
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

TEACHING TRANSFORMERS CAUSAL REASONING
THROUGH AXIOMATIC TRAINING

Aniket Vashishtha1‡, Abhinav Kumar3, Atharva Pandey5, Abbavaram Gowtham Reddy2§,
Kabir Ahuja6, Vineeth N Balasubramanian5¶, Amit Sharma5

1UIUC, 2CISPA Helmholtz Center for Information Security, Germany,
3MIT, 4IIT Hyderabad, India, 5Microsoft Research, India, 6University of Washington
Corresponding author: amshar@microsoft.com

ABSTRACT

For text-based AI systems to interact in the real world, causal reasoning is an
essential skill. Since active interventions are costly, we study to what extent a
system can learn causal reasoning from symbolic demonstrations of causal axioms.
Specifically, we present an axiomatic training method where the system learns
from multiple demonstrations of a causal axiom (or rule), rather than incorporating
the axiom as an inductive bias or inferring it from data values. A key question is
whether the system would learn to generalize from the axiom demonstrations to
more complex scenarios. Our results, based on applying axiomatic training to learn
the transitivity axiom and d-separation rule, indicate that such generalization is
possible. To avoid data contamination issues, we start with a 67 million parameter
transformer model and train it from scratch. On both tasks, we find that a model
trained on linear causal chains (along with some noisy variations) can generalize
well to complex graphs, including longer causal chains, causal chains with reversed
order, and graphs with branching. To handle diverse text inputs, the same method
is extended to finetune language models. Finetuning Llama-3.1 8B model on our
axiomatic data leads to significant gains on causal benchmarks such as Corr2Cause
and CLEAR, in some cases providing state-of-the-art performance surpassing
GPT-4.

1 INTRODUCTION

Causal reasoning can be defined as a set of reasoning procedures consistent with pre-defined axioms
or rules that are specific to causality (Galles & Pearl, 1997). For instance, under stable causal
models, the transitivity axiom (“if A causes B and B causes C, then A causes C”) helps answer
questions of cause and effect between pairs of variables in a system. Similarly, the d-separation
rule connects independence of variables and their causal graph structure, and forms the basis of
many graph discovery and effect identification algorithms. Given a causal task and data observations
from a system, axioms or rules are typically incorporated as inductive biases in a machine learning
(ML) algorithm, through regularization, model architecture, or the choice of variables for a particular
analysis. Depending on the kind of available data—observational, interventional, or counterfactual—
Pearl’s ladder of causation (Bareinboim et al., 2022) defines the kinds of causal reasoning that is
possible.

As axioms are the building blocks of causality, we study whether it is possible to directly learn the
axioms or rules using ML models. That is, rather than learning from data that is the result of axioms
obeyed by a data-generating process, what if a model can learn an axiom (and thus causal reasoning)
directly from symbolic demonstrations of the axiom? This question gains relevance as language
models make it possible to learn over symbolic data expressed in natural language. In fact, recent
studies have evaluated causal reasoning capabilities of large language models (LLMs) by encoding
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causal reasoning problems in natural language (Kıcıman et al., 2023; Jin et al., 2024a;b). Our goal is
to study whether directly teaching the axioms can be a viable way to improve causal reasoning of
language models.

Specifically, we propose a new way to learn causal reasoning through axiomatic training. We posit
that causal axioms or rules can be expressed as the following symbolic tuple, ⟨premise, hypothesis,
result⟩ where hypothesis refers to a causal claim and premise refers to any relevant information to
decide whether the claim is true or not (conclusion). The conclusion could simply be “Yes” or “No”.
For example, consider the task of inferring causal relationships from correlational statements in the
Corr2Cause dataset (Jin et al., 2024b), which we empirically study in this paper. The premise can
be statements about statistical (in)dependence: “Premise: T causes Eg. e causes T. e causes ID. e
causes 2EN. ID causes T. ID causes Eg. ID causes 2EN”; the hypothesis can be a question about
cause-and-effect, “Are 2EN and T d-separated given ID, e?”; and the conclusion would be “Yes”.
This tuple is a demonstration of the d-separation rule (Pearl, 2009b) (see Section 3 for definition).
Based on this template, our key insight is that a large number of synthetic tuples can be generated,
e.g., by changing the variable names, changing the number of variables, changing the order, and so
on. The question is: if a model is trained on such data, would it learn to apply the axiom to new, more
complex scenarios?

To answer this question, we consider a setup where a model is trained on axiomatic demonstrations
over simple chain-like graphs of size 3-6 nodes and evaluated on more complex graphs, including
longer chain-like graphs of size 7-15, graphs with branching, longer variable names, and edge
direction perturbations. To avoid any contamination concerns with the pre-training data of an existing
language model, we first train a transformer model from scratch. For both transitivity and d-separation,
we find that a model trained on axiomatic demonstrations learns to apply the axiom multiple times to
answer questions over more complex graphs. Diversity in the training data matters. For transitivity, a
model trained only on simple directed chains generalizes to longer length chains, but is unable to
generalize to graphs with branching or edge direction perturbations. In comparison, a model trained
on a combined dataset of simple chains and chains with some edges randomly reversed, generalizes
well across all kinds of evaluation scenarios. In particular, for d-separation, our 67 million parameter
model outperforms billion-scale models such as GPT-4 under both zero-shot and multi-shot settings.
Extending the findings on positional embedding for length generalization in NLP tasks (Kazemnejad
et al., 2023; Bhattamishra et al., 2020; Haviv et al., 2022), we find that rotary position embedding
works the best for causal generalization.

Next, we study whether the same axiomatic training dataset can also help to improve causal reasoning
of pre-trained large language models. We fine-tune Llama-3.1-8B-Instruct model over axiomatic
datasets for transitivity and d-separation. We evaluate on two benchmarks: CLEAR Chen et al.
(2024b), that includes a test set for measuring d-separation capabilities; and Corr2Cause Jin et al.
(2024b) on inferring causal structure from correlational statements. Note that our model is not trained
on any of these datasets. We find significant gains due to axiomatic fine-tuning: in CLEAR, the
accuracy on d-separation increases from 30 to 70 % on Yes/No task, and goes from 33 to 50% on
Multi-Choice Questions. On Corr2Cause, we see a jump in performance of almost 20 % (after
fine-tuning on transitivity axiomatic instances).

On Corr2Cause, the F1 score improved significantly, increasing by up to 20% compared to the
baseline after finetuning on axiomatic instances and outperforms GPT-4 by 10%, thusb highlighting
the impact of axiomatic training on more informal and complex real world datasets for inferring
causal relationships.

Our work provides a new paradigm of teaching models causal reasoning through symbolic demon-
strations of axioms or rules, which we call axiomatic training. Such symbolic data can be cheaply
generated for multiple axioms and added to the finetuning data of language models. More generally,
our results contribute to the literature on causal learning from passive data (Lampinen et al., 2023),
showing a general way to learn causal reasoning with passive demonstrations.

2 RELATED WORK

LLMs for Knowledge-Driven Causal Reasoning: Recent developments in Large Language Models
(LLMs) have highlighted their potential for knowledge-driven causal discovery. Unlike traditional
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methods which focus on statistical patterns or correlations, LLMs utilize knowledge acquired through
their pretraining to reason about and identify causal structures based on metadata of variables (Kıcı-
man et al., 2023; Ban et al., 2023; Long et al., 2023; Willig et al., 2022; Vashishtha et al., 2023).
However, possibility of memorization of existing benchmarks in the pretraining of these LLMs has
been a major criticism. As a result, recent work (Zečević et al., 2023) argues that LLMs are not
actually performing causal reasoning, but simply learning correlations about causal facts. In addition,
there are critical failure modes of using LLMs for causal discovery due to hallucinations or not
obeying the acyclic constraint when generating graph edges (Vashishtha et al., 2023). To evaluate
causal reasoning capabilities of LLMs, (Jin et al., 2024b) and (Jin et al., 2024a) propose formal causal
inference evaluation benchmarks to infer direct and indirect causal relationships, and highlight the
failure of LLMs in performing accurate causal reasoning.

