
Under review as a conference paper at ICLR 2023

GAME THEORETIC MIXED EXPERTS FOR COMBINA-
TIONAL ADVERSARIAL MACHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in adversarial machine learning have shown that defenses consid-
ered to be robust are actually susceptible to adversarial attacks which are specifi-
cally tailored to target their weaknesses. These defenses include Barrage of Ran-
dom Transforms (BaRT), Friendly Adversarial Training (FAT), Trash is Treasure
(TiT) and ensemble models made up of Vision Transformers (ViTs), Big Transfer
models and Spiking Neural Networks (SNNs). A natural question arises: how can
one best leverage a combination of adversarial defenses to thwart such attacks?
In this paper, we provide a game-theoretic framework for ensemble adversarial
attacks and defenses which answers this question. In addition to our framework
we produce the first adversarial defense transferability study to further motivate
a need for combinational defenses utilizing a diverse set of defense architectures.
Our framework is called Game theoretic Mixed Experts (GaME) and is designed
to find the Mixed-Nash strategy for a defender when facing an attacker employing
compositional adversarial attacks. We show that this framework creates an en-
semble of defenses with greater robustness than multiple state-of-the-art, single-
model defenses in addition to combinational defenses with uniform probability
distributions. Overall, our framework and analyses advance the field of adver-
sarial machine learning by yielding new insights into compositional attack and
defense formulations.

1 INTRODUCTION

Machine learning models have been shown to be vulnerable to adversarial examples Goodfellow
et al. (2014); Papernot et al. (2016). Adversarial examples are inputs with small perturbations added,
such that machine learning models misclassify the example with high confidence. Addressing the
security risks posed by adversarial examples are critical for the safe deployment of machine learning
in areas like health care Finlayson et al. (2019) and self driving vehicles Qayyum et al. (2020).
However, current defenses and attacks in adversarial machine learning have trended towards a cat
and mouse dynamic where in new defenses are continually being proposed and then broken Carlini
& Wagner (2017); Tramer et al. (2020); Mahmood et al. (2021a); Sitawarin et al. (2022) by improved
attacks.

In parallel to attack and defense development, studies have also been conducted on the transferability
of adversarial examples Liu et al. (2016); Mahmood et al. (2021b); Xu et al. (2022). Transferabiltiy
refers to the phenomena where adversarial examples generated for one model are also misclassified
by a different machine learning model. However, to the best of our knowledge no analyses have
been done on the transferability of adversarial examples designed to attack specific defenses. From
these observations several pertinent questions arise:

1. Do adversarial examples generated for one specific defense transfer to other defenses?
2. Based on adversarial transferability, can a game theoretic framework be developed to de-

termine the optimal choices for both attacker and defender?
3. Can randomized defense selection yield higher robustness than a single state-of-the-art

defense?

These are precisely the questions our paper seeks to answer. We break from the traditional dynamic
of adversarial machine learning which focuses on the single best attack and defense. We instead take
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a multi-faceted approach and develop a game theoretic framework to answer the above questions.
Specifically, we provide the following contributions: Most importantly, we formulate a practical,
game-theoretic framework for finding the optimal strategies for an attacker and defender who each
employ a set of state-of-the-art adversarial attacks and defenses. Motivated by this framework,
we develop two new white-box attacks called the Momentum Iterative Method over Expectation
(MIME) and the Auto Expectation Self-Attention Gradient Attack (AE-SAGA) in order to create
a stronger adversary. These attacks are necessary for targeting certain randomized defenses and
for adapting to multi-defense strategies. Lastly, we analyze the adversarial transferability of cur-
rent defenses like Trash is Treasure Xiao & Zheng (2020), Barrage of Random Transforms Raff
et al. (2019), Friendly Adversarial Training Zhang et al. (2020) and other new architectures like
SNNs Rathi & Roy (2021b); Fang et al. (2021) and ViTs Dosovitskiy et al. (2020). We further
leverage the low transferability between these classifiers to find those which are best suited for a
combined, ensemble defense such as the one developed in our game-theoretic framework.

