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ABSTRACT

We analyze the relationships and shared structure among different prediction tasks
on a dataset of retinal images using linear probes: linear regression models trained
on some “target” task, using embeddings from a deep convolutional (CNN) model
trained on some “source” task as input. We use this method across all possible
pairings of 101 tasks in the UK Biobank dataset of retinal images, leading to
∼193k different models. We analyze the performance of these linear probes by
source and target task and by layer depth.
We observe that representations from the middle layers of the network are more
generalizable. We find that some target tasks are easily predicted irrespective of
the source task, and that some other target tasks are more accurately predicted
from correlated source tasks than from embeddings trained on the same task.
We then try to understand the principles that might be at work using synthetic
experiments: images generated based on a ”dead leaves” model.

1 INTRODUCTION

Retinal fundus (internal eye) images have been well-studied in machine learning applications. Ma-
chine learning can predict retinal disease with great accuracy (Gulshan et al., 2016; Badar et al.,
2020). However, many other, often surprising, features can also be predicted from these images:
for example, visual acuity (Varadarajan et al., 2018), cardiovascular risk (Poplin et al., 2018), dia-
betes (Zhang et al., 2021), anaemia (Mitani et al., 2020) and many other variables (Rim et al., 2020).
Many of these are novel predictions not known to be predictable from these images by human ex-
perts, and it would be useful to understand precisely which features in the fundus image make these
features predictable.

The challenge in even framing this question is the lack of tractable formalisms for characterizing
how predictions are made. One simple idea is to take a model that achieves the surprising outcome
of predicting certain variables from retinal images and ask what else this model is able to predict
effectively. To do this, we need a way to evaluate how effectively we can build simple extensions
of the models’ internal representation to predict other quantities of interest. Linear probes (Alain &
Bengio, 2016) and concept activation vectors (TCAV) (Kim et al., 2018) are techniques that provide
paths to doing this; in this work we focus on linear probes. Linear probes have been widely used in
a range of domains; we discuss their uses further in Section 4 on Related Work.

In this paper, we use this technique to study and understand CNN model predictions on 101 different
tasks based on the UK Biobank dataset (Sudlow et al., 2015) of retinal images and labels.

We find that embeddings from the middle layers of the networks (as opposed to those closest to the
output) learn features that are more generalizable across multiple target tasks, with linear probes
consistently making accurate predictions. Additionally, we find that some target tasks such as eye
position (left vs. right eye) and refractive error are easily predicted irrespective of the source task
the CNN was trained on. We also find that other target tasks such as height are better predicted
by embeddings trained on correlated tasks such as blood testosterone or self-reported sex, than by
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embeddings trained on the original task. Ultimately these results give insight into which features of
the input data make it possible to learn different target values.

2 RETINA IMAGES

Figure 1: Plots of linear model performance by layer, organized by target variable (row) and source
variable (column). Orange and red dots are from linear models trained on the single-valued source
prediction and source variable value, respectively.

Data We used a dataset of retinal images from the UK Biobank study (Sudlow et al., 2015) con-
taining 140,000 retinal fundus images from 68,000 patients. We randomly separated 12.5% of the
patients into a test set, with the rest in the train set. We used a set of 101 non-eye-disease-related
variables available in the UK Biobank resource. These included demographic data such as age and
self-reported sex (recorded in the data as female/male); measurements such as blood tests and visual
acuity; and miscellaneous features such as eye position (whether the image is of the left or right
eye). Figure 4 summarizes all 101 variables.

2.1 EXPERIMENTS

We trained deep convolutional models with identical Inception V3 architectures for each of the 101
variables in our dataset. The models were pre-trained on ImageNet with auxiliary loss turned off and
then trained with early stopping for a maximum of 200,000 steps. We then trained linear regression
models for the same set of variables. Each model used the output of an intermediate layer from
one of the convolutional models as input. We used 19 different intermediate layers spanning the
depth of the Inception V3 architecture, and spatially average-pooled the output to make an exact
linear regression tractable. These models were trained on the same training set as the convolutional
models.

In total, this gave rise to ∼193k different linear models: 101 “source” tasks (convolutional models)
× 101 “target” tasks (linear models) × 19 intermediate layers. We evaluated each linear model on
the test dataset using Spearman’s rank correlation.

Along with linear regressions on intermediate layers, we also carried out linear regressions on the
raw values of the variables themselves and on the single-valued predictions from each convolutional
model, in order to distinguish tasks that shared common representations from tasks that were merely
correlated with each other. The regressions were done on the training set and evaluated on the test
set, just like the intermediate layer regressions.
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2.2 ANALYSIS AND OBSERVATIONS

In this section we present our analysis and observations from our experiments.

