Under review as a conference paper at ICLR 2026

SHEPHERD: PATTERN-GUIDED TRAJECTORY SELEC-
TION FOR CODING AGENTS ON SWE-BENCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite major improvements in LLM coding agents, their performance on complex
software engineering tasks is still limited—Ileading models to solve only about
half of the software engineering tasks in benchmarks like SWE-bench. This gap
highlights the need to systematically understand why coding agents fail. We
comprehensively analyze coding agent failure patterns in 18 state-of-the-art open-
and closed-weight models. Through meticulous examination of 3,908 execution
trajectories, we identify three distinct failure patterns: (1) FAILURE-TO-ACT, where
agents fail to interact with the environment; (2) OUT-OF-ORDER-ACTIONS, where
agents issue interdependent actions simultaneously rather than sequentially; and (3)
FALSE-TERMINATION, where agents prematurely assume task completion. Using
these failure patterns, we introduce Shepherd, a test-time steering mechanism that
leverages an LLM-as-a-judge framework to evaluate trajectories. Shepherd shows
a strong monotonic correlation with expert annotations and can effectively identify
problematic patterns in agent behavior. When applied to select optimal trajectories
from multiple runs, Shepherd significantly improves performance, increasing o1-
low from 21% to 31% on SWE-bench Verified, outperforming the more expensive
ol-high model (29%) at 57% of the cost. We open-source our comprehensive
dataset of trajectories to facilitate further research on improving coding agent
capabilities. !

1 INTRODUCTION

Long-horizon tasks such as automating clinical workflows, accelerating scientific discovery, software
engineering or complex data retrieval demand Al systems capable of performing complex activities
with minimal human oversight (Chen et al., 2025; Kanoulas et al., 2025; Chawla et al., 2024; Gottweis
et al., 2025; Swanson et al., 2024; Park et al., 2023). In response, both industry and academia have
shifted focus to developing autonomous Large Language Model (LLM) agents that combine reasoning,
tool use, and learning from mistakes to perform complex tasks in novel situations (Anthropic, 2025;
OpenAl, 2025b; Google DeepMind, 2024). Among these systems, coding agents—which navigate
repositories, edit files, and run tests—provide a sharp lens on agentic behaviour because actions are
schema-constrained and outcomes are programmatically verifiable. While previous studies have
shown that giving an LLM the ability to use tools with clear instructions can lead to performance
gains (Patil et al., 2023; Packer et al., 2024; Shinn et al., 2023; Yang et al., 2024), many real-world
coding tasks still elude current agents (Jimenez et al., 2024b; OpenAl, 2024).

Our comprehensive evaluation of 18 state-of-the-art open- and closed-weight models demonstrates
that, in practice, the majority of coding agents continue to perform poorly on software engineering
tasks, ultimately achieving only modest scores on the SWE-bench benchmark (Jimenez et al., 2024c¢).
This particular outcome is further reinforced by the results reported on the SWE-bench Verified
leaderboard (Jimenez et al., 2024b; OpenAl, 2024), where, even under the most favorable conditions,
the current best performing model (Claude 3.5 Sonnet) is capable of solving only 52% of the issues
(Anthropic, 2024). Taken together, these observations naturally give rise to the following central
research question: How do coding agents fail?

The full dataset is available at: https://anonymous.4open.science/r/Shepherd/README .
md

https://anonymous.4open.science/r/Shepherd/README.md
https://anonymous.4open.science/r/Shepherd/README.md

Under review as a conference paper at ICLR 2026

[Errored LLM action @ Expected LLM action @ Environment execution}

LLM Environment LLM Environment LLM Environment LLM Environment

User Query User Query

T e, |
wlfdit(FileB)

Edit DirA/FileB

DirA)

E

DirA/FileA DirA/FileB

Edit(FileB)

FileA)

DirA/FileB
Edit(FileB)

DirA/FileB

Edit(FileB)

