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Abstract

Annealed Importance Sampling (A1S) [27,[18]] is the gold standard for estimating
partition functions or marginal likelihoods, corresponding to importance sampling
over a path of distributions between a tractable base and an unnormalized target.
While AIS yields an unbiased estimator for any path, existing literature has been
limited to the geometric mixture or moment-averaged paths associated with the
exponential family and KL divergence [13]. We explore AIS using g-paths, which
include the geometric path as a special case and are related to the homogeneous
power mean, deformed exponential family, and a-divergence [3]].

1 Introduction

AIS [27, [18] is a method for estimating intractable normalization constants, which considers a
path of intermediate distributions 7;(z) between a tractable base distribution 7((z) and unnor-
malized target 7r(z). In particular, AIS samples from a sequence of MCMC transition opera-
tors 7;(z¢|z:—1) which leave each mg,(2) = 7s,(2)/Z; invariant to estimate the ratio Zrp/Zj.

As shown in[Algorithm T| we can accumulate the importance
i T ~ -
W _ [1,—; ®e(zt—1)/Tt—1(24—1) along the path.

Algorithm 1: Annealed IS

weights w

Taking the expectation of wgf) over sampling chains yields
an unbiased estimate of Zr/Zy [27]. Similarly, Bidirectional
Monte Carlo (BDMC) [14}[15] provides lower and upper bounds
on the log partition function ratio log Zr/Z, using AIS initial-
ized with the base or target distribution, respectively.

ATS often uses a geometric mixture path with schedule {3},
to anneal between 7y and 7,

7p(2) = @o(2)' 7 7 ()7, )
where 743 (2) = 75(2)/Zp and Zg = [ 7o(2)'Prr(2) dz.
Alternative paths have been discussed in [13} 12} [10], but may

fori=11t N do
20 ~ mo(z)
w(’) < ZO
fort=1t T do
. NNO!
wgz) - wgz) § t( (f,(s
, e
2 ~ Tyal2?))
end

end

return Zr/Zo ~ % > wl)

not have closed form expressions for intermediate distributions. In this work, we propose to generalize
the geometric mixture path (I)) using the power mean [19, 17 [T1]}, or ¢-path,

#D(2) = | (1= B) 7o()'~ + Bp(2) 1

1
1—q

2

As g — 1, we recover the geometric mixture path as a special case. The power mean also contains as
a special case the g-logarithm used in non-extensive thermodynamics [31} 26} |32]], which allows us
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to frame[Eq. (2)]in terms of the the g-exponential family [6]]. Further, we draw connections with the
a-integration of Amari [3| 4] by showing that[Eq. (2)|minimizes a mixture of a-divergences as in [3l].
We describe properties of the geometric and g-paths in[Section 2|and [Section 3| respectively.

2 Interpretations of the Geometric Path

We give three complementary interpretations of the geometric path defined in[Eq. (T)] which will

have generalized analogues in|Section

Log Mixture Simply taking the logarithm of both sides of the geometric mixture (I)) shows that 7g
can be obtained by taking the log-mixture of 77y and 77 with mixing parameter 3,

logs(z) = (1 — B) log7o(2) + B log 7r(2) 3)

where we may also choose to subtract a constant log Zz to enforce normalization.

Exponential Family Distributions along the geometric path may also be viewed as coming from
an exponential family [9, [16]. In particular, we use a base measure of 7o (z) and sufficient statistics

¢(z) = log 77 /o to rewrite[Eq. (D)]as
m3(2) = To(2) exp{f - ¢(2) — ¢ ()} @)

where the mixing parameter J appears as the natural parameter of the exponential family and
() := log Zg. The log-partition function or free energy 1 (/5) is convex in 2 and induces [4}[29,9] a
Bregman divergence over the natural parameter space equivalent to the KL divergence Dy, [mg ||7g].

