
Scaling Laws for Upcycling Mixture-of-Experts Language Models

Seng Pei Liew 1 Takuya Kato 1 Sho Takase 1

Abstract

Pretraining large language models (LLMs) is
resource-intensive, often requiring months of
training time even with high-end GPU clusters.
There are two approaches of mitigating such com-
putational demands: reusing smaller models to
train larger ones (upcycling), and training compu-
tationally efficient models like mixture-of-experts
(MoE). In this paper, we study the upcycling of
LLMs to MoE models, of which the scaling be-
havior remains underexplored. Through extensive
experiments, we identify empirical scaling laws
that describe how performance depends on dataset
size and model configuration. Particularly, we
show that, while scaling these factors improves
performance, there is a novel interaction term be-
tween the dense and upcycled training dataset that
limits the efficiency of upcycling at large com-
putational budgets. Based on these findings, we
provide guidance to scale upcycling, and establish
conditions under which upcycling outperforms
from-scratch trainings within budget constraints.

1. Introduction
Large-scale neural network architectures, such as dense
transformers (Vaswani et al., 2017), have seen remarkable
success across a wide range of tasks, particularly achiev-
ing human-level capabilities in natural language process-
ing (Achiam et al., 2023). However, they often demand
an enormous amount of computation, imposing challenges
of computational efficiency and scalability. Sparse mod-
els like mixture-of-experts (MoE) architectures (Shazeer
et al., 2017; Lepikhin et al.) have emerged as an alternative
achieving better efficiency-performance trade-off via partial
activation (routing) of neural parameters when processing
the input. Even so, MoE models still require substantial
compute power to reach its full potential (Wei et al., 2024;

1SB Intuitions, Tokyo, Japan. Correspondence to: Seng Pei
Liew <sengpei.liew@sbintuitions.co.jp>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Dai et al., 2024; Yang et al., 2024).

One direction to further accelerate training convergence is
leveraging smaller pretrained models to guide the training of
larger MoE models. Komatsuzaki et al. proposed upcycling,
which reuses the dense checkpoint to continued pretrain
the upcycled MoE. The MoE is expected to specialize and
optimize routing more rapidly by leveraging the pretrained
dense model weights.

Despite the promise of efficient MoE training via upcycling,
the effectiveness and limitations of this technique remain
unclear. While some (Wei et al., 2024; He et al., 2024)
have already adopted it to training large-scale MoE models,
Muennighoff et al. (2024) reported negative results where
upcycling can slow down training convergence. We believe
these seemingly contradictory conclusions are due to insuffi-
cient comprehensive studies and assessments. There is also
a lack of guidance on how and when to upcycle, hampering
a wider adoption of this technique.

In this paper, we seek to better understand large language
models’ (LLMs) upcycling to MoE models via a series of
controlled experiments, spanning up to a few hundred billion
(B) training tokens and models up to 7B total parameters.
Specifically, we uncover precise power-law scalings for the
language modeling performance (cross-entropy loss) with
respect to training dataset size (for both dense and upcy-
cled MoE training), and the model configuration, including
the total number of parameters (model size). Building on
these results, we provide a framework for assessing when
upcycling offers advantages over from-scratch training and
how performance gains depend on dataset size and model
configuration.

Main results. The major technical findings of this paper are
summarized below. Let D1, D2 be the number of tokens
used to train the dense model and upcycled MoE respec-
tively. Denote the cross-entropy test loss of the upcycled
MoE by L. We find that the upcycled MoE satisfies the
following relation for a wide range of model configuration:

L = AD−α1
1 D−α2+α3 logD1

2 + E (1)

where αi’s (i = 1, 2, 3) are positive scaling exponents, and
A,E are constants independent of D1, D2.

Moreover, the empirical performance has a power-law scal-

1

Scaling Laws for Upcycling MoE

Figure 1. Left: Upcycling improves with sparsity and the number of active parameters. We find that upcycling to MoE which is
sparser and has more active parameters improves performance. The z-axis shows the value of cross-entropy loss. See Section 4.2 for
details. Right: Efficiency of upcycling diminishes with sunk cost and model size. For all additional token budgets for upcycling a
Mixtral-like MoE above the curve(s), training MoE from scratch is more efficient, whereas for all token budgets below it, upcycling is
more efficient. Shown are the numerical (blue) and analytical (red) solutions of Equation 13. See Section 5.1 for details.

ing with respect to the model size as well as its sparsity
(Equation 11). These allow us to quantify the effectiveness
and shortcomings of upcycling. Particularly, our empirical
results suggest that :

• Increasing D1 (sunk cost) reduces the initial losses
of the upcycled MoE but results in slower training
progress with D2 (upcycled MoE tokens).

• Upcycled MoE benefits from increased sparsity and
active parameters without noticeable trade-offs. See
the left panel in Figure 1.

• We propose a joint scaling law of dataset and model
sizes for Mixtral-like MoE (Jiang et al., 2024) (Equa-
tion 12). While we find that the advantage of upcycling
diminishes with increasing sunk cost and dense model
size (N1), upcycling remains effective when D2 are
limited.

• Particularly, upcycling is beneficial when D2 remains
below a certain threshold, where the pretrained dense
model can still accelerate convergence. However, be-
yond this threshold, from-scratch training of MoE be-
comes more efficient. The threshold D∗ is

D∗ ≃ 4

(
N1

109

)−0.7+0.04 log(N1/10
9)

B tokens (2)

See the right panel of Figure 1.

Notations. We summarize main notations used in the paper.

• L: cross-entropy loss in nat

• D: dataset size in token
• N : non-embedding model size
• A,B, F : scaling factors of the power law, independent

of the variable under consideration
• E: irreducible loss of the power law, independent of

the variable under consideration
• α, β, γ: scaling exponents of the power law, indepen-

dent of the variable under consideration

2. Preliminaries
2.1. Model details

Dense model. Our dense models are decoder-only trans-
formers pretrained with an autoregressive language model-
ing objective. The architecture is most similar to Llama2
models (Touvron et al., 2023), incorporating advances such
as SwiGLU (Shazeer, 2020) and rotary position embedding
(Su et al., 2024). We use the Llama tokenizer of vocabulary
size 32,000.

Mixture-of-Experts. The MoE in consideration is the same
as our dense model, but with all MLP blocks replaced by
multiple blocks (experts) with the same configuration (Fedus
et al., 2022). A router consisting of a single-layer MLP
outputs the routing probability of the tokens to the experts.

The model configuration has two key parameters: nexpert,
representing the number of experts, and nTopK, which spec-
ifies how many of the highest-probability experts each token
is routed to at each layer. The output of the experts is linearly
combined and passed to the next layer.

The MoE and its corresponding dense model with model
size Ndense, consisting of nexpert experts, is denoted with

2

Scaling Laws for Upcycling MoE

a prefix ”nexpert”, e.g., 8x1B where the dense correspon-
dent is of 1B in model size. We refer to the number of
non-embedding model parameters (that is, total number of
parameters minus the number of embedding and language
modeling head parameters) used for computation per token
as the number of active parameters.

Upcycling. The upcycling scenario assumes that one is
given a pretrained dense model and would like to train an
MoE with the same configuration but replacing the MLPs
with the MoE modules (Komatsuzaki et al.). By replicating
the dense model’s MLP weights nexpert times to form the
experts, the knowledge from the dense model can be reused
to accelerate the training of the MoE compared to training
the MoE from scratch (from random parameter initializa-
tion). Other modules’ weights are copied from the dense
counterparts directly, with the router’s initial weights ran-
domized. See Figure 2 for an illustration of upcycling. We
employ this technique for our study. See Appendix A.6 for
other details, including alternative upcycling methods.

2.2. Power-law Ansatz

There is an extensive literature showing that the loss of train-
ing deep learning models has a simple power-law behavior:
L = A

Xα + E, for single variable X , including model size
and dataset size (Hestness et al., 2017; 2019; Rosenfeld
et al.; Henighan et al., 2020)1. We use this ansatz in this
work.