Impact of Positional Encoding on Generalization: Length generalization capabilities of trans-
formers has been studied in the past to better understand their different failure modes across various
settings (Hupkes et al., 2020; Zhang et al., 2023; Furrer et al., 2021). Previous work (Kazemnejad
et al., 2023; Bhattamishra et al., 2020; Haviv et al., 2022; Shen et al., 2023) emphasizes the impact of
positional encoding in length generalization capability of transformers. To understand how transform-
ers can be optimized for learning through axiomatic training and generalizing to unseen larger causal
structures, we also examine different types of positional encoding such as no positional encoding
(PE), Learnable PEs (Radford et al., 2018) and Sinusoidal PEs (Vaswani et al., 2023).

Synthetic data generation for teaching transformers reasoning: Synthetic data generation has
been explored for optimising model training for reasoning. For example, (Li et al., 2023; Gunasekar
et al., 2023) use LLM-generated synthetic text for training Phi-1 and Phi-1.5 models and show
impressive performance for reasoning-based tasks. (Trinh et al., 2024) introduce a novel neuro-
symbolic framework to pre-train a transformer model for Olympiad-level math problems. Morishita
et al. (2024) construct synthetic training data to improve language models’ performance on logical
reasoning tasks. Building on this stream of work, we apply synthetic data generation for teaching
causal reasoning.

3 PRELIMINARIES: CAUSAL AXIOMS AND RULES

Instead of performing causal reasoning using observational or interventional data, we study whether
it is possible to learn general rules of causality directly from symbolic axioms. There has been
fundamental work from Galles & Pearl (1997) where they axiomatize causal relevance (or equivalently
irrelevance). They show that for a given stable probabilistic causal model (defined below), there
exists a finite set of axioms that are completely characterized by axioms of path interception in
corresponding directed graphs. Additionally, causal inference in practice depends on a few key
rules, such as d-separation and do-calculus rules. Learning these rules can have a tangible impact
on practical causal tasks such as graph discovery and effect inference. While we call the method
axiomatic training, we consider learning both causal axioms and rules. Throughout this work, we
assume no unobserved confounders.

Notation. We denote a random variable with an uppercase letter (e.g., X,Y, Z) and use lowercase
letters (e.g., x, y, z) to denote the values taken by the corresponding random variable, written as X =
x, Y = y, Z = z. We represent the probability of a random variable Xi as P(Xi). Let G(X,E) be a
directed acyclic graph (DAG) consisting of a set of variables X = {X1, . . . , Xn} and a set of directed
edges E among variables in X. Let pa(Xi) = {Xk|Xk → Xi}, de(Xi) = {Xk|Xk ← · · · ← Xi},
ch(Xi) = {Xk|Xi → Xk} denote the set of parents, descendants and children of Xi respectively.
Given two nodes Xi, Xj we call a third node Xk as a collider if both Xi and Xj are parents of Xk.

3.1 AXIOMS OF CAUSALITY: TRANSITIVITY

Definition 3.1 (Causal Irrelevance, adapted from Defn. 7 in (Galles & Pearl, 1997)). X is prob-
abilistically causally irrelevant to Y given Z, written (X ↛ Y |Z) iff: P(y|z, do(X) = x) =
P(y|z, do(X) = x′) ,∀x, x′, y, z i.e., once we hold Z fixed at z, intervening on X will not change the
probability of Y.

Next, we restate the stability assumption for a causal model from Galles & Pearl (1997) that gives a
richer set of finite axiomatization for probabilistic causal irrelevance.
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Assumption 3.2 (Stability, Definition 9 in Galles & Pearl (1997)). LetM be a causal model. Then
an irrelevance (X ↛ Y |Z) inM is stable if it is shared by all possible probability distribution over
M. The causal modelM is stable if all of the irrelevances inM are stable.

Under the stability assumption (see Assumption 3.2), Galles & Pearl (1997) states six axioms that
completely characterize causal irrelevance (Definition 3.1) via axioms of path interception in the
directed graphs. An axiom of causal irrelevance is of the form (given in conjunctive normal form):∧
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where ∧ is “logical and", ∨ is “logical or" and for a given (s, t) or (l, n) pair, Xi,Xj ,Xk are disjoint
subsets of observed variables X . In the above causal irrelevance statement, if the antecedent is true,
the consequent is also true.

Transitivity Axiom. We illustrate our axiomatic training procedure through the transitivity axiom.
Following the stability assumption above, we consider the class of interventional distributions in
which the transitivity causal irrelevance axiom holds (Sadeghi & Soo, 2024). Formally, for a stable
probabilistic causal model (§3), given variables X , Y , Z in the system, the transitivity axiom is:

(X ↛ Y |Z) =⇒ (A ↛ Y |Z) ∨ (X ↛ A|Z)∀A /∈ X ∪ Z ∪ Y

which can be simplified using the contrapositive.

∃A /∈ X ∪ Y ∪ Z s.t. (X → A|Z) ∧ (A→ Y |Z)︸ ︷︷ ︸
P :premise

=⇒ (X → Y |Z)︸ ︷︷ ︸
H:hypothesis

(1)

We call the LHS as Premise and the RHS as Hypothesis.

3.2 D-SEPARATION RULE

The d-separation rule connects causal graph structure with conditional independence in P(X).
Definition 3.3 (Definition 1.2.3 in Pearl (2009a)). Given a DAG G(X,E), two sets of random
variables Xi and Xj are said to be d-separated by a third set Xz if all the paths between Xi and Xj

in G are blocked by Xz . A path p between Xi and Xj is said to be blocked by a set of nodes Xz

iff 1) p contains a fork (i.e., · ← A → ·) or a chain (i.e., · → A → ·) such that the middle node A
is in Xz , or 2) p contains a collider (· → A← · ) such that the middle node A is not in Xz and no
descendant of A is in Xz .

Given P(X) is markov with respect to G, if two sets of random variable Xi and Xj are d-separated
by Xz , then they are conditionally independent of each other given Xz .

4 AXIOMATIC TRAINING FOR TRANSFORMERS

Given an axiom, our key idea is to generate thousands of synthetic symbolic expressions that can be
used to train a transformer on how to use the axiom. The trained model is then evaluated on whether
it can apply these axioms to new causal structures that were not available in the training set. Below
we describe how we generate the training data and the model architecture details.

4.1 TRAINING DATA: DIVERSITY IS KEY

As mentioned above, an axiom consists of a tuple, ⟨premise, hypothesis, conclusion⟩. Based on
the specific axiom, we can map a hypothesis given the premise to its correct label (‘Yes’ or ‘No’). To
create a training dataset, we randomly sample a causal DAG G and enumerate N random tuples of
{(P,H,L)}N where P is the premise, H is the hypothesis and L is the label (Yes/No). The premise
describes the edges of the graph and is expressed in natural language, e.g., “X causes Y. Z causes Y.".
Given a premise P based on the causal graph’s edges, if the hypothesis can be derived by applying
the specified axiom (once or multiple times), then label L is Yes; otherwise, No. For example, for the
transitivity axiom, suppose the underlying true causal graph of a system is a chain, X1 → X2 → X3.
Then, the premise will be X1 → X2 ∧X2 → X3. A corresponding hypothesis for the transitivity
axiom could be X1 → X3 will have label Yes whereas another hypothesis X3 → X1 will have label
No. The former would create a training data instance with the following text, “X1 causes X2. X2
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Figure 1: Evaluating structural generalization of transformers through axiomatic training. We train a
transformer on two simple causal structures: chains and chains with random flipping of some edges. All training
instances consist of 3-6 nodes. The trained model is evaluated on significantly more complex structures: bigger
causal chains with >6 nodes, general branched networks with higher average in-degree and out-degree, complete
reversals, longer sequences, shuffled natural language statements of sequences and longer node names.

causes X3. Does X1 cause X3? Yes.”. Note that the axiom can be inductively applied multiple
times to generate more complex training tuples. Another possible hypothesis for the d-separation
rule could be “Are X1 and X2 d-separated given {X3}?” and the label will be No.