Variational Representation Grosse et al. [13] also observe that each m3(z) can be viewed as
minimizing a weighted sum of KL divergences to the (normalized) base and target distributions

m3(2) = argmin (1 — §) Drcp[r(2)||m0(2)] + 8Dk L [r(2)] |7 (2)]- o)

r(z)

While the optimization in[Eq. (5)|is over arbitrary r(z), the optimal solution is the geometric mixture
with mixing parameter /3, which is a member of the exponential family in[Eq. (913, 9]

3 Interpretations of the ¢-Path

To anneal between 7 and 7, we consider the power mean with order parameter q in place of the
geometric average in[Eq. (D} Analogously to Sec. 2]above, our generalization is associated with the
deformed log mixture, g-exponential family, and a variational representation using the a-divergence.

Power Means Kolmogorov [19] proposed a generalized notion of the mean using any monotonic
function h(u), with h(u) = u corresponding to the arithmetic mean and

pn({wi uit) = h1<z;wz h(“z‘)>a (6)

where p, outputs a scalar given a normalized measure {w;} over a set of elements {u;} [11]. The
geometric and arithmetic means are homogeneous, meaning they have the linear scale-free property
wn({w;, ¢ u;i}) = ¢+ pp({ws, u;}). In order for the power mean to be homogenous, Hardy et al.
[17] (pg. 68 or [3]) show that ~(u) must be of the form

a-utTi+b qg#1
) = {7 0

which we refer to as the g-power mean. Notable examples of the power mean include the arithmetic
mean at ¢ = 0, geometric mean as ¢ — 1, and the min or max operation as ¢ — Foc. For ¢ = 1+7a,
hg(u) matches the c-representation of Amari [4][3L [7].



Figure 1: Intermediate densities between N (—4, 3) and (4, 1) for various g-paths and 10 equally
spaced S. The path approaches a mixture of Gaussians with weight 8 at ¢ = 0. For the geometric
mixture (¢ = 1), intermediate 73 stay within the exponential family since both 7, 77 are Gaussian.

Using the power mean to generalize geometric mean, we propose the ¢g-path of intermediate unnor-

malized densities ﬁ'g]) (z) for AIS. In App. |Al we show that for any choice of a and b, h,(u) yields
the same power mean

[(1= B) o(2)1=0 + Bir(2)1=0] ™7 g#1
exp {(1 = B) log#o(2) + B logr(2)} q=1"

~(q)

79 (2) = @®)

where we have chosen {w;} = {1 — 3, 8} and {u;} = {70, 77} in (6).

Deformed Log Mixture The deformed, or g-logarithm [26], which plays a crucial role in non-
extensive thermodynamics [32]], is a particular special case of hq(u) in|Eq. (16)| with
1 1
Ing(u) = 1—_(1(111*’1 — 1) exp,(u) = [1 +(1-gq) u] jr*q, 9)
where we have also defined the g-exponential with exp,(u) = lngl(u) and [z]+ = max{0,z}

ensuring g(u) is non negative. Note that lim, 1 Ing(u) = logu and lim,_,; exp,(u) = exp u.

Applying hg(u) = In,(u) to both sides of [Eq. (6)|or (8), we can write fré‘n as a deformed log-mixture

Ing 75 () = (1 — B) Ing 7o (2) + B Ing 7r () (10)

with mixing weight 3. We also provide detailed derivations for[Eq. (10)]in App.

g-Exponential Family The g-exponential in[Eq. (9)]may be used to define a g-exponential family
of distributions [6, 26]. Using 6 as the natural parameter,

760 (2) = 7o(2) expy {0 ¢g(2) — ¥g(0)} (11)

which recovers the standard exponential family at ¢ — 1. In App. we show that the g-mixture

ﬁg’l) in[Eq. (8)can be rewritten in terms of the g-exponential family

) ~
TP (z) = 7@ 7o(z) exp, {8 - Ing Z((;)} Z{ = / 70 (2) dz (12)
8

with sufficient statistic ¢,(z) = In, /7o and natural parameter 3. The expression in (T2) might be
used to directly estimate the normalization constant Zéq) via Monte Carlo approximation.

