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Abstract

The study of population dynamics originated with early sociological works but
has since extended into many fields, including biology, epidemiology, evolutionary
game theory, and economics. Most studies on population dynamics focus on
the problem of prediction rather than control. Existing mathematical models for
population control are often restricted to specific, noise-free dynamics, while
real-world population changes can be complex and adversarial.
To address this gap, we propose a new framework based on the paradigm of online
control. We first characterize a set of linear dynamical systems that can naturally
model evolving populations. We then give an efficient gradient-based controller
for these systems, with near-optimal regret bounds with respect to a broad class
of linear policies. Our empirical evaluations demonstrate the effectiveness of the
proposed algorithm for population control even in non-linear models such as SIR
and replicator dynamics.

1 Introduction

Dynamical systems involving populations are ubiquitous in describing processes that arise in natural
environments. As one example, the SIR model [26] is a fundamental concept in epidemiology, used
to describe the spread of infectious diseases within a population. It divides the population into three
groups – Susceptible (S), Infected (I) and Removed (R). A susceptible individual has not contracted
the disease but has the chance to be infected if interacting with an infected individual. A removed
individual either has recovered from the disease and gained immunity or is deceased. The population
evolves over time according to three ordinary differential equations:

dS

dt
“ ´βIS ,

dI

dt
“ βIS ´ θI ,

dR

dt
“ θI, (1)

for constants β, θ ą 0 representing the infection and recovery rate, respectively. Numerous extensions
of this basic model have been proposed to better capture how epidemics evolve and spread [8].

Beyond epidemiology, population dynamics naturally arise in many other fields, notably evolutionary
game theory [23], biology [14, 7], and the analysis of genetic algorithms [39, 25]. For any dynamical
system, it is natural to ask how it might best be controlled. For instance, controlling the spread of an
infectious disease while minimizing externalities is a problem of significant societal importance.

In many natural models, these dynamics tend to be nonlinear, so the control problem is often
computationally intractable. Existing algorithms are designed on a case-by-case basis by positing a
specific system of differential equations, and then numerically or analytically solving for the optimal
controller. Unfortunately, this approach is not robust to adversarial shocks to the system and cannot
adapt to time-varying cost functions.
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A new approach for population control. In this paper we propose a generic and robust methodol-
ogy for population control, drawing on the framework and tools from online non-stochastic control
theory to obtain a computationally efficient gradient-based method of control. In online non-stochastic
control, at every time t “ 1, . . . , T , the learner is faced with a state xt and must choose a control ut.
The learner then incurs cost according to some time-varying cost function ctpxt, utq evaluated at the
current state/control pair, and the state evolves as:

xt`1 :“ fpxt, utq ` wt, (2)

where f describes the (known) discrete-time dynamics, xt`1 is the next state, and wt is an
adversarially-chosen perturbation. A policy is a mapping from states to controls. The goal of
the learner is to minimize regret with respect to some rich policy class Π, formally defined by

regretΠ “

T
ÿ

t“1

ctpxt, utq ´min
πPΠ

T
ÿ

t“1

ctpx
π
t , u

π
t q, (3)

where pxπt , u
π
t q is the state/control pair at time t had policy π been carried out since time 1.

As with prior work in online control [1], our method is theoretically grounded by regret guarantees
for a broad class of Linear Dynamical Systems (LDSs). The key algorithmic and technical challenge
we overcome is that prior methods only give regret bounds against comparator policies that
strongly stabilize the LDS (Definition 4). Such policies force the magnitude of the state to decrease
exponentially fast in the absence of noise. Unfortunately, for applications to population dynamics,
even the assumption that such policies exist – let alone perform well – is fundamentally unreasonable,
since it essentially implies that the population can be made to exponentially shrink.

A priori, one might hope to generically overcome this issue, by broadening the comparator class to all
policies that marginally stabilize the LDS (informally, these are policies under which the magnitude
of the state does not blow up). But we show that, in general, it is impossible to achieve sub-linear
regret against that class – a result that may be of independent interest in online control:6

Theorem 1 (Informal statement of Theorem 25). There is a distribution D over LDSs with state
space and control space given by R, such that any online control algorithm on a system L „ D incurs
expected regret ΩpT q against the class of time-invariant linear policies that marginally stabilize L.

For general LDSs, it’s not obvious if there is a natural “intermediate” comparator class that does not
require strong stabilizability and does enable control with low regret. However, systems that model
populations possess rich additional structure, since they can be interpreted as controlled Markov
chains.7 In this paper, leveraging that structure, we design an algorithm GPC-Simplex for online
control that applies to LDSs constrained to the simplex (Definition 3), and achieves strong regret
bounds against a natural comparator class of policies with bounded mixing time (Definition 6).

1.1 Our Results

Throughout this work, we model a population as a distribution over d different categories, evolving
over T discrete timesteps. For simplicity, we assume that ut is a d-dimensional real vector.

Theoretical guarantees for online population control. We introduce the simplex LDS model
(Definition 3), which is a modification of the standard LDS model (Definition 9) that ensures the
states pxtqt always represent valid distributions, i.e. never leave the simplex ∆d. Informally, given
state xt P ∆d and control ut P Rdě0 with }ut}1 ď 1, the next state is

xt`1 “ p1´ γtq ¨ rp1´ }ut}1qAxt `Buts ` γt ¨ wt,

where A,B are known stochastic matrices, γt P r0, 1s is the observed perturbation strength,8 and
wt P ∆d is an unknown perturbation. The perturbation wt can be interpreted as representing an

6[22, 20] showed that the prediction task in a marginally stable LDS can be solved with sublinear regret
via spectral filtering if the state transition matrix is symmetric. The construction for Theorem 1 has symmetric
transition matrices, so the result in a sense separates analogous prediction and control tasks.

7Markov decision processes can also be thought of as controlled Markov chains. However, in that setting the
controls/actions are at the individual level, whereas we are concerned with controls at the population level, as
motivated by applications to epidemiology, evolutionary game theory, and other fields.

8See Appendix B for discussion about this modelling assumption.
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adversary that can add individuals from a population with distributionwt to the population under study.
Intuitively, ut represents a distribution over d possible interventions as well as a “null intervention”.

For any simplex LDS L and mixing time parameter τ ą 0, we define a class K4
τ pLq (Definition 6),

which roughly consists of the linear time-invariant policies under which the state of the system would
mix to stationarity in time τ , in the absence of noise. Our main theoretical contribution is an algorithm
GPC-Simplex that achieves low regret against this policy class:

Theorem 2 (Informal version of Theorem 7). Let L be a simplex LDS on ∆d, and let τ ą 0. For
any adversarially-chosen perturbations pwtqt, perturbation strengths pγtqt, and convex and Lipschitz
cost functions pctqt, the algorithm GPC-Simplex performs T steps of online control on L with regret
Õpτ7{2

?
dT q against K4

τ pLq.

Finally, analogously Theorem 1, we show that the mixing time assumption cannot be removed: it is
impossible to achieve sub-linear regret (for online control of a simplex LDS) against the class of all
linear time-invariant policies (Theorem 8).

Experimental evaluations. To illustrate the practicality of our results, we apply (a generalization
of) GPC-Simplex to controlled versions of (a) the SIR model for disease transmission (Section 4), and
(b) the replicator dynamics from evolutionary game theory (Appendix H). In the former, closed-form
optimal controllers are known in the absence of perturbations [27]. We find that GPC-Simplex learns
characteristics of the optimal control (e.g. the “turning point” phase transition where interventions
stop once herd immunity is reached). Moreover, our algorithm is robust even in the presence
of adversarial perturbations, where previous theoretical results no longer apply. In the latter, we
demonstrate that even when the control affects the population only indirectly, through the replicator
dynamics payoff matrix, GPC-Simplex can learn to control the population effectively, and is more
robust to noisy cost functions than a one-step best response controller.

1.2 Related work

Online non-stochastic control. In recent years, the machine learning community has witnessed an
increasing interest in non-stochastic control problems (e.g. [1, 38, 19]). Unlike the classical setting
of stochastic control, in non-stochastic control the dynamics are subject to time-varying, adversarially
chosen perturbations and cost functions. See [21] for a survey of prior results. Most relevant to our
work is the Gradient Perturbation Controller (GPC) for controlling general LDSs [1]. All existing
controllers only provide provable regret guarantees against policies that strongly stabilize the system.

Population growth models. There is extensive research on modeling the evolution of populations
in sociology, biology and economics. Besides the pioneering work of [33], notable models include the
SIR model from epidemiology [26], the Lotka–Volterra model for predator-prey dynamics [32, 40]
and the replicator dynamics from evolutionary game theory [23]. Recent years have seen intensive
study of controlled versions of the SIR model – see e.g. empirical work [10], vaccination control
models [13], and many others [15, 12, 30, 17]. Most relevant to our work is the quarantine control
model, where the control reduces the effective transmission rate. Some works consider optimal
control in the noiseless setting [27, 5]; follow-up work [34] considers a budget constraint on the
control. None of these prior works can handle the general case of adversarial noise and cost functions.

2 Definitions and setup

Notation. Denote Sd :“
!

M P r0, 1sdˆd :
řd
i“1Mi,j “ 1 @j P rds

)

as the set of dˆ d column-

stochastic matrices. For a ą 0, define Sda :“ ta ¨M : M P Sdu and Sdďa :“
Ť

0ďa1ďa Sda1 . Let ∆d

denote the simplex in Rd. Similarly, we define ∆d
α :“ α ¨∆d and ∆d

ďα :“
Ť

0ďα1ďα ∆d
α1 . Given a

square matrix M P Rdˆd, let M¨,j denote the jth column of M . We consider the following matrix
norms: }M} denotes the spectral norm of M , }M}22,1 :“

řd
j“1 }M¨,j}

2
1 is the sum of the squares of

the `1 norms of the columns of M , and }M}1Ñ1 :“ supxPRd:}x}1“1 }Mx}1.
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2.1 Dynamical systems

The standard model in online control is the linear dynamical system (LDS). We define a simplex LDS
to be an LDS where the state of the system always lies in the simplex. This requires enforcing certain
constraints on the transition matrices, the control, and the noise:
Definition 3 (Simplex LDS). Let d P N. A simplex LDS on ∆d is a tuple

L “ pA,B, I, x1, pγtqtPN, pwtqtPN, pctqtPNq,

where A,B P Sd are the transition matrices; I Ď ∆d
ď1 is the valid control set; x1 P ∆d is the initial

state; γt P r0, 1s, wt P ∆d are the noise strength and noise value at time t; and ct : ∆d ˆ I Ñ R is
the cost function at time t. These parameters define a dynamical system where the state at time t “ 1
is x1. For each t ě 1, given state xt and control ut P I at time t, the state at time t` 1 is

xt`1 “ p1´ γtq ¨ rp1´ }ut}1qAxt `Buts ` γt ¨ wt, (4)

and the cost incurred at time t is ctpxt, utq.

Note that since the set of possible controls I is contained in ∆d
ď1, the states pxtqt are guaranteed to

remain within the simplex for all t. In this paper, we will assume that I “
Ť

αPrα,αs∆
d
α, for some

parameters α, α P r0, 1s, which represent lower and upper bounds on the strength of the control.

Online non-stochastic control. Let L “ pA,B, x1, pγtqtPN, pwtqtPN, pctqtPN, Iq be a simplex
LDS and let T P N`. We assume that the transition matrices A,B are known to the controller at
the beginning of time, but the perturbations pwtqTt“1 are unknown. At each step 1 ď t ď T , the
controller observes xt and γt, plays a control ut P I, and then observes the cost function ct and
incurs cost ctpxt, utq. The system then evolves according to Eq. (4). Note that our assumption that
the controller observes γt contrasts with some of the existing work on nonstochastic control [1, 21],
in which no information about the adversarial disturbances is known. In Appendix B, we justify the
learner’s ability to observe γt by observing that in many situations, the learner observes the counts of
individuals in a populations (in addition to their proportions, represented by the state xt), and that
this additional information allows computation of γt.

The goal of the controller is to minimize regret with respect to some class K “ KpLq of comparator
policies. Formally, for any fixed dynamical system and any time-invariant and Markovian policy
K : ∆d Ñ I, let pxtpKqqt and putpKqqt denote the counterfactual sequences of states and controls
that would have been obtained by following policy K. Then the regret of the controller on observed
sequences pxtqt and putqt with respect to K is

regretK :“
T
ÿ

t“1

ctpxt, utq ´ inf
KPK

T
ÿ

t“1

ctpxtpKq, utpKqq.

The following assumption on the cost functions of L is standard in online control [1, 3, 38, 37]:
Assumption 1. The cost functions ct : ∆d ˆ I Ñ R are convex and L-Lipschitz, in the following
sense: for all x, x1 P ∆d and u, u1 P I , we have |ctpx, uq´ctpx1, u1q| ď L ¨ p}x´ x1}1`}u´ u

1}1q.

2.2 Comparator class and spectral conditions

In prior works on non-stochastic control for linear dynamical systems [1], the comparator class
K “ Kκ,ρpLq is defined to be the set of linear, time-invariant policies x ÞÑ Kx where K P Rdˆd
pκ, ρq-strongly stabilizes L:

Definition 4. A matrix M P Rdˆd is pκ, ρq-strongly stable if there is a matrix H P Rdˆd so that
}H´1MH} ď 1 ´ ρ and }M}, }H}, }H´1} ď κ. A matrix K P Rdˆd is said to pκ, ρq-strongly
stabilize an LDS with transition matrices A,B P Rdˆd if A`BK is pκ, ρq-strongly stable.