Test
Access denied [T

Test(FileB) (FileA)

DirA/FileA

FINISH

File not found Test(FileA)

(a) Expected Behavior (b) Failure to Act (c) Out of Order Actions (d) False Termination

Figure 1: (a) Expected behavior, showcases how an ideal LLM agent should interact with the
environment. Three distinct failure patterns observed: (b) FAILURE-TO-ACT, the model begins
planning future steps while taking no action with the environment, (c) OUT-OF-ORDER-ACTIONS:
the model tries to execute several actions in parallel (create file, edit file, test file) when the success
of some actions depends on the prior success of other actions that were sent at the same time, (d)
FALSE-TERMINATION the model relies extensively on its internal world model for validation instead
of actually testing the fixes against the environment (It hallucinates the validation step).

In this paper, we present a detailed analysis of behavioral patterns underlying failures of LLM-
based coding agents and show that these errors are human-interpretable. We identify three patterns:
(1) FAILURE-TO-ACT—the agent neglects necessary environment actions (e.g., edits or tests); (2)
OUT-OF-ORDER-ACTIONS—the agent issues interdependent actions simultaneously rather than re-
specting sequential dependencies; (3) FALSE-TERMINATION—the agent assumes success without
proper validation (Figure 1). These patterns were surfaced through exploratory review across models
and issues, selected for generality, prevalence (> 10%), and criticality (not easily recovered via
feedback), validated on an expert-labeled subset, and then scaled with an LLM judge.

This analysis offers a practical entry point for improving coding agents. Given clear environment
and role descriptions, many failures trace to role execution: e.g., when instructed to verify, agents
may hallucinate verification (FALSE-TERMINATION) instead of calling run_tests; when asked to
act sequentially, they may still produce concurrent interdependent edits (OUT-OF-ORDER-ACTIONS).
Making these decisive behaviors explicit enables targeted test-time selection. We leverage this to
build Shepherd, a lightweight, execution-free LLM-as-a-judge framework (Zheng et al., 2023) that
scores sets of coding trajectories.

Shepherd runs the coding agent multiple times and selects the trajectory with the fewest bad patterns.
An automated prompt-based judge outputs a quantitative Shepherd score indicating the extent of these
failures. We find that LLM judgement aligns with human judgement (Spearman p~0.39, p~0.011).
Shepherd can substantially improve performance at lower cost than switching to a larger model. On
SWE-bench Verified, running ol-low twice (total $800) and selecting with Shepherd raises pass rate
from 21% to 31%, outperforming o1-high (29% at $1400).

We also compare Shepherd with alternative execution-free judges and test-based baselines (Chen et al.,
2024; Jimenez et al., 2024b), finding that Shepherd consistently outperforms other execution-free
approaches and complements test-based selection. Finally, we analyze 3,908 trajectories from 18
state-of-the-art models using Shepherd, reporting the prevalence of each failure pattern across model
families and providing guidance for model selection in coding agents. We open-source the full
trajectory dataset to facilitate further research (see footnote 1).

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Agency in Al systems and coding agents. Classical Al frames agents as entities that perceive and
act in an environment (Russell and Norvig, 1995), while modern work emphasizes a spectrum of
autonomous capabilities—goal pursuit, language interfaces, and structured tool use (Zhang et al.,
2024a; Kapoor et al., 2024; Yang et al., 2024). Coding agents provide a natural testbed because
actions are schema-constrained (read_file, edit_file, run_tests) and outcomes are pro-
grammatically verifiable. Prior efforts have proposed agent architectures for software engineering
tasks (Research, 2024; AWS, 2024; Liu et al., 2024; Jimenez et al., 2024a). In contrast, our focus is
on analyzing execution traces of current systems to ask: why do coding agents fail, and how can their
performance be improved at test time?