As for the standard exponential family, the g-free energy 1,(6) in is convex in # and
can be used to construct a Bregman divergence over normalized g-exponential family distributions
[6]. However, to normalize (I2) using the g-free energy, a non-linear mapping 6(5) between
parameterizations is required. This delicate issue of normalization in the g-exponential family has
been noted in 301 26]], and we provide more detailed discussion in App. [B3]
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Variational Representation using the a-Divergence Since we do not have access to normaliza-
tion constants in the AIS setting, we focus on the a-divergence [2, 4] over unnormalized measures
G(z) and p(z). We first recall the definition,

D)3 = e (T [ i+ 5 [ty - [a6® o) ¥ az)

which is an f-divergence [[1]] for the generator f(u) = 174042 (1_7“ + HTau — u%) [5.4]. Note that

Jim Do[q(:) ¢ 5(2)] = D [p(z) :d(2)] and Jim Dofd(2) :5()] = Do [i(2) : #)L ]

In App. we follow similar derivations as Amari [3] to show that, for ¢ = HT(’ ([4]] Ch. 4), the

g-path density ﬁg’n minimizes the expected a-divergence to the endpoints

7 (2) = argmin (1 — ) Dalfo(2) : 7(2)] + BDalfr () : 7(2)] (13)

where the optimization is over arbitrary 7*(z). This variational representation generalizes [Eq. (5)]
since the KL divergence is recovered (with the order of the arguments reversed) as « — 1 or ¢ — 1.

Moment-Matching Procedures At g = 0, the solution to the optimization (I3)) correponds to the
arithmetic mean, or mixture distribution frt(o) (z) = (1 = B) 7o + B 1. While the ‘moment-averaged’
AIS path [13]] appears related to the ¢ = 0 case, we clarify in App. [C.I]that Grosse et al. [13]] restrict
to optimization within an exponential family of distributions. Generalizing this approach to the

a-divergence, Bui [10] follows Minka [24]] (Sec. 3.1-2) to derive the moment-matching condition
7t o(2) = arg(rr)lin(l — B) Da[70(2) : 7(2)] + B Dalrr(2) : 7(2)] (14)
(2
= Er[6(2)] = (1~ H)Esg,1-0[6(2)] + B Ezga-a[6(2) (15)
where 7(z) comes from an exponential family with sufficient statistics ¢(z).

However, we note that our ¢-path is more general than these approaches, since the optimization in
[Eq. (13)]is over all unnormalized distributions. Unlike the moment matching conditions above, our

(q)
B

closed form expression for 75" can be directly used as an energy function for MCMC sampling.

4 Experiments

We consider g-paths between mo = N (—4, 3) and 7 = N (4, 1) to estimate Zp/Zy = 1, and use
parallel runs of Hamiltonian Monte Carlo (HMC) [28] to obtain accurate, independent samples from

ﬁ,@ (2) linearly spaced between Sy = 0 and S = 1. For all experiments, we use 10k samples from
each intermediate distribution and average results across 20 seeds.

*We extend to unnormalized measures using D 1.[G(2) : p(2)] = Dxr[q(2) : p(2)]— [ §(2)dz+ [ p(z)d=.



In[Fig. 2 we report BDMC upper and lower bound estimates of log Z1/Z; for various g and T'. We
observe that the choice of ¢ can impact performance, with ¢ = 0.9 obtaining tighter estimates at small
T and g = 0.5 converging more quickly as 7" increases. Both outperform the baseline geometric path
atg = 1. In we estimate Zr/Zy using AIS for T = 100, and observe that our the ¢ = 0.9
path can achieve a lower error than the geometric path.

