Annealed Importance Sampling with q-Paths

Rob Brekelmans ${ }^{1} \|$, Vaden Masrani ${ }^{2 *}$, Thang Bui ${ }^{3}$, Frank Wood ${ }^{2}$, Aram Galstyan ${ }^{1}$, Greg Ver Steeg ${ }^{1}$, Frank Nielsen ${ }^{4}$
${ }^{1}$ USC Information Sciences Institute, ${ }^{2}$ University of British Columbia, ${ }^{3}$ UberAI, ${ }^{4}$ Sony CSL \{brekelma, galstyan, gregv\}@isi.edu, \{vadmas, fwood\}@cs.ubc.ca, thang.bui@uber.com, frank.nielsen@acm.org

Abstract

Annealed Importance Sampling (AIS) [27, 18] is the gold standard for estimating partition functions or marginal likelihoods, corresponding to importance sampling over a path of distributions between a tractable base and an unnormalized target. While aIS yields an unbiased estimator for any path, existing literature has been limited to the geometric mixture or moment-averaged paths associated with the exponential family and KL divergence [13]. We explore AIS using q-paths, which include the geometric path as a special case and are related to the homogeneous power mean, deformed exponential family, and α-divergence [3].

1 Introduction

AIS [27, 18] is a method for estimating intractable normalization constants, which considers a path of intermediate distributions $\pi_{t}(z)$ between a tractable base distribution $\pi_{0}(z)$ and unnormalized target $\tilde{\pi}_{T}(z)$. In particular, AIS samples from a sequence of MCMC transition operators $\mathcal{T}_{t}\left(z_{t} \mid z_{t-1}\right)$ which leave each $\pi_{\beta_{t}}(z)=\tilde{\pi}_{\beta_{t}}(z) / Z_{t}$ invariant to estimate the ratio Z_{T} / Z_{0}. As shown in Algorithm 1, we can accumulate the importance weights $w_{T}^{(i)}=\prod_{t=1}^{T} \tilde{\pi}_{t}\left(z_{t-1}\right) / \tilde{\pi}_{t-1}\left(z_{t-1}\right)$ along the path. Taking the expectation of $w_{T}^{(i)}$ over sampling chains yields an unbiased estimate of Z_{T} / Z_{0} [27]. Similarly, Bidirectional Monte Carlo (BDMC) [14, 15] provides lower and upper bounds on the \log partition function ratio $\log Z_{T} / Z_{0}$ using AIS initialized with the base or target distribution, respectively.

AIS often uses a geometric mixture path with schedule $\left\{\beta_{t}\right\}_{t=0}^{T}$ to anneal between π_{0} and π_{T},

$$
\begin{equation*}
\tilde{\pi}_{\beta}(z)=\tilde{\pi}_{0}(z)^{1-\beta} \tilde{\pi}_{T}(z)^{\beta} \tag{1}
\end{equation*}
$$

where $\pi_{\beta}(z)=\tilde{\pi}_{\beta}(z) / Z_{\beta}$ and $Z_{\beta}=\int \tilde{\pi}_{0}(z)^{1-\beta} \tilde{\pi}_{T}(z)^{\beta} d z$.

```
Algorithm 1: Annealed IS
for \(i=1\) to \(N\) do
    \(z_{0} \sim \pi_{0}(z)\)
    \(w^{(i)} \leftarrow Z_{0}\)
    for \(t=1\) to \(T\) do
        \(w_{t}^{(i)} \leftarrow w_{t}^{(i)} \frac{\tilde{\pi}_{t}\left(z_{t-1}^{(i)}\right)}{\tilde{\pi}_{t-1}\left(z_{t-1}^{(i)}\right)}\)
        \(z_{t}^{(i)} \sim T_{t}\left(z_{t} \mid z_{t-1}^{(i)}\right)\)
    end
end
\(\underline{\text { return } Z_{T} / Z_{0} \approx \frac{1}{N} \sum_{N} w_{T}^{(i)}}\)
```

Alternative paths have been discussed in [13, 12, 10], but may not have closed form expressions for intermediate distributions. In this work, we propose to generalize the geometric mixture path (1) using the power mean [19, 17, 11], or q-path,

$$
\begin{equation*}
\tilde{\pi}_{\beta}^{(q)}(z)=\left[(1-\beta) \tilde{\pi}_{0}(z)^{1-q}+\beta \tilde{\pi}_{T}(z)^{1-q}\right]^{\frac{1}{1-q}} \tag{2}
\end{equation*}
$$

As $q \rightarrow 1$, we recover the geometric mixture path as a special case. The power mean also contains as a special case the q-logarithm used in non-extensive thermodynamics [31, 26, 32], which allows us

[^0]to frame Eq. (2) in terms of the the q-exponential family [6]. Further, we draw connections with the α-integration of Amari [3, 4] by showing that Eq. (2) minimizes a mixture of α-divergences as in [3]. We describe properties of the geometric and q-paths in Section 2 and Section 3, respectively.

2 Interpretations of the Geometric Path

We give three complementary interpretations of the geometric path defined in Eq. (1), which will have generalized analogues in Section 3 .
$\mathbf{L o g}$ Mixture Simply taking the logarithm of both sides of the geometric mixture (1) shows that $\tilde{\pi}_{\beta}$ can be obtained by taking the log-mixture of $\tilde{\pi}_{0}$ and $\tilde{\pi}_{T}$ with mixing parameter β,

$$
\begin{equation*}
\log \tilde{\pi}_{\beta}(z)=(1-\beta) \log \tilde{\pi}_{0}(z)+\beta \log \tilde{\pi}_{T}(z) \tag{3}
\end{equation*}
$$

where we may also choose to subtract a constant $\log Z_{\beta}$ to enforce normalization.
Exponential Family Distributions along the geometric path may also be viewed as coming from an exponential family [9, 16]. In particular, we use a base measure of $\tilde{\pi}_{0}(z)$ and sufficient statistics $\phi(z)=\log \tilde{\pi}_{T} / \tilde{\pi}_{0}$ to rewrite Eq. (1) as

$$
\begin{equation*}
\pi_{\beta}(z)=\tilde{\pi}_{0}(z) \exp \{\beta \cdot \phi(z)-\psi(\beta)\} \tag{4}
\end{equation*}
$$

where the mixing parameter β appears as the natural parameter of the exponential family and $\psi(\beta):=\log Z_{\beta}$. The log-partition function or free energy $\psi(\beta)$ is convex in β and induces [4, 29, 9] a Bregman divergence over the natural parameter space equivalent to the KL divergence $D_{K L}\left[\pi_{\beta^{\prime}} \| \pi_{\beta}\right]$.