Hoffmann et al. (2022) have shown that when training a
dense transformer, the cross-entropy loss is well-described
by the following ”Chinchilla” scaling law:

L = AD−α +BN−β + E (3)

The first and second terms quantify the limitation of learn-
ing due to limited dataset and model sizes respectively. The
scaling exponents, α, β control how fast the loss decreases
with respect to dataset and model sizes respectively. E is a
constant: it is the irreducible loss representing the inherent
entropy of text. All parameters are to be fitted with experi-
mental observations. We also assume Equation 3 for models
trained from scratch.

3. Experimental Design and Results
In this Section, we describe the design of our experiments,
before presenting some of the experimental results. Ad-
ditional details, including ablation studies are available in
Appendix A.

1The actual form we assume is L = A
(X+1)α

+ E such that
the loss is finite at the limit X → 0. However, since the values
of X we consider are often much larger than 1 (106 or more), we
approximate it as L = A

Xα + E for notational convenience.

3.1. Setup

Dense models in consideration. We train a suite of dense
models with model sizes 15 million (M), 44M, 0.1B, 0.2B,
0.5B and 1B. The model configuration (number of layers,
nlayer, hidden dimension dmodel, and MLP hidden dimen-
sion, dmlp) used in this paper is summarized in Table 3 of
Appendix A.

We denote N1 by the dense model’s total number of non-
embedding parameters, N2 by the MoE’s total number of
non-embedding active parameters, Ntotal by the MoE’s total
number of non-embedding parameters. They are given by
(ignoring subleading contribution proportional to dmodel)

N1 ≈ (4 + 12)nlayerd
2
model = 16nlayerd

2
model (4)

N2 ≈ (4 + 12nTopK)nlayerd
2
model (5)

Ntotal ≈ (4 + 12nexpert)nlayerd
2
model (6)

where the attention and MLP module contribute 4d2model

and 12d2model parameters respectively per layer.

Learning rate schedule. We are interested in training
models with different numbers of training token budget.
Previous work (Hoffmann et al., 2022) used the cosine
learning rate (LR) schedule and trained separate models
for each number of training token budget, which is resource-
consuming. We instead employ the warmup-stable-decay
(WSD) learning rate schedule (Bi et al., 2024; Hu et al.,
2024), which requires only a single model sweep with a
sufficiently large number of training tokens. As the LR
is constant for the majority of learning, the saved interme-
diate model checkpoints can be reused to emulate differ-
ent numbers of training token budget; the checkpoints are
continued-pretrained reusing the optimizer states from the
constant LR stage with a new, shorter LR schedule. This
reduces substantially the number of new training runs re-
quired. In Appendix A.4, we show that the performance of
dense and MoE training is on par with the usual cosine LR
schedule. The maximum LR value is tuned individually for
each model size and for both dense and MoE training.

Dataset. We use training dataset derived from the Com-
monCrawl portion of Slimpajama-DC (Shen et al., 2023),
containing 368B tokens in total. The test loss is calculated
from the default validation set (0.3B tokens) defined therein.
In Appendix B, we train models on two different datasets
(Japanese language and source code datasets) to show that
the scaling behavior generalizes across datasets.

3.2. Upcycled Training

Upcycled training is performed by first initializing the MoE
with the dense pretrained models as mentioned before. Sub-
sequently, we train the upcycled MoE with standard cross-
entropy loss augmented by an auxiliary load-balancing loss
with coefficient 10−3 to minimize expert’s imbalance of

3

Scaling Laws for Upcycling MoE

Attention

Norm

Add

Norm

Add

MLP 1 MLP nMLP 5

Add

Router

……

MoE module

Attention

Norm

Add

Norm

Add

MLP
(multi-layer
perceptron)

Duplicate

Trained for tokensD1 Trained for tokensD2
Dense model (Llama etc.) of size N1 Upcycled MoE (Mixtral etc.)

Input Input

Output

Copy

Output

× nlayer × nlayer

TopK

Figure 2. Upcycling and factors affecting MoE’s performance. Upcycling involves initiating the weights of the MoE (activating nTopK

experts per token) by reusing the weights (duplicating the weights of MLPs nexpert times) of an existing dense transformer of size N1 that
has been trained for D1 tokens. The (upcycled) MoE is further trained for D2 tokens. Language modeling performance improves when
scaling these factors. We study and develop formulae (scaling laws) consisting of these factors to predict the empirical performance.

activation. See Appendix A.7 for ablation of the coefficient.

To this end, we obtained three sets of results in total, of
which we denote by: dense training (dense model training
from scratch), MoE training (MoE training from scratch),
upcycled training (MoE training for D2 tokens where the
dense model pretrained for D1 tokens has been reused).

3.3. Training results

We show some of the resulting test loss curves of our upcy-
cling experiments in Figure 3 (see model evaluation with
standard benchmarks in Appendix A.9). Some observations
can be made from the plot:

(a) upcycling from a dense model with more pretrained
tokens leads to lower initial losses.

(b) The more overtrained a dense model is, the smaller
the rate of the final loss change of the upcycled MoE
becomes (the exponent α becomes smaller).

The reason for (a) is function preservation. As all experts
inherit the same weights from the dense model, the output
of the MoE module is preserved from the dense model
irrespective of the routing at initialization, and therefore the
loss is preserved as well. For (b), our intuitive explanation
is as follows. The duplicated experts’ weights are already
close to the optimal ones when they are upcycled from an
overtrained dense model. It is then harder for the experts to
diversify and specialize at the MoE training stage to further
lower the loss. As we will reveal soon, our proposed scaling
law captures these phenomena.

Figure 3. Loss curves of upcycling. Intermediate test losses of the
8x0.1B MoE (2 experts activated per token) trained for a variety
of total number of tokens, D2, when upcycled from a dense model
pretrained with various numbers of training tokens (D1) in B.

4. Scaling Laws
Our ultimate goal is to understand the performance of upcy-
cling with respect to various factors illustrated in Figure 2.
However, simultaneously varying all these variables to in-
vestigate the scaling behavior is computationally prohibitive.
We separately investigate two aspects closely related to up-
cycling: dataset sizes (Section 4.1) and model configuration
(Section 4.2). In the next Section, we further study the
joint scaling behavior of dataset and model sizes with a
predetermined MoE architecture.

4.1. Scaling Law for Dataset Sizes

We fix the model size while varying D1,2 to study the scaling
behavior with respect to these variables. To determine the
functional form of the scaling law, L(D1, D2), we require

4

Scaling Laws for Upcycling MoE

it to satisfy certain properties:

Requirement 1. L(D1, D2) follows the power law with
respect to D2, as shown empirically in Figure 4. This aligns
with the power-law ansatz, treating upcycling as analogous
to standard MoE training with dataset size D2, initialized
with dense parameters rather than random weights:

L(D1, D2) = LD1
(D2) = AD−α

2 + E (7)

Requirement 2. As D2 → 0, the loss should reduce to
the power-law scaling behavior of the dense counterpart
with respect to D1, consistent with the function-preserving
initialization of upcycling (see Section 3.3):

limD2→0L(D1, D2) = AD−α
1 + E

We investigate the following functional forms of power law
satisfying these requirements:

Multiplicative:

L(D1, D2) = AD−α1
1 (1 +D2)

−α2+α3 logD1 + E

≈ AD−α1
1 D−α2+α3 logD1

2 + E (8)

Additive:

L(D1, D2) = AD−α1
1 + F (1 +D2)

−α2+α3 logD1 + E

≈ AD−α1
1 + FD−α2+α3 logD1

2 + E (9)

Both forms include an interaction term (α3 logD1) in the
scaling exponent, capturing the interplay between D1 and
D2.

Empirical comparisons of functional forms. We empiri-
cally compare these functional forms, including the special
case where D1 and D2 have no interaction. The optimiza-
tion uses the Huber loss (δ = 10−3) and the BFGS algo-
rithm, fitting the logarithm of the loss via the LogSumExp
trick applied to the RHS of Equations 8 and 9. The leave-
one-out root mean square error (RMS) serves as the fit
metric.