LLM Multi-Agent Systems: An emerging research focus explores the use of LLMs as central
controllers to develop agents that interact with the external world beyond text-based domains (Deng
et al., 2023; Xie et al., 2024). Within this focus, studies have examined multi-agent LLM-powered
systems in which multiple interactive agents operate concurrently (Hong et al., 2024; Li et al., 2023).
These systems leverage individual agents’ specialized skills and roles, enabling collaborative problem-
solving for complex tasks by simulating real-world cooperation patterns. Due to growing interest in
multi-agent systems, concurrent work has investigated reasons for failure in such systems (Cemri
et al., 2025; Zhang et al., 2025). In contrast, this paper focuses specifically on single-agent systems,
particularly on coding agents, identifying patterns that prominently lead to coding agent failures. The
proposed approach, Shepherd, may also potentially improve the performance of multi-agent systems.

Test-time verifiers and trajectory selection. A growing line of work uses verifiers to improve agent
outputs, ranging from execution-based methods that run human-authored tests (Xia et al., 2024), to
execution-free critics that score trajectories without execution (Pan et al., 2024), and critic models
embedded in the loop (Antoniades et al., 2025; Wang, 2025). Execution-based approaches are strong
but costly and tied to test availability; execution-free methods are portable but must correlate with
true success. Shepherd belongs to the latter class: a prompt-based, training-free judge that detects
FA/OOA/FT, complements test-based selection, and applies equally to closed-source models.

LLM-as-a-judge and overthinking. LL.Ms have been used as judges across tasks (Zheng et al.,
2023), but their reliability depends heavily on clear rubrics and observable signals. In coding settings,
our Shepherd score provides a 0—10 rating of failure patterns; importantly, we find that LLM scores
and expert annotations move in the same direction, showing a consistent monotonic correlation. This
alignment indicates that even if absolute judgments differ, the judge is able to reliably rank trajectories
in terms of quality—precisely what is needed for best-of-K selection. This contrasts with token-
length heuristics that target “overthinking” (Chen et al., 2024): while shorter reasoning sometimes
correlates with higher accuracy, such heuristics remain content-agnostic. By focusing instead on
behavior-specific errors, Shepherd achieves larger and more consistent gains on SWE-bench Verified,
while complementing both test-based verifiers and simpler heuristics.

3 SINGLE AGENT IMPLEMENTATION

In this section, we explain how models are deployed within coding-agent environments. Prior work
shows that agent performance varies substantially with the surrounding system (Jimenez et al., 2024b;
AWS, 2024; Zhang et al., 2024b; Yang et al., 2024; Jin et al., 2024; Research, 2024; He et al.,
2024). We build on OpenHands (Wang et al., 2024), a leading coding-agent framework on SWE-bench
Verified (Jimenez et al., 2024b), making it a strong substrate for studying behavior. Understanding
the interaction between models and their environments is crucial to diagnosing how and why coding
agents fail.

During execution, control alternates between the LLM agent and the environment. The environment
provides a role description (software engineer), the concrete task (issue/bug), and an interface
contract describing how to act (e.g., command channels and control-transfer delimiters). The
agent then plans and issues actions—exploring directories, reading files, editing code, and running
checks—toward resolving the issue.

Under review as a conference paper at ICLR 2026

Environment: There is a bug in NdarrayMixin

LLM: read(CurrentDirectory) You are an expert spotting failure patterns.
Environment: FileA, FileB, NdarrayMixin.py \>(formatted trajectory}
LLM: read(NdarrayMixin.py) —
Fl
Environment: contents of NdarrayMixin.py) TagF§ailure to Act (plans, no env)
LLM: edit(NdarrayMixin.py, content="def a...") B Out of order actions(multiple cmds in a row)
C False termination (finishes before check)
Environment: Edit succeded
LLM: test(NdarrayMixinTests. Scoring.0-10
test(NdarrayMixinTests.py) 0-3 = Interacts each turn, always verifies
Environment: Test failed 4-7 = Mix of overplanning, might not verify

8-10 = no interaction, no patch verification...