We train the model on data from simple causal graphs such as sequential chains with 3-6 nodes
and evaluate its performance on more complex graphs 1. To enhance generalization, we introduce
structured perturbations in the training data across three axes: node names, causal structure types,
and the number of nodes in the causal graph.

1. Node names: Each node in the graph is represented by an alphanumeric name comprising 1-3
characters. The length of a name and the specific characters are randomly selected during data
generation.

2. Causal Graph Topology: We consider two main types of causal graphs in the training set.
(a) Sequential: All causal edges are directed forward, thus forming a typical chain DAG, e.g. X
→ Y→ Z.

(b) Random Flipping: Given a chain of sequential nodes, we randomly reverse some edges eg.
X→ Y← Z. This can be expressed simply through natural language like: “X causes Y. Z
causes Y.". This introduces forks and colliders that help add complexity to model training,
thus aiding generalization across a larger space of graphs.

3. Number of nodes in graph: To facilitate the generalization of transformers over graphs of
different sizes we incorporate chains of varying lengths, ranging from 3 to 6 nodes in our training
set.

4.2 TOKENIZATION, TRAINING LOSS & ARCHITECTURE

We train the transformer model from scratch to ensure that the model has not seen such axioms in the
pertaining step and thus requires a true correct understanding of axioms to perform well. Later we
also tested on a pre-trained model fine-tuned on our dataset.

Tokenization. Since the training dataset follows a specific structure, we develop a custom tokenizer.
Alphanumeric node names are tokenized at a character level, while special terms such as ‘causes’,
‘Does’, ‘cause’, ‘Yes’, and ‘No’ are tokenized at the word level. Such an approach avoids out-
of-vocabulary (OOV) tokens at test time since the alphanumeric node names in the test set can be
different than those in the training set. Following this approach, the vocabulary size of our transformer
model is 69.

Loss function. Given a dataset, the loss function is defined based on the ground truth label for
each tuple, represented as E

(P,H,L)∼Ptrain

− logP(L|P,H). A preliminary analysis indicated promising

results with this loss formulation compared to next token prediction loss.

Positional Encoding. In addition to the training data and loss function, recent work (Kazemnejad
et al., 2023) has shown that the choice of positional encoding is important for generalizing a
transformer to longer or complex inputs. Therefore, we experiment with different positional encoding
to understand their impact on generalization in causal tasks: learnable (LPE) (Radford et al., 2018),
sinusoidal (SPE) (Vaswani et al., 2023), rotary (RoPE) position encodings (Su et al., 2023), and
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no positional encoding (NoPE) (Kazemnejad et al., 2023; Haviv et al., 2022). See Appendix E for
details.

Finetuning. Apart from training a transformer from scratch, we also fine-tune a pre-trained language
model (Llama-3.1-8b-Instruct (gra, 2024)) on our axiomatic training data.

4.3 EVALUATION SETUP: ASSESSING AXIOMATIC LEARNING IN TRANSFORMERS

We consider two types of evaluation: 1) on synthetic datasets where we directly test the models on
axioms and, 2) on existing benchmarks corresponding to different high-level causal tasks where we
expect the axioms to be helpful.

Synthetic evaluation. To evaluate if a trained model has learned the correct understanding of an
axiom instead of shortcuts or correlation-based features, designing an out-of-distribution (OOD)
evaluation set is important. We evaluate our model on multiple types of complex graphs that are
unseen during training.

1. Length: Evaluating whether our model accurately infers causal relationships for chain graphs
(both sequential and ones with random flipping) longer than those in the training set. Specifically,
we train the model on chains with size 3-6 and evaluate on chains of size 7-15.

2. Node Name Shift: Testing the model’s performance on longer node names, from 1-3 characters
used in the training set to 8-10 characters. This is motivated by Jin et al. (2024b) who show how
change in node names results in generalization failure on causal tasks for language models.

3. Order of Chains: a) Completely reversed chains: This evaluation is inspired by the reversal
curse (Berglund et al., 2024) that revealed generalization failure of LLMs in answering questions
in reversed sequences despite knowing the answers in the original order. We evaluate our model
on completely reversed chains, a structure that was not in the training data. A completely reversed
chain will be of the form X← Y← Z, written in natural language as: “Y causes X. Z causes Y.",
where X,Y, Z are replaced by random alphanumeric names. b) Shuffling of Sequences: Here
we shuffle the order of causal edges presented in each training row to add complexity and break
sequential order.

4. Branching Factor: One of the most complex evaluation setups, with DAGs containing multiple
branches, colliders, and forks. Let the branching factor be defined as the ratio between a number
of edges and a number of nodes. Thus, the branching factor for the training set is ≤ 1. Then, we
create a different evaluation set with multiple densely branched networks constructed using the
Erdös-Rényi model, with different branching factors.

Benchmark evaluation. To test whether such simple axiomatic training is helpful in more complex
scenarios, we evaluate our models on existing causal reasoning benchmarks, Corr2Cause (Jin et al.,
2024b) and CLEAR (Chen et al., 2024b). Models trained from scratch on axiomatic instances with
limited vocabulary and capability cannot be tested on diverse datasets (due to out-of-vocabulary
issues). Therefore we use finetuned language models on these datasets.

5 AXIOMATIC TRAINING FOR TRANSITIVITY AXIOM

5.1 TRAINING AND EVALUATION DATASETS

In all our experiments, we consider an empty conditioning set Z for simplicity.

Training Datasets. The training data consists of sequential chains of lengths from [3,6]. In addition
to sequential chains, random flipping of edges is done with 0.5 probability. See Appendix F for
details on these hyperparameters. Our training data consists of 175k axiom demonstrations. We use
three versions of training data to evaluate the impact of different data perturbations.

1. Only Causal Chains (OCC): This set comprises of graphs with only sequential chains (see causal
graph topology in Sec 4.1 for details).

2. Training Setup 1 (TS1): This setup comprises of 73k examples where the underlying graphs has
random flipping and 101k causal graphs where the underlying graphs has sequential chains. Since
flipping is done randomly across all consecutive pairs of nodes in the given chain, some complete
reversals are also formed. In this training set, around 12k completely reversed chains are present.
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3. Training Setup 2 (TS2): This setup comprises more simple sequential chains (132k), while we
decrease chains with random flipping (42k) to keep the overall size around 175k to see the effect
of adding examples with complicated graphs on model’s performance.

Evaluation Datasets. In addition to the evaluation sets described earlier (length generalization, node
name shift, order of chains, and branching), we add another evaluation set that is a combination of
three shifts.

MultiEvalSLR (Shuffling + Random Flipping + Length Sequence): This setup involves eval-
uation on 3 levels of complexities together: shuffling of sentence for representing the sequences,
each sequence having random flipping, and some sequences having longer length than sequences in
training set (upto 9).

5.2 IMPLEMENTATION DETAILS: ARCHITECTURE AND TRAINING PROCEDURE

We train a decoder-based 67 million parameter model based on GPT-2’s architecture. The model has
12 attention layers, 8 attention heads and 512 embedding dimensions. The model is trained from
scratch on each of our training datasets. All models are trained for 100 epochs using the AdamW
optimizer with 1e-4 learning rate. We use three variant of positional encoding when training the
transformer: SPE: Sinusoidal Positional Encoding (PE), LPE: Learnable PE, RoPE: Rotary PE, NoPE:
without any PE.

5.3 BASELINES USING EXISTING LLMS

Given recent work on how LLMs can be leveraged for causal reasoning (Kıcıman et al., 2023;
Vashishtha et al., 2023; Ban et al., 2023), we include language models such as GPT-4 (gpt-4-32k)
ope (2024), Gemini (gemini-pro) gem (2024) and Phi-3 (Phi-3-mini-128k-instruct) abd (2024) as
baselines. Note that each of these models is significantly larger than our model and known to perform
well on reasoning tasks, with the smallest baseline model Phi-3 having 3.8 billion parameters (Li
et al., 2023).

Zero Shot Setting To evaluate the baseline models, we follow a simple zero-shot prompting strategy.
For each tuple, we provide the natural language expression of the causal graph (Premise) followed by
the question (Hypothesis) and prompt the LM to answer it in either ‘Yes’ or ‘No’ (Label). Here is an
example prompt: “EX causes T. T causes 9. 9 causes W. W causes 7. 7 causes M. M causes a. Does
EX cause T? Answer in ‘Yes’ or ‘No’ only”. See Table A1 contains examples of prompts used.