The fit is performed on a 0.1B dense model upcycled to
MoE architectures with nexpert = {4, 8} and nTopK =
{1, 2} , trained on a 5 × 5 grid of D1, D2. The fitting
results are shown in Table 1, where we can see that the
multiplicative functional form (with non-zero interaction)
achieves consistently the lowest leave-one-out RMS error
across the experimented MoE architectures. Henceforth, we
adopt Equation 8 in our scaling laws.

Multiplicative scaling law from empirical observations.
To strengthen our proposal for Equation 8, we demonstrate
through a bottom-up approach that the multiplicative nature
of the scaling law, including the interaction term, arises
naturally from empirical data.

From Figure 4, we observe that the scaling exponent in
Equation 7 decreases as D1 increases. To quantify this
relationship, we model the scaling exponent as a function of
D1, denoted as −α(D1). A scatter plot of −α(D1) reveals
the following logarithmic relationship:

−α(D1) = γ logD1 + E′. (10)

which fits the data well, as shown in the same Figure. Sub-
stituting this expression to Equation 7, we obtain a term
of the form D−E′+γ logD1

2 , directly supporting the interac-
tion term in the multiplicative scaling law. This shows that
the interaction term is not merely an artifact of theoretical
derivation but is essential to explain observed empirical
trends. Additionally, we show that the multiplicative depen-
dence, A ∝ D−α1

1 also arises from empirical observations,
as detailed in Appendix C.

4.1.1. INTERPRETATIONS

Several quantitative and qualitative observations can be
made from the scaling law of dataset sizes. From our fit
(Table 8 in Appendix C), we notice a trend α2 ≳ α1 ≫ α3.
This means that while increasing either of D1 and D2 helps
improve performance, as upcycled training has a slightly
larger exponent (α2), increasing D2 helps train faster.

Upcycled MoE has a better head start (effective scaling
factor is smaller). Fixing D1, we see that the effective
scaling factor for D2 is AD−α1

1 . Increasing D1 lowers the
effective scaling factor, and hence the loss of upcycling.
Indeed, fixing D2, we see that the model performs better
with increasing D1 in Figure 3.

Upcycled MoE trains slower with larger sunk cost (ef-
fective scaling exponent is smaller). Again fixing D1, we
see that the effective scaling exponent with respect to D2

is α2 − α3 logD1. This means that the larger the sunk cost
(D1) is, the loss decreases more slowly with D2, indicating
diminishing returns from increasing D2 at higher D1 values,
agreeing with Figure 4’s results.

(nexpert,nTopK) (4,1) (4,2) (8,1) (8,2)

Mul. 0.0111 0.0081 0.0105 0.0031
Mul. (α3 = 0) 0.0169 0.0085 0.0180 0.0095
Add. 0.0165 0.00843 0.0167 0.0093
Add.(α3 = 0) 0.0196 0.0117 0.0430 0.0113

Table 1. Multiplicative scaling law with interaction consistently
achieves lowest error. Leave-one-out RMS error for fitting the
loss for MoEs upcycled from a dense 0.1B model, with functional
forms of Equations 8, 9, and specific cases with α3 = 0. The first
and second number in the bracket of the first row indicates the
MoE architecture’s parameter, nexpert and nTopK respectively.

5

Scaling Laws for Upcycling MoE

Figure 4. Top: D2 has power-law scaling. We show scaling behavior of upcycled training tokens (D2) for different values of dense
tokens (D1). Bottom: Interaction term explains decreasing exponents. The fitted exponents in the upper plots are used to fit Equation
10 as a function of D1, and are shown to agree well with the functional form.

4.2. Scaling Law for Model Configuration

Previous Subsection mainly concerns with when to upcy-
cle, i.e., the training tokens used when upcycling. Here,
we study how to upcycle the dense model, i.e., the model
configuration of the MoE.

Figure 5. Fits of scaling law for model configuration.

To do this, we define sparsity, P := Ntotal/N2, and con-
sider the dependency of the performance on sparsity and
active parameter N2, of which the variables capture scaling
behavior with respect to model parameters and architectural
details (nexpert and nTopK). See Equations 4 to 6.

Using these variables, we can derive and validate the ap-
propriate functional form for the scaling law, similar to the
analysis performed in Section 4.1. We fit the functional form
by running experiments fixing D1 = D2 = 2.3B, varying

the following: dense model of size {15M, 44M, 0.1B, 0.2B},
nexpert = {4, 8, 16, 32} and nTopK = {1, 2, 4}. The scat-
ter plot is shown in the left panel of Figure 1 (for better
readability, see the 2D slices of the plot with fixed spar-
sity in Figure 13). To this end, we find that the following
functional form provides the best fit to the data:

L(P,N2) = AP−β1 + FN−β2

2 + E (11)

See Appendix D.1 for details.

We obtain the following values for the exponents: β1 =
1.87 , β2 = 0.34. See Figure 5 for the fits. Unlike dataset
sizes, due to computational constraints, we are unable to
generate more data points to make a more precise estimate
extending the range of model configuration. Nevertheless,
we do not observe performance trade-offs when scaling
sparsity and active parameters within the range of our exam-
ination, in contrast to the scaling law of dataset sizes. Our
work suggests that: Performance of upcycling improves
with sparsity and active parameters without noticable
trade-offs.

5. Joint Scaling Law
In this Section, we show that the upcycled MoE follows a
joint scaling law with respect to dataset size and model size,
provided the MoE architecture is fixed. While increasing
sparsity and active parameters generally improves perfor-
mance as shown before, compute and memory constraints
impose practical upper limits. Thus, while scaling MoE

6

Scaling Laws for Upcycling MoE

configurations as much as possible is theoretically benefi-
cial, practitioners should choose an architecture that aligns
with their available compute, memory, and expected train-
ing token budget. For our study, we adopt a widely used
MoE configuration (nexpert = 8, nTopK = 2), which has
been implemented in several large-scale, publicly available
models, including Mixtral-8x7B and 8x22B (Jiang et al.,
2024), and Sarashina2-8x70B 2.

To establish the scaling law with respect to model size, it is
sufficient to consider the dependency solely on N1 among
other definitions (Equations 4, 5, 6), as they are equivalent
up to a multiplicative constant, e.g., N2/N1 ≈ 1.75. To
determine the scaling law, we require the functional form to
satisfy the following, analogous to previous Requirements:

Requirement 3. LD1,D2
(N1) = BD1,D2

N−β
1 + ED1,D2

.

Requirement 4. limD2→0L(D1, D2, N1) = AD−α
1 +

BN−β
1 + E, i.e., approaching Chinchilla scaling law. The

straightforward functional form that satisfies these require-
ments is as follows 3.

L(D1, D2, N1) = AD−α1
1 D−α2+α3 logD1

2 +BN−β2

1 + E
(12)

Fitting. Towards this end, we fit three separate scaling laws,
corresponding to dense, MoE, and upcycled trainings, incor-
porating dataset and model sizes (the first two are fitted with
the functional form of Equation 3). We use the same fitting
procedure presented in Section 4.2. As the irreducible loss
E is universal irrespective of scaling laws under considera-
tion, we first estimate E from a joint fit of dense and MoE
scaling laws, then fix it when fitting the upcycling scaling
law to reduce overfitting and enhance extrapolation ability.

In Figure 6, we show that the fitted result of upcycling scal-
ing law extrapolates well, achieving validation RMS error
of 0.015. The fitted parameters using all data for all three
scaling laws are summarized in Table 2. We consider other
fitting possibilities and present more results in Appendix E.
For the rest of this Section, we consider the application and
implication of the joint scaling law.

5.1. Training MoE from Scratch versus Upcycling

Past studies (Komatsuzaki et al.; Muennighoff et al., 2024)
have explored the efficiency of training an MoE from scratch
compared to upcycling a dense model. Komatsuzaki et al.

2https://huggingface.co/sbintuitions/
sarashina2-8x70b

3One could extend this with Equation 11 to create a truly unified
scaling law encompassing all model configurations. However, we
refrain from doing so in this work, as reliably fitting such a scaling
law with many independent variables would require significantly
more extensive experimentation beyond our current computational
capabilities.

Figure 6. Fits of the joint upcycling scaling law.