2 ADVERSARIAL MACHINE LEARNING DEFENSES

Here we summarize the state-of-the-art defenses we analyze in this paper. In the following subsec-
tions, we give an overview of each defense and our reasons for choosing said defense. It is important
to note our analyses encompass a broad range of different defenses, including ones based on ran-
domization, ones based on adversarial training and ones based on exploiting model transferability.
In addition, we also consider diverse architectures including Big Transfer models (BiTs), Vision
Transformers (ViTs) and Spiking Neural Networks (SNNs). Despite our broad range, we do not
attempt to test every novel adversarial defense. It is simply infeasible to test every proposed adver-
sarial machine learning defense, as new defenses are constantly being produced. However, based
on our game theoretic design and open source code (which will be provided upon publication), any
new defense can easily be tested and integrated into our proposed framework.

2.1 BARRAGE OF RANDOM TRANSFORMS

Barrage of Random Transforms (BaRT) Raff et al. (2019) utilize a set of image transformations in
a random order and with randomized transformation parameters to thwart adversarial attacks. Let
tij(x) represent the ith transformation used in the jth order in the sequence. A BaRT defense using
n image transformations randomly alters the input x:

t(x) = tωn
µn

◦ tωn−1
µn−1

◦ ... ◦ tω1
µ1
(x) (1)

where ω represents the subset of n transformations randomly selected from a set of N total possible
transformations and µ represents the randomized order in which the n transformations are applied.
In Equation 1 the parameters of each image transformation tij(x) are also randomized at run time,
further adding to the stochastic nature of the defense. In this paper, we work with the original BaRT
implementation which includes both differentiable and non-differentiable image transformations.

Why we selected it: Many defenses are broken soon after being proposed Tramer et al. (2020).
BaRT is one of the few defenses that has continued to show robustness even when attacks are
specifically tailored to work against it. For example, most recently BaRT achieves 29% robust-
ness on CIFAR-10 against a customized white-box attack Sitawarin et al. (2022). It remains an open
question whether using BaRT with other randomized approaches (i.e. selecting between different
defenses) can yield even greater robustness.

2.2 FRIENDLY ADVERSARIAL TRAINING

Training classifiers to correctly recognize adversarial examples was originally proposed in Goodfel-
low et al. (2014) using FGSM. This concept was later expanded to include training on adversarial
examples generated by PGD in Madry et al. (2018). In Zhang et al. (2020) it was shown that Friendly
Adversarial Training (FAT) could achieve high clean accuracy while maintaining robustness to ad-
versarial examples. This training was accomplished by using a modified version of PGD called
PGD-K-τ . In PGD-K-τ , K refers to the number of iterations used for PGD. The τ variable is a
hyperparamter used in training which stops the PGD generation of adversarial examples earlier than
the normal K number of steps, if the sample is already misclassified.
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Why we selected it: There are many different defenses that rely on adversarial training Madry et al.
(2018); Zhang et al. (2019); Wang et al. (2019); Maini et al. (2020) and training and testing them
all is not computationally feasible. We selected FAT for its good trade off between clean accuracy
and robustness, and because we wanted to test adversarial training on both Vision Transformer and
CNN models. In this regard, FAT is one of the adversarial training methods that has already been
demonstrated to work across both types of architectures Mahmood et al. (2021b).

2.3 TRASH IS TREASURE

One early direction in adversarial defense design was model ensembles Pang et al. (2019). How-
ever, due to the high transferability of adversarial examples between models, such defenses were
shown to not be robust Tramer et al. (2020). Trash is Treasure (TiT) Xiao & Zheng (2020) is a two
model defense that seeks to overcome the transferability issue by training one model Ca(·) on the
adversarial examples from another model Cb(·). At run time both models are used:

y = Ca(ψ(x,Cb)) (2)

where ψ is an adversarial attack done on model Cb with input x and Ca is the classifier that makes
the final class label prediction on the adversarial example generated by ψ with Cb.

Why we selected it: TiT is one of the newest defenses that tries to achieve robustness in a way
that is fundamentally different than pure randomization strategies or direct adversarial training. In
our paper, we further develop two versions of TiT. One version is based on the original proposed
CNN-CNN implementation. We also test a second mixed architecture version using Big Transfer
model and Vision Transformers to try and leverage the low transferability phenomena described
in Mahmood et al. (2021b).