The regret bounds against Kκ,ρpLq scale with ρ´1, and so are vacuous for ρ “ 0 [1]. Unfortunately,
in the simplex LDS setting, no policies satisfy the analogous notion of strong stability (see discussion
in Section 3) unless ρ “ 0. Intuitively, the reason is that a pκ, ρq-strongly stable policy with ρ ą 0
makes the state converge to 0 in the absence of noise.
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What is a richer but still-tractable comparator class for a simplex LDS? We propose the class of linear,
time-invariant policies under which (a) the state of the LDS mixes, when viewed as a distribution,
and (b) the level of control }ut}1 is independent of the state xt. Formally, we make the following
definitions:
Definition 5. Given t P N and a matrix X P Sd with unique stationary distribution π P ∆d, we define
DXptq :“ suppP∆d }Xtp´ π}1 and D̄Xptq :“ supp,qP∆d }Xt ¨ pp´ qq}1. Moreover we define
tmixpX, εq :“ mintPNtt : DXptq ď εu for each ε ą 0, and we write tmixpXq :“ tmixpX, 1{4q.9

Definition 6 (Mixing a simplex LDS). Let L be a simplex LDS with transition matrices A,B P Sd
and control set I “

Ť

αPrα,αs∆
d
α. A matrix K P Sd

rα,αs is said to τ -mix L if tmixpAKq ď τ, where

AK :“ p1´ }K}1Ñ1q ¨A`BK P Sd. (5)

We define the comparator class K4
τ “ K4

τ pLq as the set of linear, time-invariant policies x ÞÑ Kx
where K P Sd

rα,αs τ -mixes L.

Notice that for any K P Sd
rα,αs, the linear policy ut :“ Kxt always plays controls in the control set

I, and the dynamics Eq. (4) under this policy can be written as xt`1 “ p1´ γtq ¨ AKxt ` γt ¨ wt.

Notice that by considering the comparator class K4
τ , we require the control norm to be independent

of the state. This assumption is needed for technical reasons: without it, since Ax is multiplied by
1 ´ }u}1 in the transition dynamics (see Equation (4)), even a “linear” policy u :“ Kx does not
induce a linear transition. Hence, it would no longer be clear how one might define mixing time of
a linear policy. It is a very interesting question whether there is a more natural (yet still tractable)
definition of a simplex LDS that avoids this issue.

3 Online Algorithm and Theoretical Guarantee

In this section, we describe our main upper bound and accompanying algorithm for the setting of
online control in a simplex LDS L. As discussed above, we assume that the set of valid controls
is given by I “

Ť

αPrα,αs∆
d
α, for some constants 0 ď α ď α ď 1, representing lower and upper

bounds on the strength of the control.10

For convenience, we write αt :“ }ut}1 and u1t “ ut{αt P ∆d (if αt “ 0, we set u1t :“ 0). The
dynamical system Eq. (4) can then be expressed as follows:

xt`1 “ p1´ γtq ¨ pp1´ αtq ¨Axt ` αt ¨Bu
1
tq ` γt ¨ wt. (6)

We aim to obtain a regret guarantee as in Eq. (3) with respect to some rich class of comparator
policies K4. As is typical in existing work on linear nonstochastic control, we take K4 to be a class
of time-invariant linear policies, i.e. policies that choose control ut :“ Kxt at time t for some matrix
K P Rdˆd. In the standard setting of nonstochastic control, it is typically further assumed that all
policies in the comparator class strongly stabilize the LDS (Definition 4).11 The naive generalization
of such a requirement in our setting would be that AK is strongly stable; however, this is impossible,
since no stochastic matrix can be strongly stable. Instead, we aim to compete against the class
K4 “ K4

τ pLq of time-invariant linear policies that (a) have fixed level of control in rα, αs, and (b)
τ -mix L (Definition 6). We view the second condition as a natural distributional analogue of strong
stabilizability; the first condition is needed for τ -mixing to even be well-defined.

Algorithm description. Our main algorithm, GPC-Simplex (Algorithm 1), is a modification of the
GPC algorithm [1, 21]. As a refresher, GPC chooses the controls ut by learning a disturbance-action
policy: a policy ut :“ K̄xt `

řH
i“1M

riswt´i, where K̄ is a known, fixed matrix that strongly
stabilizes the LDS; wt´1, . . . , wt´H are the recent noise terms; and M r1s, . . . ,M rHs are learnable,
matrix-valued parameters which we abbreviate as M r1:Hs. The key advantage of this parametrization

9If X does not have a unique stationary distribution, we say that all of these quantities are infinite.
10While our techniques allow some more general choices for I, we leave a full investigation of general I for

future work.
11Such an assumption cannot be dropped in light of Theorem 1.
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of policies (as opposed to a simpler parametrization such as ut “ Kxt for a parameter K) is that the
entire trajectory is linear in the parameters, and not a high-degree polynomial. Thus, optimizing the
cost of a trajectory over the class of disturbance-action policies is a convex problem in M r1:Hs.

But why is the class of disturbance-action policies expressive enough to compete against the compara-
tor class? This is where GPC crucially uses strong stabilizability. Notice that in the absence of noise,
every disturbance-action policy is identical to the fixed policy ut :“ K̄xt. This is fine when K̄ and
the comparator class are strongly stabilizing, since in the absence of noise, all strongly stabilizing
policies rapidly force the state to 0, and thus incur very similar costs in the long run. But in the
simplex LDS setting, strong stabilizability is impossible. While all policies in K4 mix the LDS,
they may mix to different states, which may incur different costs. There is no reason to expect that
an arbitrary K̄ P K4, chosen before observing the cost functions, will have low regret against all
policies in K4.

We fix this issue by enriching the class of disturbance-action policies with an additional parameter
p P ∆d which, roughly speaking, represents the desired stationary distribution to which xt would
converge, in the absence of noise, as t Ñ 8. It is unreasonable to expect prior knowledge of the
optimal choice of p, which depends on the not-yet-observed cost functions. Thus, GPC-Simplex
instead learns p together with M r1:Hs. We retain the property that the requisite online learning
problem is convex in the parameters, and therefore can be efficiently solved via an online convex
optimization algorithm (as discussed in Appendix C.1, we use lazy mirror descent, LazyMD). One
advantage of GPC-Simplex over GPC is that the former requires no knowledge of the fixed “reference”
policy K̄ (which, in the context of GPC, had to be strongly stabilizing). While such K̄ is needed in
the context of GPC to bound a certain approximation error involving the cost functions, in the context
of GPC-Simplex this approximation error may be bounded by some simple casework involving
properties of stochastic matrices (see Appendix C.3).

Formally, for parameters a0 P rα, αs and H P N, GPC-Simplex considers a class of poli-
cies parametrized by the set Xd,H,a0,α :“

Ť

aPra0,αs
∆d
a ˆ pSdaqH . We abbreviate elements

pp, pM r1s, . . . ,M rHsqq P Xd,H,a0,α by pp,M r1:Hsq. The high level idea of GPC-Simplex, like
that of GPC, is to perform online convex optimization on the domain Xd,H,a0,α (Line 10). At each
time t, the current iterate ppt,M

r1:Hs
t q, which defines a policy πpt,M

r1:Hs
t , is used to choose the

control ut. The optimization subroutine then receives a new loss function `t : Xd,H,a0,α Ñ R based
on the newly observed cost function ct. As with GPC, showing that this algorithm works requires
showing that the policy class is sufficiently expressive. Unlike for GPC, our comparator policies are
not strongly stabilizing, so new ideas are required for the proof.

We next formally define the policy πp,M
r1:Hs

associated with parameters pp,M r1:Hsq, and the loss
function `t used to update the optimization algorithm at time t.

Parametrization of policies. First, for t P rT s and i P N`, we define the weights

λt,i :“ γt´i ¨
i´1
ź

j“1

p1´ γt´jq, λ̄t,i :“
i
ź

j“1

p1´ γt´jq, λt,0 :“ 1´
H
ÿ

i“1

λt,i. (7)

We write w0 :“ x1, γ0 “ 1, and wt “ 0 for t ă 0 as a matter of convention.12 λt,i can be interpreted
as the “influence of perturbation wt´i on the state xt”, and λ̄t,i can be interpreted as the “influence of
perturbations prior to time step t´ i on the state xt”. An element pp,M r1:Hsq P Xd,H,a0,α induces a

policy13 at time t, denoted πp,M
r1:Hs

t , via the following variant of the disturbance-action control [1]:

πp,M
r1:Hs

t pδt´1:t´Hq :“ λt,0 ¨ p`
H
ÿ

j“1

λt,j ¨M
rjsδt´j . (8)

In Line 6 of GPC-Simplex, the control ut is chosen to be πpt,M
r1:Hs
t

t pwt´1:t´Hq, which belongs to
∆d
}pt}1

(using
řH
i“0 λt,i “ 1) and hence to the constraint set I (since }pt}1 P ra0, αs Ă rα, αs).

12As a result of this convention, we have
řt
i“1 λt,i “ 1 for all t P rT s, and λt,i “ 0 for all i ą t.

13Technically, we are slightly abusing terminology here, since πp,M
r1:Hs

t takes as input a set of the previous
H disturbances, δt´1:t´H , as opposed to the current state xt.
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Algorithm 1 GPC-Simplex: GPC for Simplex LDS

Require: Linear system A,B, mixing time τ ą 0 for comparator class, horizon parameter H P N,
set of valid controls I “

Ť

αPrα,αs α ¨∆
d, total number of time steps T .

1: Write τA :“ tmixpAq, and define a0 :“ maxtα,mintα,1tτA ą 4τu{p96τquu.
2: Initialize an instance LazyMD of mirror descent (Algorithm 2) for the domain Xd,H,a0,α with the

regularizer Rd,H (defined in Appendix C.1) and step size η “ c
a

dH lnpdq{pLτ2 log2
pT q
?
T q,

for a sufficiently small constant c.
3: Initialize pp1,M

r1:Hs
1 q Ð arg minpp,M r1:HsqPXd,H,a0,α

Rd,Hpp,M
r1:Hsq.

4: Observe initial state x1 P ∆d.
5: for 1 ď t ď T do
6: Choose control ut :“ λt,0 ¨ pt `

řH
i“1M

ris
t ¨ λt,i ¨ wt´i.

7: Receive cost ctpxt, utq.
8: Observe xt`1, γt and compute wt “ γ´1

t pxt`1 ´ p1´ γtqrp1´ }ut}1qAxt `Butsq.
(If γt “ 0, then set wt “ 0.)

9: Define loss function `tpp,M r1:Hsq :“ ctpxtpp,M
r1:Hsq, utpp,M

r1:Hsqq.
10: Update ppt`1,M

r1:Hs
t`1 q Ð LazyMDtp`t; ppt,M

r1:Hs
t qq.

Loss functions. For pp,M r1:Hsq P Xd,H,a0,α, we let xtpp,M r1:Hsq and utpp,M r1:Hsq denote the
state and control at step t obtained by following the policy πp,M

r1:Hs

s at all time steps s prior to t (see
Eqs. (20) and (21) in the appendix for precise definitions). We then define `tpp,M r1:Hsq to be the
evaluation of the adversary’s cost function ct on the state-action pair pxtpp,M r1:Hsq, utpp,M

r1:Hsqq

(Line 9).

Main guarantee and proof overview. Theorem 7 gives our regret upper bound for GPC-Simplex:

Theorem 7. Let d, T P N and τ ą 0. Let L “ pA,B, I, x1, pγtqtPN, pwtqtPN, pctqtPNq be a simplex
LDS with cost functions pctqt satisfying Assumption 1 for some L ą 0. Set H :“ τ rlogp2LT 3qs.
Then the iterates pxt, utqTt“1 of GPC-Simplex (Algorithm 1) with input pA,B, τ,H, I, T q satisfy:

regretK4
τ pLq :“

T
ÿ

t“1

ctpxt, utq ´ inf
KPK4

τ pLq

T
ÿ

t“1

ctpxtpKq, utpKqq ď ÕpLτ7{2d1{2
?
T q,

where Õp¨q hides only universal constants and poly-logarithmic dependence in T . Moreover, the time
complexity of GPC-Simplex is polypd, T q.

While for simplicity we have stated our results for obliviously chosen pγtqt, pwtqt, pctqt, since
GPC-Simplex is deterministic the result also holds when these parameters are chosen adaptively by
an adversary. See Appendix C for the formal proof of Theorem 7.

Lower bound. We also show that the mixing assumption on the comparator class K4
τ pLq (Def-

inition 6) cannot be removed. In particular, without that assumption, if the valid control set I is
restricted to controls ut of norm at mostly roughly Op1{T q, then linear regret is unavoidable.14

Theorem 8 (Informal statement of Theorem 30). Let β ą 0 be a sufficiently large constant. For
any T P N, there is a distribution D over simplex LDSs with state space ∆2 and control space
Ť

αPr0,β{T s∆
2
α, such that any online control algorithm on a system L „ D incurs expected regret

ΩpT q against the class of all time-invariant linear policies x ÞÑ Kx where K P
Ť

αPr0,β{T s Sdα.

4 Experimental Evaluation

The previous sections focused on linear systems, but in fact GPC-Simplex can be easily modified to
control non-linear systems, for similar reasons as in prior work [2]. It suffices for the dynamics to

14We remark that, with the mixing assumption, Theorem 7 does achieve Õp
?
T q regret when I :“

Ť

αPr0,Op1{T qs∆2
α. In particular, there is no hidden dependence on I in the regret bound.
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have the form
xt`1 :“ p1´ γtqfpxt, utq ` γtwt (9)

for known f , observed γt, and unknown wt. See Appendix E for discussion of the needed modifica-
tions and other implementation details. Relevant code is open-sourced in [16].

As a case study, in this section we apply GPC-Simplex (Algorithm 1) to a disease transmission
model – specifically, a controlled generalization of the SIR model introduced earlier. In Appendix H
we apply GPC-Simplex to a controlled version of the replicator dynamics from evolutionary game
theory.