2.2.1 MIDDLE LAYER REPRESENTATIONS GENERALIZE BEST

Figure 1 presents performance of the linear probe models (y axis, as measured by Spearman’s rank
correlation) on embeddings across layers (x axis) from models trained to predict different variables
(self-reported sex, eye position, smoker status, etc.) represented in each column. We observe that
performance across layers tends to follow the same pattern: it increases from the layers closest to
the input until the middle layers, and then decreases again - except where the source and target tasks
are the same (on-diagonal plots). When the source and target are the same, the performance plateaus
or continues to increase in the final layers.

The shape of the graph looks more similar along rows than columns, suggesting that the difficulty
of learning a given task is more important than the differences between input embeddings learned
for different tasks. This observation is in contrast with typical transfer learning setting where it is
much more common to tune the final layers of a model (layers closer to the output) for new tasks,
suggesting that we may want to entirely choose a layer in the middle for transfer learning.

In order to distinguish embeddings with similar representations from mere variable correlation, we
also trained linear regression models on each input task’s ground truth values and the convolutional
model’s output predictions (Fig 1, red and orange points). These generally do much worse than
models trained on intermediate embeddings, though there are cases where the performance is com-
parable. One such example is predicting systolic blood pressure with age as the source task, which
makes sense as the two variables are known to be correlated (Wolf-Maier et al., 2003).

2.2.2 SPECIFIC MIDDLE LAYERS PERFORM BEST, GENERALIZING WELL ACROSS MULTIPLE
TASKS

(a) Histogram of the best-
performing layer for each
[source, target] variable pair.
Pairs where the two variables
were the same are excluded.

(b) Dimensions of embeddings
(input to linear regression mod-
els) by layer of the source CNN.

(c) Receptive field (one dimen-
sion) by layer of the source CNN.

Figure 2

Next we ask, for the Inception network are there specific layers that give the best performance when
generalizing to all tasks? Figure 2a shows a histogram of the best-performing layer for each [source,
target] variable pair. (Pairs where the source and target tasks are the same were excluded.) It is
interesting to see two distinct peaks in the middle layers (around layers 6,7 as well as layers 11, 12).
However layer 11 appears to be consistently more generalizable and is amongst the top 3 layers with
best performance on many of our pairwise comparisons. We don’t know, however, why there are
two peaks. The linear models’ input does have different dimensions depending on the layer (Fig 2c),
but the peaks don’t obviously correspond to the changes in size. The clustering could also be due to
correlations between [source, target] pairs. This would be interesting to investigate further.

3



Under review as a conference paper at ICLR 2022

Figure 3: Comparison of performance on all source tasks for a given target task. Each line represents
one source task. Color is based on the best performance of that source task as a target task - blue
is highest performance, red is lowest. Dotted lines show the performance when the source variable
is the same as the target. Observe that for ‘height’ representations from other source tasks (in this
case, self-reported sex and blood testosterone) are better predictors.

2.2.3 PERFORMANCE BANDS FOR SAME TARGET TASK

As we would expect, the models generally perform best when the source and target tasks are the
same (dotted lines, Fig 3). This is not always true, however - for example. “height” performs better
on several other source tasks than on itself as a source task. The other sources were tasks such as as
blood testosterone and self-reported sex, which share two properties: they’re correlated with height,
and are easier to predict than height (for which we never get a Spearman correlation above 0.4).
We might guess that, because height is so hard to predict, there’s not as much room for embeddings
trained on it to improve - an illustration of the utility of multitask learning.

We can also observe that there are clear bands and outliers. The bands are closer together in the
earlier layers, likely because features learned in the earlier layers are more universal. The outliers
generally make sense: for example, the “blood pressure medication” as target task performs well
with itself as a source task, but it performs just as well on source tasks for two related medications,
aspirin and ACE inhibitors.

2.2.4 COMPARISON ACROSS ALL TASKS

When comparing a single layer for all task combinations (Figure 4), we again see that the target task
is usually more important than the source task. But there are some other interesting relationships
- for example, age, eye position (left vs. right eye), and most measures of visual acuity are easily
predicted regardless of the source task. Age is correlated with a small subset of tasks (Figure B12),
but predicting age with those as source tasks gets only about the same performance as many other
source task. These relationships can also be represented in a network specifying the pairs of tasks
with high performance via linear probes, shown in Figure 5.