2.4 NOVEL ARCHITECTURES

In addition to adversarial machine learning defenses, we also include several novel architectures
that have recently achieved state-of-the-art or near state-of-the-art performance in image recogni-
tion tasks. These include the Vision Transformer (ViT) Dosovitskiy et al. (2020) and Big Transfer
models (BiT) Kolesnikov et al. (2020). Both of these types of models utilize pre-training on larger
datasets and fine tuning on smaller datasets to achieve high fidelity results. We also test Spiking Neu-
ral Network (SNNs) architectures. SNNs are a competitor to artificial neural networks that can be
described as a linear time invariant system with a network structure that employs non-differentiable
activation functions Xu et al. (2022). A major challenge in SNNs has been matching the depth and
model complexity of traditional deep learning models. Two approaches have been used to over-
come this challenge, the Spiking Element Wise (SEW) ResNet Fang et al. (2021) and transferring
weights from existing CNN architectures to SNNs Rathi & Roy (2021a). We experiment with both
approaches in our paper.

Why we selected it: The set of adversarial examples used to attack one type of architecture (e.g. a
ViT) have shown to not be misclassified by other architecture types (e.g. a BiT or SNN) Mahmood
et al. (2021b); Xu et al. (2022). While certain white-box attacks have been used to break multiple
undefended models, it remains an open question if different architectures combined with different
defenses can yield better performance.

3 ADVERSARIAL ATTACKS

In our paper we assume a white-box adversarial threat model. This means the attacker is aware of the
set of all defenses D that the defender may use for prediction. In addition, ∀d ∈ D the attacker also
knows the classifier weights θd, architecture and any input image transformations the defense may
apply. To generate adversarial examples the attacker solves the following optimization problem:

max
δ

∑
d∈D

Ld(x+ δ, y; d) subject to: ||δ||p ≤ ϵ (3)

where D is the set of all possible defenses (models) under consideration in the attack, Ld is the loss
function associated with defense d ∈ D, δ is the adversarial perturbation, and (x, y) represents the
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original input with corresponding class label. This is a more general formulation of the optimization
problem allowing the attacker to attack single or multi-model classifiers. The magnitude of this
perturbation δ is typically limited by a certain lp norm. In this paper we analyze the attacks and
defenses using the l∞ norm.

Static white-box attacks such as the Projected Gradient Descent (PGD) Madry et al. (2018) attack
often perform poorly against randomized defenses such as BaRT or TiT. In Xiao & Zheng (2020)
they tested the TiT defense against an attack designed to compensate for randomness, the Expec-
tation over Transformation attack (EOT) attack Athalye et al. (2018). However, it was shown that
the EOT attack performs poorly against TiT (e.g. 20% or worse attack success rate). For attacking
BaRT, in Sitawarin et al. (2022) they proposed a new white-box attack to break BaRT. However,
this new attack requires that the image transformations used in the BaRT defense be differentiable,
which is a deviation from the original BaRT implementation.

Attack Contributions: It is crucial for both the attacker and defender to consider the strongest
possible adversary when playing the adversarial examples game. Thus, we propose two new white-
box attacks for targeting randomized defenses. The first attack is designed to work on individual
randomized defenses and is called the Momentum Iterative Method over Expectation (MIME). To
the best of our knowledge, MIME is the first white-box attack to achieve a high attack success rate
(> 70%) against TiT. MIME is also capable of achieving a high attack success rate against BaRT,
even when non-differentiable transformations are implemented as part of the defense. Our second
attack, is designed to generate adversarial examples that work against multiple type of defenses (both
randomized and non-randomized defenses) simultaneously. This compositional attack is called, the
Auto Expectation Self-Attention Gradient Attack (AE-SAGA).