A controlled disease transmission model. The Susceptible-Infectious-Recovered (SIR) model is a
basic model for the spread of an epidemic [26]. The SIR model has been extensively studied since last
century [36, 41, 4, 24, 6] and attracted renewed interest during the COVID-19 pandemic [10, 29, 9].
As discussed previously, this model posits that a population consists of susceptible (S), infected (I),
and recovered (R) individuals. When a susceptible individual comes into contact with an infected
individual, the susceptible individual becomes infected at some “transmission rate” β. Infected
patients become uninfected and gain immunity at some “recovery rate” θ. We consider a natural
generalization of the standard dynamics Eq. (1) where recovered individuals may also lose immunity
at a rate of ξ. Formally, in the absence of control, the population evolves over time according to the
following system of differential equations:

dS

dt
“ ´βIS ` ξR,

dI

dt
“ βIS ´ θI,

dR

dt
“ θI ´ ξR, (10)

Typically, β ą θ ą ξ. We normalize the total population to be 1, and thus x “ rS, I,Rs P ∆3. Next,
we introduce a variable called the preventative control ut P ∆2, which has the effect of decreasing
the transmission rate β, and adversarial perturbations wt, which allow for model misspecification.
Incorporating these changes to the forward discretization of Eq. (10) gives the following dynamics:

«

St`1

It`1

Rt`1

ff

“ p1´ γtq

˜«

1´ βIt 0 ξ
0 1´ θ 0
0 θ 1´ ξ

ff«

St
It
Rt

ff

`

«

βItSt 0
0 βItSt
0 0

ff

ut

¸

` γtwt. (11)

The control ut P ∆2 represents a distribution over transmission prevention protocols: ut “ r1, 0s
represents full-scale prevention, whereas ut “ r0, 1s represents that no prevention measure is imposed.
Concretely, the effective transmission rate under control ut is β ¨ utp2q.

Parameters and cost function. To model a highly infectious pandemic, we consider Eq. (11) with
parameters β “ 0.5, θ “ 0.03, and ξ “ 0.005. Suppose we want to control the number of infected
individuals by modulating a (potentially expensive) prevention protocol ut. To model this setting, the
cost function includes (1) a quadratic cost for infected individuals It, and (2) a cost that is bilinear in
the magnitude of prevention and the susceptible individuals:

ctpxt, utq “ c3 ¨ xtp2q
2 ` c2 ¨ xtp1q ¨ utp1q, (12)

where xt “ rSt, It, Rts. Typically c3 ě c2 ą 0 to model the high cost of infection.

In Fig. 1, we compare GPC-Simplex against two baselines – (a) always executing ut “ r1, 0s (i.e. full
prevention), and (b) always executing ut “ r0, 1s (i.e. no prevention) – for T “ 200 steps in the above
model with no perturbations. We observe that GPC-Simplex suppresses the transmission rate via
high prevention at the initial stage of the disease outbreak, then relaxes as the outbreak is effectively
controlled. Moreover, GPC-Simplex outperforms both baselines in terms of cumulative cost. See
Appendix F for additional experiments exhibiting the robustness of GPC-Simplex to perturbations
(i.e. non-zero γt’s) and different model parameters.

4.1 Controlling hospital flows: reproducing a study by [27]

We now turn to the recent work [27], which also studies a controlled SIR model. Similar to above,
they considered a control that temporarily reduces the rate of contact within a population. In one
scenario (inspired by the COVID-19 pandemic), they considered a cost function that penalizes

8



Figure 1: Control with cost function (12) for T “ 200 steps: initial distribution x1 “ r0.9, 0.1, 0.0s; parameters
c3 “ 10, c2 “ 1; no noise. Left/Middle: Cost and cumulative cost over time of GPC-Simplex versus baselines.
Right: control utp2q (proportional to effective transmission rate) played by GPC-Simplex over time.

medical surges, i.e. when the number of infected exceeds a threshold ymax determined by hospital
capacities. Formally, they define the cost of a trajectory pxt, utqTt“1 as

W0p´3xT p1qe
´3pxT p1q`xT p2qqq

3
`

ż T

0

„

c2 ¨ utp1q
2 `

c3pxtp2q ´ ymaxq

1` e´100pxtp2q´ymaxq



dt, (13)

where W0 is the principal branch of Lambert’s W -function, and c2, c3 are hyperparameters. The
system parameters used by [27] are β “ 0.3, θ “ 0.1, ξ “ 0. In the absence of noise and with a
known cost function, [27] is able to compute the approximate solutions of the associated Hamilton-
Jacobi-Bellman equations for various choices of c2, c3.

In Fig. 2, we show that GPC-Simplex (with a slightly modified instantaneous version of Eq. (13))
in fact matches the optimal solution analytically computed by [28]. See Appendix G for further
experimental details, including the exact model parameters and cost function.

Figure 2: Controlling hospital flows for T “ 100 steps: initial distribution r0.9, 0.01, 0.09s; parameters
ymax “ 0.1, c2 “ 0.01, c3 “ 100. Left: The dashed red line shows the number of infected over time under no
control; note that ymax (shown in dashed purple line) is significantly exceeded. The solid yellow and blue lines
show the number of infected and susceptible under GPC-Simplex, which closely match the optimal solutions
computed by [28] (dashed yellow and blue). Right: GPC-Simplex control (solid) vs. optimal control (dashed).
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A Additional preliminaries

For completeness, we recall the definition of a standard LDS [21].

Definition 9 (LDS). Let dx, du P N. A linear dynamical system (LDS) is described by a tuple
L “ pA,B, x1, pwtqtPN, pctqtPNq where A P Rdxˆdx , B P Rdxˆdu are the transition matrices;
x1 P Rdx is the initial state; wt P Rdx is the noise value at time t; and ct : Rdx ˆ Rdu Ñ R is the
cost function at time t. For each t ě 1, given state xt P Rdx and control ut P Rdu at time t, the state
at time t` 1 is given by

xt`1 :“ Axt `But ` wt,

and the instantaneous cost incurred at time t is given by ctpxt, utq.

B Discussion on the observation model

Our main algorithm GPC-Simplex for online control of simplex LDSs assumes that for each t, the
perturbation strength γt is observed by the controller at the same time as it observes xt`1 (the
algorithm does not require the entire sequence pγtqt to be known in advance). In this appendix we
discuss (a) why this is a crucial technical assumption for the algorithm, and (b) why it is a reasonable
assumption in many natural population models.

First we explain why is it technically important for GPC-Simplex that the controller observes γt.
Recall that like the algorithm GPC from [1], GPC-Simplex is a disturbance-action controller, meaning
that the control at time t is computed based on previous disturbances wt´i. In the standard LDS
model (Definition 9) studied by [1], it’s clear that wt´1 can be computed from xt´1, ut´1, xt, using
the fact that A,B are known. However, in the simplex LDS model, if γt´1 is not directly observed,
then in fact wt´1 may not be uniquely identifiable given xt´1, ut´1, xt. This is why GPC-Simplex
requires observing the parameters γt. It is an interesting open problem whether this assumption can
be removed.

Second, we argue that in many practical applications, it is reasonable for γt´1 to be observed along
with the population state xt. The reason is that often the controller can observe not just the proportions
of individuals of different categories in a population but also the total population size.

Formally, consider a population which has Nt individuals at time t. Thus, if the distribution of the
population across d categories is described by xt P ∆d, then for each i P rds there are Ntpxtqi
individuals in category i. Suppose that under control ut P I, this population evolves to a new
distribution p1´ }ut}1qAxt `But, but then the adversary adds nt new individuals to the population,
whose distribution over categories is given by wt P ∆d. Then if we write x̄t P Rdě0 to denote the
vector of counts of individuals in each category at time t, it holds that

x̄t`1 “ Ntpp1´ }ut}1qAxt `Butq ` ntwt
“ Nt`1 pp1´ γtqpp1´ }ut}1qAxt `Butq ` γtwtq

whereNt`1 “ Nt`nt is the total number of individuals at time t`1, and we write γt :“ nt{pNt`ntq.
Thus, the distribution of the population across the d categories at time t` 1 is

xt`1 “
x̄t`1

Nt`1
“ p1´ γtqpp1´ }ut}1qAxt `Butq ` γtwt

which is exactly the update rule from Definition 3. Moreover, if the controller observes the total
population countsNt, Nt`1 in addition to xt, ut, xt`1, then it may compute γt “ pNt`1´Ntq{Nt`1

as well as wt (using knowledge of A,B), which is what we wanted to show.

C Proof of Theorem 7

In this section, we prove Theorem 7. We begin with an overview of this section that outlines the
structure and the main idea behind the proof of Theorem 7.
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Overview. GPC-Simplex (Algorithm 1) essentially runs mirror descent on the loss functions
`tpp,M

r1:Hsq constructed in Line 9. In particular, the loss at time t measures the counterfactual cost
of following the policy πp,M

r1:Hs

for the first t timesteps. Thus, the regret of GPC-Simplex against
the comparator class K4

τ pLq (Definition 6) can be bounded by the following decomposition:

Approximation error of comparator class ` Mismatch error of costs ` LazyMD regret

In more detail:

• Approximation error of comparator class. Since GPC-Simplex is only optimizing over
policies of the form πp,M

r1:Hs

for pp,M r1:Hsq P Xd,H,a0,α, we must show that every policy
in the comparator class can be approximated by some policy πp,M

r1:Hs

. This is accomplished
by Lemma 17.

• Mismatch error of costs. The cost incurred by the mirror descent algorithm LazyMD at
time t is `tppt,M

r1:Hs
t q, which is the counterfactual cost at time t had the current policy

πpt,M
r1:Hs
t been carried out from the beginning of the time. However, the cost actually

incurred by the controller at time t is ctpxt, utq, which is the cost incurred by following
policy πps,M

r1:Hs
s at time t, for each s ď t. Thus, there is a mismatch between the loss

that GPC-Simplex is optimizing and the loss that GPC-Simplex needs to optimize. This
mismatch can be bounded using the stability of mirror descent along with a mixing argument;
see Lemma 21.

• LazyMD regret. GPC-Simplex uses LazyMD as its subroutine for mirror descent. The regret
of LazyMD can be bounded by standard guarantees; see Corollary 15.

C.1 Preliminaries on mirror descent

We begin with some preliminaries regarding mirror descent. Let X Ă Rd be a convex compact
set, and let R : X Ñ R be a convex function. We consider the Lazy Mirror Descent algorithm
LazyMD (also known as Following the Regularized Leader) for online convex optimization on X .
Given an offline optimization oracle over X , the function R, and a parameter η ą 0, LazyMD chooses
each iterate zt based on the historical loss functions `s : X Ñ R (for s P rt ´ 1s) as described in
Algorithm 2.

Algorithm 2 LazyMD: Lazy Mirror Descent [35]

Require: Offline convex optimization oracle over set X Ă Rd; convex regularization function
R : X Ñ R; step size η ą 0; loss functions `1, . . . , `T where `t is revealed after iteration t.

1: for t ě 1 do
2: Compute and output the solution to the following convex optimization problem:

zt :“ arg min
zPX

t´1
ÿ

s“1

xz,∇`spzsqy `
1

η
Rpzq, (14)

3: Receive loss function `t : X Ñ R.

The following lemma bounds the regret of LazyMD against the single best z P X (in hindsight), for
an appropriately chosen step size η.
Lemma 10 (Mirror descent). Suppose that X Ă Rd is convex and compact, and let }¨} be a norm
on Rd. Let R : X Ñ R be a 1-strongly convex function with respect to }¨}. Let L ą 0, and let
ρ :“ maxzPX Rpzq ´minzPX Rpzq.

Fix an arbitrary sequence of loss functions `t : X Ñ R which are each convex and L-Lipschitz
with respect to } ¨ }. Then the iterates zt of LazyMD (Eq. (14)) with an optimization oracle over X ,
regularizer R, step size η “

?
ρ{pL

?
2T q, and loss functions `1, . . . , `T satisfy:

T
ÿ

t“1

`tpztq ´min
zPX

T
ÿ

t“1

`tpzq ď L
a

8ρT (15)
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Moreover, for each t P rT ´ 1s, it holds that

}zt ´ zt`1} ď

c

ρ

2T
. (16)

Lemma 10 is essentially standard but we provide a proof for completeness.

Proof of Lemma 10. By [18, Theorem 5.2], it holds that

T
ÿ

t“1

`tpztq ´min
zPX

`tpzq ď 2η
T
ÿ

t“1

}∇`tpztq}2‹ `
ρ

η

where } ¨ }‹ : Rd Ñ R is the dual norm of }¨}, defined by }y}‹ :“ max}z}ď1xy, zy. Recall that a
convex L-Lipschitz loss function `t satisfies }∇`tpzq}‹ ď L for all z P X . Thus, the above regret
bound simplifies to

T
ÿ

t“1

`tpztq ´min
zPX

`tpzq ď 2ηTL2 `
ρ

η
.

Substituting in η “
?
ρ

L
?

2T
yields Eq. (15). To establish the movement bound Eq. (16), we argue as

follows. Consider any y1, y2 P Rd and define, for i P t1, 2u,

wi :“ arg min
zPX

xyi, zy `Rpzq.

The definition of w2 implies that

Rpw1q ´ xy2, w2y ` xy2, w1y ě Rpw2q ě Rpw1q ` x∇Rpw1q, w2 ´ w1y `
1

2
}w2 ´ w1}

2

where the second inequality is by 1-strong convexity of R. Simplifying, we get

1

2
}w1 ´ w2}

2 ď xy2, w1 ´ w2y ` x∇Rpw1q, w2 ´ w1y.

Symmetrically, the definition of w1 together with strong convexity implies that

1

2
}w1 ´ w2}

2 ď xy1, w2 ´ w1y ` x∇Rpw2q, w1 ´ w2y.

Adding the two above displays gives

}w1 ´ w2}
2 ď xy2 ´ y1, w1 ´ w2y ` x∇Rpw1q ´∇Rpw2q, w2 ´ w1y

ď }y2 ´ y1}‹ ¨ }w1 ´ w2},

where the second inequality uses convexity of R (which gives x∇Rpw1q ´∇Rpw2q, w1 ´w2y ě 0).
It follows that }w1 ´ w2} ď }y1 ´ y2}‹. Setting y1 :“ η

řt´1
s“1 ∇`spzsq and y2 :“ η

řt
s“1 ∇`spzsq,

and recalling the definitions of zt, zt`1 from Eq. (14), we get

}zt ´ zt`1} ď }η∇`tpztq}‹ ď ηL ď
a

2ρ{T ,

as desired.