Multi Shot Setting (In-context-learning). Since these LLMs might not have seen such tasks before,
we include some examples along with their true label in the prompt and then we add the evaluation
example in the end. This ensures LLMs can do in-context learning and thus a fair comparison against
our model that is trained explicitly on the axiomatic dataset. We present few-shot instances from our
training set that includes sequential causal chains, along with a few examples with random flipping of
edges. Appendix B.1 contains the multishot prompt used for querying baseline LLMs.

5.4 RESULTS: GENERALIZATION TO COMPLEX CAUSAL SCENARIOS

We train our model using axiomatic training on different kinds of datasets, TS1, TS2, and OCC, with
different positional encoding (NoPE, LPE, and SPE) as described in Sec 5.1. Results on all evaluation
settings are in Appendix Tables A3, A4 and A5.

MultiEvalSLR Dataset. We evaluate our models and other baselines on the challenging
MultiEvalSLR dataset since it includes example that are different from training dataset in terms of
size and complexity of causal graph. Table 1 summarizes the results for this dataset. While GPT-4
performs best, models trained with RoPE position encodings still achieve strong results, surpassing
Gemini Pro and Phi-3 in both zero-shot and multi-shot settings for majority of node lengths.

A similar trend is seen for completely reversed sequences (Table A2). This task presents extreme
out-of-distribution data, as the training data contains left-to-right edges, while the test data has
only right-to-left edges. TS2 (NoPE) consistently outperforms Gemini-Pro and Phi-3, and remains
competitive with GPT-4 (zero shot). In particular, its accuracy (0.94 for chains of length 6) is
substantially higher than Gemini Pro and Phi-3 (0.71 and 0.75 respectively).
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Model/Nodes 3 4 5 6 7 8 9

Baselines (Zero Shot)

GPT-4 0.99 0.97 0.89 0.85 0.95 0.90 0.90
Gemini Pro 0.75 0.73 0.72 0.76 0.71 0.68 0.74
Phi-3 0.88 0.86 0.82 0.79 0.76 0.73 0.79

Baselines (Multi Shot)

GPT-4 1.00 0.99 0.97 0.95 0.94 0.90 0.92
Gemini Pro 0.95 0.85 0.83 0.79 0.79 0.73 0.75
Phi-3 0.88 0.83 0.82 0.80 0.83 0.76 0.78

Axiomatic Training

TS1 w NoPE 1.00 0.93 0.85 0.83 0.78 0.73 0.73
TS1 w LPE 1.00 0.93 0.87 0.83 0.79 0.74 0.73
TS1 w SPE 0.99 0.92 0.85 0.81 0.76 0.74 0.61
TS1 w RoPE 1.0 0.93 0.87 0.85 0.81 0.78 0.76

TS2 w NoPE 0.99 0.93 0.86 0.82 0.79 0.74 0.73
TS2 w LPE 1.00 0.92 0.85 0.83 0.77 0.74 0.71
TS2 w SPE 0.99 0.94 0.86 0.81 0.76 0.72 0.64
TS2 w RoPE 1.0 0.95 0.89 0.86 0.82 0.79 0.76

OCC w RoPE 0.78 0.71 0.64 0.65 0.63 0.61 0.61

Table 1: Evaluation on MultiEvalSLR dataset. Accuracy of axiomatically trained models with
another baseline on the most complicated setups. For OCC we only report performance with RoPE
encodings, which is the best performing setup for this dataset. See Sec 5.4 for details. Bold numbers
denote the highest value on a test set, while the underlined ones denote the second best.

Figure 2: Evaluating generalization on causal se-
quences (without random flipping) with longer
node names (than the ones used in sequences in
train set). TS-2 training set with no positional en-
coding leads to the best performance. Refer table
A4 for complete results.

Figure 3: Generalizing to longer unseen causal se-
quences (>6 nodes) with random flipping on TS2
and OCC (with NoPE) train sets. OCC-trained
models struggle due to limited edge-level variabil-
ity, while TS2 NoPE consistently performs well.
Refer table A3 for complete results

Branched Causal Graphs. Even though our models are trained on simpler graphs like sequential
and random-flipping, we want to test our models on structurally harder graphs not considered in
MultiEvalSLR. To do so, we introduce general Erdos-Renyi graphs as the causal sequences while
the training data contains only linear chains. We vary the branching factor of the graph as defined
in Sec 4.3 between 1.4 and 2 for all our experiments on graphs with different numbers of nodes.
Table A6 summarizes the results of this experiment. While GPT-4 achieves the highest accuracy as
graph sizes increase, our TS1 (RoPE) and TS2 (RoPE) model outperforms Gemini Pro (branching
factor 1.4) in for graphs with size 5 and 8 under zero-shot settings. On graphs with 12 nodes and
a 1.4 branching factor, TS2 (RoPE) achieves 68% accuracy, far better than random (50%), despite
training only on graphs with branching factors ≤ 1. Although LLMs excel in multi-shot settings, our
model’s performance is comparable even on more complicated causal graphs than the ones they were
trained on.

Further Ablations. We run further ablations to understand the generalization behavior of our
models. In particular, we experiment with generalization to unseen node names (Appendix Table
A4), generalization to unseen lengths for graphs with linear chains and random flipping of edges
(Appendix Table A3), and generalization to graphs with branching factor of 2 (A5).
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6 AXIOMATIC TRAINING FOR D-SEPARATION RULE

Similar to the transitivity axiom, we now train our model on instances on of d-separation rule from
multiple causal graphs and different premise, hypothesis pairs.

6.1 TRAINING DATASET AND SETUP

We follow a similar strategy to generate the training dataset as we did for the transitivity axioms. The
training dataset consists of graphs with lengths from [3, 6] with branching factor in range [0.6, 0.8]
and uses the same premises from the TS2 training set as we did for transitivity axiom (see Sec 5.1).
Given a premise, we create the hypotheses as follows: First, select all pairs of nodes in the graphs
(x1, x2), then select the conditioning set C from the remaining sets of nodes of size up to 5 nodes
at a time. The ground truth labels denote whether x1 and x2 are d-separated given conditioning set
C for the given causal graph in the premise. From this exhaustive set of hypotheses, we randomly
subsample 175k examples.

6.2 EVALUATION

Building on the success of axiomatic training for the transitivity axiom, we extend our approach to
d-separation by introducing structurally more complex scenarios, such as branching and longer chains
with random flipping. Unlike transitivity, which primarily involves reasoning over linear chains,
d-separation is inherently more challenging due to its dependence on various structural patterns,
including colliders, chains, and forks.

We evaluate the trained 67M model on two evaluation settings: longer sequences with random flipping
A8 and branching A7, to cover a range of structural variations. Overall, model trained with RoPE
emerges as the best performer, with NoPE based model following as close second. While GPT-4
struggles to perform better than random baselines in both settings, our models trained from scratch
perform much better than random baseline, and the performance goes down as size increases.

7 EVALUATING ON COMPLEX TASKS WITH AXIOMATIC FINETUNING

We trained Llama-3.1-8B-Instruct using supervised fine-tuning on the same axiomatic training data,
where the model takes causal graph premises and hypotheses (for transitivity or d-separation) as
inputs and predicts ’Yes’/’No’ as output labels. Refer I for more details.

7.1 EVALUATION ON CLEAR BENCHMARK

Chen et al. (2024a) introduced CLEAR, a comprehensive benchmark assessing LLMs’ causal
reasoning across 20 tasks, including backdoor adjustment, d-separation and others. It features diverse
question types beyond Yes/No, allowing for evaluation on more complex tasks. We test our model,
fine-tuned on axiomatic d-separation instances, in a zero-shot setting on CLEAR’s Yes/No (YN) and
Multi-Choice (MC) questions. Despite training on YN labels, our model outperformed GPT-4 on MC
tasks. Fine-tuning on axiomatic instances of d-separation yielded a 20% improvement over the base
model, surpassing GPT-4, while model showed improvement for YN task as well. Despite differences
in semantic structure and wordings of finetuning and evaluation instances, our model, exhibited a
significant performance gain over the base model. The substantial zero-shot gains across diverse
tasks, semanmtic structure and question types, outperforming larger models like GPT-4, suggest that
the model effectively applies d-separation rather than relying on spurious associations. Refer Table 2
for results.