3.1 MOMENTUM ITERATIVE METHOD OVER EXPECTATION

We develop a new attack white-box attack specifically designed to work on defenses that inherently
rely on randomization, like Barrage of Random Transforms (BaRT) Raff et al. (2019) and Trash is
Treasure (TiT) Xiao & Zheng (2020). Our new attack is called the Momentum Iterative Method
over Expectation (MIME). The attack “mimes” the transformations of the defender in order to more
precisely model the gradient of the loss function with respect to the input after the transforma-
tions are applied. To this end, MIME utilizes two effective aspects from earlier white-box attacks,
momentum from the Momentum Iterative Method (MIM) Dong et al. (2018) attack and repeated
sampling Athalye et al. (2018) from the Expectation Over Transformation (EOT) attack:

x
(i)
adv = x

(i−1)
adv + ϵstepg

(i) (4)

where the attack is computed iteratively with x(0)adv = x. In Equation 4 g(i) is the momentum based
gradient of the loss function with respect to the input at iteration i and is defined as:

g(i) := γg(i−1) + Et∼T [
∂L

∂t(x
(i)
adv)

] (5)

where γ is the momentum decay factor and t is a random transformation function drawn from the
defense’s transformation distribution T . In Table 1 we show experimental results for the MIME
attack on CIFAR-10 randomized defenses (TiT and BaRT). It can clearly be seen that MIME has a
better attack success rate than both APGD Croce & Hein (2020) and MIM Dong et al. (2018).

Attack BaRT-1 BaRT-5 BaRT-10 TIT (BiT/ViT) TiT (VGG/RN)
MIME-10 3.18% 15.5% 43.2% 10.1% 24.9%
MIME-50 4.3% 8.22% 23.2% 8.3% 23.3%

MIM 6.7% 39.5% 59.5% 52% 58.9%
APGD 8.9% 47.7% 70.8% 68.2% 40.7%
Clean 98.4% 95.3% 92.5% 90.1% 76.6%

Table 1: Performance of the MIME attack against CIFAR-10 randomized defenses: Trash is Treasure
(TiT) and Barrage of Random Transforms (BaRT). In our experiments ϵmax = 0.031 for all attacks.
It can clearly be seen that MIME outperforms both APGD and MIM on these two randomized
defenses. Further defense and attack implementation details are given in Table ??
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3.2 AUTO EXPECTATION SELF-ATTENTION GRADIENT ATTACK

The use of multi-model attacks are necessary to achieve a high attack success rate when dealing with
ensembles that contain both CNN and non-CNN model architectures like the Vision Transformer
(ViT) Dosovitskiy et al. (2020) and Spiking Neural Network (SNN) Fang et al. (2021). This is
because adversarial examples generated by single model white-box attacks generally do not transfer
well between CNNs, ViTs and SNNs Mahmood et al. (2021b); Xu et al. (2022). In addition it is an
open question if multi-model attacks can be effective against the current state-of-the-art defenses. In
this paper, we expand the idea of a multi-model attack to include not only different architecture types,
but also different defenses. The generalized form of the multi-model attack is found in Equation 3.

For a single input x with corresponding class label y, an untargeted multi-model attack is considered
successful if (∀d ∈ D,Cd(x + δ) ̸= y) ∧ (||δ||p ≤ ϵ). One formulation of the multi-model attack
is the Auto Self-Attention Gradient Attack (Auto SAGA) which was proposed in Xu et al. (2022) to
iteratively attack combinations of ViTs, SNNs and CNNs:

x
(i+1)
adv = x

(i)
adv + ϵstep ∗ sign(Gblend(x

(i)
adv)) (6)

where ϵstep was the step size used in the attack. In the original formulation of Auto-SAGA, Gblend

was a weighted average of the gradients of each model d ∈ D. By combining gradient estimates
from different models, Auto-SAGA is able to create adversarial examples that are simultaneously
misclassified by multiple models. One limitation of Auto-SAGA attack is that it does not account
for defenses that utilize random transformations. Motivated by this, we can integrate the previously
proposed MIME attack into the gradient calculations for Auto-SAGA. We denote this new attack as
the Auto Expectation Self-Attention Gradient Attack (AE-SAGA). Both SAGA and AE-SAGA use
the same iterative update (Equation 6). However, AE-SAGA uses the following gradient estimator:

Gblend(x
(i)
adv) = γGblend(x

(i−1)
adv )+

∑
k∈D\R

α
(i)
k ϕ

(i)
k ⊙ ∂Lk

∂x
(i)
adv

+
∑
r∈R

α(i)
r ϕ(i)r ⊙(Et∼T [

∂Lr

∂t(x
(i)
adv)

]) (7)

In Equation 7 the two summations represent the gradient contributions of sets D\R and R, respec-
tively. Here we define R as the set of randomized defenses and D as the set of all the defenses being
targeted. In each summation ϕ is the self-attention map Abnar & Zuidema (2020) which is replaced
with a matrix of all ones for any defense that does not use ViT models. αk and αr are the associ-
ated weighting factors for the gradients for each deterministic defense k and randomized defense r,
respectively. Details of how the weighting factors are derived are given in Xu et al. (2022).

