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Abstract

Annealed Importance Sampling (AIS) [27, 18] is the gold standard for estimating
partition functions or marginal likelihoods, corresponding to importance sampling
over a path of distributions between a tractable base and an unnormalized target.
While AIS yields an unbiased estimator for any path, existing literature has been
limited to the geometric mixture or moment-averaged paths associated with the
exponential family and KL divergence [13]. We explore AIS using q-paths, which
include the geometric path as a special case and are related to the homogeneous
power mean, deformed exponential family, and α-divergence [3].

1 Introduction

AIS [27, 18] is a method for estimating intractable normalization constants, which considers a
path of intermediate distributions πt(z) between a tractable base distribution π0(z) and unnor-
malized target π̃T (z). In particular, AIS samples from a sequence of MCMC transition opera-
tors Tt(zt|zt−1) which leave each πβt(z) = π̃βt(z)/Zt invariant to estimate the ratio ZT /Z0.

Algorithm 1: Annealed IS
for i = 1 to N do

z0 ∼ π0(z)
w(i) ← Z0

for t = 1 to T do

w
(i)
t ← w

(i)
t

π̃t(z
(i)
t−1)

π̃t−1(z
(i)
t−1)

z
(i)
t ∼ Tt(zt|z

(i)
t−1)

end
end
return ZT /Z0 ≈ 1

N

∑
N w

(i)
T

As shown in Algorithm 1, we can accumulate the importance
weights w(i)

T =
∏T
t=1 π̃t(zt−1)/π̃t−1(zt−1) along the path.

Taking the expectation of w(i)
T over sampling chains yields

an unbiased estimate of ZT /Z0 [27]. Similarly, Bidirectional
Monte Carlo (BDMC) [14, 15] provides lower and upper bounds
on the log partition function ratio logZT /Z0 using AIS initial-
ized with the base or target distribution, respectively.

AIS often uses a geometric mixture path with schedule {βt}Tt=0
to anneal between π0 and πT ,

π̃β(z) = π̃0(z)1−β π̃T (z)β , (1)

where πβ(z) = π̃β(z)/Zβ and Zβ =
∫
π̃0(z)1−β π̃T (z)βdz.

Alternative paths have been discussed in [13, 12, 10], but may
not have closed form expressions for intermediate distributions. In this work, we propose to generalize
the geometric mixture path (1) using the power mean [19, 17, 11], or q-path,

π̃
(q)
β (z) =

[
(1− β) π̃0(z)1−q + β π̃T (z)1−q

] 1
1−q

(2)

As q → 1, we recover the geometric mixture path as a special case. The power mean also contains as
a special case the q-logarithm used in non-extensive thermodynamics [31, 26, 32], which allows us
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to frame Eq. (2) in terms of the the q-exponential family [6]. Further, we draw connections with the
α-integration of Amari [3, 4] by showing that Eq. (2) minimizes a mixture of α-divergences as in [3].
We describe properties of the geometric and q-paths in Section 2 and Section 3, respectively.

2 Interpretations of the Geometric Path

We give three complementary interpretations of the geometric path defined in Eq. (1), which will
have generalized analogues in Section 3.

Log Mixture Simply taking the logarithm of both sides of the geometric mixture (1) shows that π̃β
can be obtained by taking the log-mixture of π̃0 and π̃T with mixing parameter β,

log π̃β(z) = (1− β) log π̃0(z) + β log π̃T (z) (3)

where we may also choose to subtract a constant logZβ to enforce normalization.

Exponential Family Distributions along the geometric path may also be viewed as coming from
an exponential family [9, 16]. In particular, we use a base measure of π̃0(z) and sufficient statistics
φ(z) = log π̃T /π̃0 to rewrite Eq. (1) as

πβ(z) = π̃0(z) exp{β · φ(z)− ψ(β)} (4)

where the mixing parameter β appears as the natural parameter of the exponential family and
ψ(β) := logZβ . The log-partition function or free energy ψ(β) is convex in β and induces [4, 29, 9] a
Bregman divergence over the natural parameter space equivalent to the KL divergence DKL[πβ′ ||πβ ].