Variational Representation Grosse et al. [13] also observe that each $\pi_{\beta}(z)$ can be viewed as minimizing a weighted sum of KL divergences to the (normalized) base and target distributions

$$
\begin{equation*}
\pi_{\beta}(z)=\underset{r(z)}{\arg \min }(1-\beta) D_{K L}\left[r(z) \| \pi_{0}(z)\right]+\beta D_{K L}\left[r(z) \| \pi_{T}(z)\right] \tag{5}
\end{equation*}
$$

While the optimization in Eq. (5) is over arbitrary $r(z)$, the optimal solution is the geometric mixture with mixing parameter β, which is a member of the exponential family in Eq. (4) 13, 9].

3 Interpretations of the q-Path

To anneal between $\tilde{\pi}_{0}$ and $\tilde{\pi}_{T}$, we consider the power mean with order parameter q in place of the geometric average in Eq. (1) Analogously to Sec. 2 above, our generalization is associated with the deformed \log mixture, q-exponential family, and a variational representation using the α-divergence.

Power Means Kolmogorov [19] proposed a generalized notion of the mean using any monotonic function $h(u)$, with $h(u)=u$ corresponding to the arithmetic mean and

$$
\begin{equation*}
\mu_{h}\left(\left\{w_{i}, u_{i}\right\}\right)=h^{-1}\left(\sum_{i} w_{i} h\left(u_{i}\right)\right) \tag{6}
\end{equation*}
$$

where μ_{h} outputs a scalar given a normalized measure $\left\{w_{i}\right\}$ over a set of elements $\left\{u_{i}\right\}$ [11]. The geometric and arithmetic means are homogeneous, meaning they have the linear scale-free property $\mu_{h}\left(\left\{w_{i}, c \cdot u_{i}\right\}\right)=c \cdot \mu_{h}\left(\left\{w_{i}, u_{i}\right\}\right)$. In order for the power mean to be homogenous, Hardy et al. [17] (pg. 68 or [3]) show that $h(u)$ must be of the form

$$
h_{q}(u)= \begin{cases}a \cdot u^{1-q}+b & q \neq 1 \tag{7}\\ \log u & q=1\end{cases}
$$

which we refer to as the q-power mean. Notable examples of the power mean include the arithmetic mean at $q=0$, geometric mean as $q \rightarrow 1$, and the min or max operation as $q \rightarrow \pm \infty$. For $q=\frac{1+\alpha}{2}$, $h_{q}(u)$ matches the α-representation of Amari [4] [5, 7].

Figure 1: Intermediate densities between $\mathcal{N}(-4,3)$ and $\mathcal{N}(4,1)$ for various q-paths and 10 equally spaced β. The path approaches a mixture of Gaussians with weight β at $q=0$. For the geometric mixture ($q=1$), intermediate π_{β} stay within the exponential family since both π_{0}, π_{T} are Gaussian.

Using the power mean to generalize geometric mean, we propose the q-path of intermediate unnormalized densities $\tilde{\pi}_{\beta}^{(q)}(z)$ for AIS. In App. A. we show that for any choice of a and $b, h_{q}(u)$ yields the same power mean

$$
\tilde{\pi}_{\beta}^{(q)}(z)= \begin{cases}{\left[(1-\beta) \tilde{\pi}_{0}(z)^{1-q}+\beta \tilde{\pi}_{T}(z)^{1-q}\right]^{\frac{1}{1-q}}} & q \neq 1 \tag{8}\\ \exp \left\{(1-\beta) \log \tilde{\pi}_{0}(z)+\beta \log \tilde{\pi}_{T}(z)\right\} & q=1\end{cases}
$$

where we have chosen $\left\{w_{i}\right\}=\{1-\beta, \beta\}$ and $\left\{u_{i}\right\}=\left\{\tilde{\pi}_{0}, \tilde{\pi}_{T}\right\}$ in (6).

Deformed Log Mixture The deformed, or q-logarithm [26], which plays a crucial role in nonextensive thermodynamics [31, 32], is a particular special case of $h_{q}(u)$ in Eq. (16), with

$$
\begin{equation*}
\ln _{q}(u)=\frac{1}{1-q}\left(u^{1-q}-1\right) \quad \exp _{q}(u)=[1+(1-q) u]_{+}^{\frac{1}{1-q}} \tag{9}
\end{equation*}
$$

where we have also defined the q-exponential with $\exp _{q}(u)=\ln _{q}^{-1}(u)$ and $[x]_{+}=\max \{0, x\}$ ensuring $g(u)$ is non negative. Note that $\lim _{q \rightarrow 1} \ln _{q}(u)=\log u$ and $\lim _{q \rightarrow 1} \exp _{q}(u)=\exp u$.
Applying $h_{q}(u)=\ln _{q}(u)$ to both sides of Eq. (6) or (8), we can write $\tilde{\pi}_{\beta}^{(q)}$ as a deformed log-mixture

$$
\begin{equation*}
\ln _{q} \tilde{\pi}_{\beta}^{(q)}(z)=(1-\beta) \ln _{q} \tilde{\pi}_{0}(z)+\beta \ln _{q} \tilde{\pi}_{T}(z) \tag{10}
\end{equation*}
$$

with mixing weight β. We also provide detailed derivations for Eq. (10) in App. B.1.
q-Exponential Family The q-exponential in Eq. (9) may be used to define a q-exponential family of distributions [6, 26]. Using θ as the natural parameter,

$$
\begin{equation*}
\pi_{\theta}^{(q)}(z)=\tilde{\pi}_{0}(z) \exp _{q}\left\{\theta \cdot \phi_{q}(z)-\psi_{q}(\theta)\right\} \tag{11}
\end{equation*}
$$

which recovers the standard exponential family at $q \rightarrow 1$. In App. B. 2 we show that the q-mixture $\tilde{\pi}_{\beta}^{(\alpha)}$ in Eq. (8) can be rewritten in terms of the q-exponential family

$$
\begin{equation*}
\pi_{\beta}^{(q)}(z)=\frac{1}{Z_{\beta}^{(q)}} \tilde{\pi}_{0}(z) \exp _{q}\left\{\beta \cdot \ln _{q} \frac{\tilde{\pi}_{T}(z)}{\tilde{\pi}_{0}(z)}\right\} \quad Z_{\beta}^{(q)}=\int \tilde{\pi}_{\beta}^{(q)}(z) d z \tag{12}
\end{equation*}
$$

with sufficient statistic $\phi_{q}(z)=\ln _{q} \tilde{\pi}_{T} / \tilde{\pi}_{0}$ and natural parameter β. The expression in (12) might be used to directly estimate the normalization constant $Z_{\beta}^{(q)}$ via Monte Carlo approximation.
As for the standard exponential family, the q-free energy $\psi_{q}(\theta)$ in Eq. (11) is convex in θ and can be used to construct a Bregman divergence over normalized q-exponential family distributions [6]. However, to normalize (12) using the q-free energy, a non-linear mapping $\theta(\beta)$ between parameterizations is required. This delicate issue of normalization in the q-exponential family has been noted in [22, 30, 26], and we provide more detailed discussion in App. B. 3