A B α/α1 α2 α3 β

Dense 8.83 12.3 0.088 − − 0.116

MoE 32.0 7.05 0.161 − − 0.080

Upcycled 16.3 8.53 0.043 0.085 7.98e-4 0.112

Table 2. Fitted parameters for joint scaling laws. Note that for
MoE, we fit the parameters with variable N1 (instead of N2) for
comparison conveniences. The irreducible loss applicable to all
laws, E, is fitted to be 0.165.

found that upcycling retains an advantage up to 120% of the
sunk cost (D1). For instance, to match the performance of
an upcycled MoE trained with an additional 0.4 trillion (T)
tokens after 2T dense tokens, training an MoE from scratch
would require 2.4T tokens—effectively saving 2T tokens in
upcycled training. Conversely, Muennighoff et al. (2024)
reported that training from scratch requires less than 100%
of the sunk cost under different settings, indicating that
it could be more efficient. These seemingly contradictory
results suggest that upcycling efficiency depends on both
sunk cost and model size.

To investigate this, we define D∗ the number of tokens
required for training from scratch to match the performance
of an upcycled MoE with the same sunk cost, i.e.,

LMoE
N1

(D∗) = LUpc.
N1

(D1 = D∗, D2 = D∗) (13)

Since the above equation involves non-integer polynomial
exponents, we solve it numerically and approximate the
solution analytically (Equation 2). Figure 1 shows that D∗

decreases with increasing model size, with D∗ equal to 4B
tokens for an 8x1B model. When D2 ≲ D∗, the required
DMoE to catch up is more than 100% of D1: upcycling
remains more efficient than training from scratch. However,
for D2 ≳ D∗, the efficiency reverses, favoring training
from scratch. Our findings indicate that: Upcycling is more
efficient than training an MoE from scratch for lower
sunk cost and training token budget, but its efficiency
diminishes as the sunk cost or model size increases.

7

https://huggingface.co/sbintuitions/sarashina2-8x70b
https://huggingface.co/sbintuitions/sarashina2-8x70b

Scaling Laws for Upcycling MoE

5.2. Compute Allocation and Compute-Optimal
Upcycling

Given a fixed total floating-point operation (FLOPs) budget
C, we analyze how to optimally allocate compute between
dense training and upcycled training. Specifically, we solve:

min
D1,D2,N1

L(D1, D2, N1) s.t. FLOPs(D1, D2, N1) = C

We find that for a given compute budget without any pre-
trained models, training a compute-optimal dense or MoE
from scratch outperforms the two-stage dense-to-upcycled
MoE approach (see Figure 16 in Appendix F.2). This sug-
gests: If no pretrained model exists, direct training is
preferable to upcycling for optimal performance.

In scenarios where a pretrained dense model is already avail-
able, we can determine the compute-optimal scaling of MoE
upcycling. The compute cost of upcycled training is approx-
imated as C2 = 6N2D2 (Kaplan et al., 2020). Optimizing
the compute leads to the scaling relations (see Appendix F.2
for derivation):

Dopt
2 ∝ C

β
β+αeff
2 , Nopt

1 ∝ C
αeff

β+αeff
2 (14)

where αeff := α2 − α3 logD1. Notably, as D1 increases,
αeff decreases, meaning larger pretrained models require
disproportionately more tokens for efficient upcycling.

For instance, applying this to the Llama2 models (7B, 13B,
70B), which were trained on 2T tokens (Touvron et al.,
2023), we estimate that compute-optimal upcycling follows
the scaling D2 ∝ N1.8

1 , indicating that larger models require
nearly quadratic increases in upcycling data.

Overall, we find that upcycling is inefficient relative to from-
scratch trainings when considering compute optimality.

6. Related Work
Mixture-of-Experts. While interests in developing open
MoE LLMs are relatively recent (Hu et al., 2024; Yang et al.,
2024; Dai et al., 2024; Liu et al., 2024; Sun et al., 2024), the
use of MoE in deep learning can be traced to early 2010s
(Eigen et al., 2013; Bengio et al., 2013). See Cai et al. (2024)
for a detailed survey of modern MoE models.

Upcycling. Leveraging pretrained models to expedite the
training of larger dense models is also known as model
growth (Chen et al., 2015). In the context of training MoEs
reusing dense pretrained models, Komatsuzaki et al. are the
first studying such a scenario with encode-decoder models.
There are studies (Hu et al., 2024; Yang et al., 2024; Lo
et al., 2024; Wei et al., 2024; Muennighoff et al., 2024; He
et al., 2024) offering insights into upcycling decoder-only
transformers. However, a systematic investigation has been
lacking. Wei et al. (2024) made only a rough recommenda-
tion: use upcycling when the budget for training is smaller

than twice the budget used for dense training. In contrast,
we have presented a more general guideline.

Scaling laws. Power-law scaling appears in a variety of
natural and human-made phenomena. Scaling studies that
are perhaps closest to our work are those considering two-
stage training, e.g., transfer learning, fine-tuning, and model
growth (Mikami et al., 2022; Zhang et al.; Du et al., 2024).
Prior work on transfer learning has proposed scaling laws us-
ing multiplicative or additive forms involving D1 (pretrain-
ing data) and D2 (fine-tuning data) (Mikami et al., 2022;
Zhang et al.). A notable similar phenomenon in transfer
learning is ossification, where pretraining can hurt fine-
tuning performance (Hernandez et al., 2021). However, to
our knowledge, no prior work incorporates an interaction
term (α3 in Equation 1) to capture such effects. Although
our experiments specifically focus on upcycling into MoE
models, we believe that the core insights, such as the interac-
tion between dense and upcycled training budgets, are useful
for formulating two-stage training regimes more broadly,
including transfer learning as mentioned above, and poten-
tially model growth.

In the context of MoE, Clark et al. (2022) studied how
different architectural choices affect MoE’s scaling, while
Krajewski et al. (2024) investigated fine-grained experts’
scaling behavior. The latter work fits a joint scaling law
with respect to dataset and model sizes, but we find differ-
ences in the obtained parameters. It is likely due to several
differences in methodology: the largest dense model they
experimented with was smaller (85M), and they did not
tune the LR for each model size. Nevertheless, our find-
ings that MoE scales better than its dense counterpart with
sufficiently large computational budget do agree with theirs.

7. Discussion and Conclusion
In this paper, we have presented compelling evidence that
MoE upcycling follows novel scaling laws with dataset and
model configuration, revealing trade-offs due to interactions
between dataset sizes.

Given the complexity of upcycling, deriving a unified scal-
ing law that allows for simultaneous optimization of dataset
size and model configuration is beyond our current compu-
tational reach. However, our findings still provide practical
guidance, as the joint scaling law (Equation 12) enables ac-
curate predictions of upcycling performance once the MoE
architecture is fixed. In practice, we recommend selecting
the largest viable MoE size and sparsity within compute
and memory limits while balancing this choice against the
expected training token budget. Once the architecture is set,
Equation 12 can guide dataset/model scaling, demonstrating
reliable extrapolation of upcycling performance.

While our empirical formulae successfully capture the ob-

8

Scaling Laws for Upcycling MoE

served scaling behavior, the underlying mechanism, particu-
larly the interaction term, remains theoretically unexplained.
To our knowledge, formal justification for such a term is
lacking in the literature (Paquette et al.). Future work could
explore it through, e.g., simplified models (Hutter, 2021;
Maloney et al., 2022; Lin et al.; Bordelon et al., 2024; Bahri
et al., 2024; Paquette et al.). Additionally, extending our
scaling laws to alternative MoE architectures (shared ex-
perts and fine-grained experts (Dai et al., 2024; Krajewski
et al., 2024)), modalities (vision transformer (Zhai et al.,
2022)), and other multi-stage training paradigms (as dis-
cussed in Section 6) would help assess their generality and
implications.

Software and Data
The source code and data (cross-entropy
losses) for analyses of the paper is available
at https://github.com/sbintuitions/
sparse-upcycling-scaling-laws.