4 TRANSFERABILITY EXPERIMENTS

Adversarial transferability refers to the phenomena in which adversarial examples generated to at-
tack one model are also misclassified by a different model. Adversarial transferability studies have
been done on a variety of machine learning models Liu et al. (2016); Mahmood et al. (2021b); Xu
et al. (2022). However, to the best of our knowledge, adversarial transferability between different
state-of-the-art defenses has not been conducted. This transferability property is of significant inter-
est because a lack of transferability between different defenses may indicate a new way to improve
adversarial robustnes.

In Table 2 we show the different single defenses we analyze in this paper and the best attack on each
of them from the set of attacks (MIM Dong et al. (2018), APGD Croce & Hein (2020) and MIME
(proposed in this work). In Figure 1 we visually show the transferability results of these attacks for
CIFAR-10. We give detailed discussions of these results in our supplementary material and briefly
summarize of the key takeaways from these experiments.

In general adversarial examples generated using the best attack on one defense do not transfer well
to other defenses. For example, only 0.8% of the adversarial examples generated by the BaRT-1
defense transfer to the FAT ViT defense. The average transferability for the 8 different defenses
shown in Figure 1 is only 21.62% and there is no single model attack that achieves strong perfor-
mance (i.e. > 50%) across all defenses. These results in turn motivate the development of a game
theoretic framework for both the attacker and defender. For the attacker, this prompts the need to
use multi-model attack like AE-SAGA that was proposed in Section 3, as no single attack (APGD,
MIM or MIME) is ubiquitous. For the defender these results highlight the opportunity to increase
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Defense Best Attack Clean Acc Robust Acc
B1 MIME 98.40% 3.40%
B5 MIME 95.30% 15.00%

B10 MIME 92.50% 43.50%
RF APGD 81.89% 52.00%
VF APGD 92.36% 25.00%
ST APGD 91.54% 0.00%
SB APGD 81.16% 1.60%

BVT MIME 90.10% 8.60%
VRT MIME 76.60% 26.20% Model Used For Prediction

BaRT-1
BaRT-5

BaRT-10
FAT RN

FAT ViT
SNN-T

SNN-BP
TiT (ViT/BiT)

TiT (Vgg/RN) Model Used For Attack

BaRT-1
BaRT-5

BaRT-10
FAT RN

FAT ViT
SNN-T

SNN-BP
TiT (ViT/BiT)

TiT (Vgg/RN)
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y

0.0

0.2

0.4

0.6

0.8

Table 2: Single defense implementations for CIFAR-10 with the corresponding strongest attack on
the defense and the clean accuracy of the defense. The robust accuracy is measured using 1000
adversarial examples. The examples are class wise balanced and also correctly recognized by all the
defenses in their original clean form. All attacks are done using ϵmax = 0.031. Complete attack
and defense implementation details are given in our supplementary material.

Figure 1: Visual representation of the transferability of adversarial examples between defenses for
CIFAR-10. The blue, green, pink, and purple bars represent adversarial examples generated using
the best attack for BaRT, TiT, FAT, and SNN classifiers respectively. Full numerical tables used to
generate this figure are given in our supplemental material.

robustness by taking advantage of the low levels of transferability between defenses through the
implementation of a randomized ensemble defense.