We next apply Lemma 10 to the domain used in GPC-Simplex. Recall that, given d,H P N and real
numbers 0 ď a ď b ď 1, we have defined Xd,H,a,b :“

Ť

a1Pra,bs∆
d
a1 ˆ pSda1qH .

Definition 11 (Entropy of a sub-distribution). Let d P N. We define the function Ent : ∆d
ď1 Ñ Rě0

by

Entpvq :“ vc ln
1

vc
`

d
ÿ

j“1

vj ln
1

vj

where for any vector v P Rd we write vc :“ 1´
řd
j“1 vj P R.
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Lemma 12. Let d P N and u, v P ∆d
ď1. Then

x∇u Entpuq ´∇v Entpvq, u´ vy ď ´ }u´ v}
2
1 .

That is, v ÞÑ ´Entpvq is 1-strongly convex on ∆d
ď1 with respect to }¨}1.

Proof. Let p be the probability mass function on rd` 1s with pi “ ui for all i P rds, and let q be the
probability mass function on rd` 1s with pi “ vi for all i P rds. Then it can be checked that

x∇u Entpuq ´∇v Entpvq, v ´ uy “ KLpp||qq `KLpq||pq

ě TVpp, qq2

ě }u´ v}
2
1

where the first inequality is by Pinsker’s inequality.

Definition 13 (Regularizer for mirror descent in GPC-Simplex). Let d,H P N and 0 ď a ď b ď 1.
We define Rd,H : Xd,H,a,b Ñ Rď0 as follows (omitting the domain’s dependence on a, b for
notational simplicity):

Rd,Hpp,M
r1:Hsq :“ ´Entppq ´

H
ÿ

h“1

d
ÿ

j“1

EntpM
rhs
¨,j q., (17)

Definition 14 (Norm for analysis of mirror descent in GPC-Simplex). Let d,H P N, and identify
Rd`Hd2 with RdˆpRdˆdqH . We define a norm }¨}d,H on Rd`Hd2 as follows: for p P Rd,M r1:Hs P

pRdˆdqH ,

›

›

›
pp,M r1:Hsq

›

›

›

2

d,H
:“ }p}

2
1 `

H
ÿ

h“1

d
ÿ

j“1

›

›

›
M
rhs
¨,j

›

›

›

2

1
.

Corollary 15. Let d,H P N and 0 ď a ď b ď 1. Consider an arbitrary sequence of cost functions
`t : Xd,H,a,b Ñ R which are convex and L-Lipschitz with respect to }¨}d,H . Then the iterates zt
of LazyMD with η “

a

2dH lnpdq{pL
?
T q, regularizer R, and loss functions `1, . . . , `T satisfy the

following regret guarantee:

T
ÿ

t“1

`tpppt,M
r1:Hs
t qq ´ min

pp,M r1:HsqPXd,H,a,b

T
ÿ

t“1

`tppp,M
r1:Hsqq ď L

a

32dH lnpdq ¨ T (18)

Moreover, for β :“

?
2dH lnpdq
?
T

, for all t P rT ´ 1s, we have

}pt ´ pt`1}1 ď β, max
hPrHs

›

›

›
M
rhs
t ´M

rhs
t`1

›

›

›

1Ñ1
ď β. (19)

Proof. Note that the set of pp,M r1:Hsq where p P Rd and M r1:Hs P pRdˆdqH can be identified
with Rd`Hd2 . We apply Lemma 10 with X :“ Xd,H,a,b, R “ Rd,H , and the norm }¨}d,H . It is

straightforward to check that X is convex and compact in Rd`Hd2 . By Lemma 12, we have that
Rd,H is 1-strongly convex with respect to the norm }¨}d,H . Moreover, note that

max
pp,M r1:HsqPXd,H,a,b

Rd,Hppp,M
r1:Hsqq ´ min

pp,M r1:HsqPXd,H,a,b
Rd,Hppp,M

r1:Hsqq

ď p1` dHq lnpd` 1q

ď 4dH lnpdq

since 0 ď Entpvq ď lnpd ` 1q for all v P ∆d
ď1. Thus, Lemma 10 implies the claimed bounds

Eqs. (18) and (19), where to prove Eq. (19) we are using the fact that }C}1Ñ1 “ maxjPrds }C¨,j}1 ď
b

ř

jPrds }C¨,j}
2
1 for all C P Rdˆd.
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C.2 Approximation of linear policies

Henceforth fix a simplex LDS L “ pA,B, I, x1, pγtqt, pwtqt, pctqtq on ∆d, where I “
Ť

αPrα,αs∆
d
α

for some constants 0 ď α ď α ď 1.

Recall that any choice of parameters pp,M r1:Hsq P Xd,H,a,b (for some hyperparameters H P N and
α ď a ď b ď α) induces, via Eq. (8), a set of policies pπp,M

r1:Hs

s qsPrT s. The policy πp,M
r1:Hs

s takes
as input the disturbances ws´1, . . . , ws´H observed at the H time steps before step s, and outputs a
control for step s. Recall that, in Algorithm 1, we used xtpp,M r1:Hsq, utpp,M

r1:Hsq to denote the
state and control at time step t one would observe by playing the control πp,M

r1:Hs

s pws´1:s´Hq at
step s, for each 1 ď s ď t.

Formally, we have the following expressions for xtpp,M r1:Hsq, utpp,M
r1:Hsq:

Fact 16. For any pp,M r1:Hsq P Xd,H,a,b and t P rT s, it holds that

xtpp,M
r1:Hsq “

t
ÿ

i“1

αp,M
r1:Hs

t,i ¨Ai´1 ¨

˜

λt´i,0λ̄t,i ¨B ¨ p`B
H
ÿ

j“1

λt,i`j ¨M
rjs ¨ wt´i´j ` λt,i ¨ wt´i

¸

(20)

utpp,M
r1:Hsq “ πp,M

r1:Hs

t pwt´1:t´Hq “ λt,0 ¨ p`
H
ÿ

j“1

λt,j ¨M
rjs ¨ wt´j , (21)

where we have written, for t P rT s, i P N, αp,M
r1:Hs

t,i :“
śi´1
j“1

´

1´
›

›

›
πp,M

r1:Hs

t´j

›

›

›

1

¯

“ p1´ }p}1q
i´1.

Proof. This follows unrolling Eq. (6) with the controls us :“ πp,M
r1:Hs

s pws´1:s´Hq, and recalling
the definitions in Eq. (7) and the conventions w0 :“ x1, γ0 “ 1, and wt “ 0 for t ă 0.

In a sense, Algorithm 1 performs online convex optimization over the set of such policies. Even if we
can manage to show that doing so yields a good regret guarantee with respect to the class of policies
tπp,M

r1:Hs

t : pp,M r1:Hsq P Xd,H,a,bu for some choices of H, a, b, why should this imply a good
regret guarantee with respect to the class K4

τ pLq of linear policies (see Definition 6)? Lemma 17
bridges this gap, showing that any policy in K4

τ pLq can be approximated by a policy of the form
pπp,M

r1:Hs

s qsPrT s.

Lemma 17 (Approximation). Suppose that the cost functions c1, . . . , cT of L satisfy Assumption 1
with Lipschitz parameter L. Fix τ ą 0, ε P p0, 1q, and any K‹ P Sdď1 such that tmixpAK‹q ď τ .
Write α‹ :“ }K‹}1Ñ1. If H ě τ rlog2p2LT

2{εqs, then there is some pp,M r1:Hsq P ∆d
α‹ ˆ pSdα‹qH

such that
T
ÿ

t“1

ctpxtpp,M
r1:Hsq, utpp,M

r1:Hsqq ´

T
ÿ

t“1

ctpxtpK
‹q, utpK

‹qq ď ε, (22)

where xtpK‹q, utpK‹q denote the state and control that one would observe at time step t if one were
to play according to the policy x ÞÑ K‹x at all time steps 1 ď s ď t.

Proof. For each t, if the controls ut are chosen to satisfy ut :“ K‹ ¨xt, then we have αt :“ }K‹}1Ñ1.
Moreover, for 1 ď t ď T , we can write

xtpK
‹q “

t
ÿ

i“1

pAK‹qi´1 ¨

˜

i´1
ź

j“1

p1´ γt´jq

¸

¨ γt´iwt´i “
t
ÿ

i“1

Ai´1
K‹ ¨ λt,i ¨ wt´i, (23)

utpK
‹q “ K‹ ¨ xtpK

‹q “

t
ÿ

i“1

K‹Ai´1
K‹ ¨ λt,i ¨ wt´i (24)

where AK‹ was defined in Eq. (5). By the assumption that tmixpAK‹q ď τ , there is some unique
p1 P ∆d such that that AK‹ ¨ p1 “ p1 (see Definition 5). Moreover, by our bound on H and

18



Lemma 18, for any i ą H and q P ∆d we have
›

›Ai´1
K‹ q ´ p

1
›

›

1
ď p1{2qH{τ ď ε{p2LT 2q. Using that

λt,0 “
řt
i“H`1 λt,i by the definition in Eq. (7),

›

›

›

›

›

t
ÿ

i“H`1

K‹Ai´1
K‹ λt,iwt´i ´ λt,0 ¨K

‹p1

›

›

›

›

›

1

“

›

›

›

›

›

K‹
t
ÿ

i“H`1

λt,ipAi´1
K‹ wt´i ´ p

1q

›

›

›

›

›

1

ď

t
ÿ

i“H`1

λt,i ¨
›

›Ai´1
K‹ wt´i ´ p

1
›

›

1
ď ε{p2LT 2q. (25)

For 1 ď i ď H , let us define M ris :“ K‹Ai´1
K‹ P Sdα‹ and p :“ K‹ ¨ p1 P ∆d

α‹ . Using Eqs. (21)
and (24), we have that

›

›

›
utpK

‹q ´ utpp,M
r1:Hsq

›

›

›

1
“

›

›

›

›

›

t
ÿ

i“1

K‹Ai´1
K‹ λt,iwt´i ´ λt,0p´

H
ÿ

j“1

λt,jM
rjswt´j

›

›

›

›

›

1

“

›

›

›

›

›

t
ÿ

i“H`1

K‹Ai´1
K‹ λt,iwt´i ´ λt,0 ¨K

‹p1

›

›

›

›

›

1

ď ε{p2LT 2q, (26)

where the final inequality uses Eq. (25).

Next, we may bound the difference in state vectors using Eq. (26), as follows: for any sequence of
puiq

t
i“1 with }ui}1 “ α‹ for all i, we can expand Eq. (6) to get

xt “
t
ÿ

i“1

p1´ α‹qi´1Ai´1pλ̄t,iBut´i ` λt,iwt´iq.

Thus, for any t P rT s, we have
›

›

›
xtpK

‹q ´ xtpp,M
r1:Hsq

›

›

›

1
ď

t
ÿ

i“1

p1´ α‹qi´1λ̄t,i ¨
›

›

›
Ai´1B ¨

´

ut´ipK
‹q ´ ut´ipp,M

r1:Hsq

¯
›

›

›

1

ď
ε

2LT 2
¨

t
ÿ

i“1

λ̄t,i

ď
ε

2LT
. (27)

By Eqs. (26) and (27) and Assumption 1, it follows that, for each t P rT s,
ˇ

ˇ

ˇ
ctpxtpp,M

r1:Hsq, utpp,M
r1:Hsqq ´ ctpxtpK

‹q, utpK
‹qq

ˇ

ˇ

ˇ
ď ε{T,

which yields the claimed bound Eq. (22).

The following facts about distance to stationarity are well-known (see e.g. [31, Section 4.4]):
Lemma 18. Let X P Sd have a unique stationary distribution π. Then the following inequalities
hold for any c, t P N:

1. DXptq ď D̄Xptq ď 2DXptq.
2. D̄Xpctq ď D̄Xptq

c.

C.3 Bounding the memory mismatch error

In this section, we prove Lemma 21, which allows us to show that an algorithm with bounded
aggregate loss with respect to the loss functions `t defined on Line 9 of Algorithm 1 in fact has
bounded aggregate cost with respect to the cost functions ct chosen by the adversary.

First, we introduce two useful lemmas on the mixing time of matrices (Definition 5).
Lemma 19. Let X P Sd have a unique stationary distribution. Let Y P Sd satisfy }X ´ Y }1Ñ1 ď δ.
Then for any t P N,

DY ptq ď 2tδ ` 2DXptq.
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Proof. For any v P ∆d, we have }Xv ´ Y v}1 ď δ. A hybrid argument then yields that for any t ě 1,
}Xtv ´ Y tv}1 ď tδ. Then

D̄Y ptq ď sup
p,qP∆d

›

›Y tpp´ qq
›

›

1
ď 2tδ ` sup

p,qP∆d

›

›Xtpp´ qq
›

›

1
ď 2tδ ` D̄Xptq ď 2tδ ` 2DXptq,

where the first and last inequalities apply the first item of Lemma 18.

Lemma 20. Suppose that A,B P Sd, K‹ P Sdď1 satisfy tmixpAq ą 4 ¨ tmixpAK‹q. Then }K‹}1Ñ1 ą

1{p96 ¨ tmixpAK‹qq.

Proof. Let us write τ :“ tmixpAK‹q and α‹ :“ }K‹}1Ñ1, so that AK‹ “ p1 ´ α‹q ¨ A ` BK‹.
Suppose for the purpose of contradiction that α‹ ď 1{p96τq. We have that }A´ AK‹}1Ñ1 ď

2α‹. By Lemma 18 and Definition 5, we have D̄AK‹ pτq ď 2DAK‹ pτq ď 1{2, so DAK‹ p4τq ď
D̄AK‹ p4τq ď 1{16. Using Lemma 19 and the assumption on α‹,

DAp4τq ď 12τα‹ ` 2DAK‹ p4τq ď 12τα‹ ` 1{8 ď 1{4,

meaning that tmixpAq ď 4τ .