7.2 EVALUATION ON CORR2CAUSE DATASET

Jin et al. (2024c) proposed a more complex dataset to evaluate models on different causal tasks. Each
data instance in the benchmark includes correlational relationships described in natural language for
graphs with 3 to 6 nodes; the goal is to infer the truth value of a hypothesis. The hypothesis consists
of six different kinds of graphical relationships between pairs of variables: Parent, Ancestor, Child,
Descendant, Collider, and Confounder. This task is significantly harder than applying a single axiom.
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CLEAR D-Separation task (YN)
Models Accuracy
Llama-3-8b-Instruct 60.0
Llama-3-8b-Instruct Finetuned 70.0
GPT-4 63.33

CLEAR D-Separation task (MC)
Models Accuracy

Llama-3-8b-Instruct 33.0
Llama-3-8b-Instruct Finetuned 50.0
GPT-4 36.67

Table 2: Evaluation on CLEAR dataset Chen
et al. (2024b) We finetune the LMs on our d-
separation dataset and evaluate on the CLEAR
dataset in a zero-shot setting. We observe a sig-
nificant increase in performance compared to
the baseline, which highlights the efficacy of ax-
iomatic training. For discussion refer Sec 7.1.

Model F1 Prec Rec Acc
Llama-3-8b-
Instruct

0.18 0.14 0.23 0.67

Llama-3-8b-
Instruct Finetuned
Dsep (175k)

0.20 0.17 0.24 0.70

Llama-3-8b-
Instruct finetuned
transitivity (300k)

0.37 0.28 0.57 0.70

GPT-4 (from paper) 0.29 0.21 0.48 0.64

Table 3: Evaluation on the Corr2Cause Task
from Jin et al. (2024b). We finetune the LMs
on our transitivity and d-separation dataset and
evaluate the Corr2Cause dataset in a zero-shot
setting. We observe a significant increase in per-
formance compared to the baseline, which high-
lights the efficacy of axiomatic training. For
discussion refer Sec 7.2.

First, one needs to infer the causal graph from the correlation statements. This requires knowledge of
d-separation statements and Markov condition Appendix D.1. Then, one needs to use the transitivity
axiom to identify the direct effect and indirect effect to identify the children, ancestors, colliders, and
confounders in the causal graph.

Comparison with Baselines: Our results highlight the Llama-3-8b-Instruct Base model’s poor
performance on this task, while axiomatic fine-tuning enables it to handle the complexity effectively.
Fine-tuning on transitivity and d-separation improved performance, despite their simplicity. Notably,
transitivity fine-tuning led to the largest gains, even surpassing GPT-4, likely due to its direct relevance
in inferring graph relationships. This demonstrates the potential of our minimalist training setup to
tackle complex, language-based causal reasoning tasks.

8 DISCUSSION AND CONCLUSION

In this paper, we provide a general framework, axiomatic training, to add axioms and simple rules
of causality as inductive prior in the ML models, which can then further help in downstream causal
discovery and causal inference tasks. We demonstrate their usefulness by training/fine-tuning models
using our axiomatic training framework on two simple rules – transitivity and d-separation rules. We
also discuss various modelling choices and how they effect the learning and generalization of causal
axioms. We observe that a transformer model trained from scratch on a large axiomatic dataset can
learn to apply axioms effectively. On causal tasks like graph traversal via transitivity and inferring
causal relationships from correlation, small 67M transformers generalize well to unseen complex
graphs, often outperforming models like GPT-4, Phi-3, and Gemini Pro. We then demonstrate
the usefulness of adding these rules as inductive prior to downstream tasks on two downstream
datasets – CLEAR and Corr2Cause. We observe that fine-tuning LLMs using axiomatic training help
perform better on these dataset in the zero-shot setting, i.e., having never seen examples from these
datasets. Fine-tuning on d-separation and transitivity-based axiomatic instances led to performance
improvements. The model fine-tuned on transitivity exhibited the highest performance gain on
templates like Parent, where distinguishing direct and indirect relationships is crucial. Similarly, fine-
tuning on d-separation instances resulted in performance improvements on templates like idenrifying
collider, where identifying colliders is key. Since the Child template contains no "No" labels, its
reported F1 score is 0.
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Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large
language models may talk causality but are not causal, 2023.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task, 2023.

13

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://doi.org/10.1038/s41586-023-06747-5


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

APPENDIX

Query
Type
(Train/
Eval)

Data Instance Example
(Premise-Hypothesis-Label)

Structure Type Network Size
(number of
nodes)

Train Mhb causes iqB. iqB causes G. Does G cause
iqB?: No

Short Linear
Sequence

3-6

Train N5w causes s. 6D causes s. Does N5w cause
s?: Yes

Short Sequence
with Random
Flipping

3-6

Eval w3 causes ROv. w3 causes tQC. H causes
ROv. H causes tQC. b causes ROv. b causes
w3. b causes H. Does tQC cause ROv?: No

Branching 5,8,10,12

Eval LKk causes 5Ov. Kk causes L0. L0 causes
KWO. 5Ov causes c. Does KWO cause L0?:
No

Shuffled
Sequences

3-9

Eval FDAH26mV7 causes 7tzaIHjlY. 7tzaIHjlY
causes 0kspcX95Im. 0kspcX95Im causes
7rhFSlx2o9. 7rhFSlx2o9 causes
1PlG5LHVqp. Does FDAH26mV7 cause
7tzaIHjlY?: Yes

Sequences with
Longer Node
Names

3-9

Eval r causes rZ. rZ causes L. L causes bUx. bUx
causes Pbr. Pbr causes 1w. 1w causes c3. c3
causes yBQ. yBQ causes yK. yK causes w. w
causes P. P causes kH. kH causes 1u. 1u
causes jV7. jV7 causes i. Does r cause rZ?:
Yes

Long Linear
Sequences

7-15

Eval rU6 causes eF. eF causes ivC. 3R causes ivC.
3R causes A8. 2 causes A8. 2 causes i. i
causes a03. y causes a03. b causes y. b
causes h. h causes yN. ic0 causes yN. ic0
causes Hd. Hd causes U. Does rU6 cause
eF?: Yes

Long
Sequences with
Random
Flipping

7-15

Table A1: Table with examples of data instances of different causal structural networks used for
training and evaluating models. Each instance is broken down into premise, hyopthesis, and label.
During evaluation, only the premise followed by the corresponding hypothesis is provided, whereas
during training of transformer, the model is trained on the loss of prediction of the label token.

A TRANSITIVITY AXIOMS

Length Generalization: Table A3 shows the accuracy of different models when evaluated on larger
causal chains that were not seen during training. Among the baseline pre-trained LMs, GPT-4 obtains
the highest accuracy on both sequential and randomly flipped chains for the multi-shot setting. It is
remarkable that our TS2 (NoPE) model obtains competitive performance to the trillion-scale GPT-4
model. In particular, for chains of size 7-12, TS2 (NoPE) obtains higher or comparable accuracy
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Model 3 4 5 6

Baselines
Zero Shot
GPT-4 0.97 0.99 0.98 0.92
Gemini Pro 0.61 0.59 0.66 0.62
Phi-3 0.80 0.69 0.73 0.69

Multi Shot
GPT-4 1.00 1.00 1.00 0.99
Gemini Pro 0.95 0.87 0.77 0.71
Phi-3 0.93 0.89 0.75 0.75

Axiomatic Training
TS1 w NoPE 0.99 0.97 0.90 0.91
TS1 w LPE 0.99 0.98 0.95 0.93
TS1 w SPE 1.00 0.98 0.95 0.96
TS1 w RoPE 0.97 0.97 0.96 0.98