5 GAME THEORETIC MIXED EXPERTS

In this section we derive our framework, Game theoretic Mixed Experts (GaME), for approximating
a Nash equilibrium in the adversarial examples game. In comparison to other works Meunier et al.
(2021) Pinot et al. (2020) Pal & Vidal (2020) Balcan et al. (2022) Le et al. (2022) we take a more
discretized approach and solve the approximate version of the adversarial examples game. This
ultimately leads to the creation of a finite, tabular, zero-sum game that can be solved in polynomial
time using linear programming techniques. In relation to our work, a similar adversarial game
framework was proposed in Sengupta et al. (2018) but did not include comprehensive defender
and attacker threat models. Specifically, we develop our framework under an adversary that can
employ state-of-the-art single model and multi-model attacks and a defender that can utilize both
randomization and voting schemes.

5.1 THE ADVERSARIAL EXAMPLES GAME

We build upon and discretize the adversarial examples game explored in Meunier et al. (2021). The
adversarial examples game is a zero-sum game played between two players: the attacker, pA, and
the defender pD. Let X be the input space and Y the output space of pD’s classifiers, and let Θ
represent the space of classifier parameters. Additionally, let Pϵ,X = {x ∈ X : ||x||p ≤ ϵ} be the
set of valid adversarial perturbations for norm p and ϵ ∈ R+.

Let A∗
ϵ = {(f : Θ× X × Y → Pϵ,X )} be the set of all valid attack functions. The goal of pA is to

choose a ∈ A∗
ϵ , which maximizes the expected loss of pD’s classifier, θ, given some pair of input

and ground truth label (x, y) ∈ X ×Y . The goal of pD is to minimize this loss through its choice of
θ ∈ Θ. We can thus formulate the adversarial examples game as a mini-max optimization problem:

inf
θ∈Θ

sup
a∈A∗

ϵ

E(x,y)∼X×Y [L(x+ a(θ, x, y), y; θ)] (8)
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Due to the vastness of Θ and A∗
ϵ , solving this optimization problem directly is currently compu-

tationally intractable. To this end, in the next subsections we will formulate GaME1 and GaMEn

which discretize Θ and A∗
ϵ by enlisting a set of state-of-the-art attacks and defenses.

5.2 GAME1

The goal of the GaME framework is to find an approximate solution to the adversarial examples
game through the implementation of a set of attacks and defenses which will serve as experts for pA
and pD respectively.

Let A′ ⊂ A∗
ϵ be a subset of all valid adversarial attack functions chosen by pA. Additionally, let

D ⊂ Θ be a set of defense classifiers chosen by pD. We further impose that all a ∈ A′ are white-box
attacks (see Section 3 for our adversarial threat model) and that A′, D are finite, i.e. |A′| ≤ Na and
|D| ≤ Nd for some Na, Nd ∈ N.

It is important to note that each a ∈ A′ is a function of some classifier, θ ∈ Θ, in addition to the
input and ground truth label. Due to this it is possible for pA to chose to attack defense d ∈ D
with attack a ∈ A′, while pD chooses to evaluate the sample using defense d′ ∈ D where d ̸= d′.
Therefore, for convenience, we will define a new, more general set of attack strategies for pA:

A ⊆ {(f : X × Y → Pϵ,X ) : f(x, y) = ai(U, x, y), ai ∈ A′, U ⊆ D} (9)

where we extend the definition of A′ ⊆ A∗
ϵ to attack functions that can take subset of defense

parameters U ⊆ D as input (see Equation 3 for our multi-model attack formulation). This comes
into play with multi-model attacks like AE-SAGA. Thus we will let D be the strategy set of pD,
and A be the strategy set of pA. We can then reformulate a discretized version of the adversarial
examples game as follows:

min
d∈D

max
a∈A

E(x,y)∼X×Y [L(x+ a(x, y), y; d)] (10)

In the above two formulations we optimize over the set of pure strategies for the attacker and de-
fender. However, as previously explored in Araujo et al. (2020) Meunier et al. (2021), limiting
ourselves to pure strategies severely inhibits the strength of both the attacker and defender. Thus we
create the following mixed strategy vectors for pA, pD:

λA ∈ {r ∈ [0, 1]|A| : ||r||1 = 1}, λD ∈ {r ∈ [0, 1]|D| : ||r||1 = 1} (11)

here λA and λD represent the mixed strategies of pA and pD respectively. Let each ai ∈ A and
di ∈ D correspond to the ith elements of λA and λD, λAi and λDi , respectively. Formally:

P({ai ∈ A : a = ai}) = λAi , P({di ∈ D : d = di}) = λDi (12)

where a ∈ A and d ∈ D are random variables. With these mixed strategy vectors we can then
reformulate the adversarial examples game as a mini-max optimization problem over pD’s choice of
λD and pA’s choice of λA:

min
λD

max
λA

E(x,y)∼X×Y [E(a,d)∼A×D[L(x+ a(x, y), y; d)]] =

min
λD

max
λA

E(x,y)∼X×Y [
∑
ai∈A

λAi
∑
di∈D

λDi [L(x+ ai(x, y), y; di)]]
(13)

For continuous and or non-finite X , D, and A solving the above optimization problem is currently
computationally intractable. Thus we can instead approximate the mini-max optimization by taking
N Monte-Carlo samples with respect to (xj , yj) ∈ X × Y:

min
λD

max
λA

1

N

N∑
j=0

∑
ai∈A

λAi
∑
di∈D

λDi [L(xj + ai(xj , yj), yj ; di)] (14)

For convenience we will denote rdi,ai = 1
N

∑N
j=0[L(xj + ai(xj , yj), yj ; di)]. Colloquially rdi,ai

represents the expected robustness of defense di when evaluating adversarial samples generated by
attack ai. From a game theoretic perspective, rd,a is the payoff for pD when they play strategy d and
pA plays strategy a. The payoff for pA given strategies d, a is −rd,a. Our mini-max optimization
problem can then be simplified to:

min
λD

max
λA

∑
ai∈A

λAi
∑
di∈D

λDi rdi,ai (15)
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Using all of this we can create a finite, tabular, zero-sum game defined by the following game-frame
in strategic form:

⟨{pA, pD}, (A,D), O, f⟩ (16)
where O = {rd,a ∀a ∈ A, d ∈ D} and f is a function f : A×D → O defined by f(d, a) = rd,a.
Since this is a finite, tabular, zero-sum game, we know that it must have a Nash-Equilibrium as
proven in Nash (1951). Let R be the payoff matrix for pD where Rd,a = rd,a. It then becomes the
goal of pD to maximize their guaranteed, expected payoff. Formally, pD must solve the following
optimization problem:

max
r∗;λD

r∗ subject to λDR ≥ (r∗, · · · r∗) and ||λD||1 ≤ 1 (17)

This optimization problem is a linear program, the explicit form of which we provide in the sup-
plemental material. All linear programs have a dual problem, in this case the dual problem finds a
mixed Nash strategy for pA. This can be done by changing the problem to a minimization problem
and transposing R. In the interest of space we give the explicit form of the dual problem in the sup-
plemental material as well. These linear programs can be solved using polynomial time algorithms.

5.3 GAMEn

GaMEn is a more general family of games of which GaME1 is a special case. In GaMEn, for n > 1,
pD can calculate their final prediction based upon the output logits of multiple d ∈ D evaluated on
the same input x. In order to do this, pD must also choose a function to map the output of multiple
defenses to a final prediction. Formally, the strategy set of pD becomes D = D′ × F , where F is a
set of prediction functions and D′ is defined as follows.

D′ ⊆ {U : U ⊆ D, |U | ≤ n} (18)

Multi-model prediction functions can increase the overall robustness of an ensemble by requiring an
adversarial sample to be misclassified by multiple models simultaneously Mahmood et al. (2022). In
this paper we will focus on two voting functions: the majority vote Raff et al. (2019), and the largest
softmax probability vote Sitawarin et al. (2022). We will refer to these as fh and fs respectively:

fh(x, U) = argmax
y∈Y

∑
d∈U

1{y = argmax
j∈Y

dj(x)} (19)

fs(x, U) = argmax
y∈Y

1

|U |
∑
d∈U

σ(d(x)) (20)

where 1 is the indicator function, σ is the softmax function, and dj(x) represents the jth output logit
of defense d when evaluated on input x. Solving GaMEn is the same as solving GaME1, except |D|
will be much larger. Notationally the mini-max optimization problem in terms of rd,a remains the
same as we have simply redefined D, however we can redefine rd,a as follows:

r(Ui,fj),ak
=

N∑
l=0

[L(fj(U, (xl + ak(xl, yl))), yl)] (21)

where (Ui, fj) ∈ D = D′ × F . Similarly to GaME1, in GaMEn r(Ui,fj),ak
represents the expected

robust accuracy, i.e. the payoff, for pD if they play strategy (Ui, fj) and pA plays strategy ak.