Finally, in App. [El we provide additional analysis for annealing between two Student-¢ distributions.
The Student-t family can be shown to correspond to a g-exponential family [21]], with the same
sufficient statistics as a Gaussian, and a degrees of freedom parameter v that induces heavier tails
and sets the value of g. As ¢ — 1 or v — o0, the standard Gaussian is recovered. In Fig. B{f4] we
compare annealing between two Student-¢ distributions in the ¢ = 2 family to the Gaussian case of
q = 1, and observe that the same g-path can induce different qualitative behavior based on properties
of the endpoint distributions.

5 Conclusion

In this work, we propose g-paths to generalize the geometric mixture path commonly used in AIS,
and show that modifying the path can improve AIS and BDMC for a fixed mixing schedule on a toy
Gaussian example. We interpreted our g-paths using the deformed logarithm, g-exponential family,
and a-divergences, which may suggest further connections in non-extensive thermodynamics and
information geometry. Choosing a schedule for a given g-path, understanding how the choice of ¢
depends on properties of the initial and target distributions, and exploring the use of g-paths in related
methods such as the thermodynamic variational objective (TVO) [20} 9] remain interesting directions
for future work.
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A Abstract Mean is Invariant to Affine Transformations

In this section, we show that k() is invariant to affine transformations. That is, for any choice of a
and b,

a-ut"14+b g#1

16
logu qg=1 (16)

m@{

yields the same expression for the abstract mean p,_ . First, we note the expression for the inverse

hy'(u)atq # 1

hy(u) = <”b>1_q. (17)

a

Recalling that ) ", w; = 1, the abstract mean then becomes
th({wz} {uz (Z wz Uq ) (18)

! <a (Z wiu§‘4> + b) (19)

1

= (Zwiui_q) m (20)

which is independent of both a and b.

B Derivations of the ¢-Path

B.1 Deformed Log Mixture

In this section, we show that the unnormalized In, mixture
In, ﬁ'éq) (2) = (1= B)Ing 7o(2) + Bln, 71(2) (21)
reduces to the form of the g-path intermediate distribution in (2) and (§). Taking exp, of both sides,

#§0(2) = expy {(1 = B)Ing 7o (2) + Blng 71(2)}

=[1+ (1 = q) (Ing To(2) + B (Ing T1(2) — Ing 7~TO(Z)))]vl:q

~ [+ 0= 0 e = 14 8 - 1= R 4 1) |

1

0(2) 1+ B(2) T = BRo(2) ] T

[1+w0 —1+6( 1(2) _q—ﬁo(z)l_qﬂ
= [l
= [a Y f(2) 1] T



B.2 ¢-Exponential Family

Here, we show that the unnormalized g-path reduces to a form of the g-exponential family

A0 = |- Bm(e) 4 pm | 22
= {fro(z)l_q + B(F1(2)' 7 — fro(z)l—Q)] o (23)
e s (YN 2
=7o(2) [1+0 <ﬁ0(z)> - (24)
. - #1(2)\]™7
= 7o (2) [1 +(1—-¢q) 8 In, (fro(z))] (25)
— #o(2) exp, {5 ‘In, (28) } : (26)
Defining ¢(z) = In, Z;Ei% and introducing a multiplicative normalization factor Z,(/5), we arrive at
7§ (2) = qu(ﬁ) To(z)expy {B-9(2)}  Zy(B) = /fro(Z) expy {B-¢(2)} dz.  (27)

B.3 Normalization in q-Exponential Families

The g-exponential family can also be written using the g-free energy 1,(6) for normalization [6] [26],

7 (2) = mo(2) exp, {0 ¢(2) — 1 (0)} - (28)

However, since exp,{z + y} = exp {y} - equ{H(fi_q)y} (see [30] or App. @below) instead of
exp{z + y} = exp{x} - exp{y} for the standard exponential, we can not easily move between these
ways of writing the g-family [22].