Impact Statement
This paper works toward the goal of advancing the field of
machine learning and language modeling, with an emphasis
on scaling. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U. Ex-
plaining neural scaling laws. Proceedings of the National
Academy of Sciences, 121(27):e2311878121, 2024.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longtermism.
arXiv preprint arXiv:2401.02954, 2024.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit,
S., Prashanth, U. S., Raff, E., et al. Pythia: A suite
for analyzing large language models across training and
scaling. pp. 2397–2430. PMLR, 2023.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reason-
ing about physical commonsense in natural language. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 7432–7439, 2020.

Bordelon, B., Atanasov, A., and Pehlevan, C. A dynamical
model of neural scaling laws. In Proceedings of the 41st
International Conference on Machine Learning, pp. 4345–
4382, 2024.

Cai, W., Jiang, J., Wang, F., Tang, J., Kim, S., and Huang,
J. A survey on mixture of experts. arXiv preprint
arXiv:2407.06204, 2024.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Accel-
erating learning via knowledge transfer. arXiv preprint
arXiv:1511.05641, 2015.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Clark, A., de Las Casas, D., Guy, A., Mensch, A., Paganini,
M., Hoffmann, J., Damoc, B., Hechtman, B., Cai, T.,
Borgeaud, S., et al. Unified scaling laws for routed lan-
guage models. pp. 4057–4086. PMLR, 2022.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Computer, T. Redpajama: an open dataset for train-
ing large language models, October 2023. URL
https://github.com/togethercomputer/
RedPajama-Data.

Dai, D., Deng, C., Zhao, C., Xu, R., Gao, H., Chen, D., Li, J.,
Zeng, W., Yu, X., Wu, Y., et al. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts lan-
guage models. arXiv preprint arXiv:2401.06066, 2024.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Du, W., Luo, T., Qiu, Z., Huang, Z., Shen, Y., Cheng, R.,
Guo, Y., and Fu, J. Stacking your transformers: A closer
look at model growth for efficient llm pre-training. arXiv
preprint arXiv:2405.15319, 2024.

Eigen, D., Ranzato, M., and Sutskever, I. Learning fac-
tored representations in a deep mixture of experts. arXiv
preprint arXiv:1312.4314, 2013.

9

https://github.com/sbintuitions/sparse-upcycling-scaling-laws
https://github.com/sbintuitions/sparse-upcycling-scaling-laws
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Scaling Laws for Upcycling MoE

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Hägele, A., Bakouch, E., Kosson, A., Von Werra, L., Jaggi,
M., et al. Scaling laws and compute-optimal training
beyond fixed training durations. Advances in Neural
Information Processing Systems, 37:76232–76264, 2024.

He, E., Khattar, A., Prenger, R., Korthikanti, V., Yan, Z., Liu,
T., Fan, S., Aithal, A., Shoeybi, M., and Catanzaro, B.
Upcycling large language models into mixture of experts.
arXiv preprint arXiv:2410.07524, 2024.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701, 2020.

Hernandez, D., Kaplan, J., Henighan, T., and McCan-
dlish, S. Scaling laws for transfer. arXiv preprint
arXiv:2102.01293, 2021.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H.,
Kianinejad, H., Patwary, M. M. A., Yang, Y., and Zhou, Y.
Deep learning scaling is predictable, empirically. arXiv
preprint arXiv:1712.00409, 2017.

Hestness, J., Ardalani, N., and Diamos, G. Beyond human-
level accuracy: Computational challenges in deep learn-
ing. pp. 1–14, 2019.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. Training compute-
optimal large language models. Proceedings of the 36th
International Conference on Neural Information Process-
ing Systems, pp. 30016–30030, 2022.

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng, Z.,
Fang, Y., Huang, Y., Zhao, W., et al. Minicpm: Unveiling
the potential of small language models with scalable train-
ing strategies. arXiv preprint arXiv:2404.06395, 2024.

Hutter, M. Learning curve theory. arXiv preprint
arXiv:2102.04074, 2021.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kocetkov, D., Li, R., Jia, L., Mou, C., Jernite, Y., Mitchell,
M., Ferrandis, C. M., Hughes, S., Wolf, T., Bahdanau,
D., et al. The stack: 3 tb of permissively licensed source
code. Transactions on Machine Learning Research.

Komatsuzaki, A., Puigcerver, J., Lee-Thorp, J., Ruiz, C. R.,
Mustafa, B., Ainslie, J., Tay, Y., Dehghani, M., and
Houlsby, N. Sparse upcycling: Training mixture-of-
experts from dense checkpoints.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Ander-
sch, M., Shoeybi, M., and Catanzaro, B. Reducing acti-
vation recomputation in large transformer models. Pro-
ceedings of Machine Learning and Systems, 5:341–353,
2023.

Krajewski, J., Ludziejewski, J., Adamczewski, K., Pióro,
M., Krutul, M., Antoniak, S., Ciebiera, K., Król, K.,
Odrzygóźdź, T., Sankowski, P., et al. Scaling laws
for fine-grained mixture of experts. arXiv preprint
arXiv:2402.07871, 2024.

Le Scao, T., Wang, T., Hesslow, D., Bekman, S., Bari,
M. S., Biderman, S., Elsahar, H., Muennighoff, N.,
Phang, J., Press, O., Raffel, C., Sanh, V., Shen, S.,
Sutawika, L., Tae, J., Yong, Z. X., Launay, J., and
Beltagy, I. What language model to train if you have
one million GPU hours? pp. 765–782, Abu Dhabi,
United Arab Emirates, December 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
findings-emnlp.54. URL https://aclanthology.
org/2022.findings-emnlp.54.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding.

Lin, L., Wu, J., Kakade, S. M., Bartlett, P., and Lee, J. D.
Scaling laws in linear regression: Compute, parameters,
and data. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Liu, J., Cui, L., Liu, H., Huang, D., Wang, Y., and Zhang, Y.
Logiqa: a challenge dataset for machine reading compre-
hension with logical reasoning. pp. 3622–3628, 2021.

10

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://aclanthology.org/2022.findings-emnlp.54
https://aclanthology.org/2022.findings-emnlp.54

Scaling Laws for Upcycling MoE

Liu, L., Kim, Y. J., Wang, S., Liang, C., Shen, Y., Cheng, H.,
Liu, X., Tanaka, M., Wu, X., Hu, W., et al. Grin: Gradient-
informed moe. arXiv preprint arXiv:2409.12136, 2024.

Lo, K. M., Huang, Z., Qiu, Z., Wang, Z., and Fu, J. A closer
look into mixture-of-experts in large language models.
arXiv preprint arXiv:2406.18219, 2024.

Loshchilov, I., Hutter, F., et al. Fixing weight decay regu-
larization in adam. arXiv preprint arXiv:1711.05101, 5,
2017.

Maloney, A., Roberts, D. A., and Sully, J. A solvable model
of neural scaling laws. arXiv preprint arXiv:2210.16859,
2022.

Mikami, H., Fukumizu, K., Murai, S., Suzuki, S., Kikuchi,
Y., Suzuki, T., Maeda, S.-i., and Hayashi, K. A scaling
law for syn2real transfer: How much is your pre-training
effective? pp. 477–492. Springer, 2022.

Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N.,
Piktus, A., Pyysalo, S., Wolf, T., and Raffel, C. A. Scaling
data-constrained language models. Advances in Neural
Information Processing Systems, 36:50358–50376, 2023.

Muennighoff, N., Soldaini, L., Groeneveld, D., Lo, K., Mor-
rison, J., Min, S., Shi, W., Walsh, P., Tafjord, O., Lambert,
N., et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N.-Q.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction re-
quiring a broad discourse context. Proceedings of the 54th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Paquette, E., Paquette, C., Xiao, L., and Pennington, J. 4+
3 phases of compute-optimal neural scaling laws. The
Thirty-eighth Annual Conference on Neural Information
Processing Systems.

Porian, T., Wortsman, M., Jitsev, J., Schmidt, L., and Car-
mon, Y. Resolving discrepancies in compute-optimal
scaling of language models. Advances in Neural Infor-
mation Processing Systems, 37:100535–100570, 2024.