Variational Representation Grosse et al. [13] also observe that each πβ(z) can be viewed as
minimizing a weighted sum of KL divergences to the (normalized) base and target distributions

πβ(z) = arg min
r(z)

(1− β)DKL[r(z)||π0(z)] + βDKL[r(z)||πT (z)]. (5)

While the optimization in Eq. (5) is over arbitrary r(z), the optimal solution is the geometric mixture
with mixing parameter β, which is a member of the exponential family in Eq. (4)[13, 9].

3 Interpretations of the q-Path

To anneal between π̃0 and π̃T , we consider the power mean with order parameter q in place of the
geometric average in Eq. (1). Analogously to Sec. 2 above, our generalization is associated with the
deformed log mixture, q-exponential family, and a variational representation using the α-divergence.

Power Means Kolmogorov [19] proposed a generalized notion of the mean using any monotonic
function h(u), with h(u) = u corresponding to the arithmetic mean and

µh({wi, ui}) = h−1
(∑

i

wi h(ui)

)
, (6)

where µh outputs a scalar given a normalized measure {wi} over a set of elements {ui} [11]. The
geometric and arithmetic means are homogeneous, meaning they have the linear scale-free property
µh({wi, c · ui}) = c · µh({wi, ui}). In order for the power mean to be homogenous, Hardy et al.
[17] (pg. 68 or [3]) show that h(u) must be of the form

hq(u) =

{
a · u1−q + b q 6= 1

log u q = 1
. (7)

which we refer to as the q-power mean. Notable examples of the power mean include the arithmetic
mean at q = 0, geometric mean as q → 1, and the min or max operation as q → ±∞. For q = 1+α

2 ,
hq(u) matches the α-representation of Amari [4][5, 7].
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Figure 1: Intermediate densities between N (−4, 3) and N (4, 1) for various q-paths and 10 equally
spaced β. The path approaches a mixture of Gaussians with weight β at q = 0. For the geometric
mixture (q = 1), intermediate πβ stay within the exponential family since both π0, πT are Gaussian.

Using the power mean to generalize geometric mean, we propose the q-path of intermediate unnor-
malized densities π̃(q)

β (z) for AIS. In App. A, we show that for any choice of a and b, hq(u) yields
the same power mean

π̃
(q)
β (z) =


[
(1− β) π̃0(z)1−q + β π̃T (z)1−q

] 1
1−q q 6= 1

exp
{

(1− β) log π̃0(z) + β log π̃T (z)
}

q = 1
, (8)

where we have chosen {wi} = {1− β, β} and {ui} = {π̃0, π̃T } in (6).

Deformed Log Mixture The deformed, or q-logarithm [26], which plays a crucial role in non-
extensive thermodynamics [31, 32], is a particular special case of hq(u) in Eq. (16), with

lnq(u) =
1

1− q
(
u1−q − 1

)
expq(u) =

[
1 + (1− q)u

] 1
1−q
+

, (9)

where we have also defined the q-exponential with expq(u) = ln−1q (u) and [x]+ = max{0, x}
ensuring g(u) is non negative. Note that limq→1 lnq(u) = log u and limq→1 expq(u) = expu.