The last step is to bound the memory mismatch error.
Lemma 21 (Memory mismatch error). Suppose that pctqt satisfy Assumption 1 with Lipschitz
parameter L. Let τ, β ą 0, and suppose that K4

τ pLq is nonempty. Consider the execution of
GPC-Simplex (Algorithm 1) on L with input τ . If the iterates ppt,M

r1:Hs
t qtPrT s satisfy

}pt ´ pt`1}1 ď β, max
iPrHs

›

›

›
M
ris
t ´M

ris
t`1

›

›

›

1Ñ1
ď β, (28)

then for each t P rT s, the loss function `t computed at time step t satisfies

|`tppt,M
r1:Hs
t q ´ ctpxt, utq| ď O

`

Lτ3β log3
p1{βq

˘

.

Proof. Recall that ut P ∆d denotes the control chosen in step t of Algorithm 1. We write αt :“ }ut}1

and, for i P rts, αt,i :“
śi´1
j“1p1´ αt´jq. Note that αt “ }pt}1 “

›

›

›
M
rhs
t

›

›

›

1Ñ1
for each h P rHs, by

definition of Xd,H,a0,α.

Let us fix t P rT s, and write p :“ pt,M
r1:Hs :“ M

r1:Hs
t . By Eq. (6), the state xt at step t of

Algorithm 1 can be written as follows:

xt “
t
ÿ

i“1

αt,i ¨A
i´1 ¨

˜

λt´i,0λ̄t,iBpt´i `B
H
ÿ

j“1

M
rjs
t´iλt,i`jwt´i´j ` λt,iwt´i

¸

. (29)

By assumption that K4
τ pLq is nonempty, there is some K‹ P Sd

rα,αs satisfying tmixpAK‹q ď τ . Let
us write α‹ :“ }K‹}1Ñ1, so that AK‹ “ p1´ α‹qA` BK‹. Moreover, recall we have written in
Algorithm 1 that τA :“ tmixpAq.

For 1 ď i ď t, define

vi :“ λt´i,0λ̄t,iBpt´i `B
H
ÿ

j“1

M
rjs
t´iλt,i`jwt´i´j ` λt,iwt´i,

v1i :“ λt´i,0λ̄t,iBp`B
H
ÿ

j“1

M rjsλt,i`jwt´i´j ` λt,iwt´i.

Note that

maxt}vi}1 ,
›

›v1i
›

›

1
,
›

›vi ´ v
1
i

›

›

1
u ď λt´i,0λ̄t,i `

H
ÿ

j“1

λt,i`j ` λt,i ď 1. (30)
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Next, using Eq. (29) and Eq. (20), we have

xt ´ xtpp,M
r1:Hsq “

t
ÿ

i“1

´

αt,i ¨A
i´1 ¨ vi ´ α

p,M r1:Hs

t,i ¨Ai´1 ¨ v1i

¯

. (31)

The condition Eq. (28) together with the triangle inequality gives that }Bpt´i ´Bp}1 ď iβ and
›

›

›
BM

rjs
t´iwt´i´j ´BM

rjswt´i´j

›

›

›

1
ď iβ for all i, j ě 1, as well as |αt´i ´ αt| ď iβ for all i ě 1.

It follows that }vi ´ v1i}1 ď iβ and |αt,i ´ α
p,M r1:Hs

t,i | ď i2β for all i ě 1 and that for any ` ě 1,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ̀

i“1

αt,i ¨ }vi}1 ´
ÿ̀

i“1

αp,M
r1:Hs

t,i ¨
›

›v1i
›

›

1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ̀

i“1

|αt,i ´ α
p,M r1:Hs

t,i | ¨ }vi}1

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ̀

i“1

αp,M
r1:Hs

t,i ¨
›

›vi ´ v
1
i

›

›

1

ď `3β. (32)

Using Eq. (32) and the fact that
řt
i“1 αt,i }vi}1 “

řt
i“1 α

p,M r1:Hs

t,i }v1i}1 “ 1, we see
ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“``1

αt,i ¨ }vi}1 ´
t
ÿ

i“``1

αp,M
r1:Hs

t,i ¨
›

›v1i
›

›

1

ˇ

ˇ

ˇ

ˇ

ˇ

ď `3β. (33)

We consider the following two cases:

Case 1: τA ď 4τ . Write t0 “ tτA log2p1{βqu. Let the stationary distribution of A be denoted
p‹ P ∆d. By Lemma 18, we have that for all i ě 1,

›

›Ai ¨ p´ p‹
›

›

1
ď DApiq ď 1{2ti{τAu. Now,

using Eq. (31), we may compute
›

›

›
xt ´ xtpp,M

r1:Hsq

›

›

›

1

ď

›

›

›

›

›

t0
ÿ

i“1

´

αt,i ¨A
i´1 ¨ vi ´ α

p,M r1:Hs

t,i ¨Ai´1 ¨ v1i

¯

›

›

›

›

›

1

`

›

›

›

›

›

t
ÿ

i“t0`1

αt,i ¨
`

Ai´1 ¨ vi ´ }vi}1 ¨ p
‹
˘

´ αp,M
r1:Hs

t,i ¨
`

Ai´1 ¨ v1i ´
›

›v1i
›

›

1
¨ p‹

˘

›

›

›

›

›

1

`

›

›

›

›

›

t
ÿ

i“t0`1

αt,i ¨ }vi}1 ¨ p
‹ ´ αp,M

r1:Hs

t,i ¨
›

›v1i
›

›

1
¨ p‹

›

›

›

›

›

1

ď

t0
ÿ

i“1

´

αt,i ¨
›

›Ai´1 ¨ pvi ´ v
1
iq
›

›

1
` |αt,i ´ α

p,M r1:Hs

t,i | ¨
›

›v1i
›

›

1

¯

`

t
ÿ

i“t0`1

´

αt,i ¨
›

›Ai´1 ¨ vi ´ }vi}1 ¨ p
‹
›

›

1
` αp,M

r1:Hs

t,i ¨
›

›Ai´1 ¨ v1i ´
›

›v1i
›

›

1
¨ p‹

›

›

1

¯

` t30β

ď t30β `
t0
ÿ

i“1

i2β `
t0
ÿ

i“1

αt,i ¨ iβ `
t
ÿ

i“1`t0

2 ¨ 1{2ti{τAu

ď Ct30β (34)

ď C 1τ3 log3
p1{βq ¨ β,

for some universal constants C,C 1. Above, the first inequality uses the triangle inequality, the second
inequality uses Eq. (33), and the third inequality uses that }vi ´ v1i}1 ď iβ, |αt,i´α

p,M r1:Hs

t,i | ď i2β,
}v1i}1 ď 1. The fourth inequality uses the bound

řt
i“1`t0

2´ti{τAu ď OpτAβq ď Opt0βq.

Case 2: τA ą 4τ . In this case, we claim that a0 ě 1{p96τq. By choice of a0 in Line 1 of
Algorithm 1 and the fact that τA ą 4τ , it suffices to show that α ě 1{p96τq: to see this, note that
τA “ tmixpAq ą 4τ ě 4 ¨ tmixpAK‹q, so Lemma 20 gives that }K‹}1Ñ1 ą 1{p96 ¨ tmixpAK‹qq ě
1{p96τq. But }K‹}1Ñ1 ď α, and thus α ą 1{p96τq. This proves that a0 ě 1{p96τq. Hence
αi ě a0 ě 1{p96τq, by definition of Xd,H,a0,α, for all i P rT s.
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Write t0 :“ t200τ ¨ logp1{βqu. Then for any i ą t0,

maxtαt,i, α
p,M r1:Hs

t,i u ď p1´ a0q
i´1 ď p1´ 1{p96τqqt200τ ¨logp1{βqu ď Opβq.

Again using Eq. (31),

›

›

›
xt ´ xtpp,M

r1:Hsq

›

›

›

1
ď

t0
ÿ

i“1

´

|αt,i ´ α
p,M r1:Hs

t,i | ` αt,i ¨
›

›vi ´ v
1
i

›

›

1

¯

`

t
ÿ

i“t0`1

pαt,i ` α
p,M r1:Hs

t,i q

ď

t0
ÿ

i“1

`

i2β ` iβ
˘

`

t
ÿ

i“t0`1

Opβq ¨ p1´ a0q
i´t0´1 (35)

ď Ct30β ` Cβ{a0

ď C 1τ3 log3
p1{βq ¨ β,

for some constants C,C 1. Above, the first inequality uses Eq. (30); the second inequality uses the
previously derived bounds |αt,i ´ αp,M

r1:Hs

t,i | ď i2β and }vi ´ v1i}1 ď iβ; and the final inequality
uses that a0 ě 1{p96τq.

In both cases, we have
›

›xt ´ xtpp,M
r1:Hsq

›

›

1
ď C 1τ3β log3

p1{βq for some universal constant C 1.
By definition, the control ut chosen by Algorithm 1 at time step t is exactly ut “ utpp,M

r1:Hsq.
Thus, using L-Lipschitzness of ct, we have

ˇ

ˇ

ˇ
`tpp,M

r1:Hsq ´ ctpxt, utq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
ctpxtpp,M

r1:Hsq, utpp,M
r1:Hsqq ´ ctpxt, utq

ˇ

ˇ

ˇ

ď L ¨
›

›

›
xt ´ xtpp,M

r1:Hsq

›

›

›

1

ď C 1Lτ3β log3
p1{βq.

as desired.

C.4 Proof of Theorem 7

Before proving Theorem 7, we establish that the loss functions `t used in GPC-Simplex are Lipschitz.

Lemma 22. Let X P Sd with τ :“ tmixpXq ă 8. Then for any i P N and v P Rd with x1, vy “ 0, it
holds that

›

›Xiv
›

›

1
ď 2´ti{τu }v}1.

Proof. Fix v P Rd with x1, vy “ 0. We can write v “ v` ´ v´, where v`, v´ P Rdě0 are the
non-negative and negative components of v respectively. We have }v`}1 “ }v´}1 “ 1

2}v}1 since
x1, vy “ 0. Let u1 :“ 2v`{}v}1 and u2 :“ 2v´{}v}1, so that u1, u2 P ∆d. By Lemma 18 and the
definition of tmixpXq, we have

}Xipu1 ´ u2q}1 ď D̄Xpiq ď D̄Xpτq
ti{τu ď p2DXpτqq

ti{τu ď 2´ti{τu.

Thus, }Xτv}1 ď 2´ti{τu}v}1.

Lemma 23 (Lipschitzness of `t). Let τ ą 0, and suppose that K4
τ pLq is nonempty. For each

t P rT s, the loss function `tpp,M r1:Hsq “ ctpxtpp,M
r1:Hsq, utpp,M

r1:Hsqq (as defined on Line 9 of
Algorithm 1) is OpLτ2q-Lipschitz with respect to the norm }¨}d,H in Xd,H,a0,α.

Proof. By L-Lipschitzness of ct with respect to }¨}1, it suffices to show that for any
pp1,M

r1:Hs
1 q, pp2,M

r1:Hs
2 q P Xd,H,a0,α, we have

›

›

›
xtpp1,M

r1:Hs
1 q ´ xtpp2,M

r1:Hs
2 q

›

›

›

1
ď Opτ2q

›

›

›
pp1,M

r1:Hs
1 q ´ pp2,M

r1:Hs
2 q

›

›

›

d,H
(36)

›

›

›
utpp1,M

r1:Hs
1 q ´ utpp2,M

r1:Hs
2 q

›

›

›

1
ď Opτ2q

›

›

›
pp1,M

r1:Hs
1 q ´ pp2,M

r1:Hs
2 q

›

›

›

d,H
. (37)
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Fix pp1,M
r1:Hs
1 q, pp2,M

r1:Hs
2 q P Xd,H,a0,α, and write

ε :“ max

"

}p1 ´ p2}1 , max
jPrHs

›

›

›
M
rjs
1 ´M

rjs
2

›

›

›

1Ñ1

*

.

Since ε ď
›

›

›
pp1,M

r1:Hs
1 q ´ pp2,M

r1:Hs
2 q

›

›

›

d,H
, it suffices to show that Eqs. (36) and (37) hold with ε

on the right-hand sides.

To verify Eq. (36) in this manner, we define, for b P t1, 2u,

vi,b :“λt´i,0λ̄t,i ¨B ¨ pb `B
H
ÿ

j“1

λt,i`j ¨M
rjs
b ¨ wt´i´j ` λt,i ¨ wt´i.

Since λt´i,0λ̄t,i ` λt,i `
řH
j“1 λt,i`j ď 1, we have }vi,b}1 ď 1 for each i P rts, b P t1, 2u.

Moreover, }vi,1 ´ vi,2}1 ď pλt´i,0λ̄t,i `
řH
j“1 λt,i`jq ¨ ε ď ε. Write σ1 :“ }p1}1 , σ2 :“ }p2}1, so

that |σ1 ´ σ2| ď ε and |p1´ σ1q
i ´ p1´ σ2q

i| ď iε for all i ě 1. Also note that for each b P t1, 2u,

t
ÿ

i“1

p1´ σbq
i´1 ¨ }vi,b}1 “

t
ÿ

i“1

p1´ σbq
i´1 ¨ λ̄t,i´1 ¨ pp1´ γt´iq ¨ σb ` γt´iq

“

t
ÿ

i“1

p1´ σbq
i´1 ¨ λ̄t,i´1 ¨ p1´ p1´ γt´iqp1´ σbqq “ 1, (38)

where the final equality follows since γ0 “ 1.

By Eq. (20), we have

xtpp1,M
r1:Hs
1 q ´ xtpp2,M

r1:Hs
2 q “

t
ÿ

i“1

`

p1´ σ1q
i´1Ai´1 ¨ vi,1 ´ p1´ σ2q

i´1Ai´1 ¨ vi,2
˘

.