LLM: edit(NdarrayMixin.py, content="a = 2...")

LLM: test(NdarrayMixinTests.py) {"score":"0-10","why":"single-line"}
sanswer

(a) Formatted trajectory (b) Shepherd sketch prompt

Figure 2: (a) trajectory: We log each response generated by the model, every action it takes, and
the corresponding responses from the environment, forming a detailed history of events, a trajectory.
Moreover, we clip environment responses to keep the history within a feasible length (less than 128k
tokens). (b) Shepherd prompt sketch: Sketch of how the LLM-judge is prompted. A comprehensive
prompt describing how different patterns are identified and scored is presented in Appendix A.

To act, the agent emits special control markers that halt generation and return control for execution.
The environment executes the requested operations and returns structured feedback (e.g., file contents,
edit success/failure, command output), which is appended to the trajectory and fed back to the agent
on the next turn. When the agent believes the task is complete, it should emit a £inish signal
(followed by a halting token). An illustration of this loop appears in Figure 1.

Successful resolutions typically exhibit three interleaved phases:

» Exploration: Inspect repository state and locate relevant artifacts.
» Implementation: Modify files and configuration toward the desired state.
* Testing/verification: Validate changes (e.g., via tests, builds, or linters) before declaring completion.

In practice, agents cycle between exploration and implementation, with verification checkpoints
gating progress.

4 SHEPHERD: IDENTIFYING AND EXPLOITING FAILURE MODES IN LLM
AGENTS

LLM agents deploy LLM models in agentic environments with specialized prompts providing their
role descriptions. In most cases, LLMs are deployed in agentic environments to which they have not
been exposed during their training process. However, state-of-the-art large language models (LLMs)
exhibit remarkable instruction-following capabilities (Anthropic, 2024; OpenAl, 2024), positioning
them as strong candidates for deployment in potentially unforeseen agentic scenarios. Despite this
strength, we observe that single-agent systems frequently encounter limitations and failures when
operating within complex, dynamic environments. In this section, we discuss common failure patterns
observed in such deployments (subsection 4.2) and how these patterns can be identified and exploited
for better performance (subsection 4.3). Our study focuses specifically on software engineering
agents, a domain that presents both a high-impact use case and a rich set of challenges for autonomous
LLM-driven systems.

4.1 PATTERN DISCOVERY METHODOLOGY

Our goal is to isolate a small set of decisive, frequent, and cross-model behavioral patterns in coding
agents that materially impact issue resolution and can drive practical, execution-free steering. We
followed a three-phase protocol:

Under review as a conference paper at ICLR 2026

Pattern Generalizable Prevalent (>10%) Critical Rationale / Comments

Hallucinations Yes Yes No Fabricated content; often corrected by subsequent
environment feedback (e.g., read/build/test) without
dooming the trajectory.

Repetition loops No No Yes Degenerate text repetition; observed mainly in
weaker models (e.g., small open-weights); limited
cross-model generality.

Tool-calling failures No Yes Yes Misused/ignored tools concentrated in specific fami-
lies; not robustly cross-model.

Failure to account for side effects Yes No No Occurs but relatively rare; typically surfaced and
corrected by feedback.

Cheating (external substitution) No No Yes Model replaces environment with external artifacts;
rare and family-specific.

Failure to Act (FA) Yes Yes Yes Agent narrates/plans but does not act (e.g., omits
edits/tests); decisively blocks progression.

Out-of-Order Actions (OOA) Yes Yes Yes Interdependent ops issued without prerequisites (e.g.,

edit before locate/read); frequently unrecoverable
within a turn.

False Termination (FT) Yes Yes Yes Premature “done” without programmatic verifica-
tion; halts progress and precludes recovery.

Table 1: Exploratory patterns and screening outcome. We retain patterns that are generalizable across
model families, prevalent (non-trivial rates), and critical (not recovered via environment feedback).