TS2 w NoPE 0.98 0.96 0.90 0.91
TS2 w LPE 0.99 0.97 0.92 0.96
TS2 w SPE 0.99 0.97 0.93 0.94
TS2 w RoPE 0.99 0.98 0.97 0.98

OCC w NoPE 0.41 0.24 0.18 0.13
OCC w RoPE 0.59 0.26 0.22 0.20

Table A2: Following (Berglund et al., 2024), we evaluate models on inferring cause-and-effect from
fully reversed sequences absent in training data. Models trained on OCC perform worse, highlighting
the importance of edge-level perturbations for generalization. Accuracy metric is reported, with
random baseline = 0.5. Best performance is bolded, while second best is underlined.
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than GPT-4 on both sequential and randomly flipped chains. Similar trends are observed for chains
of size 7-13 when compared to GPT-4 in the zero-shot setting. Our model’s accuracy decreases for
chains of length 14-15 (0.85 for sequential chains and 0.78 for randomly flipped chains) but is still
significantly higher than that of LMs like Gemini-Pro and Phi-3. Although in-context examples in
multi-shot setting improve the performance of baseline LLMs, TS2 (NoPE) still outperforms both
Gemini Pro and Phi-3 in the multi-shot setting. Note that a random prediction would yield a 50%
accuracy, indicating that the axiomatically-trained TS2 (NoPE) model can generalize its reasoning to
causal chains much longer than 6 even though it was trained only on chains up to length 6.

Node Name Shift: For models trained on TS2 dataset, we also evaluate generalization to changes
in variable names (Figure 2). We find that TS2 (NoPE) is robust to node name changes and retains
its high accuracy as new, longer names are introduced. It also retains its generalizability to longer
sequences with new node names, performing similarly to GPT-4.

Summary: Across all evaluation setups, our axiomatically trained model TS2 (NoPE) performs
significantly better than random baselines even as chain lengths are increased beyond its training
data. In particular, even though our model was not trained on fully reversed chains, it performs at
par with the significantly larger GPT-4 model (Fig. ??), while easily outperforming other billion
scale models even under multi-shot settings. For other tasks, it often outperforms or matches the
accuracy of billion-scale models like Gemini Pro and Phi-3. These results indicate that a model
trained axiomatically can learn to reason about more complex causal structures from demonstrations
of simple causal sequences.

A.1 ADDITIONAL RESULTS: ROLE OF DATA DIVERSITY AND POSITIONAL ENCODING

Importance of Data Perturbations. We find that diversity of the sequences in train data plays
an important role. Model trained on only causal chains (OCC) generalize to longer chains (Table
A3) but not to other DAG structures (see Figure 3 for edge flip, Table A6 for branching). Models
trained on TS1 or TS2 generalize across all scenarios, including random flip, order permutations,
and branching; thus highlighting the impact of incorporating variability at the edge level through
random flipping. However, across tasks, we find that TS2 yields higher accuracy than TS1, even as
TS1 has more variations due to random flipping. This suggests that while perturbations aid structural
generalization, excessive perturbations can hinder it (in particular, random flipping may decrease the
length of available causal paths during training).

Role of Positional Encodings. When comparing models based on positional encoding, we find
that models without positional encoding generalize well to both longer chains (up to length 15)
and unseen complex graph structures, despite being trained only on linear chains with 3-6 nodes.
Models with SPE and LPE perform well on longer chains but struggle with longer node names,
even in smaller graphs (Figure 2), highlighting their sensitivity to minor perturbations. SPE also
underperforms in branching and order-based settings like shuffling and reversal. Learnable PE works
up to 9-length chains but drops afterward. Overall, our results extend earlier work on the utility of
NoPE (Kazemnejad et al., 2023; Haviv et al., 2022) to the task of understanding causal sequences and
generalizing to both longer length and complex structure at test time. Interestingly, all PEs perform
well in randomly flipped sequences, likely due to the short effective path lengths caused by the 0.5
probability of forward-directed edges.

B MULTI-SHOT PROMPT

B.1 CAUSE-EFFECT INFERENCE TASK

Chain lengths of the in context examples ranged from 3 to 6 to maintains consistency with the training
and testing paradigm used for our 67-million-parameter model.

The following multi-shot prompt was used to evaluate the baselines and models across different test
sets, assessing their generalization based on length, order, and branching.

Following the given examples answer the question regarding causal relationship between two vari-
ables: ‘5e0 causes vAf. vAf causes VO. Does vAf cause VO?: Yes’

‘5e0 causes vAf. vAf causes VO. Does vAf cause 5e0?: No’
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Model 7 8 9 10 11 12 13 14 15

FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF

Baselines

Single Shot

GPT-4 0.95 0.98 0.97 0.93 0.87 0.94 0.91 0.87 0.90 0.95 0.92 0.92 0.85 0.93 0.93 0.93 0.89 0.86
Gem-Pro 0.63 0.73 0.69 0.74 0.64 0.75 0.65 0.81 0.72 0.78 0.60 0.80 0.59 0.68 0.67 0.64 0.61 0.66
Phi-3 0.81 0.85 0.96 0.85 0.85 0.85 0.87 0.89 0.90 0.86 0.84 0.85 0.91 0.84 0.90 0.80 0.78 0.85

Multi Shot

GPT-4 0.97 0.99 0.93 0.99 0.92 0.96 0.88 0.94 0.89 0.97 0.89 0.93 0.88 0.95 0.93 0.94 0.86 0.94
Gem-Pro 0.80 0.82 0.81 0.79 0.78 0.81 0.67 0.79 0.73 0.82 0.74 0.83 0.67 0.78 0.72 0.78 0.68 0.78
Phi-3 0.83 0.92 0.89 0.88 0.75 0.86 0.66 0.87 0.80 0.90 0.80 0.85 0.79 0.82 0.71 0.81 0.72 0.82

Axiomatic Training

TS1 w NoPE 0.99 0.96 0.97 0.95 0.86 0.92 0.78 0.87 0.77 0.90 0.76 0.82 0.77 0.82 0.75 0.83 0.70 0.76
TS1 w LPE 0.98 0.96 0.89 0.94 0.81 0.91 0.61 0.86 0.64 0.87 0.64 0.79 0.60 0.80 0.59 0.81 0.57 0.73
TS1 w SPE 0.99 0.91 0.88 0.92 0.73 0.77 0.62 0.69 0.63 0.65 0.69 0.60 0.62 0.62 0.59 0.58 0.63 0.58
TS1 w RoPE 0.99 0.96 0.97 0.95 0.89 0.90 0.82 0.84 0.81 0.84 0.86 0.76 0.76 0.81 0.82 0.70 0.78 0.75

TS2 w NoPE 0.98 0.93 0.93 0.92 0.82 0.88 0.74 0.84 0.70 0.85 0.70 0.80 0.71 0.76 0.71 0.77 0.66 0.73
TS2 w LPE 0.99 0.95 0.96 0.94 0.86 0.90 0.72 0.86 0.69 0.85 0.80 0.78 0.73 0.78 0.75 0.80 0.68 0.77
TS2 w SPE 0.97 0.92 0.91 0.92 0.76 0.85 0.58 0.72 0.60 0.66 0.61 0.56 0.60 0.56 0.58 0.56 0.56 0.59
TS2 w RoPE 0.99 0.97 0.98 0.96 0.90 0.89 0.85 0.87 0.84 0.82 0.87 0.74 0.78 0.80 0.86 0.69 0.78 0.71

OCC w NoPE 0.99 0.61 0.98 0.62 0.89 0.62 0.90 0.57 0.90 0.57 0.93 0.52 0.87 0.55 0.93 0.50 0.87 0.53
OCC w RoPE 0.96 0.65 0.98 0.71 0.84 0.68 0.84 0.64 0.80 0.65 0.88 0.56 0.76 0.60 0.84 0.60 0.79 0.55

Table A3: Accuracy of different models on Transitivity axioms. In this table, we show the accuracy of
different models on the transitivity axioms. The rows shows different models considered for comparison. The
top rows denote the performance of baseline models with different prompting strategies i.e. single shot and
multi-shot prompt (see Sec 5.3 for details). The models listed after axiomatic training shows the performance of
transformer models trained from scratch on our axiomatic dataset. TS1 and TS2 denote pretraining data setups
1 and 2 as described in Sec 5.1 and different modifiers are: SPE: Sinusoidal Positional Encoding (PE), LPE:
Learnable PE, w/o PE: No PE, RoPE: Rotary Position Embedding. For axiomatic training, the model remains
the same across all setups (67 Million parameters based). The training dataset contain graphs of size 3-6 however
the models are tested on graphs of size 7-15 (as mentioned in different columns). FS denotes the graphs that
only contain chains that are oriented in forward direction and RF contains the graphs that also includes random
flipping (see Sec 4.1 for details) same as training set.