Figure 2: BDMC lower and upper bound estimates of $\log Z_{T} / Z_{0}$ by q-path order and number of intermediate distributions (T), for annealing between $\mathcal{N}(-4,3) \rightarrow \mathcal{N}(4,1)$.

q	$Z_{\text {est }}\left(Z_{\text {true }}=1\right)$
0.00 (mix)	1.0136 ± 0.0634
0.05	1.0105 ± 0.0569
0.10	1.0198 ± 0.0576
$\mathbf{0 . 9 0}$	$\mathbf{0 . 9 9 7 5} \pm \mathbf{0 . 0 0 8 5}$
0.95	0.9971 ± 0.0092
1.00 (geo)	0.9967 ± 0.0094

Table 1: Partition Function Estimates for various q and linearly spaced $T=100$. A path with $q=$ 0.90 outperforms both the mixture of Gaussians $(q=0)$ and geometric ($q=1$) paths in terms of $Z_{\text {err }}=\left|Z_{\text {est }}-Z_{\text {true }}\right|$.

Variational Representation using the α-Divergence Since we do not have access to normalization constants in the AIS setting, we focus on the α-divergence [2, 4] over unnormalized measures $\tilde{q}(z)$ and $\tilde{p}(z)$. We first recall the definition,

$$
D_{\alpha}[\tilde{q}(z): \tilde{p}(z)]=\frac{4}{\left(1-\alpha^{2}\right)}\left(\frac{1-\alpha}{2} \int \tilde{q}(z) d z+\frac{1+\alpha}{2} \int \tilde{p}(z) d z-\int \tilde{q}(z)^{\frac{1-\alpha}{2}} \tilde{p}(z)^{\frac{1+\alpha}{2}} d z\right)
$$

which is an f-divergence [1] for the generator $f(u)=\frac{4}{1-\alpha^{2}}\left(\frac{1-\alpha}{2}+\frac{1+\alpha}{2} u-u^{\frac{1+\alpha}{2}}\right)$ [5, 4]. Note that $\lim _{\alpha \rightarrow 1} D_{\alpha}[\tilde{q}(z): \tilde{p}(z)]=D_{K L}[\tilde{p}(z): \tilde{q}(z)]$ and $\lim _{\alpha \rightarrow-1} D_{\alpha}[\tilde{q}(z): \tilde{p}(z)]=D_{K L}[\tilde{q}(z): \tilde{p}(z)] \cdot .^{2}$
In App. C. we follow similar derivations as Amari [3] to show that, for $q=\frac{1+\alpha}{2}$ ([4] Ch. 4), the q-path density $\tilde{\pi}_{\beta}^{(q)}$ minimizes the expected α-divergence to the endpoints

$$
\begin{equation*}
\tilde{\pi}_{\beta}^{(q)}(z)=\underset{\tilde{r}(z)}{\arg \min }(1-\beta) D_{\alpha}\left[\tilde{\pi}_{0}(z): \tilde{r}(z)\right]+\beta D_{\alpha}\left[\tilde{\pi}_{T}(z): \tilde{r}(z)\right] \tag{13}
\end{equation*}
$$

where the optimization is over arbitrary $\tilde{r}(z)$. This variational representation generalizes Eq. (5), since the KL divergence is recovered (with the order of the arguments reversed) as $\alpha \rightarrow 1$ or $q \rightarrow 1$.

Moment-Matching Procedures At $q=0$, the solution to the optimization (13) correponds to the arithmetic mean, or mixture distribution $\tilde{\pi}_{t}^{(0)}(z)=(1-\beta) \tilde{\pi}_{0}+\beta \tilde{\pi}_{1}$. While the 'moment-averaged' AIS path [13] appears related to the $q=0$ case, we clarify in App. C.1] that Grosse et al. [13] restrict to optimization within an exponential family of distributions. Generalizing this approach to the α-divergence, Bui [10] follows Minka [24] (Sec. 3.1-2) to derive the moment-matching condition

$$
\begin{align*}
\tilde{r}_{t, \alpha}^{*}(z) & :=\underset{\tilde{r}(z)}{\arg \min }(1-\beta) D_{\alpha}\left[\tilde{\pi}_{0}(z): \tilde{r}(z)\right]+\beta D_{\alpha}\left[\tilde{\pi}_{T}(z): \tilde{r}(z)\right] \tag{14}\\
\Longrightarrow \mathbb{E}_{\tilde{r}_{*}}[\phi(z)] & =(1-\beta) \mathbb{E}_{\tilde{\pi}_{0}^{\alpha} r_{*}^{1-\alpha}}[\phi(z)]+\beta \mathbb{E}_{\tilde{\pi}_{T}^{\alpha} \tilde{r}_{*}^{1-\alpha}}[\phi(z)] \tag{15}
\end{align*}
$$

where $\tilde{r}(z)$ comes from an exponential family with sufficient statistics $\phi(z)$.
However, we note that our q-path is more general than these approaches, since the optimization in Eq. (13) is over all unnormalized distributions. Unlike the moment matching conditions above, our closed form expression for $\tilde{\pi}_{\beta}^{(q)}$ can be directly used as an energy function for MCMC sampling.

4 Experiments

We consider q-paths between $\pi_{0}=\mathcal{N}(-4,3)$ and $\pi_{T}=\mathcal{N}(4,1)$ to estimate $Z_{T} / Z_{0}=1$, and use parallel runs of Hamiltonian Monte Carlo (HMC) [28] to obtain accurate, independent samples from $\tilde{\pi}_{t}^{(q)}(z)$ linearly spaced between $\beta_{0}=0$ and $\beta_{T}=1$. For all experiments, we use 10 k samples from each intermediate distribution and average results across 20 seeds.