Mirroring the derivations of Naudts [26] pg. 108, we can rewrite (28] using the above identity for
exp, {z + y}, as

T (2) = m0(2) exp {8 - $(2) — g (6)} (29)

0-o(z
= m0(2) expy{—14(0)} exp, { 1+ (1- 5;((_)7%(9))}

(30)

Our goal is to express wéq) (z) using a normalization constant Z L(_,q) instead of the g-free energy 1,(0).

While the exponential family allows us to freely move between ¢(#) and log Zy, we must adjust the
natural parameters (from 6 to ) in the g-exponential case. Defining

0
14+ (1= q)(=¢4(0))

7@ _ 1 32
T o~ 0a(0)) 2

we can obtain a new parameterization of the g-exponential family, using parameters § and multiplica-

8=

€2y

tive normalization constant Zéq),
1
m ) = () exp {8 - 0(2)} (33)
B

= mo(2) exp, {9 ~p(z) — wq(e)} = Wéq)(z) ) (34)

See Matsuzoe et al. [22]], Suyari et al. [30], and Naudts [[26] for more detailed discussion of normal-
ization in deformed exponential families.



C Minimizing o-divergences

Amari [3] show that the o-mixture 7,, minimizes the expected divergence to a single point for
normalized measures. We repeat similar derivations but for the case of unnormalized {p;} and 7(2)

N
Ta(2) = arg minZwi D, [pi(z) : 7(2)] (35)
7(z) i—1
N ) )
where 7, (2) = (Zwl ﬁl(z)%)m (36)
i=1
Proof.
dom oo d 4 & i e lta [
%ZwiDa[pi(z):r(z)] =1 a2 sz(—/pz(z) T 7(2)2 dz + 5 /T(z)dz)
i=1 i=1
(37)
4 1+« N 1— 14 1+«
0= (- — ;wiﬁi(z)Tf(@T*l +—-)  6®)
2 I
T =1 & 2 w; pi(2) 2 7(2) 39)
1— N 1—
F(z) 7 =Y wipi(z) 7 (40)
=1
N TS
) = (L wiinla)=) an
i=1
O

This result is similar to a general result about Bregman divergences in Banerjee et al. [8] Prop. 1.
although D, is not a Bregman divergence over normalized distributions.

C.1 Arithmetic Mean (¢ = 0)

The moment-averaging path from Grosse et al. [[13] is not a special case of the a-mean path of
Amari [3]]. While both minimize a convex combination of reverse KL divergences, Grosse et al. [[13]]
minimize within the constrained space of exponential families , while Amari [3] optimizes over all
normalized distributions.

More formally, consider minimizing the functional

= - To(2) 10 71-0(2) z (%) 10, 7T1(Z)
Tl = (=) [ mo(e)og 5z 1 [ (2108 22

— const — / (1= B)mo(2) + fmi(2)] log r(2)d= 3)
We will show how Grosse et al. [13]] and Amari 3] minimize (43)).

dz (42)

Solution within Exponential Family Grosse et al. [13] constrains r(z) = %h(z) exp(67g(2))

to be a (minimal) exponential family model and minimizes {@3) w.r.t 7’s natural parameters ¢ (cf.
[L3] appendix 2.2):

0f = arggmin J(0) (44)
= arg;nin (— / [(1 = B)mo(2) + Bmi(2)] [log h(2) + 67 g(z) — log Z(6)] dz) (45)
= argamin (log Z(0) — / (1 — B)mo(2) + Bmi(2)] 07 g(2)dz + const) (46)



where the last line follows because m(z) and 7 (z) are assumed to be correctly normalized. Then to
8J(9)

50, and set to zero:

arrive at the moment averaging path, we compute the partials

aJ ()

50, = Erlgi(2)] = (1 = B) En, [g:(2)] = BEr, [g:(2)] = 0 @7)
E [9i(2)] = (1 = B) Ex, [9i(2)] — BEx, [9:(2)] (48)
where we have used the exponential family identity 810575@ = E,,[g:(2)] in the first line.