Applying hq(u) = lnq(u) to both sides of Eq. (6) or (8), we can write π̃(q)
β as a deformed log-mixture

lnq π̃
(q)
β (z) = (1− β) lnq π̃0(z) + β lnq π̃T (z) (10)

with mixing weight β. We also provide detailed derivations for Eq. (10) in App. B.1.

q-Exponential Family The q-exponential in Eq. (9) may be used to define a q-exponential family
of distributions [6, 26]. Using θ as the natural parameter,

π
(q)
θ (z) = π̃0(z) expq

{
θ · φq(z)− ψq(θ)

}
, (11)

which recovers the standard exponential family at q → 1. In App. B.2 we show that the q-mixture
π̃
(α)
β in Eq. (8) can be rewritten in terms of the q-exponential family

π
(q)
β (z) =

1

Z
(q)
β

π̃0(z) expq
{
β · lnq

π̃T (z)

π̃0(z)

}
Z

(q)
β =

∫
π̃
(q)
β (z) dz (12)

with sufficient statistic φq(z) = lnq π̃T /π̃0 and natural parameter β. The expression in (12) might be
used to directly estimate the normalization constant Z(q)

β via Monte Carlo approximation.

As for the standard exponential family, the q-free energy ψq(θ) in Eq. (11) is convex in θ and
can be used to construct a Bregman divergence over normalized q-exponential family distributions
[6]. However, to normalize (12) using the q-free energy, a non-linear mapping θ(β) between
parameterizations is required. This delicate issue of normalization in the q-exponential family has
been noted in [22, 30, 26], and we provide more detailed discussion in App. B.3.
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Figure 2: BDMC lower and upper bound estimates of
logZT /Z0 by q-path order and number of intermediate dis-
tributions (T ), for annealing between N (−4, 3)→ N (4, 1).

q Zest (Ztrue = 1)

0.00 (mix) 1.0136 ± 0.0634
0.05 1.0105 ± 0.0569
0.10 1.0198 ± 0.0576
0.90 0.9975 ± 0.0085
0.95 0.9971 ± 0.0092
1.00 (geo) 0.9967 ± 0.0094

Table 1: Partition Function Esti-
mates for various q and linearly
spaced T = 100. A path with q =
0.90 outperforms both the mixture
of Gaussians (q = 0) and geo-
metric (q = 1) paths in terms of
Zerr = |Zest − Ztrue|.

Variational Representation using the α-Divergence Since we do not have access to normaliza-
tion constants in the AIS setting, we focus on the α-divergence [2, 4] over unnormalized measures
q̃(z) and p̃(z). We first recall the definition,

Dα[q̃(z) : p̃(z)] =
4

(1− α2)

(
1− α

2

∫
q̃(z) dz +

1 + α

2

∫
p̃(z) dz −

∫
q̃(z)

1−α
2 p̃(z)

1+α
2 dz

)
which is an f -divergence [1] for the generator f(u) = 4

1−α2

(
1−α
2 + 1+α

2 u− u 1+α
2

)
[5, 4]. Note that

lim
α→1

Dα[q̃(z) : p̃(z)] = DKL[p̃(z) : q̃(z)] and lim
α→−1

Dα[q̃(z) : p̃(z)] = DKL[q̃(z) : p̃(z)]. 2

In App. C, we follow similar derivations as Amari [3] to show that, for q = 1+α
2 ([4] Ch. 4), the

q-path density π̃(q)
β minimizes the expected α-divergence to the endpoints

π̃
(q)
β (z) = arg min

r̃(z)

(1− β)Dα[π̃0(z) : r̃(z)] + β Dα[π̃T (z) : r̃(z)] , (13)

where the optimization is over arbitrary r̃(z). This variational representation generalizes Eq. (5),
since the KL divergence is recovered (with the order of the arguments reversed) as α→ 1 or q → 1.

Moment-Matching Procedures At q = 0, the solution to the optimization (13) correponds to the
arithmetic mean, or mixture distribution π̃(0)

t (z) = (1− β) π̃0 + β π̃1. While the ‘moment-averaged’
AIS path [13] appears related to the q = 0 case, we clarify in App. C.1 that Grosse et al. [13] restrict
to optimization within an exponential family of distributions. Generalizing this approach to the
α-divergence, Bui [10] follows Minka [24] (Sec. 3.1-2) to derive the moment-matching condition

r̃∗t,α(z) := arg min
r̃(z)

(1− β)Dα[π̃0(z) : r̃(z)] + β Dα[π̃T (z) : r̃(z)] (14)

=⇒ Er̃∗ [φ(z)] = (1− β)Eπ̃α0 r1−α∗ [φ(z)] + β Eπ̃αT r̃1−α∗ [φ(z)] (15)

where r̃(z) comes from an exponential family with sufficient statistics φ(z).