[^1]In Fig. 2, we report BDMC upper and lower bound estimates of $\log Z_{T} / Z_{1}$ for various q and T. We observe that the choice of q can impact performance, with $q=0.9$ obtaining tighter estimates at small T and $q=0.5$ converging more quickly as T increases. Both outperform the baseline geometric path at $q=1$. In Table 1, we estimate Z_{T} / Z_{0} using AIS for $T=100$, and observe that our the $q=0.9$ path can achieve a lower error than the geometric path.
Finally, in App. E, we provide additional analysis for annealing between two Student- t distributions. The Student- t family can be shown to correspond to a q-exponential family [21], with the same sufficient statistics as a Gaussian, and a degrees of freedom parameter ν that induces heavier tails and sets the value of q. As $q \rightarrow 1$ or $\nu \rightarrow \infty$, the standard Gaussian is recovered. In Fig. 3.4, we compare annealing between two Student- t distributions in the $q=2$ family to the Gaussian case of $q=1$, and observe that the same q-path can induce different qualitative behavior based on properties of the endpoint distributions.

5 Conclusion

In this work, we propose q-paths to generalize the geometric mixture path commonly used in AIS, and show that modifying the path can improve AIS and BDMC for a fixed mixing schedule on a toy Gaussian example. We interpreted our q-paths using the deformed logarithm, q-exponential family, and α-divergences, which may suggest further connections in non-extensive thermodynamics and information geometry. Choosing a schedule for a given q-path, understanding how the choice of q depends on properties of the initial and target distributions, and exploring the use of q-paths in related methods such as the thermodynamic variational objective (TVO) [20, 9] remain interesting directions for future work.

References

[1] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131-142, 1966.
[2] Shun-ichi Amari. Differential geometry of curved exponential families-curvatures and information loss. The Annals of Statistics, pages 357-385, 1982.
[3] Shun-ichi Amari. Integration of stochastic models by minimizing α-divergence. Neural computation, 19(10):2780-2796, 2007.
[4] Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.
[5] Shun-ichi Amari and Andrzej Cichocki. Information geometry of divergence functions. Bulletin of the polish academy of sciences. Technical sciences, 58(1):183-195, 2010.
[6] Shun-ichi Amari and Atsumi Ohara. Geometry of q-exponential family of probability distributions. Entropy, 13(6):1170-1185, 2011.
[7] Shun-ichi Amari, Shiro Ikeda, and Hidetoshi Shimokawa. Information geometry of α-projection in mean field approximation.
[8] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with Bregman Divergences. Journal of Machine Learning Research, 6:1705-1749, 2005.
[9] Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, and Aram Galstyan. All in the exponential family: Bregman duality in thermodynamic variational inference. In International Conference on Machine Learning, 2020.
[10] Thang Bui. Connecting the thermodynamic variational objective and annealed importance sampling. 2020. URLhttps://thangbui.github.io/docs/reports/tvo_ annealed_is.pdf.
[11] Miguel de Carvalho. Mean, what do you mean? The American Statistician, 70(3):270-274, 2016.
[12] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical science, pages 163-185, 1998.
[13] Roger B Grosse, Chris J Maddison, and Ruslan R Salakhutdinov. Annealing between distributions by averaging moments. In Advances in Neural Information Processing Systems, pages 2769-2777, 2013.
[14] Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. Sandwiching the marginal likelihood using bidirectional Monte Carlo. arXiv preprint arXiv:1511.02543, 2015.
[15] Roger B Grosse, Siddharth Ancha, and Daniel M Roy. Measuring the reliability of MCMC inference with bidirectional Monte Carlo. In Advances in Neural Information Processing Systems, pages 2451-2459, 2016.
[16] Peter D Grünwald. The minimum description length principle. MIT press, 2007.
[17] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. The Mathematical Gazette, 37(321): 236-236, 1953. doi: 10.1017/S0025557200027455.
[18] Christopher Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Physical Review E, 56(5):5018, 1997.
[19] Andrey Kolmogorov. On the notion of mean. Mathematics and Mechanics, 1930.
[20] Vaden Masrani, Tuan Anh Le, and Frank Wood. The thermodynamic variational objective. arXiv preprint arXiv:1907.00031, 2019.
[21] Hiroshi Matsuzoe and Tatsuaki Wada. Deformed algebras and generalizations of independence on deformed exponential families. Entropy, 17(8):5729-5751, 2015.
[22] Hiroshi Matsuzoe, Antonio M Scarfone, and Tatsuaki Wada. Normalization problems for deformed exponential families. In International Conference on Geometric Science of Information, pages 279-287. Springer, 2019.
[23] Anders Meng. An introduction to variational calculus in machine learning. 2004.
[24] Tom Minka. Divergence measures and message passing. Technical report, 2005.
[25] Kevin P Murphy. Conjugate bayesian analysis of the gaussian distribution. def, 1(2 22):16, 2007.
[26] Jan Naudts. Generalised thermostatistics. Springer Science \& Business Media, 2011.
[27] Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125-139, 2001.
[28] Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, page 113, 2011.
[29] Frank Nielsen. An elementary introduction to information geometry. Entropy, 22(10), 2020.
[30] Hiroki Suyari, Hiroshi Matsuzoe, and Antonio M Scarfone. Advantages of q-logarithm representation over q-exponential representation from the sense of scale and shift on nonlinear systems. The European Physical Journal Special Topics, 229(5):773-785, 2020.
[31] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1-2):479-487, 1988.
[32] Constantino Tsallis. Introduction to nonextensive statistical mechanics: approaching a complex world. Springer Science \& Business Media, 2009.

A Abstract Mean is Invariant to Affine Transformations

In this section, we show that $h_{q}(u)$ is invariant to affine transformations. That is, for any choice of a and b,

$$
h_{q}(u)= \begin{cases}a \cdot u^{1-q}+b & q \neq 1 \tag{16}\\ \log u & q=1\end{cases}
$$

yields the same expression for the abstract mean $\mu_{h_{\alpha}}$. First, we note the expression for the inverse $h_{q}^{-1}(u)$ at $q \neq 1$

$$
\begin{equation*}
h_{q}^{-1}(u)=\left(\frac{u-b}{a}\right)^{\frac{1}{1-q}} . \tag{17}
\end{equation*}
$$

Recalling that $\sum_{i} w_{i}=1$, the abstract mean then becomes

$$
\begin{align*}
\mu_{h_{q}}\left(\left\{w_{i}\right\},\left\{u_{i}\right\}\right) & =h_{q}^{-1}\left(\sum_{i} w_{i} h_{q}\left(u_{i}\right)\right) \tag{18}\\
& =h_{q}^{-1}\left(a\left(\sum_{i} w_{i} u_{i}^{1-q}\right)+b\right) \tag{19}\\
& =\left(\sum_{i} w_{i} u_{i}^{1-q}\right)^{\frac{1}{1-q}} \tag{20}
\end{align*}
$$

which is independent of both a and b.