General Solution Instead of optimizing in the space of minimal exponential families, Amari [3]
instead adds a Lagrange multiplier to (@3) and optimizes r directly (cf. [3] eq. 5.1 - 5.12)

r* = argmin J'[r] (49)
= argmin J[r| + A <1 — /r(z)dz) (50)
IEq. (50)|can be minimized using the Euler-Lagrange equations or using the identity
df(x) /
=0(x — 51
o) ) ey

from [23]]. We compute the functional derivative of J'[r] using and solve for r:

5.J'[r]

or(z) :_/[(1_B)W°(Z/)+57T1(Z')] Lor() oy [

N or(z) ¢ or(2)

(52)

r(z

1
S / [(1 = B)mo(2) + Bm1(2")] R §(z —2')dz" — )\/(5(2 - 2dz (53)

1
=- [(1—»3)7T0(Z)+57T1(2)]@—)\:0 (54
Therefore

r(z) o [(1 = B)mo(2) + Bmi(2)], (55)
which corresponds to our g-path at ¢ = 0, or « = —1 in Amari [3]. Thus, while both Amari [3]

and Grosse et al. [[13]] start with the same objective, they arrive at different optimum because they
optimize over different spaces.

D Sum and Product Identities for ¢-Exponentials

In this section, we prove two lemmas which are useful for manipulation expressions involving
g-exponentials, for example in moving between[Eq. (29)]and [Eq. (30)|in either direction.

Lemma 1. Sum identity

N N . )
exp Ty | = exp — (56)
(Z ) 11 q<1+<1—q>z. L

n=1 1=

Lemma 2. Product identity

H exp,(zn) = exp, (Z Ly, - 1:[ (1+(1 - q)wl)> (57)

i=1
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D.1 Proof of[Lemma 1]

Proof. We prove by induction. The base case (N = 1) is satisfied using the convention Z =0
if b < a so that the denominator on the RHS of [Eq. (36)]is 1. Assuming[Eq. (56) holds for N
N+1 r N+1 1/(1-q)
exp, (Z xn> =[1+(1-9 ), xn] (58)
n=1 L n=1 +
r N 1/(1—q)
=|1+(1—-q) (Z xn> +(1- q)xN_H] (59)
L n=1 4
r N 1/(1-q)
TN+1
= 1+(1—q)2mn> <1+( —q) )] (60)
_< n=1 1+(1_q)2n 1Tn +
al x
N+1
= exp Tn | €Xp ~ 61)
(Z ) q<1+<1—q>zn_1xn>
N+1 .
= P ° — (using the inductive hypothesis) (62)
n=1 q<1+(1—Q)Z?—11 i)

D.2 Proof of

Proof. We prove by induction. The base case (IN = 1) is satisfied using the convention H

O

JTi=1

if b < a. Assumlng“holds for N, we will show the N + 1 case. To simplify notation we

define yy := anl Ty - HZ: (14 = (1 — ¢);). Then,
N+1 N+1

H exp, (7o) = exp, (71 (H exp, (n )

n=1

= exp,(zo) (H exp, (Tn )

= exp, (7o) exp,(yn)

'<1+<1—q>-xo><1+<1—q>-yN>}
. +

:1 +(1—9q) (mo +(1+(1-9q) ~x0)yN>}

=exp, (zo+ (1+ (1 —q) - z0)yn)
Next we use the definition of y and rearrange

= exp, <x0+ (1+(1—4q)-=z0) (an +22(14+ (1 —q)-x1)

- equ (Zzn : H 1 + 1 q).CCZ)) .