‘e0F causes Z. Z causes 0U. 0U causes mR. mR causes 1L. Does mR cause 1L?: Yes’
‘e0F causes Z. Z causes 0U. 0U causes mR. mR causes 1L. Does Z cause e0F?: No’
‘b causes K. K causes qPv. 5 causes qPv. Does b cause qPv?: Yes’
‘b causes K. K causes qPv. 5 causes qPv. Does b cause 5?: No’
‘Mhb causes t0a. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does xu cause 6Eh?:
No’
‘Mhb causes t0a. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does n cause NS?: Yes’

C RESULTS AND ANALYSIS

D PRELIMINARIES AND NOTATIONS

Causal Models LetM = (X,U ,F) be a causal model defined over a set of endogenous variables
X , exogenous variables U and the causal relationship between then defined by set of structural
equations F (Galles & Pearl, 1997). Let G be the causal graph associated with the causal model
M where the nodes V in G correspond to the variables inM and an edge Vi → Vj between any
two nodes Vi, Vj denote the causal relationship between them. The causal relationship of node Xi is
characterized by the functional relationship fi ∈ F s.t., xi = fi(pai,ui). Here pai are the parent
of the node Xi is the corresponding causal graph G and ui ⊆ U are set of exogenous variables
influencing the exogenous variable Xi. In our work, we assume that there are no hidden confounders
so we have one exogenous variable corresponding to every endogenous variable i.e. ui = ui. Each
exogenous variable has an associated probability distribution which quantifies the uncertainty in the
system i.e. ui ∼ P(ui). Thus the joint distribution of the exogenous variable is given by P(U). Since
any endogenous variable is a deterministic function of other endogenous and exogenous variables
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Model 3 4 5 6 7 8 9

Baselines

Single Shot

GPT-4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gemini Pro 0.96 0.94 0.86 0.81 0.76 0.73 0.71
Phi-3 0.99 0.98 0.95 0.94 0.96 0.95 0.93

Multi Shot

GPT-4 1.00 1.00 0.98 0.98 0.98 0.98 0.97
Gemini Pro 1.00 1.00 0.91 0.90 0.86 0.88 0.84
Phi-3 0.93 0.89 0.89 0.84 0.82 0.77 0.79

Axiomatic Training

TS1 w NoPE 1.00 1.00 1.00 0.99 0.98 0.92 0.88
TS1 w LPE 1.00 1.00 0.99 0.97 0.92 0.83 0.74
TS1 w SPE 0.76 0.61 0.58 0.57 0.54 0.50 0.54
TS1 w RoPE 0.65 0.56 0.56 0.49 0.45 0.49 0.50

TS2 w NoPE 1.00 0.99 0.92 0.84 0.76 0.71 0.69
TS2 w LPE 1.00 0.99 0.96 0.90 0.86 0.76 0.74
TS2 w SPE 0.82 0.66 0.60 0.58 0.57 0.55 0.53
TS2 w RoPE 0.51 0.48 0.48 0.50 0.46 0.46 0.48

OCC w NoPE 1.00 0.99 0.98 0.96 0.96 0.91 0.93
OCC w RoPE 0.90 0.77 0.67 0.64 0.65 0.59 0.62

s

Table A4: Results on node name length generalization. TS1 and TS2 denote Training Data setup 1 and 2
from Section 4. OCC is the third data setup comprising of sequential causal chains. SPE: Sinusoidal PE, LPE:
Learnable PE, w/o PE: No PE, RoPE: Rotary Position Embedding. Model remains the same across all setups (67
Million parameter based). For longer node names, NoPE performs best on sequential linear setup. Accuracy
metric is used.

Model 5 8 10 12

BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4

Baselines

Zero shot

GPT-4 0.98 0.95 0.91 0.90 0.84 0.88 0.82 0.86
Gemini Pro 0.77 0.74 0.72 0.76 0.71 0.73 0.73 0.71
Phi-3 0.87 0.83 0.82 0.79 0.77 0.77 0.75 0.80

Multi shot

GPT-4 0.99 0.97 0.94 0.93 0.90 0.94 0.89 0.93
Gemini Pro 0.81 0.76 0.77 0.79 0.75 0.77 0.78 0.79
Phi-3 0.77 0.78 0.79 0.82 0.78 0.79 0.80 0.79

Axiomatic Training

OCC w RoPE 0.74 0.72 0.70 0.68 0.66 0.66 0.65 0.62

TS1 w LPE 0.76 0.82 0.70 0.72 0.67 0.69 0.63 0.68
TS1 w SPE 0.65 0.78 0.57 0.61 0.55 0.59 0.53 0.57
TS1 w NoPE 0.78 0.82 0.70 0.74 0.67 0.69 0.62 0.66
TS1 w RoPE 0.81 0.86 0.75 0.79 0.73 0.74 0.69 0.71

TS2 w LPE 0.73 0.80 0.68 0.72 0.65 0.67 0.61 0.64
TS2 w SPE 0.65 0.79 0.53 0.59 0.52 0.54 0.52 0.52
TS2 w NoPE 0.75 0.82 0.68 0.73 0.67 0.68 0.62 0.64
TS2 w RoPE 0.81 0.88 0.74 0.79 0.70 0.72 0.68 0.68

Table A5: Evaluation with variation in branching factor. Accuracy of axiomatically trained models
with LM baselines on the causal graphs with higher branching factor than that in training. See Sec 5.4
for details.

the probability distribution corresponding to the endogenous variable is the push-forward of the
exogenous variable i.e P(X) ≜ P#(U).

18



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Model/Nodes 5 8 10 12

Baselines (Zero shot)

GPT-4 0.95 0.90 0.88 0.86
Gemini Pro 0.74 0.76 0.73 0.71
Phi-3 0.83 0.79 0.77 0.80

Baselines (Multi shot)

GPT-4 0.97 0.93 0.94 0.93
Gemini Pro 0.76 0.79 0.77 0.79
Phi-3 0.78 0.82 0.79 0.79

Axiomatic Training

OCC w RoPE 0.72 0.68 0.66 0.62

TS1 w LPE 0.82 0.72 0.69 0.68
TS1 w SPE 0.78 0.61 0.59 0.57
TS1 w NoPE 0.82 0.74 0.69 0.66
TS1 w RoPE 0.86 0.79 0.74 0.71

TS2 w LPE 0.80 0.72 0.67 0.64
TS2 w SPE 0.79 0.59 0.54 0.52
TS2 w NoPE 0.82 0.73 0.68 0.64
TS2 w RoPE 0.88 0.79 0.72 0.68

Table A6: Evaluation with branching factor 1.4. Accuracy of axiomatically trained models with
LM baselines on the causal graphs with branching factor 1.4. See Sec 5.4 for details.

D.1 DEFINITIONS

Following the formal definitions provided by (Jin et al., 2024b), we explain the following terminolo-
gies:

Markov Property In a directed acyclic graph (DAG) G, the Markov property asserts that each
node Xi is conditionally independent of its non-descendants given its parents. This can be written
as Xi ⊥⊥ NonDe(Xi) |Pa(Xi), where NonDe(Xi) represents the set of non-descendants of Xi,
excluding the node itself, and Pa(Xi) denotes its parents. Leveraging the Markov property, the joint
distribution over all the nodes can be factorized as:

P (X1, . . . , XN ) =
N∏
i=1

P (Xi |Pa(Xi)).