B Derivations of the q-Path

B. 1 Deformed Log Mixture

In this section, we show that the unnormalized $\ln _{q}$ mixture

$$
\begin{equation*}
\ln _{q} \tilde{\pi}_{\beta}^{(q)}(z)=(1-\beta) \ln _{q} \tilde{\pi}_{0}(z)+\beta \ln _{q} \tilde{\pi}_{1}(z) \tag{21}
\end{equation*}
$$

reduces to the form of the q-path intermediate distribution in (2) and (8). Taking $\exp _{q}$ of both sides,

$$
\begin{aligned}
\tilde{\pi}_{\beta}^{(q)}(z) & =\exp _{q}\left\{(1-\beta) \ln _{q} \tilde{\pi}_{0}(z)+\beta \ln _{q} \tilde{\pi}_{1}(z)\right\} \\
& =\left[1+(1-q)\left(\ln _{q} \tilde{\pi}_{0}(z)+\beta\left(\ln _{q} \tilde{\pi}_{1}(z)-\ln _{q} \tilde{\pi}_{0}(z)\right)\right)\right]_{+}^{\frac{1}{1-q}} \\
& =\left[1+(1-q) \frac{1}{1-q}\left(\tilde{\pi}_{0}(z)^{1-q}-1+\beta\left(\tilde{\pi}_{1}(z)^{1-q}-1-\tilde{\pi}_{0}(z)^{1-q}+1\right)\right)\right]_{+}^{\frac{1}{1-q}} \\
& =\left[1+\tilde{\pi}_{0}(z)^{1-q}-1+\beta\left(\tilde{\pi}_{1}(z)^{1-q}-\tilde{\pi}_{0}(z)^{1-q}\right)\right]_{+}^{\frac{1}{1-q}} \\
& =\left[\tilde{\pi}_{0}(z)^{1-q}+\beta \tilde{\pi}_{1}(z)^{1-q}-\beta \tilde{\pi}_{0}(z)^{1-q}\right]_{+}^{\frac{1}{1-q}} \\
& =\left[(1-\beta) \tilde{\pi}_{0}(z)^{1-q}+\beta \tilde{\pi}_{1}(z)^{1-q}\right]_{+}^{\frac{1}{1-q}}
\end{aligned}
$$

B. $2 q$-Exponential Family

Here, we show that the unnormalized q-path reduces to a form of the q-exponential family

$$
\begin{align*}
\tilde{\pi}_{\beta}^{(q)}(z) & =\left[(1-\beta) \tilde{\pi}_{0}(z)^{1-q}+\beta \tilde{\pi}_{1}(z)^{1-q}\right]^{\frac{1}{1-q}} \tag{22}\\
& =\left[\tilde{\pi}_{0}(z)^{1-q}+\beta\left(\tilde{\pi}_{1}(z)^{1-q}-\tilde{\pi}_{0}(z)^{1-q}\right)\right]^{\frac{1}{1-q}} \tag{23}\\
& =\tilde{\pi}_{0}(z)\left[1+\beta\left(\left(\frac{\tilde{\pi}_{1}(z)}{\tilde{\pi}_{0}(z)}\right)^{1-q}-1\right)\right]^{\frac{1}{1-q}} \tag{24}\\
& =\tilde{\pi}_{0}(z)\left[1+(1-q) \beta \ln _{q}\left(\frac{\tilde{\pi}_{1}(z)}{\tilde{\pi}_{0}(z)}\right)\right]^{\frac{1}{1-q}} \tag{25}\\
& =\tilde{\pi}_{0}(z) \exp _{q}\left\{\beta \cdot \ln _{q}\left(\frac{\tilde{\pi}_{1}(z)}{\tilde{\pi}_{0}(z)}\right)\right\} . \tag{26}
\end{align*}
$$

Defining $\phi(z)=\ln _{q} \frac{\tilde{\pi}_{1}(z)}{\tilde{\pi}_{0}(z)}$ and introducing a multiplicative normalization factor $Z_{q}(\beta)$, we arrive at

$$
\begin{equation*}
\pi_{\beta}^{(q)}(z)=\frac{1}{Z_{q}(\beta)} \tilde{\pi}_{0}(z) \exp _{q}\{\beta \cdot \phi(z)\} \quad Z_{q}(\beta):=\int \tilde{\pi}_{0}(z) \exp _{q}\{\beta \cdot \phi(z)\} d z \tag{27}
\end{equation*}
$$

B. 3 Normalization in q-Exponential Families

The q-exponential family can also be written using the q-free energy $\psi_{q}(\theta)$ for normalization [6, 26],

$$
\begin{equation*}
\pi_{\theta}^{(q)}(z)=\pi_{0}(z) \exp _{q}\left\{\theta \cdot \phi(z)-\psi_{q}(\theta)\right\} \tag{28}
\end{equation*}
$$

However, since $\exp _{q}\{x+y\}=\exp _{q}\{y\} \cdot \exp _{q}\left\{\frac{x}{1+(1-q) y}\right\}$ (see [30] or App. Dbelow) instead of $\exp \{x+y\}=\exp \{x\} \cdot \exp \{y\}$ for the standard exponential, we can not easily move between these ways of writing the q-family [22].
Mirroring the derivations of Naudts [26] pg. 108, we can rewrite 28] using the above identity for $\exp _{q}\{x+y\}$, as

$$
\begin{align*}
\pi_{\theta}^{(q)}(z) & =\pi_{0}(z) \exp _{q}\left\{\theta \cdot \phi(z)-\psi_{q}(\theta)\right\} \tag{29}\\
& =\pi_{0}(z) \exp _{q}\left\{-\psi_{q}(\theta)\right\} \exp _{q}\left\{\frac{\theta \cdot \phi(z)}{1+(1-q)\left(-\psi_{q}(\theta)\right)}\right\} \tag{30}
\end{align*}
$$