However, we note that our q-path is more general than these approaches, since the optimization in
Eq. (13) is over all unnormalized distributions. Unlike the moment matching conditions above, our
closed form expression for π̃(q)

β can be directly used as an energy function for MCMC sampling.

4 Experiments

We consider q-paths between π0 = N (−4, 3) and πT = N (4, 1) to estimate ZT /Z0 = 1, and use
parallel runs of Hamiltonian Monte Carlo (HMC) [28] to obtain accurate, independent samples from
π̃
(q)
t (z) linearly spaced between β0 = 0 and βT = 1. For all experiments, we use 10k samples from

each intermediate distribution and average results across 20 seeds.
2We extend to unnormalized measures using DKL[q̃(z) : p̃(z)] = DKL[q(z) : p(z)]−

∫
q̃(z)dz+

∫
p̃(z)dz.
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In Fig. 2, we report BDMC upper and lower bound estimates of logZT /Z1 for various q and T . We
observe that the choice of q can impact performance, with q = 0.9 obtaining tighter estimates at small
T and q = 0.5 converging more quickly as T increases. Both outperform the baseline geometric path
at q = 1. In Table 1, we estimate ZT /Z0 using AIS for T = 100, and observe that our the q = 0.9
path can achieve a lower error than the geometric path.

Finally, in App. E, we provide additional analysis for annealing between two Student-t distributions.
The Student-t family can be shown to correspond to a q-exponential family [21], with the same
sufficient statistics as a Gaussian, and a degrees of freedom parameter ν that induces heavier tails
and sets the value of q. As q → 1 or ν → ∞, the standard Gaussian is recovered. In Fig. 3-4, we
compare annealing between two Student-t distributions in the q = 2 family to the Gaussian case of
q = 1, and observe that the same q-path can induce different qualitative behavior based on properties
of the endpoint distributions.

5 Conclusion

In this work, we propose q-paths to generalize the geometric mixture path commonly used in AIS,
and show that modifying the path can improve AIS and BDMC for a fixed mixing schedule on a toy
Gaussian example. We interpreted our q-paths using the deformed logarithm, q-exponential family,
and α-divergences, which may suggest further connections in non-extensive thermodynamics and
information geometry. Choosing a schedule for a given q-path, understanding how the choice of q
depends on properties of the initial and target distributions, and exploring the use of q-paths in related
methods such as the thermodynamic variational objective (TVO) [20, 9] remain interesting directions
for future work.
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A Abstract Mean is Invariant to Affine Transformations

In this section, we show that hq(u) is invariant to affine transformations. That is, for any choice of a
and b,

hq(u) =

{
a · u1−q + b q 6= 1

log u q = 1
(16)

yields the same expression for the abstract mean µhα . First, we note the expression for the inverse
h−1q (u) at q 6= 1

h−1q (u) =

(
u− b
a

) 1
1−q

. (17)

Recalling that
∑
i wi = 1, the abstract mean then becomes

µhq ({wi}, {ui}) = h−1q

(∑
i

wihq(ui)

)
(18)

= h−1q

(
a

(∑
i

wiu
1−q
i

)
+ b

)
(19)

=

(∑
i

wiu
1−q
i

) 1
1−q

(20)

which is independent of both a and b.