Phase 1 — Exploration (saturation). We collaboratively reviewed coding trajectories across
multiple model families and sampled issues at random, continuing the process until no new patterns
emerged. In total, the team jointly annotated 250 trajectories drawn from 35 randomly chosen issues
(out of 500), refining the annotations through group discussion and shared oversight. This process
yielded a candidate pool that included both widely discussed behaviors (e.g., hallucinations) and
agent-specific interaction failures, which were then categorized by prevalence and recoverability.

Phase 2 — Screening (explicit criteria). Each candidate was evaluated along three axes: generaliz-
able (appears across model families), prevalent (occurs at non-trivial rates, roughly > 10% in our
exploratory sample), and critical (not reliably self-corrected by environment feedback). For example,
hallucinations, while frequent, were filtered out since agents often corrected them in subsequent
iterations. Only patterns meeting all three criteria were retained for downstream judging and steering,
yielding a distilled set of failure modes summarized in Table 1.

Why these patterns? Hallucinations and similar long-tail reasoning errors do occur, but coding
environments provide strong corrective signals (file contents, compiler errors, tests) that often
steer agents back on track; such errors are therefore not consistently critical. Patterns confined
to weaker families (e.g., repetition loops, certain tool-calling idiosyncrasies) fail the generalizable
criterion. By contrast, FA, OOA, and FT (i) recur across families and capability tiers, (ii) directly
prevent autonomous completion (not merely slow it), and (iii) surface in the observable structure
of trajectories—making them both predictive of failure and amenable to an execution-free judge.
Section 4.2 formalizes these patterns; Section 4.3 details how the rubric is operationalized for scalable
scoring and best-of-K selection.

4.2 FAILURE PATTERNS

Through manual analysis of coding-agent trajectories and large-scale scoring with Shepherd, we
observe three recurrent, decisive failures (examples in Figure 1; prevalence across models in Figure 3).

FAILURE-TO-ACT (FA): Ideally, an agent is supposed to interact closely with the environment
to achieve their objectives. However, LLM agents often spiral into long planning/conversations
without taking the required actions. We call this FAILURE-TO-ACT(FA). As shown in the example in
Figure 1(a), where the agent receives a user query but instead of performing actions autonomously, it
generates detailed plans and delegates execution back to the user, effectively abandoning its agency
role. This is by far the most prevalent failure pattern observed across different models. In general,
reasoning models show greater instances of FA than non-reasoning models (for e.g. QwQ family of
models compared to Qwen2.5 family). OpenAl seems to be an exception with considerably less
number of FA events. Additionally, within the OpenAl family, it seems that training the model for
calling native functions reduces the behavior of FA.

Under review as a conference paper at ICLR 2026

250 Pattern Combinations (FA: Failure to Act, OOA: Out of Order Actions, FT: False Termination)
. FA OOA mmm FT

QwQ Family Qwen2.5 Family DS-R1 Family OpenAl Family

200

150

Number of Issues

50

KO ot & o} o
QY \O \ 2 ;L
0,((\\“ oY OX“O o€

0%
IX o (_)“a‘

> RN £C
AR 0

3 T
D7 D o o e

Figure 3: Number of issues that present failure patterns organized by model and sorted by families.
This analysis is based on 3,908 trajectories across 18 state-of-the-art open- and closed-weights models
using SWE-bench Verified. Models across the same families tend to share the distribution of failure
patterns. Distilled models tend to inherit the failure patterns from the teacher model.