3 UNDERSTANDING LINEAR PROBES VIA SYNTHETIC IMAGES

Our experiments on the retina dataset highlight interesting correlations and hypothesis worth eval-
uating. To further study these correlations and hypotheses, we work on synthetic images where we
have more control on the properties and tasks. We developed a set of environments of synthetic
images where we focus on the shape, size, and number of objects, and create classification tasks
in the spirit of the ones seen in the retinal dataset. This helps us answer our previous observations
about why we see more than one peak when determining the best layer to transfer from, and why for
a given target task, the model trained on the same source task is not always the best performing one.
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Figure 4: Cross-comparison of all tasks for layer 11. This layer was chosen as it was close to the
best layer for most models, and showed the most interesting variation between variables. Tasks are
ordered by hierarchical clustering. The bolded source task is a random baseline, where the source
CNN was trained on labels drawn from the standard uniform distribution.

3.1 EXPERIMENTS

We generated images according to a ”dead-leaves” model Matheron (1975); Lee et al. (2001) - so-
called because it looks like fallen leaves piled on top of each other. Each dataset has 10000 images,
all using ”leaves” of a particular shape and size (Figure 6). The images are each the same size as the
retina images, around 600x600 pixels.

Shape options:

• Aligned squares
• Randomly rotated squares

We also tried circles and 45◦rotated squares, but the results didn’t change much.

Size options:

• Random (multi-size): For each side length in range(20, 600, 20), add one shape on the left
side with probability 0.25, then repeat for the right side. Smaller shapes are always on top
of larger ones. For tasks, instead of counting shapes of a given size, count shapes where n
≤ size ≤ n+50.
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Figure 5: Network diagram of layer 11, connecting pairs of tasks with particularly good perfor-
mance. The thickness of each line is determined by the ratio between the performance of a task
pair on this layer (see Fig 4), and the performance of that pair when the ”source” is the ground truth
values. Lines are only shown if the ratio is above a threshold.

Figure 6: Shapes and size mixes used in synthetic image datasets.

• 20px / 200 / 400 (single-size): Same as for multi-size, except that instead of range(20, 600,
20), uses [n]*30 as the list of side lengths.

Within each dataset, there are 4 task types and up to 3 task sizes; each task involves counting all the
shapes of a given size.

Task types:

• Count all: count total number of shapes of a given size

• Count left/Count right: count number of shapes of a given size, but only those in the left
or right half of the image

• Left > right?: binary task - are there more shapes of the given size on the left or right half?
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Task sizes: For each single-size dataset, we can of course only count shapes of that size. For multi-
size datasets, we train each of the 4 task types for each of 3 ”task sizes”: 20px (counting all shapes
in the 20-100 range), 200px (200-300), and 400px (400-500).

So in total, we have (2 shapes * 3 single-sizes * 4 task types * 1 task size) + (2 shapes * 1 multi-size
* 4 task types * 3 task sizes) = 48 tasks.

The training procedure is the same as for the retina data: we train an Inception model for each of the
48 tasks, then train linear models on the intermediate layer outputs for the same set of tasks.

3.2 MAJOR QUESTIONS ANSWERED

20 20
0
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Sizes in image
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Count all Count left Count right Left > right?
Task type

Shape
Aligned squares Randomly rotated square

Task size
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Figure 7: Cross-comparison heatmap of all tasks for layer 16.

3.2.1 SCALE: WHY ARE THERE TWO PEAKS IN THE BEST-LAYER HISTOGRAM?

From Figure 8a, we can see that there are again two peaks in the layer histogram. Figure 8b shows
that the first peak corresponds to target tasks with smaller features, likely because the necessary
receptive field is smaller. Pairs where the source and target tasks are the same tend to do best at the
highest layer, as expected.
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(a) Histogram of the best-performing layer for
each [source, target] task pair.
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(b) Heatmap of the best layer for each task pair, for the
subset of pairs where both tasks use aligned squares, i.e.
upper left quadrant of Fig. 7. (The rest of the tasks look
similar; see Fig. A11).

Figure 8: Best-performing layers for each task pair.

We might expect tasks that are correlated to peak at a higher layer than tasks that merely use shared
representations. For example, ”count left” is correlated with both ”count all” and ”left > right” for
the same task size, but ”count all” and ”left > right” aren’t correlated with each other, and neither is
”count left” with ”count right”. We do observe a slight tendency for this to be true in Figure 7; there
are some diagonals where the best layer is higher in the expected places.

3.2.2 BANDS: FOR A GIVEN TARGET TASK, WHY ISN’T THAT SAME TASK ALWAYS THE BEST
SOURCE TASK?

We hypothesized that this phenomenon might correspond to source tasks that are more difficult for
a CNN; if the CNN can’t learn to make a good prediction, it will also be less likely to learn a good
representation of the input. ”Difficulty” might mean either there’s not enough information in the
input to make a good prediction, or the information is there but too complex to learn easily.