B Derivations of the q-Path

B.1 Deformed Log Mixture

In this section, we show that the unnormalized lnq mixture

lnq π̃
(q)
β (z) = (1− β) lnq π̃0(z) + β lnq π̃1(z) (21)

reduces to the form of the q-path intermediate distribution in (2) and (8). Taking expq of both sides,

π̃
(q)
β (z) = expq {(1− β) lnq π̃0(z) + β lnq π̃1(z)}

= [1 + (1− q) (lnq π̃0(z) + β (lnq π̃1(z)− lnq π̃0(z)))]
1

1−q
+

=

[
1 + (1− q) 1

1− q
(
π̃0(z)1−q − 1 + β

(
π̃1(z)1−q − 1− π̃0(z)1−q + 1

))] 1
1−q

+

=

[
1 + π̃0(z)1−q − 1 + β

(
π̃1(z)1−q − π̃0(z)1−q

)] 1
1−q

+

=
[
π̃0(z)1−q + β π̃1(z)1−q − β π̃0(z)1−q

] 1
1−q
+

=
[
(1− β) π̃0(z)1−q + β π̃1(z)1−q

] 1
1−q
+

7



B.2 q-Exponential Family

Here, we show that the unnormalized q-path reduces to a form of the q-exponential family

π̃
(q)
β (z) =

[
(1− β)π̃0(z)1−q + βπ̃1(z)1−q

] 1
1−q

(22)

=

[
π̃0(z)1−q + β

(
π̃1(z)1−q − π̃0(z)1−q

)] 1
1−q

(23)

= π̃0(z)

[
1 + β

((
π̃1(z)

π̃0(z)

)1−q

− 1

)] 1
1−q

(24)

= π̃0(z)

[
1 + (1− q)β lnq

(
π̃1(z)

π̃0(z)

)] 1
1−q

(25)

= π̃0(z) expq

{
β · lnq

(
π̃1(z)

π̃0(z)

)}
. (26)

Defining φ(z) = lnq
π̃1(z)
π̃0(z)

and introducing a multiplicative normalization factor Zq(β), we arrive at

π
(q)
β (z) =

1

Zq(β)
π̃0(z) expq {β · φ(z)} Zq(β) :=

∫
π̃0(z) expq {β · φ(z)} dz. (27)

B.3 Normalization in q-Exponential Families

The q-exponential family can also be written using the q-free energy ψq(θ) for normalization [6, 26],

π
(q)
θ (z) = π0(z) expq

{
θ · φ(z)− ψq(θ)

}
. (28)

However, since expq{x+ y} = expq{y} · expq{ x
1+(1−q)y} (see [30] or App. D below) instead of

exp{x+ y} = exp{x} · exp{y} for the standard exponential, we can not easily move between these
ways of writing the q-family [22].

Mirroring the derivations of Naudts [26] pg. 108, we can rewrite (28) using the above identity for
expq{x+ y}, as

π
(q)
θ (z) = π0(z) expq{θ · φ(z)− ψq(θ)} (29)

= π0(z) expq{−ψq(θ)} expq
{ θ · φ(z)

1 + (1− q)(−ψq(θ))
}

(30)

Our goal is to express π(q)
θ (z) using a normalization constant Z(q)

β instead of the q-free energy ψq(θ).
While the exponential family allows us to freely move between ψ(θ) and logZθ, we must adjust the
natural parameters (from θ to β) in the q-exponential case. Defining

β =
θ

1 + (1− q)(−ψq(θ))
(31)

Z
(q)
β =

1

expq{−ψq(θ)}
(32)

we can obtain a new parameterization of the q-exponential family, using parameters β and multiplica-
tive normalization constant Z(q)

β ,

π
(q)
β (z) =

1

Z
(q)
β

π0(z) expq{β · φ(z)} (33)

= π0(z) expq
{
θ · φ(z)− ψq(θ)

}
= π

(q)
θ (z) . (34)

See Matsuzoe et al. [22], Suyari et al. [30], and Naudts [26] for more detailed discussion of normal-
ization in deformed exponential families.
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C Minimizing α-divergences