Rosenfeld, J. S., Rosenfeld, A., Belinkov, Y., and Shavit,
N. A constructive prediction of the generalization error
across scales.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
2017.

Shen, Z., Tao, T., Ma, L., Neiswanger, W., Liu, Z., Wang,
H., Tan, B., Hestness, J., Vassilieva, N., Soboleva, D.,
et al. Slimpajama-dc: Understanding data combinations
for llm training. arXiv preprint arXiv:2309.10818, 2023.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B to-
ken cleaned and deduplicated version of RedPajama,
June 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, X., Chen, Y., Huang, Y., Xie, R., Zhu, J., Zhang, K.,
Li, S., Yang, Z., Han, J., Shu, X., et al. Hunyuan-large:
An open-source moe model with 52 billion activated pa-
rameters by tencent. arXiv preprint arXiv:2411.02265,
2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, T., Zhu, B., Zhao, L., Cheng, C., Li, B., Lü, W., Cheng,
P., Zhang, J., Zhang, X., Zeng, L., et al. Skywork-moe: A
deep dive into training techniques for mixture-of-experts
language models. arXiv preprint arXiv:2406.06563,
2024.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourcing
multiple choice science questions. W-NUT 2017, pp. 94,
2017.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M.,
Yang, Z., Xu, Y., Zheng, W., Xia, X., et al. Glm-130b:

11

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Scaling Laws for Upcycling MoE

An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. pp. 12104–12113, 2022.

Zhang, B., Liu, Z., Cherry, C., and Firat, O. When scal-
ing meets llm finetuning: The effect of data, model and
finetuning method.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama:
An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

12

Scaling Laws for Upcycling MoE

A. More on Architecture and Experimental Design
A.1. Megatron-LM configuration

Infrastructure. Our experiments are performed on multiple nodes, each consisting of 8 NVIDIA H100 80 GB GPUs,
interconnected via InfiniBand HDR. The software we use for training is the Megatron-LM library (Shoeybi et al., 2019).

We use and modify the Megatron-LM (core v0.8.0) library for our experiments4. Models are trained with data type bfloat16.
Except for the largest MoE we train (8x1B), which has tensor parallelism configured to be 2, all models are trained with
data and sequence parallelisms only (Korthikanti et al., 2023). Other optimization libraries used include FlashAttention
(Dao et al., 2022) and TransformerEngine5. See the example scripts provided on Github6.

A.2. Model configuration

Let us elaborate more on our architectural choices. The intermediate hidden dimension size, dMLP, is set to be 4dmodel. We
do not implement bias in the linear layers. We also do not use techniques geared for treating training instabilities (which we
did not encounter in our study), such as Z-loss or QK normalization. Efficiency-motivated implementations like grouped
query attention are not considered as well for simplicity. The number of attention head is chosen to increase with model size
following practices in the LLM literature. Other designs of the architecture follow Llama2’s closely (Touvron et al., 2023).
See Table 3 for the model configurations. They are selected such that the ratio nlayer/dmodel lies in the range 32 to 64, as in
Kaplan et al. (2020). We use the smaller models for ablation studies.

A.3. MoE configuration

Let us describe the routing mechanism within the MoE module studied in this work. Denote the number of experts by
nexpert, the number of activated experts by nTopK, and the output of expert i by Oexp,i. At each layer, the output tokens
x of the attention layer are passed to a router, which consists of a single-layer perceptron with weight W , responsible for
calculating (G1(x), G2(x), ..., Gnexpert(x)), where

G(x) = Softmax(TopK(W · x)) (15)

The TopK operation ensures that only nexpert experts are activated for each token, resulting in sparse computation. The
output of the MoE module, OMoE, is the weighted expert outputs which can be written as follows:

OMoE =

nexpert∑
i=1

Gi(x)Oexp,i(x)

Note that this is also known as token-choice algorithm. Furthermore, we do not use the token-dropping mechanism as in
Fedus et al. (2022). We also do not study MoE variants such as shared experts and fine-grained experts (Dai et al., 2024;
Krajewski et al., 2024), as upcycling these variants is not straightforward.

Let us move to discussing the load-balancing loss. It has the form (Fedus et al., 2022):

Laux =
4η

T 2
·
nexperts∑

i=1

 T∑
j=1

Pj,i

 ·Qi

 ,

where η is the coefficient for the auxiliary loss, T is the number of tokens, Pj,i the router output probability for token j to be
assigned to token i, and Qi is the number of token assigned to expert i. We ablate the coefficient in Appendix A.7.

A.4. Ablation of learning rate schedules

Here, we compare the performances of using WSD and the commonly used learning rate (LR) cosine schedules. Dense
model and MoE used in our ablation are 0.1B and 8x44m respectively, with training configuration given in Table 6. We can
see from Figure 7 that both schedules yield similar performances.

4https://github.com/NVIDIA/Megatron-LM
5https://github.com/NVIDIA/TransformerEngine
6dense model example: https://github.com/NVIDIA/Megatron-LM/tree/main/examples/gpt3; MoE example:

https://github.com/NVIDIA/Megatron-LM/tree/main/examples/mixtral

13

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/Megatron-LM/tree/main/examples/gpt3
https://github.com/NVIDIA/Megatron-LM/tree/main/examples/mixtral

Scaling Laws for Upcycling MoE

Figure 7. Comparing WSD and cosine schedules of learning rate. Left: we see that different schedules cause little differences between
the losses, for both dense and MoE training. Right: the learning rate schedules in use are shown.

A.5. Training configuration

The common setup of training is shown in Table 4, and the model-dependent setup (warmup iteration, standard deviation
of the normal distribution for initializing weights, maximum iteration run, battch size, tuned LR) is shown in Table 5. As
described in the main text, we use the WSD schedule for training. The number of warmup steps of the WSD LR schedule is
set to be roughly the same as the total model size (Porian et al., 2024). Linear decay to 10% of the maximum LR value is
used in the last stage of the schedule, with the length set to be around 10% of the training length, following Hägele et al.
(2024).

Logarithmically-spaced intermediate checkpoints are saved and used to emulate different numbers of training token budget.
We also increase both the training length and batch size with model size following common practices without performing
precise tuning.

Model nlayer dmodel nhead Ndense N total
MoE (8 experts)

15M 9 320 4 14,751,680 92,189,120
44M 12 480 8 44,248,800 276,538,080
0.1B 15 640 8 98,323,840 614,496,640
0.2B 21 832 8 232,623,040 1,453,845,952
0.5B 26 1120 16 521,889,760 3,261,732,320
1B 30 1504 16 1,085,859,424 6,786,500,704

Table 3. Dense models used in our study and their parametric details. Note that dMLP, is set to be 4dmodel. In the last column, we show
the total non-embedding model parameters of the corresponding MoE with 8 experts.

Configuration Details
Context length 1,024
Embedding tying False
Optimizer AdamW (Loshchilov et al., 2017)
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1e-8
Weight decay 0.1
Gradient clipping 1.0

Table 4. Training configuration used throughout the paper.

14

Scaling Laws for Upcycling MoE

Model warmup iter. init. size Max iter. batch size LR (8x)

15M 200 0.035 17,600 128 8e-3 (2e-3)
44M 200 0.029 17,600 256 4e-3 (2e-3)
0.1B 200 0.025 17,600 512 4e-3 (2e-3)
0.2B 400 0.022 35,200 512 2e-3 (2e-3)
0.5B 800 0.019 70,400 512 4e-4 (4e-4)
1B 800 0.016 70,400 1024 4e-4 (4e-4)

Table 5. Model-dependent training configuration. ”init. size” refers to the standard deviation of the normal distribution used for
initializing the weights. ”Max iter.” refers to the maximum iteration run on the model. The MoE counterpart uses the same configuration
except for the learning rate (last column).

Configuration Details
Batch size 512
train iter. 4,000
Warmup iter. 200
Auxiliary loss coeff. 10−3

Table 6. Training configuration for ablation studies.

A.6. Upcycled training’s configuration

We initialize the router weights from a normal distribution with zero mean and variance of 2/5dmodel (Le Scao et al., 2022;
Chowdhery et al., 2023; Zeng et al., 2022) (the same initialization is used for from-scratch trainings).