Then reindexing n — n + 1 establishes
N+1

H equ(xn) = exp,

n—1

11

1/(1—

'1+<1—q>-xo+(1+(1—q>-xo)<1—q>-yN]

N+1
(zxn-n (14 (g
n=1 1=1

(63)

(reindex n — n — 1)

(inductive hypothesis)

)
(64)
1/(1—q)
(65)
+
1/(1—q)
(66)
+
(67)
N-1
+ .. +an- H(l—l—(l—q)-mi)))
i=1
(68)
) . (69)
O
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Figure 3: Intermediate densities between N'(—4, 3) and (4, 1) for various g-paths and 10 equally
spaced 3. The path approaches a mixture of Gaussians with weight 3 at ¢ = 0. For the geometric
mixture (¢ = 1), intermediate 73 stay within the exponential family since both 7, 77 are Gaussian.
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Figure 4: Intermediate densities between Student-¢ distributions, ¢,—1(—4,3) and ¢,-1(4, 1) for
various ¢-paths and 10 equally spaced 3, Note that v = 1 corresponds to ¢ = 2, so that the ¢ = 2
path stays within the g-exponential family.

E Annealing between Student-¢ Distributions

E.1 Student-¢ Distributions and ¢-Exponential Family

The Student-¢ distribution appears in hypothesis testing with finite samples, under the assumption
that the sample mean follows a Gaussian distribution. In particular, the degrees of freedom parameter
v = n—1 can be shown to correspond to an order of the g-exponential family with v = (3—¢q)/(¢—1)
(in 1-d), so that the choice of g is linked to the amount of data observed.

We can first write the multivariate Student-¢ density, specified by a mean vector i, covariance 32, and
degrees of freedom parameter v, in d dimensions, as

1
Z(v, %)

u+d)

ty (xlp, B) = [1+ %(x — )= @ - p)] (= (70)

where Z(v, £) = [(%£9)/T(%) - |[S|~1/20~ %7~ %. Note that v > 0, so that we only have positive
values raised to the — (v + d) /2 2 power, and the density is defined on the real line.

The power function in (70) is already reminiscent of the g-exponential, while we have first and second
moment sufficient statistics as in the Gaussian case. We can solve for the exponent, or order parameter

g, that corresponds to — (v + d) /2 using — (%) = . This results in the relations

1—q-
d—dq+2 v+d+2
v ———— or _—

_ 71
q—1 1= 1a 7

We can also rewrite the v~ (z — )73~ (2 — i) using natural parameters corresponding to {z, z2}
sufficient statistics as in the Gaussian case (see, e.g. Matsuzoe and Wada [21]] Example 4).

Note that the Student-¢ distribution has heavier tails than a standard Gaussian, and reduces to a
multivariate Gaussian as ¢ — 1 and exp,(u) — exp(u). This corresponds to observing n — oo
samples, so that the sample mean and variance approach the ground truth [23].

E.2 Annealing between 1-d Student-¢ Distributions

Since the Student-t family generalizes the Gaussian distribution to ¢ # 1, we can run a similar
experiment annealing between two Student-t distributions. We set ¢ = 2, which correspondsto v = 1
with v = (3 — ¢)/(¢ — 1), and use the same mean and variance as the Gaussian example in Fig. [4]
with 71'0(2) = tu:l(_4a 3) and 7 (Z) = ty=1(47 1)
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We visualize the results in Fig. [l For this special case of both endpoint distributions within a
parametric family, we can ensure that the ¢ = 2 path stays within the g-exponential family of
Student-¢ distributions. We make a similar observation for the Gaussian case and ¢ = 1 in Fig. [3]
Comparing the ¢ = 0.5 and ¢ = 0.9 Gaussian path with the ¢ = 1.0 and ¢ = 1.5 path, we observe
that mixing behavior appears to depend on the relation between the g-path parameter and the order of
the g-exponential family of the endpoints.

As g — oo, the power mean (6 approaches the min operation as 1 — g — —oo. In the Gaussian case,
we see that, even at ¢ = 2, intermediate densities for all 3 appear to concentrate in regions of low
density under both 7y and 7. However, for the heavier-tailed Student-¢ distributions, we must raise
the g-path parameter significantly to observe similar behavior.
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