OUT-OF-ORDER-ACTIONS (0OOA) In an ideal agentic environment, an LLM agent should execute
actions in the correct order, with an understanding of their interdependencies. We find that the LLM
agent often shows gaps in this understanding. For instance, it can issue multiple actions in the same
turn to be executed where one of the actions depends on the successful execution of the other. We
call this pattern OUT-OF-ORDER-ACTIONS(OOA). As shown in Figure 1(b), this failure manifests
in two key ways: contextual interdependence, where the agent attempts to operate on files whose
existence it has not yet verified (e.g., trying to edit a file in a directory it has never listed or opened);
and sequential interdependence, where the agent attempts to perform multiple operations on the same
object simultaneously (e.g., creating, editing, and testing a file in a single turn). This is the second
most observed failure pattern. Often, it is found in conjunction with FA. Interestingly, reasoning
models show better restraint on issuing OOA (for e.g. QwQ family of models compared to Qwen2.5
family). Additionally, similar to FA, models trained for function calling show improvement in OOA
behavior.

FALSE-TERMINATION (FT) Early termination of execution occurs when LLM Agent, misguidedly,
declares that it has finished solving the task at hand without completing all the steps. One common
occurrence in this category is when models avoid verification with the environment to test their
changes and finish the task prematurely. As illustrated in Figure 1(c), after modifying the files, the
agent hallucinates a verification process rather than interacting with the environment to confirm
the efficacy of its changes. FALSE-TERMINATION is the overall least observed pattern. However,
our analysis reveals that reasoning-enhanced models (such as the QwQ family) exhibit significantly
higher rates of FALSE-TERMINATION compared to non-reasoning counterparts (like the Qwen2.5
family). This finding aligns with existing literature OpenAl (2025a), which highlights higher
hallucination rates in reasoning models. These models simulate verification steps internally rather
than engaging with the actual environment. This suggests that enhanced reasoning capabilities
amplify FALSE-TERMINATION behaviors when environmental grounding is essential.

While improving the core behavior of existing models is out of the scope of this paper, we show that
we can still exploit knowledge of these behaviors to improve the overall performance of LLM Agent.
We discuss these details next.

4.3 SHEPHERD JUDGE

Manual identification of patterns is costly; we therefore build an execution-free LLM evaluator that
detects FA/OOA/FT and quantifies their severity. We refer to this evaluator as Shepherd. Unlike
test-based verifiers that programmatically run unit tests (powerful but environment- and cost-heavy),
Shepherd operates purely on the textual trajectory, making it training-free, fast, and applicable to
closed models; it is complementary to programmatic tests.

Under review as a conference paper at ICLR 2026

Agent trajectory. The agent interacts until emitting £inish or hitting an action cap (e.g., 30). We
log every model message, invoked action, and environment reply, wrapping each with clear delimiters
and source tags. To fit long traces within context limits, we clip verbose environment outputs while
preserving the action—feedback structure (see Figure 2). Shepherd receives this trajectory plus a
rubric describing FA/OOA/FT and returns a 0—10 Shepherd score with a brief rationale (full prompt
in Appendix A). We use Shepherd to score 3,908 trajectories across 18 models (Figure 3).

Shepherd @K LLM-Agent. We exploit the score via best-of-K: sample K trajectories, compute
Shepherd scores, and select the lowest-scoring one. The chosen trajectory’s patch is then evaluated
with the benchmark’s oracle test suite (Section 5). In practice, Shepherd@ K yields meaningful gains
at low cost.

5 EXPERIMENTS

This section is organized as follows. In Section 5.1, we demonstrate how the Shepherd judge can
enhance the performance of existing models on SWE-bench Verified. In Section 5.2, we conduct
a detailed evaluation of the Shepherd score used by the Shepherd test-time steering mechanism,
examining its alignment with human expert judgments, its correlation with task success rates, and a
breakdown of score patterns.

5.1 IMPROVING PERFORMANCE ON SWE-BENCH USING SHEPHERD

We observe that failure patterns persist across different models — even those specifically trained
for improved reasoning, instruction following, or environment interaction via function calling. To
address this, we apply the Shepherd mechanism to enhance model performance.