Amari [3] show that the α-mixture παt minimizes the expected divergence to a single point for
normalized measures. We repeat similar derivations but for the case of unnormalized {p̃i} and r̃(z)

π̃α(z) = arg min
r̃(z)

N∑
i=1

wiDα[p̃i(z) : r̃(z)] (35)

where π̃α(z) =
( N∑
i=1

wi p̃i(z)
1−α
2

) 2
1−α (36)

Proof.

d

dr̃

N∑
i=1

wiDα[p̃i(z) : r̃(z)] =
d

dr̃

4

1− α2

N∑
i=1

wi
(
−
∫
p̃i(z)

1−α
2 r̃(z)

1+α
2 dz +

1 + α

2

∫
r̃(z)dz

)
(37)

0 =
4

1− α2

(
− 1 + α

2

N∑
i=1

wi p̃i(z)
1−α
2 r̃(z)

1+α
2 −1 +

1 + α

2

)
(38)

− 2

1− α
= − 2

1− α

N∑
i=1

wi p̃i(z)
1−α
2 r̃(z)−

1−α
2 (39)

r̃(z)
1−α
2 =

N∑
i=1

wi p̃i(z)
1−α
2 (40)

r̃(z) =

( N∑
i=1

wi p̃i(z)
1−α
2

) 2
1−α

(41)

This result is similar to a general result about Bregman divergences in Banerjee et al. [8] Prop. 1.
although Dα is not a Bregman divergence over normalized distributions.

C.1 Arithmetic Mean (q = 0)

The moment-averaging path from Grosse et al. [13] is not a special case of the α-mean path of
Amari [3]. While both minimize a convex combination of reverse KL divergences, Grosse et al. [13]
minimize within the constrained space of exponential families , while Amari [3] optimizes over all
normalized distributions.

More formally, consider minimizing the functional

J [r] = (1− β)

∫
π0(z) log

π0(z)

r(z)
dz + β

∫
π1(z) log

π1(z)

r(z)
dz (42)

= const−
∫

[(1− β)π0(z) + βπ1(z)] log r(z)dz (43)

We will show how Grosse et al. [13] and Amari [3] minimize (43).

Solution within Exponential Family Grosse et al. [13] constrains r(z) = 1
Z(θ)h(z) exp(θT g(z))

to be a (minimal) exponential family model and minimizes (43) w.r.t r’s natural parameters θ (cf.
[13] appendix 2.2):

θ∗i = arg min
θ

J(θ) (44)

= arg min
θ

(
−
∫

[(1− β)π0(z) + βπ1(z)]
[
log h(z) + θT g(z)− logZ(θ)

]
dz

)
(45)

= arg min
θ

(
logZ(θ)−

∫
[(1− β)π0(z) + βπ1(z)] θT g(z)dz + const

)
(46)

9



where the last line follows because π0(z) and π1(z) are assumed to be correctly normalized. Then to
arrive at the moment averaging path, we compute the partials ∂J(θ)

∂θi
and set to zero:

∂J(θ)

∂θi
= Er[gi(z)]− (1− β)Eπ0 [gi(z)]− β Eπ1 [gi(z)] = 0 (47)

Er[gi(z)] = (1− β)Eπ0
[gi(z)]− β Eπ1

[gi(z)] (48)

where we have used the exponential family identity ∂ logZ(θ)
∂θi

= Erθ [gi(z)] in the first line.