Regarding the learning rate (LR) of upcycled training, there are several choices: using the LR at the end of dense training
with a constant LR schedule, i.e., treating upcycled training as a kind of fine tuning; using the LR of dense/MoE training
(Komatsuzaki et al.; He et al., 2024). We consider these three choices without retuning the LR. With the other training
settings are set to be the same as the one used in training the dense models, including the use of the WSD LR schedule, we
find that using the MoE LR leads to better performance. See Figure 8.

As a side note, we observe that the loss for the constant LR schedule decreases monotonically, while the loss increases
initially for other cases; there is a rewarming stage when using the WSD LR schedules, which can also be observed in
Figure 3.

Let us further comment on alternative upcycling methods (parameter reinitialization) that could potentially further accelerate
training. Adding some form of noises to the dense MLP weights, or modifying partially the weights would intuitively
help upcycled training generalize faster. Our preliminary experiments (adding Gaussian noise to the expert weights of the
upcycled model; partially randomizing the MLP weights; and substituting the MLP weights with their low-rank couterparts
randomly to encourage expert divergence) however did not see any advantages of doing so. Note that this observation is also
consistent with previous negative reports (Komatsuzaki et al.; Wei et al., 2024; Muennighoff et al., 2024). Henceforth, we
simply copy the weights directly from the dense model to perform upcycled training.

A.7. Ablation of auxiliary coefficients for load-balancing loss

The auxiliary loss affects the load-balancing loss (smaller values meaning more balanced expert usage) as well as the
cross-entropy loss. We plot these losses in Figure 9 for training a 8x0.1B MoE.

We see that, setting the coefficient to be too small leads to imbalance in expert usage, while setting the coefficient to be too
large interferes with the cross-entropy loss. We set it to around 10−3 which gives the right balance. We did not make finer
tuning of the coefficients and adopted 10−3 in our experiments.

A.8. Ablation of dataset repetition for upcycling

In our experiments, we have used the same dataset for training both dense and upcycled models, following practices of (He
et al., 2024). As an ablation, we split our dataset to two non-overlapping portions, and perform the two-stage training with

15

Scaling Laws for Upcycling MoE

Figure 8. Ablation of LR when upcycling an 8x0.1B MoE. We compare the performance of upcycled training (from a dense model
trained for 2B tokens) using constant LR (2× 10−4, LR at the end of dense training), LR used for dense training, and LR used for MoE
training. We find that the latter works the best. The training setup follows Table 6.

Figure 9. Ablating auxiliary coefficients. Left: Cross-entropy losses, where it can be seen that auxiliary coefficient of 1 performs worst.
Right: Load-balancing losses, where the larger the coefficient is, the smaller the load-balancing loss becomes. Setting the coefficient to be
10−3 gives the right balance between these two losses.

the distinct datasets. In Figure 10, we find that the difference in performance is very small. This also aligns with previous
investigation on data repetition, where it is shown that there is a little difference in performance up to 4 times of repetition
(Muennighoff et al., 2023).

A.9. Evaluation with standard benchmarks and comparison with other existing models

We compare the performance of our trained 1B models against existing models with similar sizes, Pythia (Biderman et al.,
2023) and TinyLlama (Zhang et al., 2024), based on standard natural language processing benchmarks, ARC (Clark et al.,
2018), lambada (Paperno et al., 2016), logiqa (Liu et al., 2021), piqa (Bisk et al., 2020), sciq (Welbl et al., 2017), and
winogrande (Sakaguchi et al., 2021).

Table 7 shows the results. First, we see that the dense model perform similarly to the open models, indicating that our
models have been trained correctly. Second, we see that the upcycled model achieves overall the best performance (note that
the total tokens used for dense and upcycled training are around 100B, similar to those under comparison), also indicating
that upcycling has progressed correctly and improved the scores.

A.10. Estimated Total GPU hours

Instead of reporting the actual runtimes on our cluster, which varied in our experiments due to many factors affecting the
cluster (number of available nodes, congestion, etc.), we give a theoretical estimate of total GPU hours used for obtaining
the joint scaling law, which involves running the largest tested model with most training tokens in this paper.

The estimate is as follows. We calculate the FLOPs for training the dense, MoE, upcycled MoE models with maximum

16

Scaling Laws for Upcycling MoE

Figure 10. Ablation of data repetition when upcycling an 8x0.1B MoE. We do not observe notable difference in the loss. The training
setup follows Table 6.

Models Pythia-1B TinyLlama-1.1B 1B Upcycled 8x1B

Datasets Pile Slimpajama & Starcoder Slimpajama Slimpajama
Tokens 100B 103B 74B 37B

ARC-c 25.59 24.32 27.65 30.12
ARC-e 47.26 44.91 52.10 56.14
lambada 53.52 - 45.08 49.72
logiqa 29.49 - 26.11 27.65
piqa 69.31 67.30 65.89 67.19
sciq 77.3 - 78.10 82.00
winogrande 51.22 53.28 54.93 57.77

Avg. 50.53 - 49.98 52.94

Table 7. Benchmarks’ performance comparison across models. Reported scores are accuracies (normalized by byte length whenever
applicable). The first two columns are scores of existing models. The last two columns are evaluation results of models trained in this
work. The upcycled 8x1B model is upcycled from the 1B model. Our models are evaluated with the LM Evaluation Harness v0.4.0 library
(Gao et al., 2024).

iterations using the 6ND approximation, ignoring the additional FLOPs required to continued pretrain models with shorter
iterations (as we can reuse the intermediate checkpoints). We further assume that the per-second TFLOPs of the GPU is 400,
and is the same for both dense and MoE models 7. We obtain,

Dense model: 6.14× 1017 FLOPs

MoE: 1.08× 1018 FLOPs

Upcycled MoE: 5.38× 1018 FLOPs

The total GPU hours are henceforth approximately 4,900. We note that the exact total GPU hours used are larger as we have
run various additional studies as detailed in the paper. We further note that using the cosine learning rate schedule would
cost about twice more GPU hours when varying the number of training token budget.

B. Generalization across Other Datasets
We show that the scaling behavior studied in the main text generalizes across datasets in use. Aside from Slimpajama
(Computer, 2023; Soboleva et al., 2023; Shen et al., 2023) used in the main text, we test with two additional datasets:
Japanese portion of the CommonCrawl corpus, and the Stack code dataset (Kocetkov et al.). We use a tokenizer of enlarged

7https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/README.md.
Note that MoE requires more GPU memory to store its total model parameters, inducing overhead that may slow down training.

17

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/transformer/moe/README.md

Scaling Laws for Upcycling MoE

vocabulary size of 102,400 when training with the former dataset 8. We upcycle a 0.1B model with the training configuration
set to the same as those used for the experiments presented in the main text. The results are presented in Figure 11, where the
scaling behaves similarly to those presented in Figure 4, suggesting that our scaling law for dataset is independent of dataset
in use. We however do not further study scaling law for model configuration and the joint scaling law due to computational
constraints.

We further observe:

1. The Japanese dataset has higher validation loss (harder task), while the code dataset results in lower loss, making it a
relatively easier task in terms of cross-entropy loss.

2. Interestingly, the Japanese dataset is harder to saturate with increasing D1, meaning upcycled training remains effective.
In contrast, the code dataset saturates more quickly, making upcycling less beneficial.

The more fine-grained question, e.g., how mixtures of pretraining data impact respective downstream performances, is
beyond the scope of our current work, and we leave it for future study.

Figure 11. Scaling behavior generalizes across datasets used. Left: Japanese dataset. Right: Code dataset.

C. More Results on the Scaling Law for Dataset Sizes
C.1. Fitting across architectures

Figure 8 shows the fitting of the scaling law for dataset sizes across architectures (fixing dense model size to 0.1B).

(nexpert,nTopK) (4,1) (4,2) (8,1) (8,2)

α1 0.28 0.19 0.29 0.18
α2 0.29 0.20 0.30 0.20
α3 0.01 0.008 0.01 0.008

Table 8. Fitted exponents of the scaling law for dataset sizes across architectures.