Models. For a broad study across different baselines and judges we use the ol-low model for LLM
agent-model. For this LLM Agent, we consider judge-models of varying capabilities—ranging
from relatively smaller models such as gpt -40-mini and o3-mini, to more capable judges like
claude-3.7-sonnet and gpt—-40. We also include results on agent-model gpt-4o0-mini
since it is trained for function calling. Additionally, we also test on OpenHands-LM-32B. The results
for ol models are shown in Figure 4, and those for gpt-40-mini model are shown in Figure 6.

Baselines. For ol-low and gpt-40-mini models, we compare Shepherd against several alternative
judging criteria: (1) Lowest Tokens@k: Selects the trace with the fewest reasoning tokens (Chen et al.,
2024). (2) Verification (patch)@k: Judges the correctness of the generated patch. (3) Verification
(trajectory)@k: Judges the correctness of the entire trajectory. (4) Fail-to-Pass@k: programmatically
executes a subset of benchmark tests for each candidate patch and selects the one that passes the most
(Jimenez et al., 2024b). (5) Pass@k: Oracle upper bound selecting the best among k generations using
the full programmatic test suite. (6) 7Shep @k (hybrid): Applies Fail-to-Pass @k to filter candidates
that pass tests, then ranks those by Shepherd to break ties and select the final patch.

We make the following observations,

» Using a Shepherd-based strategy with the ol-low model, we achieve better performance than
ol-high while using only 57% of the cost (excluding negligible judging overhead). Additionally, for
3 out of 4 LLM judges, Shepherd @2 with ol-low matches or exceeds the performance of ol-high.

* For 3 out of 4 LLM judges, Shepherd @k outperforms other competing criteria across different
LLM judge models.

» The more capable the judge, the more effectively it can evaluate various criteria and leverage
advanced strategies such as Shepherd to achieve superior results.

» Even in cases where the model supports native function calling capabilities, leveraging Shepherd
improves issue resolution (see Figure 6).

» TShep @k narrows the gap to the Oracle (Pass@k) where tests exist: programmatic test execution
does most of the heavy lifting, while Shepherd provides robust tie-breaking and selection when
multiple candidates pass preliminary tests.

* Using Qwen3-235B-A22B-Instruct as the coding agent, Shepherd@2 improves SWE-bench
Verified from 43% to 48.5%, indicating that Shepherd remains relevant with SOTA models.

Improving OpenHands on SWE Benchmark: Leveraging Shepherd in open-weight SoTA model
(OpenHands-LM-32B), improves the score from 27% to 34% using 2 trajectories (i.e. Shepherd @2).

Under review as a conference paper at ICLR 2026

Pass@k - gpt-40-2024-11-20 Pass@k - claude-3-7-sonnet-20250219
Oracl 0 .09, Oracle
40% .09 39'°°Jéii§ 40% 38.09 .%9297 IShep
w. Test 370/ est
T ¢
35% 34.0% 35% +2
+ Shep
i 32.0% 32 0 32, o% 32.0%,
e \/ TF Y] Shep
30% / 29.1% 30% 29.0 2" 29.1% 29 oé"
o1 “lgh27 Oﬁ ‘ & 7 o1_} \gh
*LowTok ' - LoWToK

25% 25%
211 O‘V

20% 21.0%

20%

15% 15%

400% 800% 1200$ 1600$ 400$ 800% 1200$ 1600$
Pass@k - gpt-40-mini-2024-07-18 Pass@k - 03-mini-2025-01-31
40% ; 329 %?gg 40% e L
--/""__‘ d %ﬁﬁesl
35% 35%
. | L 4y
A & o b 29. b b
_ —’ﬁgﬁ%ﬁmuosne? o1 Kign2® o:/u ,
Y \Q./o LowTok . O-/0 LowTok
25% 25%
20% 21.0% 20% 21.0%
159 159
& 400% 800% 1200$ 1600$ g 400% 800% 1200$ 1600$
Verification (Patch)@k =+= Shepherd@k == Fail-to-Pass@k