General Solution Instead of optimizing in the space of minimal exponential families, Amari [3]
instead adds a Lagrange multiplier to (43) and optimizes r directly (cf. [3] eq. 5.1 - 5.12)

r∗ = arg min
r

J ′[r] (49)

= arg min
r

J [r] + λ

(
1−

∫
r(z)dz

)
(50)

Eq. (50) can be minimized using the Euler-Lagrange equations or using the identity

δf(x)

δf(x′)
= δ(x− x′) (51)

from [23]. We compute the functional derivative of J ′[r] using (51) and solve for r:

δJ ′[r]

δr(z)
=−

∫ [
(1− β)π0(z′) + βπ1(z′)

] 1

r(z′)

δr(z′)

δr(z)
dz′ − λ

∫
δr(z′)

δr(z)
dz′ (52)

=−
∫ [

(1− β)π0(z′) + βπ1(z′)
] 1

r(z′)
δ(z − z′)dz′ − λ

∫
δ(z − z′)dz′ (53)

=−
[
(1− β)π0(z) + βπ1(z)

] 1

r(z)
− λ = 0 (54)

Therefore

r(z) ∝
[
(1− β)π0(z) + βπ1(z)

]
, (55)

which corresponds to our q-path at q = 0, or α = −1 in Amari [3]. Thus, while both Amari [3]
and Grosse et al. [13] start with the same objective, they arrive at different optimum because they
optimize over different spaces.

D Sum and Product Identities for q-Exponentials

In this section, we prove two lemmas which are useful for manipulation expressions involving
q-exponentials, for example in moving between Eq. (29) and Eq. (30) in either direction.

Lemma 1. Sum identity

expq

(
N∑
n=1

xn

)
=

N∏
n=1

expq

(
xn

1 + (1− q)
∑n−1
i=1 xi

)
(56)

Lemma 2. Product identity

N∏
n=1

expq(xn) = expq

(
N∑
n=1

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
(57)
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D.1 Proof of Lemma 1

Proof. We prove by induction. The base case (N = 1) is satisfied using the convention
∑b
i=a xi = 0

if b < a so that the denominator on the RHS of Eq. (56) is 1. Assuming Eq. (56) holds for N ,

expq

(
N+1∑
n=1

xn

)
=

[
1 + (1− q)

N+1∑
n=1

xn

]1/(1−q)
+

(58)

=

[
1 + (1− q)

(
N∑
n=1

xn

)
+ (1− q)xN+1

]1/(1−q)
+

(59)

=

[(
1 + (1− q)

N∑
n=1

xn

)(
1 + (1− q) xN+1

1 + (1− q)
∑N
n=1 xn

)]1/(1−q)
+

(60)

= expq

(
N∑
n=1

xn

)
expq

(
xN+1

1 + (1− q)
∑N
n=1 xn

)
(61)

=

N+1∏
n=1

expq

(
xn

1 + (1− q)
∑n−1
i=1 xi

)
(using the inductive hypothesis) (62)

D.2 Proof of Lemma 2

Proof. We prove by induction. The base case (N = 1) is satisfied using the convention
∏b
i=a xi = 1

if b < a. Assuming Eq. (57) holds for N , we will show the N + 1 case. To simplify notation we
define yN :=

∑N
n=1 xn ·

∏n−1
i=1 (1+ = (1− q)xi). Then,

N+1∏
n=1

expq(xn) = expq(x1)

(
N+1∏
n=2

expq(xn)

)
(63)

= expq(x0)

(
N∏
n=1

expq(xn)

)
(reindex n→ n− 1)

= expq(x0) expq(yN ) (inductive hypothesis)

=

[
(1 + (1− q) · x0) (1 + (1− q) · yN )

]1/(1−q)
+

(64)

=

[
1 + (1− q) · x0 +

(
1 + (1− q) · x0

)
(1− q) · yN

]1/(1−q)
+

(65)

=

[
1 + (1− q)

(
x0 +

(
1 + (1− q) · x0

)
yN

)]1/(1−q)
+

(66)

= expq
(
x0 +

(
1 + (1− q) · x0

)
yN
)

(67)
Next we use the definition of yN and rearrange

= expq

(
x0 +

(
1 + (1− q) · x0

)(
x1 + x2(1 + (1− q) · x1) + ...+ xN ·

N−1∏
i=1

(1 + (1− q) · xi)