C.2. More validation of Equation 1

We first make an observation from Figure 4 that the slope of the fitted lines, that is, the scaling exponent as in Equation 7 is
decreasing with D1. Let us consider the scaling factors A fitted in Figure 4. The scatter plot of A’s in Figure 12 leads us to
deduce that the following relation:

A ∝ D−η
1 (16)

8https://huggingface.co/sbintuitions/sarashina2-70b

18

https://huggingface.co/sbintuitions/sarashina2-70b

Scaling Laws for Upcycling MoE

Indeed, we find that the above equation fits well in the Figure. Substituting it to Equation 7, we obtain at the RHS a term of
the form D−η

1 D−α
2 , indicating that Equation 1 arises not only from first principles as in the main text, but from empirical

observations as well.

Figure 12. Top: Fitting plots same as those in Figure 4. Bottom: Fitting scaling factor has power-law behavior. The fitted scaling
factors are shown to fit well with Equation 16.

C.3. Bilinear form

We would also like to note that by taking the logarithm of the first term of Equation 8, we have α1 logD1 + α2 logD2 +
α3 logD1 logD2, which is bilinear in terms of logD1 and logD2 (that is, linear with each variable separately), indicating
that the multiplicative term with interaction is a natural generalization of the single-variable power law.

D. More Results on the Scaling Law for Model Configuration
D.1. Fitting the Scaling Law for Model Configuration

Recall that we wish to understand the cross-entropy loss as a function of sparsity, defined as P = Ntotal/N2 and the number
of active parameters, N2. Starting from the power-law ansatz, we require that the loss satisfies

L(P,N2) = LP (N2) = AN−β1

2 + E

and
L(P,N2) = LN2

(P) = AP−β2 + E

This is reasonable as P , when fixing N2, is the total number of model parameters, which we expect to satisfy the power-law
ansatz. Analogously, N2 corresponds to the number of dense model parameters, which should satisfy the power-law ansatz
as well.

We then consider, as before, both additive and multiplicative functional forms, with and without interaction, satisfying the
above requirements, and evaluate them using leave-one-out RMS error:

Multiplicative:

L(P,N2) = AP−β1(1 +N2)
−β2+β3 logP + E

≈ AP−β1N−β2+β3 logP
2 + E (17)

19

Scaling Laws for Upcycling MoE

Additive:

L(P,N2) = AP−β1 + F (1 +N2)
−β2+β3 logP + E

≈ AP−β1 + FN−β2+β3 logP
2 + E (18)

We obtain RMS errors of 0.0414, 0.0351, 0.0341 and 0.0322 for multiplicative (with interaction), multiplicative (without
interaction), additive (with interaction), and additive (without interaction) cases, respectively. That is, the additional form
without interaction functional form provides the best fit to the data.

D.2. Alternative Visualization of the Scaling Law for Model Configuration

We show the 2D slices (with fixed sparsity) of the model configuration scatter plot as in the left panel of Figure 1, in Figure
13.

E. More Results on the Joint Scaling Law
E.1. Validating Requirement 3

We show in Figure 14 that the upcycled model empirically satisfies power-law scaling with respect to N1, i.e., Requirement
3, repeated below for convenience.

Requirement 3. LD1,D2(N1) = BD1,D2N
−β
1 + ED1,D2 .

E.2. Another functional form satisfying Requirements 3 and 4

For convenience purposes, let us repeat Requirement 4:

Requirement 4. limD2→0L(D1, D2, N1) = AD−α
1 +BN−β

1 + E, i.e., approaching Chinchilla scaling law.

There is another functional form satisfying Requirement 3 and 4:

L(D1, D2, N2) =
A

Dα1
1

+
B

Dα2
2 Nβ2−α3 logD2

1

+ E (19)

Fitting the above equation however yields negative exponents, which are, empirically, α1 = 0.10, α2 = −0.07, β =
−0.08, α3 = −0.008. We reject the hypothesis of this functional form as the loss is predicted to increase with dataset/model
sizes, violating the power-law ansatz as well as empirical observation.

E.3. Why fitting scaling laws separately?

We provide reasoning on why we fit three scaling laws separately, instead of fitting an unified scaling law which holds for all
three dense, MoE from-scratch, and upcycled training scenarios.

The scaling law for MoE trained from scratch is expected to have parameters different from those for upcycled training (that
is, they are not equal to each other at D1 → 0), because upcycled MoEs are initialized with identical MLP/expert weights
from the dense models, while MoEs trained from-scratch have different initial (random) MLP/expert weights. Thus, we
expect them to scale differently.

Similarly, we expect the scaling law for dense model has parameters different from those for upcycled training at the limit
D2 → 0. As can be seen from Figure 3, the upcycled training undergoes a rewarming phase in the beginning, where the loss
increases initially before decreasing. This causes a deviation from the dense model scaling law at D2 → 0, although we still
expect it to correlate with the dense model scaling law, i.e., Requirement 2 should hold based on function preservation and
(empirical) observations that rewarming does not completely de-correlate the loss behaviors.

Finally, our preliminary investigations also show that unified scaling law does not fit well. We consequently consider them
separately. Moreover, we note that there can be other possibilities of functional forms that we do not explore further.

20

Scaling Laws for Upcycling MoE

F. More Implication of the Joint Scaling Law
F.1. From-scratch training vs Upcycling

We have shown in the main text that upcycling is only effective when the sunk cost or the model size is small. We further
visualize this by plotting the losses for model sizes 1B, 7B and 70B, fixing D1 to various values, with respect to DMoE and
D2 for from-scratch and upcycled training respectively in Figure 15.

F.2. More on compute optimality of upcycling

As mentioned in the main text, while training the Mixtral-like MoE from scratch is shown to be more efficient in the long
run, it requires more compute (1.75 times larger than dense training). There is a compute-performance trade-off between
these stages of training.

We show in Figure 16 that the optimization results in Section 5.2 that training from scratch can always be considered to be
more performant.

F.3. Derivation of compute-optimal formula

As in the main text, we want to scale N2, D2 optimally, Nopt
2 , Dopt

2 , given a FLOPs budget and fixing D1, while minimizing
the loss L, which we write as LD1(D2, N1). This is equivalent to solving the following:

∂

∂D2
LD1

(D2, C2/10.5D2)

∣∣∣∣
D2=Dopt

2

= 0,

∂

∂N1
LD1(C2/10.5N1, N1)

∣∣∣∣
N1=Nopt

1

= 0

where we have used N2 = 1.75N1 and C2 = 6N2D2. Solving the above equations leads to

Dopt
2 = G

(
C2

10.5

)a

,

Nopt
1 = G−1

(
C2

10.5

)b

where

G :=

(
Aeffαeff

Bβ

)1/(αeff+β)

a :=
β

αeff + β

b :=
αeff

αeff + β

Aeff := AD−α1
1

αeff := α2 − α3 logD1

We can henceforth relate Dopt
2 and Nopt

1 via

Dopt
2 = G

(
GNopt

1

)a/b ∝ (
Nopt

1

)β/α2−α3 logD1

and
Nopt

1 = G−1
(
G−1Dopt

2

)b/a ∝
(
Dopt

2

)(α2−α3 logD1)/β

21

Scaling Laws for Upcycling MoE

Figure 13. Scaling behavior with respect to model configuration. Shown are plots of the cross-entropy loss with respect to active
parameter N2 fixing sparsity P .

22

Scaling Laws for Upcycling MoE

Figure 14. Upcycled model has power-law behavior with respect to N1.

Figure 15. Token budget of from-scratch MoE training and when it catches up with upcycled MoE’s performance. We compare
loss-versus-token plots of from-scratch and upcycled MoE trainings at various dense training budgets (sunk costs) and model sizes.
Upcycling is considered to be efficient only when DMoE > sunk cost. We observe that the efficiency of upcycling diminishes with sunk
cost and model size.

Figure 16. Compute-optimal training. Upcycled training performs worse even when D1, D2, N1 are allocated optimally, compared to
compute-optimal training of dense or MoE models.

23