6 EXPERIMENTAL RESULTS

For our experimental results, we test on two datasets, CIFAR-10 Krizhevsky et al. and Tiny-
ImageNet Le & Yang (2015). For CIFAR-10 we solved instances of GaMEn using the following
defenses: BaRT-1 (B1), BaRT-5 (B5), ResNet-164-FAT (RF), ViT-L-16-FAT (VF), SNN Transfer
(ST), Backprop SNN (SB), and TiT using ViT and BiT (BVT). For Tiny ImageNet we solved in-
stances of GaMEn utilizing: BaRT-1, BaRT-5, ViT-L-16-FAT, and TiT using ViT and BiT. Explicit
details for our experimental setup are given in the supplementary material.

Figure 2 shows a visual representation of the performance of our GaME generated defenses when
compared to single model defenses. Here, and throughout the paper, we measure the robustness

8
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of each ensemble as the lowest robust accuracy achieved by any single attack in our study. From
a game-theoretic perspective this can be seen as the minimum, guaranteed utility for the defender.
Of all the defenses in our study the FAT ResNet-164 had the highest robust accuracy on CIFAR-
10 at 50%. On Tiny ImageNetBaRT-5 had the highest robust accuracy at 10.62%. Compared to
these defenses our GaME generated ensemble achieved 63.5% robustness on CIFAR-10 and 44.5%
robustness on Tiny ImageNet, leading to a 13.5% increase and 33.88% increase in robustness on
each respective dataset.

In addition to this, our ensemble is able to maintain a high level of clean accuracy in spite of op-
timizing for robustness in isolation. In particular, the GaME framweork is able to maintain 96.2%
clean accuracy and 72.6% clean accuracy on CIFAR-10 and Tiny ImageNet respectively. This is
only out performed by BaRT-1 with a clean accuracy of 98.4% on CIFAR-10 and the BiT-ViT Trash
is Treasure defense with a clean accuracy of 76.97% on Tiny ImageNet. It is important to note that
in both these cases the robustness of the GaME framework is higher.
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Figure 2: (Left: CIFAR-10; Right: Tiny ImageNet) Comparison of the robust and clean accuracy
of the top three most robust single model defenses to the top two most robust GaME generated
ensembles on CIFAR-10 and Tiny ImageNet.

We provide more detailed, numerical results for these figures in the supplementary material. Ad-
ditionally, we provide studies of the effects of n (the maximum ensemble size) and N (the sample
number) on GaMEn generated ensembles along with an analysis of the computational cost of the
framework.

7 CONCLUSION

The field of adversarial machine learning has begun to cycle between new defenses, followed by new
specific attacks that break those defenses, followed by even more defenses. In this paper, we seek to
go beyond this cat and mouse dynamic. We consider adversarial defense transferability, multi-model
attacks and a game theoretic framework for compositional adversarial machine learning.

In terms of specific contributions, we develop two new white-box attacks, the Momentum Iterative
Method over Expectation (MIME) for attacking single randomized defenses and Auto Expectation
Self-Attention Gradient Attack (AE-SAGA) for dealing with a combination of randomized and non-
randomized defenses. We are the first to show the transferability of adversarial examples generated
by MIM, APGD, MIME and AE-SAGA on state-of-the-art defenses like FAT, BaRT and TiT.

Lastly, and most importantly, we develop a game theoretic framework for determining the optimal
attack and defense strategy. Any newly proposed defense or attack can be easily integrated into
our framework. Using a set of state-of-the-art attacks and defenses we demonstrate that our game
theoretic framework can create a compositional defense that achieve a 13.5% increase in robustness
on CIFAR-10 and a 33.88% increase in robustness on Tiny ImageNet using a multi-defense, mixed
Nash strategy (as opposed to using the best single defense). Both compostional defenses for CIFAR-
10 and Tiny-ImageNet also come with higher a clean accuracy than the most robust single defenses.
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