Markov Equivalence Class Two directed acyclic graphs (DAGs) are considered Markov equivalent
if they induce the same joint distribution P (X). The collection of DAGs that are Markov equivalent
is referred to as a Markov equivalence class (MEC). Causal graphs within the same MEC can be
easily recognized as they share the same skeleton (i.e., undirected edges) and V-structures (i.e.,
configurations of the form A→ B ← C, where A and C are not directly connected).

E POSITIONAL ENCODINGS AND THEIR ROLE IN GENERALIZATION

Positional Encoding (PE) play a crucial role of providing information about the absolute and relative
position of tokens in a sequence (Vaswani et al., 2023). (Vaswani et al., 2023) propose an absolute
positional encoding strategy using periodic functions (e.g., sinusoidal or cosine) to initialize these
encodings. Absolute positional encoding provides definite values for all positions across any sequence
length. However, studies (Ontañón et al., 2022; Csordás et al., 2021) show absolute positional
encoding fails in length generalization tasks for transformers. In the learnable APE variant (Radford
et al., 2018), each positional embedding is randomly initialized and trained with the model. This
approach falters with sequences longer than those seen in training, as the new positional embeddings
remain untrained and randomized. Interestingly, recent findings (Kazemnejad et al., 2023; Haviv
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et al., 2022) indicate that removal of PEs in auto-regressive models can improve model’s length
generalization capabilities, wherein the attention mechanism during auto-regressive decoding is
sufficient to encode positional information. We also experiment with Rotary Position Encodings Su
et al. (2023), which have shown superior length generalization. We use θ = 10000.0 for the base
period of RoPE embeddings.

F FORMALISING TRAINING AND EVALUATION SETUP

Let fdim represent the maximum value for a given perturbation dimension dim, along which we
construct train and evaluation sets for our axiomatic framework. For each dimension, we choose
a threshold τdim ∈ L, such that fdim < τdim forms our training set and fdim ≥ τdim forms the
evaluation set. So, fdim ∈ {flen, fbranch, fnodelen, frevfactor, fshuffle} where:

• flen = max∀i(len(Vi)), gives the maximum number of nodes across all causal sequences. τlen for
length is set at 6, with flen ∈ [3, 6].

• fbranch = max∀i(|Xi|/|Vi|) gives the maximum branching factor in a dataset, with τbranch = 0.8
(for 6 node linear sequences). For sequences in the train set, the branching factor ranges from 0.6
to 0.8 for 3 to 6 length sequences.

• Let li,j be the length of the name of the node Xi,j , then li,j = (len(Xi,j)).Therefore, the maximum
length of node names across all nodes in all causal sequences can be represented as: fnodenamelen =
max1≤i≤n, 1≤j≤m li,j . We set τnodelen for train set as 3, with fnodelen ∈ [1, 3].

• Given any causal sequence Xi and a function N , where N(Xi,j , Xi,j+1) returns natural language
representation of a directed edge between j and j + 1 node in the causal chain Xi. fshuffle =
∩∀i,jPerm(N(Xi,j , Xi,j+1)), where N(Xi,j , Xi,j+1) represents deviation from original sequential
order of natural language sentences to represent Xi.

• Given a causal sequence Xi and let R(Xi, frevfactor) be an operation on the causal chain that
flips the direction of every edge in the sequence with probability frevfactor. In the training set,
there is a directed edge between every sequential pair of nodes Xi,j , Xi,j+1 with frevfactor = 0
(for linear sequence, Xi,j → Xi,j+1) or 0.5 (for sequence with random flipping, Xi,j → Xi,j+1

or Xi,j ← Xi,j+1) In the evaluation set frevfactor = 1 i.e., all sequences for reversal evaluation
setup are completely reversed unlike in train set where no sequence is present where all edges are
completely reversed.

G RESULTS OF DSEP ON CLEAR DATASET

Premise: Given a DAG (directed acyclic graph) with nodes C, Z, P, V and directed edges C->V, P->V,
C->Z, Z->P, Z->V.

Hypothesis: "Which of the following nodesets can d-separate node C and node P?
A. {’Z’, ’V’}
B. {’V’}
C. {’Z’}
D. set()

Answer: C

Figure A1: Example instance of Multiple Choice (MC) question type from Chen et al. (2024b) dataset
describing d-separation rule problem defined with a different hypothesis type and semantic structure
then the one our models are finetuned on.

H RESULTS ON CORR2CAUSE DATASET

I IMPLEMENTATION DETAILS

We used a learning rate of 1e-4 with linear scheduling and 3% warmup ratio, training for 4102
max steps on axiomatic instance samples with sequences of maximum length 4096 tokens. We
employed mixed precision (bfloat16) training with flash attention for efficiency. After training, the
LoRA weights were merged with the base model for inference. We used Huggingface wol (2020) for
implementation. The fine-tuning used LoRA with rank 64, alpha 16, and dropout 0.1. Training was
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Figure A2: Model Comparison: F1 Score across Templates, finetuning on
dsep and transitivity based axiomatic instances lead to performance improve-
ment. Model finetuned on transitivity sees the highest jump for templates
like Parent, where identifying direct-indirect relations is important. Fine-
tuning on D-separation instances see a jump in performances for templates
like has_collider, where identifying a collider is important. Since child
template has 0 ’No’ labels, the F1 score reported is 0.

Figure A3: Model Comparison: Accuracy Score across Templates

Figure A4: Comparison of Model Performance across Different Relationship Templates. Accuracy
plots show consistent trends, with model finetuned on transitivity consistently outperforming base
models, on templates where direct-indirect relationship identification is required. Finetuning on
D-separation instances see a performance jump over the base instruct model, for templates identifying
colliders and confounders.
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Branching (Bfactor = 1.4)
Models 5 8 10 12
Baselines
GPT-4 0.53 0.544 0.62 0.52
Finetuned Results
Llama-3-8b-Instruct 0.474 0.490 0.470 0.482
Llama-3-8b-Instruct-Finetuned 0.796 0.738 0.718 0.670
Models with different PEs trained from scratch
SPE 0.67 0.59 0.56 0.55
LPE 0.67 0.61 0.57 0.56
NoPE 0.63 0.58 0.53 0.53
RoPE 0.70 0.58 0.54 0.52

Table A7: We evaluate the effectiveness of axiomatic training for d-separation under two training
paradigms: training a model from scratch and fine-tuning a pretrained Llama model. The training
setup consists of linear sequential causal chains, along with some variations where edges are randomly
flipped. However, we assess model performance on significantly more complex causal graphs
featuring branching structures and additional nodes, similar to our transitivity analysis. The base
Llama Instruct model (prior to fine-tuning) performs on par with random baselines. In contrast,
the fine-tuned model demonstrates a substantial improvement, particularly on branched networks.
Unlike our transitivity analysis—where GPT-4 significantly outperformed all other models—GPT-4
struggles in this setting, performing no better than the random baseline. While multi-shot prompting
led to consistent and significant improvements in transitivity experiments, it fails to enhance GPT-
4’s performance on d-separation, even when using the multi-shot prompt described in Section ??.
Additionally, our experiments with a decoder-based model trained from scratch show superior
performance compared to baselines.

Models 7 8 9 10 11 12 13 14
GPT-4 0.57 0.64 0.52 0.50 0.53 0.52 0.51 0.50
Llama-3-8b-Instruct 0.51 0.50 0.54 0.51 0.48 0.51 0.53 0.51
Llama-3-8b-Instruct-Finetuned 0.952 0.948 0.954 0.850 0.87 0.88 0.73 0.66
Models with different PEs trained from scratch
SPE 0.93 0.95 0.97 0.95 0.71 0.61 0.80 0.44
LPE 0.96 0.93 0.99 0.92 0.68 0.71 0.62 0.47
NoPE 0.89 0.93 0.85 0.94 0.68 0.65 0.60 0.5
RoPE 0.96 0.91 0.96 0.92 0.70 0.69 0.54 0.58

Table A8: Performance on DSEP of longer chains with random flipping

performed on 3 GPUs using DeepSpeed Stage 3 with a total batch size of 128 (16 samples per GPU
with gradient accumulation).
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