Our goal is to express $\pi_{\theta}^{(q)}(z)$ using a normalization constant $Z_{\beta}^{(q)}$ instead of the q-free energy $\psi_{q}(\theta)$. While the exponential family allows us to freely move between $\psi(\theta)$ and $\log Z_{\theta}$, we must adjust the natural parameters (from θ to β) in the q-exponential case. Defining

$$
\begin{align*}
\beta & =\frac{\theta}{1+(1-q)\left(-\psi_{q}(\theta)\right)} \tag{31}\\
Z_{\beta}^{(q)} & =\frac{1}{\exp _{q}\left\{-\psi_{q}(\theta)\right\}} \tag{32}
\end{align*}
$$

we can obtain a new parameterization of the q-exponential family, using parameters β and multiplicative normalization constant $Z_{\beta}^{(q)}$,

$$
\begin{align*}
\pi_{\beta}^{(q)}(z) & =\frac{1}{Z_{\beta}^{(q)}} \pi_{0}(z) \exp _{q}\{\beta \cdot \phi(z)\} \tag{33}\\
& =\pi_{0}(z) \exp _{q}\left\{\theta \cdot \phi(z)-\psi_{q}(\theta)\right\}=\pi_{\theta}^{(q)}(z) \tag{34}
\end{align*}
$$

See Matsuzoe et al. [22], Suyari et al. [30], and Naudts [26] for more detailed discussion of normalization in deformed exponential families.

C Minimizing α-divergences

Amari [3] show that the α-mixture $\pi_{\alpha_{t}}$ minimizes the expected divergence to a single point for normalized measures. We repeat similar derivations but for the case of unnormalized $\left\{\tilde{p}_{i}\right\}$ and $\tilde{r}(z)$

$$
\begin{align*}
\tilde{\pi}_{\alpha}(z) & =\underset{\tilde{r}(z)}{\arg \min } \sum_{i=1}^{N} w_{i} D_{\alpha}\left[\tilde{p}_{i}(z): \tilde{r}(z)\right] \tag{35}\\
\text { where } \quad \tilde{\pi}_{\alpha}(z) & =\left(\sum_{i=1}^{N} w_{i} \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}}\right)^{\frac{2}{1-\alpha}} \tag{36}
\end{align*}
$$

Proof.

$$
\begin{align*}
\frac{d}{d \tilde{r}} \sum_{i=1}^{N} w_{i} D_{\alpha}\left[\tilde{p}_{i}(z): \tilde{r}(z)\right] & =\frac{d}{d \tilde{r}} \frac{4}{1-\alpha^{2}} \sum_{i=1}^{N} w_{i}\left(-\int \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}} \tilde{r}(z)^{\frac{1+\alpha}{2}} d z+\frac{1+\alpha}{2} \int \tilde{r}(z) d z\right) \tag{37}\\
0 & =\frac{4}{1-\alpha^{2}}\left(-\frac{1+\alpha}{2} \sum_{i=1}^{N} w_{i} \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}} \tilde{r}(z)^{\frac{1+\alpha}{2}-1}+\frac{1+\alpha}{2}\right) \tag{38}\\
-\frac{2}{1-\alpha} & =-\frac{2}{1-\alpha} \sum_{i=1}^{N} w_{i} \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}} \tilde{r}(z)^{-\frac{1-\alpha}{2}} \tag{39}\\
\tilde{r}(z)^{\frac{1-\alpha}{2}} & =\sum_{i=1}^{N} w_{i} \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}} \tag{40}\\
\tilde{r}(z) & =\left(\sum_{i=1}^{N} w_{i} \tilde{p}_{i}(z)^{\frac{1-\alpha}{2}}\right)^{\frac{2}{1-\alpha}} \tag{41}
\end{align*}
$$

This result is similar to a general result about Bregman divergences in Banerjee et al. [8] Prop. 1. although D_{α} is not a Bregman divergence over normalized distributions.

C. 1 Arithmetic Mean $(q=0)$

The moment-averaging path from Grosse et al. [13] is not a special case of the α-mean path of Amari [3]. While both minimize a convex combination of reverse KL divergences, Grosse et al. [13] minimize within the constrained space of exponential families, while Amari [3] optimizes over all normalized distributions.
More formally, consider minimizing the functional

$$
\begin{align*}
J[r] & =(1-\beta) \int \pi_{0}(z) \log \frac{\pi_{0}(z)}{r(z)} d z+\beta \int \pi_{1}(z) \log \frac{\pi_{1}(z)}{r(z)} d z \tag{42}\\
& =\text { const }-\int\left[(1-\beta) \pi_{0}(z)+\beta \pi_{1}(z)\right] \log r(z) d z \tag{43}
\end{align*}
$$

We will show how Grosse et al. [13] and Amari [3] minimize (43].
Solution within Exponential Family Grosse et al. [13] constrains $r(z)=\frac{1}{Z(\theta)} h(z) \exp \left(\theta^{T} g(z)\right)$ to be a (minimal) exponential family model and minimizes 43) w.r.t r 's natural parameters θ (cf. [13] appendix 2.2):

$$
\begin{align*}
\theta_{i}^{*} & =\underset{\theta}{\arg \min } J(\theta) \tag{44}\\
& =\underset{\theta}{\arg \min }\left(-\int\left[(1-\beta) \pi_{0}(z)+\beta \pi_{1}(z)\right]\left[\log h(z)+\theta^{T} g(z)-\log Z(\theta)\right] d z\right) \tag{45}\\
& =\underset{\theta}{\arg \min }\left(\log Z(\theta)-\int\left[(1-\beta) \pi_{0}(z)+\beta \pi_{1}(z)\right] \theta^{T} g(z) d z+\text { const }\right) \tag{46}
\end{align*}
$$

where the last line follows because $\pi_{0}(z)$ and $\pi_{1}(z)$ are assumed to be correctly normalized. Then to arrive at the moment averaging path, we compute the partials $\frac{\partial J(\theta)}{\partial \theta_{i}}$ and set to zero:

$$
\begin{align*}
\frac{\partial J(\theta)}{\partial \theta_{i}} & =\mathbb{E}_{r}\left[g_{i}(z)\right]-(1-\beta) \mathbb{E}_{\pi_{0}}\left[g_{i}(z)\right]-\beta \mathbb{E}_{\pi_{1}}\left[g_{i}(z)\right]=0 \tag{47}\\
\mathbb{E}_{r}\left[g_{i}(z)\right] & =(1-\beta) \mathbb{E}_{\pi_{0}}\left[g_{i}(z)\right]-\beta \mathbb{E}_{\pi_{1}}\left[g_{i}(z)\right] \tag{48}
\end{align*}
$$

where we have used the exponential family identity $\frac{\partial \log Z(\theta)}{\partial \theta_{i}}=\mathbb{E}_{r_{\theta}}\left[g_{i}(z)\right]$ in the first line.