))

= expq

(
N∑
n=0

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
. (68)

Then reindexing n→ n+ 1 establishes
N+1∏
n=1

expq(xn) = expq

(
N+1∑
n=1

xn ·
n−1∏
i=1

(1 + (1− q)xi)

)
. (69)
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Figure 3: Intermediate densities between N (−4, 3) and N (4, 1) for various q-paths and 10 equally
spaced β. The path approaches a mixture of Gaussians with weight β at q = 0. For the geometric
mixture (q = 1), intermediate πβ stay within the exponential family since both π0, πT are Gaussian.

Figure 4: Intermediate densities between Student-t distributions, tν=1(−4, 3) and tν=1(4, 1) for
various q-paths and 10 equally spaced β, Note that ν = 1 corresponds to q = 2, so that the q = 2
path stays within the q-exponential family.

E Annealing between Student-t Distributions

E.1 Student-t Distributions and q-Exponential Family

The Student-t distribution appears in hypothesis testing with finite samples, under the assumption
that the sample mean follows a Gaussian distribution. In particular, the degrees of freedom parameter
ν = n−1 can be shown to correspond to an order of the q-exponential family with ν = (3−q)/(q−1)
(in 1-d), so that the choice of q is linked to the amount of data observed.

We can first write the multivariate Student-t density, specified by a mean vector µ, covariance Σ, and
degrees of freedom parameter ν, in d dimensions, as

tν(x|µ,Σ) =
1

Z(ν,Σ)

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−( ν+d2

)
(70)

where Z(ν,Σ) = Γ(ν+d2 )/Γ(ν2 ) · |Σ|−1/2ν− d2 π− d2 . Note that ν > 0, so that we only have positive
values raised to the −(ν + d)/2 power, and the density is defined on the real line.

The power function in (70) is already reminiscent of the q-exponential, while we have first and second
moment sufficient statistics as in the Gaussian case. We can solve for the exponent, or order parameter
q, that corresponds to −(ν + d)/2 using −

(
ν+d
2

)
= 1

1−q . This results in the relations

ν =
d− dq + 2

q − 1
or q =

ν + d+ 2

ν + d
(71)

We can also rewrite the ν−1 (x−µ)TΣ−1(x−µ) using natural parameters corresponding to {x, x2}
sufficient statistics as in the Gaussian case (see, e.g. Matsuzoe and Wada [21] Example 4).

Note that the Student-t distribution has heavier tails than a standard Gaussian, and reduces to a
multivariate Gaussian as q → 1 and expq(u) → exp(u). This corresponds to observing n → ∞
samples, so that the sample mean and variance approach the ground truth [25].

E.2 Annealing between 1-d Student-t Distributions

Since the Student-t family generalizes the Gaussian distribution to q 6= 1, we can run a similar
experiment annealing between two Student-t distributions. We set q = 2, which corresponds to ν = 1
with ν = (3− q)/(q − 1), and use the same mean and variance as the Gaussian example in Fig. 4,
with π0(z) = tν=1(−4, 3) and π1(z) = tν=1(4, 1).
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We visualize the results in Fig. 4. For this special case of both endpoint distributions within a
parametric family, we can ensure that the q = 2 path stays within the q-exponential family of
Student-t distributions. We make a similar observation for the Gaussian case and q = 1 in Fig. 3.
Comparing the q = 0.5 and q = 0.9 Gaussian path with the q = 1.0 and q = 1.5 path, we observe
that mixing behavior appears to depend on the relation between the q-path parameter and the order of
the q-exponential family of the endpoints.

As q →∞, the power mean (6) approaches the min operation as 1− q → −∞. In the Gaussian case,
we see that, even at q = 2, intermediate densities for all β appear to concentrate in regions of low
density under both π0 and πT . However, for the heavier-tailed Student-t distributions, we must raise
the q-path parameter significantly to observe similar behavior.
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