We consider two cases, depending on the mixing time τA :“ tmixpAq of A:

Case 1: τA ď 4τ . Let the stationary distribution of A be denoted p‹ P ∆d. Then
›

›

›
xtpp1,M

r1:Hs
1 q ´ xtpp2,M

r1:Hs
2 q

›

›

›

1

“

›

›

›

›

›

t
ÿ

i“1

`

p1´ σ1q
i´1Ai´1vi,1 ´ p1´ σ2q

i´1Ai´1vi,2
˘

›

›

›

›

›

1

ď

›

›

›

›

›

t
ÿ

i“1

`

p1´ σ1q
i´1pAi´1vi,1 ´ }vi,1}1 p

‹q ´ p1´ σ2q
i´1pAi´1vi,2 ´ }vi,2}1 p

‹q
˘

›

›

›

›

›

1

`

›

›

›

›

›

t
ÿ

i“1

`

p1´ σ1q
i´1 }vi,1}1 ´ p1´ σ2q

i´1 }vi,2}1
˘

p‹

›

›

›

›

›

1

“

›

›

›

›

›

t
ÿ

i“1

Ai´1
`

p1´ σ1q
i´1vi,1 ´ p1´ σ2q

i´1vi,2
˘

´
`

p1´ σ1q
i´1 }vi,1}1 ´ p1´ σ2q

i´1 }vi,2}1
˘

p‹

›

›

›

›

›

1

ď

t
ÿ

i“1

21´tpi´1q{τAu
›

›p1´ σ1q
i´1vi,1 ´ p1´ σ2q

i´1vi,2 ´
`

p1´ σ1q
i´1 }vi,1}1 ´ p1´ σ2q

i´1 }vi,2}1
˘

p‹
›

›

1

ď

t
ÿ

i“1

22´tpi´1q{τAupiε` εq

ď CτAε
8
ÿ

i“0

τAi2
´i

ď C 1τ2ε
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for some constants C,C 1. Above, the second equality uses Eq. (38), and the second inequality uses
Lemma 22 together with the fact that Ai´1p‹ “ p‹ and
@

1,
`

p1´ σ1q
i´1vi,1 ´ p1´ σ2q

i´1vi,2
˘

´
`

p1´ σ1q
i´1 }vi,1}1 ´ p1´ σ2q

i´1 }vi,2}1
˘D

“ 0.

The final inequality uses the assumption that τA ď 4τ .

Case 2: τA ą 4τ . In this case, the assumption that K4
τ pLq is nonempty together with the choice

of a0 in Line 1 of Algorithm 1 and Lemma 20 gives that a0 ą 1{p96τq. See Case 2 of the proof of
Lemma 21 for more details of this argument, which uses the fact that τA ą 96τ .

Since ppb,M
r1:Hs
b q P Xd,H,a0,α for b P t1, 2u, we have σ1, σ2 ě a0 ą 1{p96τq. We may compute

›

›

›
xtpp1,M

r1:Hs
1 q ´ xtpp2,M

r1:Hs
2 q

›

›

›

1

“

›

›

›

›

›

t
ÿ

i“1

`

p1´ σ1q
i´1Ai´1vi,1 ´ p1´ σ2q

i´1Ai´1vi,2
˘

›

›

›

›

›

1

ď

t
ÿ

i“1

|p1´ σ1q
i´1 ´ p1´ σ2q

i´1| `

t
ÿ

i“1

p1´ σ1q
i´1 }vi,1 ´ vi,2}1

ď

t
ÿ

i“2

i´1
ÿ

j“1

|σ1 ´ σ2|p1´ σ1q
j´1p1´ σ2q

i´1´j ` ε
t
ÿ

i“1

p1´ σ1q
i´1

ď

t
ÿ

i“2

pi´ 1qεp1´ 1{p96τqqi´2 ` ε
t
ÿ

i“1

p1´ 1{p96τqqi´1

ď Cτ2ε

for some constant C.

Thus, in both cases above, we have
›

›

›
xtpp1,M

r1:Hs
1 q ´ xtpp2,M

r1:Hs
2 q

›

›

›

1
ď Opτεq, which verifies

Eq. (36).

The proof of Eq. (37) is much simpler: we have
›

›

›
utpp1,M

r1:Hs
1 q ´ utpp2,M

r1:Hs
2 q

›

›

›

1
ď λt,0 ¨ }p1 ´ p2}1 `

H
ÿ

j“1

λt,j ¨
›

›

›
M
rjs
1 ´M

rjs
2

›

›

›

1Ñ1
ď ε,

since λt,0 ` ¨ ¨ ¨ ` λt,H “ 1.

Proof of Theorem 7. Set β “
?

2dH ln d?
T

, ε “ 1{T , and K4
τ :“ K4

τ pLq. We will apply Corollary 15

to the sequence of iterates ppt,M
r1:Hs
t q produced in Algorithm 1, for the domain Xd,H,a0,α (i.e.,

a “ a0, b “ α). Note that Lemma 23 gives that `t is OpLτ2q-Lipschitz, for each t P rT s. Thus
Corollary 15 guarantees a regret bound (with respect to Xd,H,a0,α) of OpLτ2

a

dH lnpdqT q. More-
over, Eq. (19) of Corollary 15 ensures that the precondition Eq. (28) of Lemma 21 is satisfied. Thus,
we may bound

T
ÿ

t“1

ctpxt, utq ´ inf
KPK4

τ

T
ÿ

t“1

ctpxtpKq, utpKqq

ď

T
ÿ

t“1

`tppt,M
r1:Hs
t q ´ inf

KPK4
τ

T
ÿ

t“1

ctpxtpKq, utpKqq `OpT ¨ Lτ
3 log3

p1{βqβq

ď

T
ÿ

t“1

`tppt,M
r1:Hs
t q ´ inf

pp,M r1:HsqPXd,H,a0,α

T
ÿ

t“1

ctpxtpp,M
r1:Hsq, utpp,M

r1:Hsqq (39)

`OpT ¨ Lτ3 log3
p1{βqβq ` ε

“

T
ÿ

t“1

`tppt,M
r1:Hs
t q ´ inf

pp,M r1:HsqPXd,H,a0,α

T
ÿ

t“1

`tpp,M
r1:Hsq (40)
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`OpT ¨ Lτ3 log3
p1{βqβq ` ε

ď Lτ2
a

dH lnpdqT `OpT ¨ Lτ3 log3
p1{βqβq ` ε,

where the first inequality uses Lemma 21 together with Eq. (19) of Corollary 15, and the sec-
ond inequality uses Lemma 17 with ε “ 1{T (by the theorem assumption, the inequality
H ě τ rlog2p2LT

2{εqs is indeed satisfied). Note that for the second inequality to hold, we also need
that }K}1Ñ1 ě a0 for all K P K4

τ , which in particular requires (by Line 1) that }K}1Ñ1 ě 1{p96τq
if tmixpAq ą 4τ . But if tmixpAq ą 4τ , then for any K P K4

τ we have tmixpAq ą 4 ¨ tmixpAKq and
hence }K}1Ñ1 ě 1{p96τq by Lemma 20. Finally, the equality above uses the definition of `t in
Algorithm 1, and the final inequality uses the regret bound of Corollary 15. By our choice of β, ε, we
see that the overall policy regret is ÕpLτ7{2d1{2

?
T q, as desired.

D Proof of Lower Bounds

In this section, we formally state and prove the regret lower bounds Theorem 1 and Theorem 8. The
former states that the comparator class for online control of standard LDSs cannot be broadened to
all marginally stable (time-invariant, linear) policies; the latter states that the mixing time assumption
cannot be removed from the comparator class for online control of simplex LDSs. Both results hold
even in constant dimension.

The basic idea is the same for both proofs: we construct two systems L0,L1 which are identical until
time T {2, but then at time T {2 experience differing perturbations of constant magnitude. The costs
are zero until time T {2, after which they penalize distance to a prescribed state (and can in fact be
taken to be the same for both systems). The optimal strategy in the first T {2 time steps therefore
depends on which system the controller is in, but the controller does not observe this until time T {2,
and hence will necessarily incur regret with respect to the optimal policy.

Formalizing this intuition requires two additional pieces: first, for both systems there must be a
near-optimal time-invariant linear policy. This can be achieved by careful design of the dynamics,
perturbations, and costs. Second, if the controller finds itself in a high-cost state at time T {2 ` 1,
it must be unable to reach a low-cost state without incurring ΩpT q total cost along the way. In the
standard LDS setting, we achieve this by setting the transition matrices A,B so that }B} “ Op1{T q
(i.e. so constant-size controls have small effect on the state) and adding a penalty of |ut| to the cost
for t ą T {2. In the simplex LDS setting, we achieve this by our choice of the valid constraint set I
(which enforces that }ut}1 “ Op1{T q for all t).

See Fig. 3 for a pictorial explanation of the proof in the simplex LDS setting.

D.1 Proof of Theorem 1

In this section we give a formal statement and proof of Theorem 1. Recall the definition of an
LDS (Definition 9). We define the class KκpLq of policies that κ-marginally stabilize L below; it is
equivalent to the class Kκ,ρpLq of policies that pκ, ρq-strongly stabilize L (Definition 4) with ρ “ 0.

Definition 24 (Marginal stabilization). A matrix M P Rdˆd is κ-marginally stable if there is a matrix
H P Rdˆd so that

›

›H´1MH
›

› ď 1 and }M} , }H} ,
›

›H´1
›

› ď κ. A matrix K P Rdˆd is said to
κ-marginally stabilize an LDS with transition matrices A,B P Rdˆd if A ` BK is κ-marginally
stable. For κ ą 0 and an LDS L on Rd, we define KκpLq to be the set of linear, time-invariant
policies x ÞÑ Kx where K P Rdˆd κ-marginally stabilizes L.

We also introduce a standard regularity assumption on cost functions:15

Assumption 2. Let L ą 0. We say that cost functions pctqt, where ct : Rdx ˆ Rdu Ñ R, are
L-regular if ct is convex and L-Lipschitz with respect to the Euclidean norm for all t.
Theorem 25 (Formal statement of Theorem 1). Let Alg be any randomized algorithm for online
control with the following guarantee:

15Technically, in this setting of general LDSs where the state domain is unbounded, Assumption 1 is stronger
than the assumption on cost functions made in prior work on non-stochastic control [1], because it enforces a
uniform Lipschitzness bound on the entire domain. But we are proving a lower bound in this section, so this
strengthening only makes our result stronger.
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Figure 3: An intuitive illustration of xtp2q in the lower bound for simplex LDS (Theorem 30). The blue curve is
the trajectory of π0, the “decreasing" comparator policy, in the system L0, which has the smaller perturbation.
The green curve is π1, the “lazy" comparator policy, in the system L1, which has the larger perturbation.
The orange curves correspond to the trajectories of an arbitrary policy π under the two different perturbation
sequences. The sum of regret under the two perturbation sequences is equal to the area S1 ` S2 ` S3, which is
shown to be ΩpT q for any h.

Let d, T P N and κ ą 0, and let L “ pA,B, x1, pwtqt, pctqtq be an LDS with state space
and control space Rd; L-regular cost functions pctqt (Assumption 2); and perturbations pwtqt
satisfying }wt}2 ď L for all t. Then the iterates pxt, utqTt“1 produced by Alg with input
pA,B, κ, T q on interaction with L satisfy

regretKκpLq :“ E

«

T
ÿ

t“1

ctpxt, utq

ff

´ inf
KPKκpLq

T
ÿ

t“1

ctpx
L,K
t , uL,Kt q ď fpd, κ, L, T q (41)

where pxL,Kt , uL,Kt qTt“1 are the iterates produced by following policy x ÞÑ Kx in system L for
all t P rT s.

Then fp1, 1, 1, T q “ ΩpT q.
Remark 26. In the above theorem statement, if KκpLq were replaced with Kκ,ρpLq, the class of
linear time-invariant policies that pκ, ρq-strongly stabilize L, then the main result of [1] would imply
that in fact there is a (deterministic) algorithm GPC with regret at most polypd, κ, L, ρ´1q ¨

?
T logpT q

on any LDS L satisfying the above conditions. Thus, Theorem 25 indeed provides a converse to [1].

We prove Theorem 25 by constructing a simple distribution over LDSs on which any algorithm
must incur ΩpT q regret in expectation. Let β ě 2 be a constant that we will determine later, and fix
T ě β. Recall that we denote an LDS on Rd using the notation L “ pA,B, x1, pwtqt, pctqtq, where
A,B P Rdˆd. We define two LDSs on R as follows:

L0 :“ p1,´β{T, x1, pw
0
t qt, pctqtq,

L1 :“ p1,´β{T, x1, pw
1
t qt, pctqtq,

where the (common) initial state is x1 “ 1, the (common) cost functions pctqt are defined as

ctpx, uq :“

"

|x| ` |u| if t ą T {2

0 otherwise
,
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the perturbations of L0 are w0
t :“ 0 for all t, and the perturbations of L1 are

w1
t :“

"

´1 if t “ T {2

0 otherwise
.

For simplicity, we assume that T {2 is an integer. Thus, at all times t ‰ T {2, the two systems have
identical dynamics

xt`1 :“ xt ´
β

T
ut,

but at time t “ T {2, system L1 experiences a negative perturbation of magnitude 1, whereas L0 does
not. The following lemma characterizes the performance of two time-invariant linear policies π0, π1

for L0,L1 respectively:
Lemma 27. Define π0, π1 : RÑ R by π0pxq “ x and π1pxq “ 0. Then:

• Policy π0 is an element of K1pL0q, and the iterates pxL
0,π0

t , uL
0,π0

t qTt“1 produced by follow-
ing π0 in system L0 satisfy

T
ÿ

t“1

ctpx
L0,π0

t , uL
0,π0

t q ď
2T

β
e´β{2.