General Solution Instead of optimizing in the space of minimal exponential families, Amari [3] instead adds a Lagrange multiplier to (43) and optimizes r directly (cf. [3] eq. 5.1-5.12)

$$
\begin{align*}
r^{*} & =\underset{r}{\arg \min } J^{\prime}[r] \tag{49}\\
& =\underset{r}{\arg \min } J[r]+\lambda\left(1-\int r(z) d z\right) \tag{50}
\end{align*}
$$

Eq. (50) can be minimized using the Euler-Lagrange equations or using the identity

$$
\begin{equation*}
\frac{\delta f(x)}{\delta f\left(x^{\prime}\right)}=\delta\left(x-x^{\prime}\right) \tag{51}
\end{equation*}
$$

from [23]. We compute the functional derivative of $J^{\prime}[r]$ using (51) and solve for r :

$$
\begin{align*}
\frac{\delta J^{\prime}[r]}{\delta r(z)} & =-\int\left[(1-\beta) \pi_{0}\left(z^{\prime}\right)+\beta \pi_{1}\left(z^{\prime}\right)\right] \frac{1}{r\left(z^{\prime}\right)} \frac{\delta r\left(z^{\prime}\right)}{\delta r(z)} d z^{\prime}-\lambda \int \frac{\delta r\left(z^{\prime}\right)}{\delta r(z)} d z^{\prime} \tag{52}\\
& =-\int\left[(1-\beta) \pi_{0}\left(z^{\prime}\right)+\beta \pi_{1}\left(z^{\prime}\right)\right] \frac{1}{r\left(z^{\prime}\right)} \delta\left(z-z^{\prime}\right) d z^{\prime}-\lambda \int \delta\left(z-z^{\prime}\right) d z^{\prime} \tag{53}\\
& =-\left[(1-\beta) \pi_{0}(z)+\beta \pi_{1}(z)\right] \frac{1}{r(z)}-\lambda=0 \tag{54}
\end{align*}
$$

Therefore

$$
\begin{equation*}
r(z) \propto\left[(1-\beta) \pi_{0}(z)+\beta \pi_{1}(z)\right] \tag{55}
\end{equation*}
$$

which corresponds to our q-path at $q=0$, or $\alpha=-1$ in Amari [3]. Thus, while both Amari [3] and Grosse et al. [13] start with the same objective, they arrive at different optimum because they optimize over different spaces.

D Sum and Product Identities for q-Exponentials

In this section, we prove two lemmas which are useful for manipulation expressions involving q-exponentials, for example in moving between Eq. (29) and Eq. (30) in either direction.

Lemma 1. Sum identity

$$
\begin{equation*}
\exp _{q}\left(\sum_{n=1}^{N} x_{n}\right)=\prod_{n=1}^{N} \exp _{q}\left(\frac{x_{n}}{1+(1-q) \sum_{i=1}^{n-1} x_{i}}\right) \tag{56}
\end{equation*}
$$

Lemma 2. Product identity

$$
\begin{equation*}
\prod_{n=1}^{N} \exp _{q}\left(x_{n}\right)=\exp _{q}\left(\sum_{n=1}^{N} x_{n} \cdot \prod_{i=1}^{n-1}\left(1+(1-q) x_{i}\right)\right) \tag{57}
\end{equation*}
$$

D. 1 Proof of Lemma 1

Proof. We prove by induction. The base case $(N=1)$ is satisfied using the convention $\sum_{i=a}^{b} x_{i}=0$ if $b<a$ so that the denominator on the RHS of Eq. (56) is 1. Assuming Eq. (56) holds for N,

$$
\begin{align*}
\exp _{q}\left(\sum_{n=1}^{N+1} x_{n}\right) & =\left[1+(1-q) \sum_{n=1}^{N+1} x_{n}\right]_{+}^{1 /(1-q)} \tag{58}\\
& =\left[1+(1-q)\left(\sum_{n=1}^{N} x_{n}\right)+(1-q) x_{N+1}\right]_{+}^{1 /(1-q)} \tag{59}\\
& =\left[\left(1+(1-q) \sum_{n=1}^{N} x_{n}\right)\left(1+(1-q) \frac{x_{N+1}}{1+(1-q) \sum_{n=1}^{N} x_{n}}\right)\right]_{+}^{1 /(1-q)} \tag{60}\\
& =\exp _{q}\left(\sum_{n=1}^{N} x_{n}\right) \exp _{q}\left(\frac{x_{N+1}}{1+(1-q) \sum_{n=1}^{N} x_{n}}\right) \tag{61}\\
& =\prod_{n=1}^{N+1} \exp _{q}\left(\frac{x_{n}}{1+(1-q) \sum_{i=1}^{n-1} x_{i}}\right)(\text { using the inductive hypothesis) } \tag{62}
\end{align*}
$$

D. 2 Proof of Lemma 2

Proof. We prove by induction. The base case $(N=1)$ is satisfied using the convention $\prod_{i=a}^{b} x_{i}=1$ if $b<a$. Assuming Eq. (57) holds for N, we will show the $N+1$ case. To simplify notation we define $y_{N}:=\sum_{n=1}^{N} x_{n} \cdot \prod_{i=1}^{n-1}\left(1+=(1-q) x_{i}\right)$. Then,

$$
\begin{align*}
\prod_{n=1}^{N+1} \exp _{q}\left(x_{n}\right) & =\exp _{q}\left(x_{1}\right)\left(\prod_{n=2}^{N+1} \exp _{q}\left(x_{n}\right)\right) \tag{63}\\
& =\exp _{q}\left(x_{0}\right)\left(\prod_{n=1}^{N} \exp _{q}\left(x_{n}\right)\right) \\
& =\exp _{q}\left(x_{0}\right) \exp _{q}\left(y_{N}\right) \\
& =\left[\left(1+(1-q) \cdot x_{0}\right)\left(1+(1-q) \cdot y_{N}\right)\right]_{+}^{1 /(1-q)} \tag{64}\\
& =\left[1+(1-q) \cdot x_{0}+\left(1+(1-q) \cdot x_{0}\right)(1-q) \cdot y_{N}\right]_{+}^{1 /(1-q)} \tag{65}\\
& =\left[1+(1-q)\left(x_{0}+\left(1+(1-q) \cdot x_{0}\right) y_{N}\right)\right]_{+}^{1 /(1-q)} \tag{66}\\
& =\exp _{q}\left(x_{0}+\left(1+(1-q) \cdot x_{0}\right) y_{N}\right) \tag{67}
\end{align*}
$$

