
FedWave (Default) 66.55 18.40 17.14

+ FedAvgM 70.59 23.43 21.73
+ FedProx 70.86 23.71 22.20
+ FedAdam 70.68 23.68 21.89
+ FedAdagrad 70.71 23.79 21.97
+ FedYogi 70.35 23.42 21.46

4.3 COLLABORATIVE PERFORMANCE OF FEDWAVE COMPARED TO MULTI-AGENT

We further benchmark FedWave against several centralized Multi-Agent baselines, as shown in Ta-
ble 2. Crucially, while baselines operate with full data access, FedWave performs in a decentralized,
privacy-preserving setting. Despite this challenging condition, our framework demonstrates highly
competitive or even superior performance. On the E-commerce dataset, FedWave surpasses all cen-
tralized methods across every reported metric. On the Automotive and Pharmaceutical datasets,
it achieves state-of-the-art results on key metrics such as BERTScore-F and ROUGE, proving its
ability to generate high-quality, semantically rich outputs.

4.4 KEY DESIGN FACTORS AND HYPERPARAMETER INFLUENCE IN FEDWAVE

Ablation Study. The ablation study results in Table 3 reveal the powerful synergistic effect of our
framework’s components. While removing any single component—the DPO stage, MoE Router, or
VCLayer—causes a noticeable performance degradation, the decline is not catastrophic as the re-
maining parts partially compensate to maintain a degree of collaborative intelligence. For instance,
without the MoE Router, the VCLayer still ensures the agents learn their sequential roles. How-
ever, when all three components are removed (reverting to the ‘SFT Only (FedAvg)‘ baseline), the
collaborative intelligence system collapses, causing a drastic drop across all metrics (e.g., Meteor
falls from 24.83 to 10.73). This substantial gap demonstrates that our components have a multi-
plicative, not merely additive, effect. It is the integrated combination of explicit workflow modeling
(VCLayer), dynamic knowledge aggregation (MoE Router), and preference alignment (DPO) that
collectively enables FedWave’s superior performance.

Hyper-parameter Sensitivity Analysis. We conduct a comprehensive analysis to evaluate the
sensitivity of FedWave to its key hyperparameters, demonstrating the framework’s robustness.

VCLayer Loss Components. As illustrated in Figure 2, we first vary the individual weights for the
Positional Loss (λpos), Continuity Loss (λcont), and Consistency Loss (λcons). For both λpos and

Figure 2: Sensitivity analysis for the weights of the collaborative loss components in the VCLayer.
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Figure 3: Sensitivity analysis for core hyperparameters of FedWave: (a) Balancing coefficient γ for
SFT and VC losses; (b) Overall scaling factor for VCLayer weights; (c) MoE router’s top k value;
and (d) DPO’s beta value.

λcont, the performance, measured by Meteor, peaks at a weight of 0.1 and gracefully degrades as
the weight decreases, confirming their significant contribution to modeling the workflow structure.
The framework also shows robustness to changes in λcons, maintaining stable performance across a
range of values.

Other Core Hyperparameters. We further analyze several critical hyperparameters in Figure 3.
We study the balancing coefficient γ (Figure 3 (a)), which trades off between the SFT and VCLayer
losses, finding that γ = 0.5 yields an optimal balance. Our analysis of an overall scaling factor
for the VCLayer weights (Figure 3 (b)) shows performance peaks at the default scaling of 1.0,
confirming our weights are well-calibrated. The study of MoE top k (Figure 3 (c)) reveals that
performance peaks at k=2, suggesting that activating a small, focused group of experts is most
effective. Finally, the analysis of DPO β (Figure 3 (d)) confirms that a value of 0.1 provides the
best alignment without significant deviation from the base model. Overall, these results demonstrate
that while our proposed components are crucial, FedWave is not overly sensitive to their precise
hyperparameter values, highlighting its stability and reliability.

4.5 ANALYSIS ON FEDERATED AGGREGATION ALGORITHMS

To assess the compatibility and modularity of our framework, we integrated FedWave with several
advanced federated optimization algorithms, replacing the default FedAvg-based aggregation. The
results, presented in Table 4, show that all tested optimizers yield a substantial performance im-
provement over the default configuration. Notably, algorithms like FedProx and those with adaptive
optimization (FedAdagrad, FedAdam) achieve the higher scores. This suggests that the structured,
non-IID environment created by our VCLayer and MoE router benefits significantly from optimizers
designed to handle client drift and heterogeneity. FedProx, with its regularization term, likely pre-
vents the specialized expert models from diverging too far from the global consensus, while adaptive
methods better navigate the complex loss landscape.

5 CONCLUSION

In this paper, we introduced FedWave, a novel federated multi-agent collaboration framework de-
signed to address the critical challenge of solving complex sequential tasks across decentralized,
privacy-sensitive data silos. By integrating a collaborative VCLayer, a dynamic MoE router for in-
telligent aggregation, and a final DPO stage for preference alignment, our framework successfully
bridges the gap between the collaborative capabilities of multi-agent systems and the privacy guar-
antees of federated learning. Our extensive experiments demonstrate that FedWave not only signifi-
cantly outperforms standard federated learning baselines but also achieves performance competitive
with, and often superior to, centralized multi-agent systems that have unrestricted data access.
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A QUALITATIVE ANALYSIS: A CASE STUDY

To provide a more intuitive understanding of the performance differences, we present a qualitative
case study on a representative task from the Automotive workflow dataset. We prompted the models
with a complex, two-part request that requires both marketing creativity (Expert 1’s domain) and
supply chain knowledge (Expert 2’s domain). The results, shown in Figure 4, highlight the distinct
collaborative capabilities of each approach.

The analysis of the outputs in Figure 4 reveals the clear superiority of our proposed framework. The
FedAvg, lacking any mechanism for structured collaboration, produces a convoluted and generic
response. It struggles to differentiate between the distinct tasks of marketing and supply chain
planning, mixing concepts and failing to provide the specific, actionable details required by either
role. This output exemplifies the shortcomings of simple model averaging, which dilutes expert
knowledge into a generalized but ultimately ineffective model.

In contrast, the Centralized MAS baseline, with full data access, performs well. It correctly sepa-
rates the two sub-tasks and provides relevant, technically sound details for each, such as focusing on
the core chassis components. This demonstrates the effectiveness of the multi-agent paradigm when
privacy is not a concern.

Most importantly, FedWave achieves a remarkable level of performance that is highly competi-
tive with the centralized approach, despite operating under strict privacy constraints. The output
demonstrates a clear and seamless transition between the two roles. The marketing announcement is
creative, while the supply chain requirements are precise and technical. Crucially, the generated de-
tails are not only plausible but also qualitatively different from the centralized model’s output—for
instance, specifying innovative components like ’BladeCell’ batteries and ’WaveDrive’ motors, and
focusing on sustainable interior textiles. This suggests that FedWave successfully synthesizes spe-
cialized knowledge learned from distributed data sources, a feat not possible with simple averaging.
This successful role-switching is a direct result of our MoE router dynamically identifying the
relevant expert for each part of the prompt. Furthermore, the high quality and coherence of the com-
bined output showcase the effectiveness of the VCLayer in maintaining a logical flow and the DPO
stage in refining the final generation to align with high-quality, human-like collaborative solutions.
This case study compellingly illustrates that FedWave successfully instills genuine collaborative
intelligence in a decentralized environment.
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Figure 4: Qualitative comparison of model outputs for a multi-stage task. The prompt requires the
model to first act as a marketing expert and then as a supply chain analyst.
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