• Policy π1 is an element of K1pL1q, and the iterates pxL
1,π1

t , uL
1,π1

t qTt“1 produced by follow-
ing π1 in system L1 satisfy

T
ÿ

t“1

ctpx
L1,π1

t , uL
1,π1

t q “ 0.

Proof. Note that π0, π1 are both time-invariant linear policies. The inclusion π0 P K1pL0q is
immediate from the fact that L0 has transitions A “ 1, B “ ´β{T , and |A ` B| ď 1. Similarly,
π1 P K1pL1q because |A| ď 1. To bound the total cost of π0 on L0, note that uL

0,π0

t “ xL
0,π0

t “

p1´ β{T qt´1 for all t P rT s. Hence,

T
ÿ

t“1

ctpx
L0,π0

t , uL
0,π0

t q “ 2
T
ÿ

t“T {2`1

ˆ

1´
β

T

˙t´1

ď
2T

β

ˆ

1´
β

T

˙T {2

ď
2T

β
e´β{2.

Moreover, we have xL
1,π1

t “ 1rt ď T {2s and uL
1,π1

t “ 0 for all t P rT s, from which it is clear that
řT
t“1 ctpx

L1,π1

t , uL
1,π1

t q “ 0.

Next, we show that the total cost of any trajectory pxt, utqTt“1 can be lower bounded in terms of
|xT {2`1| in both L0 and L1:

Lemma 28. Let Alg be any randomized algorithm for online control, and let b P t0, 1u. The
(random) trajectory pxt, utqTt“1 produced by Alg in system Lb satisfies the inequality

T
ÿ

t“1

ctpxt, utq “
T
ÿ

t“T {2`1

|xt| ` |ut| ě
T

2β
|xT {2`1|

with probability 1.

Proof. By definition of L0,L1, any valid trajectory in Lb satisfies |ut| “ T
β |xt`1 ´ xt| for all

T {2 ă t ă T . We consider two cases:

1. If minT {2ătďT |xt| ě
1
2 |xT {2`1|, then

T
ÿ

t“T {2`1

|xt| ` |ut| ě
T

4
|xT {2`1| ě

T

2β
|xT {2`1|

since β ě 2.
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2. If minT {2ătďT |xt| ă
1
2 |xT {2`1|, then

T
ÿ

t“T {2`1

|xt|`|ut| ě
T

β

T´1
ÿ

t“T {2`1

|xt`1´xt| ě
T

β

ˇ

ˇ

ˇ

ˇ

|xT {2`1| ´ min
T {2ătďT

|xt|

ˇ

ˇ

ˇ

ˇ

ě
T

2β
|xT {2`1|

by the triangle inequality.

In both cases the claimed inequality holds.

We can now prove Theorem 25.

Proof of Theorem 25. Let b „ Unifpt0, 1uq be an unbiased random bit, and let pxt, utqTt“1 be the
(random) trajectory produced by executing Alg on Lb. On the one hand, by Eq. (41) applied to L0

and L1, we have

E

«

T
ÿ

t“1

ctpxt, utq

ff

ď fp1, 1, 1, T q `
1

2

˜

inf
KPK1pL0q

T
ÿ

t“1

ctpx
L0,K
t , uL

0,K
t q ` inf

KPK1pL1q

T
ÿ

t“1

ctpx
L1,K
t , uL

1,K
t q

¸

ď fp1, 1, 1, T q `
T

β
e´β{2 (42)

where the first inequality uses the fact that the cost functions pctqt are convex and 1-Lipschitz and
that |w0

t |, |w
1
t | ď 1 for all t P rT s; and the second inequality is by Lemma 27. On the other hand, by

Lemma 28, we have

E

«

T
ÿ

t“1

ctpxt, utq

ff

ě
T

2β
Er|xT {2`1|s

“
T

2β
E
„ˇ

ˇ

ˇ

ˇ

xT {2 ´
β

T
uT {2 ´ b

ˇ

ˇ

ˇ

ˇ



p‹q
“

T

2β

ˆ

1

2
E
„
ˇ

ˇ

ˇ

ˇ

xT {2 ´
β

T
uT {2

ˇ

ˇ

ˇ

ˇ



`
1

2
E
„
ˇ

ˇ

ˇ

ˇ

xT {2 ´
β

T
uT {2 ´ 1

ˇ

ˇ

ˇ

ˇ

˙

ě
T

4β

ˆ

E
„

xT {2 ´
β

T
uT {2



`

ˇ

ˇ

ˇ

ˇ

E
„

xT {2 ´
β

T
uT {2



´ 1

ˇ

ˇ

ˇ

ˇ

˙

ě
T

4β
, (43)

where the key equality p‹q uses the fact that L0,L1 are identical up until and including time T {2, and
hence pxT {2, uT {2q is independent of b. Comparing Eq. (43) with Eq. (42) yields that

fp1, 1, 1, T q ě
T

4β
´
T

β
e´β{2 “ ΩpT q

for any sufficiently large constant β.

D.2 Proof of Theorem 8

Definition 29. Let 0 ď α ď α ď 1 and let I :“
Ť

αPrα,αs∆
d
α. We define KpIq to be the set of

linear, time-invariant policies x ÞÑ Kx where K P
Ť

αPrα,αs Sdα.

Theorem 30 (Formal statement of Theorem 8). Let Alg be any randomized algorithm for online
control with the following guarantee:

Let d, T P N and I :“
Ť

αPr0,αs∆
d
α for some α P p0, 1q. Let L “

pA,B, I, x1, pγtqt, pwtqt, pctqtq be a simplex LDS with state space ∆d and cost functions pctqt
satisfying Assumption 1 with Lipschitz parameter L ą 0. Then the iterates pxt, utqTt“1 produced
by Alg with input pA,B, I, T q on interaction with L satisfy

regretKpIq :“ E

«

T
ÿ

t“1

ctpxt, utq

ff

´ inf
KPKpIq

T
ÿ

t“1

ctpx
L,K
t , uL,Kt q ď fpd, L, α, T q (44)
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where pxL,Kt , uL,Kt qTt“1 are the iterates produced by following policy x ÞÑ Kx in system L for
all t P rT s.

For any sufficiently large constant β, if we define αpT q :“ β{T , then fp1, 1, αpT q, T q “ ΩpT q.

We define two simplex LDSs on ∆2 as follows:

L0 :“ pI2, I2, I, x1, pγtqt, pw
0
t qt, pctqtq

L1 :“ pI2, I2, I, x1, pγtqt, pw
1
t qt, pctqtq

where I2 P R2ˆ2 is the identity matrix, the (common) valid control set is I :“
Ť

αPr0,β{T s∆
d
α, the

(common) initial state is x1 “ p0, 1q, the (common) cost functions pctqt are defined as

ctpx, uq :“

"

|xp2q ´ 1{2| if t ą T {2

0 otherwise
,

the (common) perturbation strengths are γt :“ 1
21rt “ T {2s, and the perturbations of L0 are

w0
t :“ p1{2, 1{2q for all t whereas the perturbations of L1 are w1

t :“ p1, 0q for all t. Thus, for both
systems, the dynamics are described by

xt`1 :“ p1´ }ut}1qxt ` ut

for all t ‰ T {2.

Lemma 31. Define π0, π1 : ∆2 Ñ
Ť

αPr0,1s∆
d by π0pxq :“ β

T p1{2, 1{2q and π1pxq :“ p0, 0q.
Then π0, π1 P KpIq, and:

• The iterates pxL
0,π0

t , uL
0,π0

t qTt“1 produced by following π0 in system L0 satisfy
T
ÿ

t“1

ctpx
L0,π0

t , uL
0,π0

t q ď
T

β
e´β{2.

• The iterates pxL
1,π1

t , uL
1,π1

t qTt“1 produced by following π1 in system L1 satisfy
T
ÿ

t“1

ctpx
L1,π1

t , uL
1,π1

t q “ 0.

Proof. The fact that π0, π1 P KpIq is immediate from Definition 29 and the choice of I. To bound
the total cost of π0 on L0, note that xL

0,π0

t`1 p2q ´ 1{2 “ p1´ β{T qpxtp2q ´ 1{2q for all t ‰ T {2, and

xL
0,π0

t`1 p2q ´ 1{2 “ p1{2qp1´ β{T qpxtp2q ´ 1{2q for t “ T {2. Thus,

T
ÿ

t“1

ctpx
L0,π0

t , uL
0,π0

t q “

T
ÿ

t“T {2`1

|xL
0,π0

t p2q ´ 1{2| ď
T
ÿ

t“T {2`1

p1´ β{T qt´1 ď
T

β
e´β{2.

Moreover, we have xL
1,π1

t “ p0, 1q for all t ď T {2 and xL
1,π1

t “ p1{2, 1{2q for all t ą T {2, so
indeed

řT
t“1 ctpx

L1,π1

t , uL
1,π1

t q “ 0 as claimed.

Lemma 32. Let Alg be any randomized algorithm for online control, and let b P t0, 1u. The
(random) trajectory pxt, utqTt“1 produced by Alg in system Lb satisfies the inequality

T
ÿ

t“1

ctpxt, utq “
T
ÿ

t“T {2`1

|xtp2q ´ 1{2| ě
T

8β
|xT {2`1p2q ´ 1{2|2 ´ 1.

Proof. By definition of L0,L1 and the valid control set I, any valid trajectory in Lb satisfies
}xt ´ xt`1}1 ď 2 }ut}1 ď 2β{T for all T {2 ă t ă T . It follows that |xt`1p2q ´ 1{2| ě |xtp2q ´
1{2| ´ 2β{T for all such t, and hence

T
ÿ

t“T {2`1

|xtp2q ´ 1{2| ě

T {2
ÿ

n“1

max

ˆ

0, |xT {2`1p2q ´ 1{2| ´
2βn

T

˙
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ě
|xT {2`1p2q ´ 1{2|

2
¨

Z

T

4β
|xT {2`1p2q ´ 1{2|

^

ě
T

8β
|xT {2`1p2q ´ 1{2|2 ´ 1

as claimed.

Proof of Theorem 30. Let b „ Unifpt0, 1uq be an unbiased random bit, and let pxt, utqTt“1 be the
(random) trajectory produced by executing Alg on Lb. On the one hand, by Eq. (44) applied to L0

and L1, we have

E

«

T
ÿ

t“1

ctpxt, utq

ff

ď fp1, 1, β{T, T q `
1

2

˜

inf
KPKpIq

T
ÿ

t“1

ctpx
L0,K
t , uL

0,K
t q ` inf

KPKpIq

T
ÿ

t“1

ctpx
L1,K
t , uL

1,K
t q

¸

ď fp1, 1, β{T, T q `
T

2β
e´β{2 (45)

where the first inequality uses the definition of I and the fact that the cost functions pctqt are convex
and 1-Lipschitz per Assumption 1; and the second inequality is by Lemma 31. On the other hand, by
Lemma 32, we have

1` E

«

T
ÿ

t“1

ctpxt, utq

ff

ě
T

8β
ErpxT {2`1p2q ´ 1{2q2s

“
T

8β
E

»

–

˜

p1´
›

›uT {2
›

›

1
qxT {2p2q ` uT {2p2q

2
´

1` b

4

¸2
fi

fl

p‹q
“

T

8β

¨

˝

1

2
E

»

–

˜

p1´
›

›uT {2
›

›

1
qxT {2p2q ` uT {2p2q

2
´

1

4

¸2
fi

fl`
1

2
E

»

–

˜

p1´
›

›uT {2
›

›

1
qxT {2p2q ` uT {2p2q

2
´

1

2

¸2
fi

fl

˛

‚

ě
T

16β

¨

˝

˜

E

«

p1´
›

›uT {2
›

›

1
qxT {2p2q ` uT {2p2q

2

ff

´
1

4

¸2

`

˜

E

«

p1´
›

›uT {2
›

›

1
qxT {2p2q ` uT {2p2q

2

ff

´
1

2

¸2
˛

‚

ě
T

1024β
. (46)

where the key equality p‹q uses the fact that L0,L1 are identical up until and including time T {2, and
hence pxT {2, uT {2q is independent of b. Comparing Eq. (46) with Eq. (45) yields that

fp1, 1, β{T, T q ě
T

1024β
´ 1´

T

2β
e´β{2 “ ΩpT q

for any sufficiently large constant β.

E Implementation details

In this section we describe the version of GPC-Simplex (Algorithm 1) implemented for our experi-
ments. First, the dynamical systems in our experiments are non-linear. The GPC-Simplex algorithm
is still practical and applicable in such settings – concretely, any setting with update rule Eq. (9) – but
of course several modifications/generalizations must be made:

1. The algorithm takes as input the function f describing the dynamics in Eq. (9), rather than
transition matrices A,B. Accordingly, in Line 8, the expression p1 ´ }ut}1qAxt ` But
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(which exactly corresponds to the noiseless update rule in a simplex LDS) is replaced by
fpxt, utq. Moreover, in Line 9, the hypothetical iterates xtpp,M r1:Hsq, utpp,M

r1:Hsq under
policy πp,M

r1:Hs

are computed using the update rule f .
2. The algorithm directly takes as input a learning rate η for the mirror descent subroutine, rather

than the mixing time bound τ . In our experiments, we always set η :“
a

dH lnpHq{p2
?
T q.

3. We always parametrize our systems so that the valid control set is the space of distributions
∆d. Hence, the domain used for mirror descent is Xd,H,1,1. Mirror descent is implemented
by exponential weights updates with learning rate η and uniform initialization.

We remark that the above (natural) modifications to GPC-Simplex are analogous to the modifications
to GPC made by [2] to perform online control for nonlinear systems.

F Experiments: Controlled SIR model

In this section, we provide additional experiments in the controlled SIR model. Specifically, in
Appendix F.1 we provide experimental evaluations when there are perturbations to the system (i.e. γt
is not always 0 in Eq. (9)). In Appendix F.2 we vary the parameters of the SIR model.