(reindex $n \rightarrow n-1$)

Next we use the definition of y_{N} and rearrange

$$
\begin{align*}
& =\exp _{q}\left(x_{0}+\left(1+(1-q) \cdot x_{0}\right)\left(x_{1}+x_{2}\left(1+(1-q) \cdot x_{1}\right)+\ldots+x_{N} \cdot \prod_{i=1}^{N-1}\left(1+(1-q) \cdot x_{i}\right)\right)\right) \\
& =\exp _{q}\left(\sum_{n=0}^{N} x_{n} \cdot \prod_{i=1}^{n-1}\left(1+(1-q) x_{i}\right)\right) \tag{68}
\end{align*}
$$

Then reindexing $n \rightarrow n+1$ establishes

$$
\begin{equation*}
\prod_{n=1}^{N+1} \exp _{q}\left(x_{n}\right)=\exp _{q}\left(\sum_{n=1}^{N+1} x_{n} \cdot \prod_{i=1}^{n-1}\left(1+(1-q) x_{i}\right)\right) \tag{69}
\end{equation*}
$$

Figure 3: Intermediate densities between $\mathcal{N}(-4,3)$ and $\mathcal{N}(4,1)$ for various q-paths and 10 equally spaced β. The path approaches a mixture of Gaussians with weight β at $q=0$. For the geometric mixture $(q=1)$, intermediate π_{β} stay within the exponential family since both π_{0}, π_{T} are Gaussian.

Figure 4: Intermediate densities between Student- t distributions, $t_{\nu=1}(-4,3)$ and $t_{\nu=1}(4,1)$ for various q-paths and 10 equally spaced β, Note that $\nu=1$ corresponds to $q=2$, so that the $q=2$ path stays within the q-exponential family.

E Annealing between Student- t Distributions

E. 1 Student- t Distributions and q-Exponential Family

The Student- t distribution appears in hypothesis testing with finite samples, under the assumption that the sample mean follows a Gaussian distribution. In particular, the degrees of freedom parameter $\nu=n-1$ can be shown to correspond to an order of the q-exponential family with $\nu=(3-q) /(q-1)$ (in 1-d), so that the choice of q is linked to the amount of data observed.
We can first write the multivariate Student- t density, specified by a mean vector μ, covariance $\boldsymbol{\Sigma}$, and degrees of freedom parameter ν, in d dimensions, as

$$
\begin{equation*}
t_{\nu}(x \mid \mu, \boldsymbol{\Sigma})=\frac{1}{Z(\nu, \boldsymbol{\Sigma})}\left[1+\frac{1}{\nu}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu)\right]^{-\left(\frac{\nu+d}{2}\right)} \tag{70}
\end{equation*}
$$

where $Z(\nu, \boldsymbol{\Sigma})=\Gamma\left(\frac{\nu+d}{2}\right) / \Gamma\left(\frac{\nu}{2}\right) \cdot|\boldsymbol{\Sigma}|^{-1 / 2} \nu^{-\frac{d}{2}} \pi^{-\frac{d}{2}}$. Note that $\nu>0$, so that we only have positive values raised to the $-(\nu+d) / 2$ power, and the density is defined on the real line.
The power function in (70) is already reminiscent of the q-exponential, while we have first and second moment sufficient statistics as in the Gaussian case. We can solve for the exponent, or order parameter q, that corresponds to $-(\nu+d) / 2$ using $-\left(\frac{\nu+d}{2}\right)=\frac{1}{1-q}$. This results in the relations

$$
\begin{equation*}
\nu=\frac{d-d q+2}{q-1} \quad \text { or } \quad q=\frac{\nu+d+2}{\nu+d} \tag{71}
\end{equation*}
$$

We can also rewrite the $\nu^{-1}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu)$ using natural parameters corresponding to $\left\{x, x^{2}\right\}$ sufficient statistics as in the Gaussian case (see, e.g. Matsuzoe and Wada [21] Example 4).
Note that the Student- t distribution has heavier tails than a standard Gaussian, and reduces to a multivariate Gaussian as $q \rightarrow 1$ and $\exp _{q}(u) \rightarrow \exp (u)$. This corresponds to observing $n \rightarrow \infty$ samples, so that the sample mean and variance approach the ground truth [25].

E. 2 Annealing between 1-d Student- t Distributions

Since the Student- t family generalizes the Gaussian distribution to $q \neq 1$, we can run a similar experiment annealing between two Student- t distributions. We set $q=2$, which corresponds to $\nu=1$ with $\nu=(3-q) /(q-1)$, and use the same mean and variance as the Gaussian example in Fig. 4 , with $\pi_{0}(z)=t_{\nu=1}(-4,3)$ and $\pi_{1}(z)=t_{\nu=1}(4,1)$.

We visualize the results in Fig. 4. For this special case of both endpoint distributions within a parametric family, we can ensure that the $q=2$ path stays within the q-exponential family of Student- t distributions. We make a similar observation for the Gaussian case and $q=1$ in Fig. 3 . Comparing the $q=0.5$ and $q=0.9$ Gaussian path with the $q=1.0$ and $q=1.5$ path, we observe that mixing behavior appears to depend on the relation between the q-path parameter and the order of the q-exponential family of the endpoints.
As $q \rightarrow \infty$, the power mean (6) approaches the min operation as $1-q \rightarrow-\infty$. In the Gaussian case, we see that, even at $q=2$, intermediate densities for all β appear to concentrate in regions of low density under both π_{0} and π_{T}. However, for the heavier-tailed Student- t distributions, we must raise the q-path parameter significantly to observe similar behavior.

[^0]: *equal contribution

[^1]: ${ }^{2}$ We extend to unnormalized measures using $D_{K L}[\tilde{q}(z): \tilde{p}(z)]=D_{K L}[q(z): p(z)]-\int \tilde{q}(z) d z+\int \tilde{p}(z) d z$.