The former can be modeled by the information loss from shapes being occluded by others, especially
the larger shapes, which in our data are always behind the smaller shapes. If we compare the tasks of
counting 400-pixel-wide shapes in the single-size vs. multi-size examples, the single-size examples
will likely be missing more information, since more shapes will be fully occluded by the large shapes
piled on top. Meanwhile, we’d expect the multi-size tasks to be more complex, since we don’t
automatically know the size of each shape. Complexity is perhaps best modeled by the difference
between shapes - we’d expect images with randomly rotated squares to be more difficult than similar
images where all the squares have the same orientation.

We might expect that tasks with missing information would be worse source tasks than ones that are
merely complex, since the model would be fitting to noise as well as real information; however, we
don’t see a significant effect in our results. More exploration would be useful, perhaps varying the
numbers of shapes in each image to vary the amount of occlusion.

3.2.3 OTHER NOTABLE RELATIONSHIPS

Comparing target tasks, we can see that smaller task sizes are easier, which is unsurprising since
occlusion is not really an issue. Smaller task sizes also have little dependence on source task.
Single-size datasets are easier than multi-size ones.

The diagonal shows that for each target task, the best source task is itself. There are also other
diagonal lines showing that the next best source tasks tend to be tasks with the same shape and task
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size, and that learning is transferable between most task type pairs (with the exception of ”count all”
and ”left > right”).

Figure 9 shows that it’s much easier to learn aligned squares from representations trained on rotated
ones than the reverse.

20 20
0

40
0

Sizes in image
Single Multi

Count all Count left Count right Left > right?
Task type

Task size

Figure 9: Difference between shapes as a source and target task on layer 16. Each point is the
performance of a [source, target] pair where both source and target are aligned squares, minus the
same pair where both source and target are rotated squares (i.e. quadrant I - quadrant III from Fig
7).

4 RELATED WORK

Linear probes have been widely used for interpretability to understand performance of deep models
with application to language processing (Hewitt & Liang, 2019; Hewitt & Manning, 2019; Belinkov,
2021), computer vision (Alain & Bengio, 2016; Asano et al., 2019), speech (Oord et al., 2018) or
generally when understanding different neural network architectures (Raghu et al., 2017; Graziani
et al., 2019; Horoi et al., 2020).

A number of recent papers on large vision, text and multimodal models Kolesnikov et al. (2019);
Dosovitskiy et al. (2020); Radford et al. (2021) use linear probes as a way to verify the ability of
the model’s representations to transfer well to other datasets and tasks. Here we use linear probes to
explain the model.

5 CONCLUSION

To conclude, in this work we used the basic notion of linear probes to study models trained on 101
different tasks/variables in fundus images in the UK Biobank. We looked at over 193k models,
examining different variables as source and target pairs. We find interesting patterns in performance
on source embeddings at various layer depths, and in performance on various combinations of source
and target task.

Overall, the results show that simple linear probes provide a rich environment for unravelling the
relationships between the underlying data and labels, providing insight into why neural networks
trained on single labels are able to make accurate predictions. Future work will use the different
representations to unravel which features of images are responsible for different accurate predictions.

6 ETHICAL CONSIDERATION

Understanding how representations are learned for medical applications can help design and develop
better models for these applications, potentially helping to mitigate biases in model design. As
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we apply these methods on medical domains and other sensitive domains we need to be mindful
about the correlations and observations that we find. In particular we would want to evaluate the
hypotheses that these interpretation methods yield and validate them with practitioners in the field.
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A HEATMAPS OF BEST LAYER FOR EACH TASK PAIR

Figure 10: For each task pair, the layer of the source model that provided the best performance on the
target task. 0 is earliest (closest to input), 18 is latest. Tasks are ordered by hierarchical clustering.

13



Under review as a conference paper at ICLR 2022

Figure 11: For each task pair, the layer of the source model that provided the best performance on
the target task. 0 is earliest (closest to input), 18 is latest. See main paper for task legend.
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B HEATMAPS FOR OTHER LAYERS, RETINA DATA

Figure 12: Cross-comparison of all tasks for linear models trained on the ground truth values for
each ”source task” (similar to simply calculating the correlation between the two tasks’ ground truth
values, except that we used a train/test split like we did for the other figures. Tasks are ordered by
hierarchical clustering.)
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Figure 13: Cross-comparison of all tasks for different layers of the source model. Tasks are ordered
by hierarchical clustering, which is done separately for each layer.
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Figure 14: Cross-comparison of all tasks for different layers of the source model. Tasks are ordered
by hierarchical clustering, which is done separately for each layer.
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Figure 15: Cross-comparison of all tasks for different layers of the source model. Tasks are ordered
by hierarchical clustering, which is done separately for each layer.
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