F.1 Control in presence of perturbations

We experiment with the SIR system Eq. (11) with the following parameters:
β “ 0.5, θ “ 0.03, ξ “ 0.005,

and cost function given by:
ctpxt, utq “ c3 ¨ xtp2q

2 ` c2 ¨ xtp1qutp1q.

We test the performance of our algorithm on pc2, c3q “ p1, 5q. In addition, we add a perturbation
sequence wt “ r0, 1, 0s,@1 ď t ď 200. γt „ 0.01 ¨ Berp0.2q,@1 ď t ď 200.

Fig. 4 shows comparison of the costs over T “ 200 time steps incurred by GPC-simplex to that
of always executing ut “ r1, 0s (full prevention) and that of always executing ut “ r0, 1s (no
prevention). In addition to cost, we plot the value of utp2q over time, representing how relaxed
prevention measure evolves over time according to GPC-simplex.

F.2 Alternative parameter settings

We experiment with two SIR systems with different set of parameters. The first uses the following
parameters:

β “ 0.5, θ “ 0.03, ξ “ 0.005,

whereas the second uses the following parameters:
β “ 0.3, θ “ 0.05, ξ “ 0.001.

In both cases, the cost function is:
ctpxt, utq “ c3 ¨ xtp2q

2 ` c2 ¨ xtp1qutp1q.

For both experiments, we test the performance of our algorithm on different choices of parameters
for the cost function. In particular, we test the parameter tuples:

pc2, c3q P tp1, 20q, p1, 10q, p1, 5q, p1, 1qu.

Figs. 5 and 6 show comparison of the costs over T “ 200 time steps incurred by GPC-Simplex to
that of always executing ut “ r1, 0s (full prevention) and that of always executing ut “ r0, 1s (no
prevention). Specifically, Fig. 5 uses the first set of parameters above, and Fig. 6 uses the second set.
In addition to cost, we plot the value of utp2q over time, representing how the effective transmission
rate evolves over time according to GPC-Simplex.

We notice that our algorithm consistently outperforms the two baselines. No matter how we set the
parameters, our algorithm will outperform the full-intervention baseline since its cumulative cost
grows linearly with time. As c3 gets larger, the gap between our algorithm and the no-intervention
baseline becomes smaller, since the optimal policy with a high cost on control is basically playing no
control.
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Figure 4: SIR with perturbations. T “ 200. Initial state x1 “ r0.9, 0.1, 0s. GPC-Simplex parameter H “ 5.
Top: Perturbation sequence: wt “ r0, 1, 0s,@1 ď t ď 200. γt „ 0.01 ¨ Berp0.2q,@1 ď t ď 200. Bottom:
Perturbation sequence: @t, wt is a normalized uniform random vector. γt “ 0.01, @1 ď t ď 200.

G Experiments: Controlling hospital flows

In this section, we provide more details regarding the setup and experiments in Section 4.1.

The continuous time dynamical system considered by [27] is the following: let Sptq, Iptq denote the
susceptible and infected fraction of the population at time t, and let σptq denote the control at time t.
The system has some initial state pSp0q, Ip0qq in the set

D :“ tpx0, y0q : x0 ą 0, y0 ą 0, x0 ` y0 ď 1u,

reflecting the constraint that Sp0q, Ip0q represent disjoint proportions of a population, and the system
evolves according to the differential equation

S1ptq “ ´γσptqIptqSptq, (47)

I 1ptq “ γσptqIptqSptq ´ γIptq. (48)

where γ ą 0 is some fixed model parameter, and the control σptq models a non-pharmaceutical
intervention (NPI) inducing a time-dependent reproduction number σptq P r0, σ0s, where σ0 is the
base reproduction number in the absence of interventions. In most examples in [27], including the
example of controlling hospital flows, the parameter settings σ0 “ 3 and γ “ 0.1 are used. This
means that the natural discretization of Eq. (48) is in fact equivalent to Eq. (11) with transmission
rate β :“ γσ0 “ 0.3, recovery rate θ :“ γ “ 0.1, loss-of-immunity rate ξ :“ 0, no perturbations (i.e.
γt “ 0 for all t), and control

ut :“

ˆ

1´
σptq

σ0
,
σptq

σ0

˙

,

at each time t.
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Figure 5: Control with costs: control over T “ 200 steps. γt “ 0, @t. SIR parameters: β “ 0.5, θ “
0.03, ξ “ 0.005. Initial state x1 “ r0.9, 0.1, 0s. GPC-Simplex parameters: H “ 5. Left: instantaneous
cost over time, compared with that of no control (green) and full control (orange). Middle: cumulative
cost over time. Right: utp2q output by GPC-Simplex over time. pc2, c3q values (from top to bottom rows):
p1, 20q, p1, 10q, p1, 5q, p1, 1q.

The goal in [27] is the following: given an initial state pSp0q, Ip0qq along with a horizon length
T ą 0 and the parameters listed above, choose an admissible control function σ : r0, T s Ñ r0, σ0s to
minimize the loss

J :“ ´S8pSpT q, IpT q, σ0q `

ż T

0

LpSptq, Iptq, σptqqdt,

where LpSptq, Iptq, σptqq is the instantaneous cost at time t, and the extra term S8pSpT q, IpT q, σ0q

incentivizes the state of the system at time T to lead to a favorable long-term trajectory (in the absence
of any interventions after time T ). In [27], the following formula for S8 is given; see that paper for
further discussion:

S8pS, I, σ0q “
W0p´σ0Ie

´σ0pS`Iqq

σ0
.

33



Figure 6: Control with costs: control over T “ 200 steps. γt “ 0, @t. SIR parameters: β “ 0.3, θ “
0.05, ξ “ 0.001. Initial state x1 “ r0.9, 0.1, 0s. GPC-Simplex parameters: H “ 5. Left: instantaneous
cost over time, compared with that of no control (green) and full control (orange). Middle: cumulative
cost over time. Right: utp2q output by GPC-Simplex over time. pc2, c3q values (from top to bottom rows):
p1, 20q, p1, 10q, p1, 5q, p1, 1q.

The instantaneous cost is modeled by [27] as follows:

LpSptq, Iptq, σptqq “ c2 ¨

ˆ

1´
σptq

σ0

˙2

`
c3 ¨ pIptq ´ ymaxq

1` e´100pIptq´ymaxq
,

where c2, c3 are some parameters determining the cost of preventing disease transmission and the
cost of a medical surge (i.e. when the proportion of infected individuals exceeds ymax). Notice that
the second term above will indeed be very small in magnitude unless Iptq exceeds ymax.

Note that GPC-Simplex cannot directly handle end-of-trajectory losses such as the term
S8pSpT q, IpT q, σ0q. Thus, in our evaluation of GPC-Simplex on this system, we instead incor-
porate S8 into the instantaneous cost functions. Concretely, we use the following cost function at
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time t:

ctpxt, utq “ ´S8pxtp1q, xtp2q, σ0q ` c2 ¨ utp1q
2 `

c3pxtp2q ´ ymaxq

1` e´100pxtp2q´ymaxq
.

Recall that we write xt “ pSt, It, Rtq and utp1q “ 1´ σptq{σ0, so modulo the addition of S8 to all
times t ă T and the conversion from continuous time to discrete time, our loss is analogous to that of
[27].

H Experiments: Controlled replicator dynamics

The replicator equation is a basic model in evolutionary game theory that describes how individuals
in a population will update their strategies over time based on their payoffs from repeatedly playing
a game with random opponents from the population [11]. The basic principle is that strategies (or
traits) that perform better than average in a given environment will, over time, increase in frequency
within the population, whereas strategies that perform worse than average will become less common.

Formally, consider a normal-form two-player game with d possible strategies and payoff matrix
M P Rdˆd. A population at time t is modelled by the proportion of individuals that currently favor
each strategy, and thus can be summarized by a distribution xptq P Rd. The fitness of an individual
playing strategy i P rds in a population with strategy distribution x P ∆d is defined to be

fitnessM,xpiq :“ eJi Mx,

where ei P Rd is the indicator vector for strategy i. That is, fitnessM,xpiq is simply the expected
payoff of playing strategy i against a random individual from the population. The replicator dynamics
posit that the population’s distribution over strategies xptq will evolve according to the following
differential equation:

dxiptq

dt
:“ xiptq ¨

`

fitnessM,xptqpiq ´ Ej„xfitnessM,xptqpjq
˘

“ xiptq ¨ pe
J
i Mxptq ´ xptqJMxptqq.

(49)
It is straightforward to check that this differential equation preserves the invariant that xptq is a
distribution. This equation can induce various types of dynamics depending on the initialization
and payoff matrix M : the distribution may converge to an equilibrium, or it may cycle, or it may
even exhibit chaotic behavior [11]. In this study we focus on a simple (time-discretized) replicator
equation – namely, the equation induced by a generalized Rock-Paper-Scissors game – when the
payoffs may be controlled.

Controlled Rock-Paper-Scissors. The standard Rock-Paper-Scissors game has d “ 3 and payoff
matrix

M :“

«

0 1 ´1
´1 0 1
1 ´1 0

ff

.

Consider a setting where the game is run by an external agent that is allowed to set the payoffs. For
simplicity, we assume that the game remains zero-sum and the rewards sum to 1, so the payoff matrix
is now

Mpuq :“

«

0 u1 ´u3

´u1 0 u2

u3 ´u2 0

ff

for a control vector u P ∆3. The discrete-time analogue of the replicator equation with this controlled
payoff matrix Mpuq is

xt`1 “ fpxt, utq :“ xt ` η

»

–

xt1 ¨ e
J
1 Mputqxt

xt2 ¨ e
J
2 Mputqxt

xt3 ¨ e
J
3 Mputqxt

fi

fl (50)

where xt, ut P ∆3 are the population distribution and control at time t respectively, and η P p0, 1q
is the rate of evolution. Note that the term xtMputqxt does not need to appear in Eq. (50) because
Mputq is always zero-sum. Also, since η ď 1 and all entries of Mputq are at most 1 in magnitude, if
xt is a distribution then xt`1 will remain a distribution. We omit noise in this study, so Eq. (50) is a
special case of Eq. (9) with γt “ 0 for all t.
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(a) Instantaneous cost achieved by GPC-Simplex over
time, compared to default Rock-Paper-Scissors control
and Best Response control (dashed orange).

(b) Proportions of the population playing strategies
“rock”, “paper”, and “scissors” over time under control
by GPC-Simplex.

Figure 7: Experimental results for dynamical system with horizon T “ 100, uniform initial state, update
rule Eq. (50) with η “ 1{4, no perturbations, and time-invariant cost function ctpxt, utq “ x2t1 for all
times t. GPC-Simplex was implemented as described in Appendix E. The Best Response controller at each
time t picks the control u that minimizes ct´1pfpxt, uq, uq. The default controller picks the uniform control
u “ p1{3, 1{3, 1{3q.

Parameters and cost function. We define a (nonlinear) dynamical system with uniform initial
state x1 “ p1{3, 1{3, 1{3q, update rule Eq. (50) with η “ 1{4, and T “ 100 timesteps. We consider
the fixed cost function

cpxt, utq :“ x2
t1,

which can be thought of as penalizing the strategy “rock”.

Results. We compare GPC-Simplex (implemented as described in Appendix E) with a baseline
control that simply uses the standard Rock-Paper-Scissors payoff matrix (up to scaling) induced
by u “ p1{3, 1{3, 1{3q P ∆3. As shown in Fig. 7a, GPC-Simplex (shown in blue) significantly
outperforms this baseline (shown in green), learning to alter the payoff in such a way that the
population tends to avoid the “rock” strategy. The evolution of the dsitribution over time under
GPC-Simplex is shown in Fig. 7b.

For completeness, we also compare GPC-Simplex against the “Best Response” strategy (shown in
dashed orange) that essentially performs 1-step optimal control, using the fact that the cost function
for this example is time-invariant. While both controllers eventually learn a good policy, Fig. 7a
clearly shows that Best Response learns faster. However, it is strongly exploiting the time-invariance
of the cost function, since in general, this algorithm computes the best response with respect to the
previous cost function rather than the current cost function, which it does not observe until after
playing a control. In Fig. 8, we consider a slightly modified system where the cost function includes
a cost on the control with probability 1{2. In this setting, we see that GPC-Simplex still eventually
learns a good policy, whereas Best Response and the default control incur large costs through the
trajectory. Best Response in particular suffers greatly due to the time-varying nature of the costs.

I Discussions

I.1 Broader impacts

Our work provides a robust algorithm with theoretical justifications for practical control problems that
might be applicable to problems such as disease control. The experiments performed are preliminary.
More careful empirical verification is necessary before our algorithm can be responsibly implemented
in high-impact scenarios. Excluding the scenario of ill intention, we do not anticipate any negative
social impact.
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Figure 8: Experimental results for dynamical system with horizon T “ 200, uniform initial state, update
rule Eq. (50) with η “ 1{4, no perturbations, and random cost function which is either ctpxt, utq “ x2t1 or
ctpxt, utq “ x2t1 ` u2

t3 with equal probability. GPC-Simplex was implemented as described in Appendix E.
The Best Response controller at each time t picks the control u that minimizes ct´1pfpxt, uq, uq. The default
controller picks the uniform control u “ p1{3, 1{3, 1{3q. The plot shows the cost achieved by GPC-Simplex
over time, compared to default Rock-Paper-Scissors control and Best Response control (dashed orange). Due
to the non-continuity induced by the random cost functions, the loss plotted at time t is the average loss of the
controller across the last minpt, 15q time steps.

I.2 Computational Resources for Experiments

The experiments in this work are simulations and relatively small-scaled. They were run on Google
Colab with default compute resources. For each experiment, the time required to roll-out one
trajectory using GPC-Simplex was less than 10 minutes.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discussed the limitations of the work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to the anonymous repository containing our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are primarily deterministic; the experiments with randomness
are provided largely as proof-of-concept.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: See Appendix J.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix J.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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