=x= Vferification (Trajectory)@k =+= Fail-to-Pass@k + Shepherd w Pass@k
=== | owest Tokens@k

Figure 4: Comparison of the Shepherd criterion with alternative judging criteria for selecting the
best solution among k generations, evaluated across different LLMs acting as judges. We find that
Shepherd consistently matches or outperforms non-test-based criteria. Moreover, stronger judges
yield greater quality improvements when using the Shepherd criterion. In terms of cost versus quality,
using an ol-low model with Shepherd@2 (costing $800) outperforms the o1-high model (costing
$1400) in output quality, highlighting the efficiency and effectiveness of the Shepherd approach. The
shadowed area showcases the confidence intervals (CI), computed using Wilson score Wallis (2013).

5.2 EVALUATING SHEPHERD SCORE

In this section, we evaluate the Shepherd criterion via the Shepherd score metric assigned by an LLM
judge and focus on whether its ordering of trajectories is reliable enough for best-of-k selection.

1. Alignment of LLM Judge with Human Experts on Shepherd score

We first applied the LLM judge (Appendix A) to score over 100 trajectories on the 1-10 Shepherd
score scale. From these, we used stratified sampling to ensure coverage across model types and
predicted scores, then asked human experts to independently assign scores using the same rubric. Each
trajectory was reviewed by multiple annotators to capture variance in scale usage. After normalization,
inter-rater reliability yielded Cohen’s x ~ 0.36, reflecting almost moderate agreement. Crucially,
human experts and the LLM judge exhibited consistent monotonic alignment: when humans judged a
trajectory as reflecting more severe failure modes, the LLM judge assigned a lower score as well.
This property makes Shepherd score particularly useful for test-time ranking, where the ordering of
trajectories is more critical than absolute calibration (Section 4.3).

2. Utility of Shepherd score We use Shepherd score (“Shepherd score”) as a 0-10 rating of trajectory
quality assigned by an LLM judge (Appendix A), where higher means more failure-pattern prevalence.
For intuition: low (0-3) indicates sound sequencing with effective environment use; medium (4-7)
reflects issues with partial recovery.

Under review as a conference paper at ICLR 2026

Issue Resolution vs Shepherd Score

Pass@k - gpt-40-mini-2024-07-18-FC

9
< 50 i
> ol_high_FC All Models Trend 0
) =77 R2=0.78, p=0.00 15%
= Reasoning Trend
340! >~ R2=0.95, p=0.00
> Non-Reasoning Trend
Sonnet ~ —-—=-
= N DS-R1 = =
5 I5FC e R2=0.93, p=0.03
N N .
’Clﬁ 301 b ~ ol_high 10%
w ® S DS-V3
= GPT-40-FC . S
] AN ~l_low
= 201 g Q:\ ol-mini
£ N N
g N ~Stratos-328
2 s DS-R1-32B 5%
n 104 N NSkyT1-N
o GPT—4o-mini»Fb‘ QWL
> Qwen2.5:32B
2 01 Sky-T1-R
g 3 2 5 6 7 8 9 0%
400$ 800$ 1200% 1600$

Shepherd Score (AVg) Verification (Patch)@k «+= Shepherd@k == Fail-to-Pass@k

=x= Verification (Trajectory)@k =+= Fail-to-Pass@k + Shepherd = Pass@k
. . . . === Lowest Tokens@k
Figure 5: Issue resolution (y axis) against Shep-

herd Score (x axis). Model nomenclature: FC"
indicates native function calling capability, DS"
represents DeepSeek models, and suffixes ol
high and ol low denote models with reasoning
effort set to high and low, respectively.

Figure 6: Comparison of the Shephard criterion
with alternative judging criteria for selecting the
best solution among k generations evaluated using
gpt—-4o

* Negative correlation with success: We observe a strong, statistically significant negative cor-
relation between Shepherd score and SWE-bench resolution rates (Figure 5); higher Shepherd
score trajectories resolve fewer issues across model families, making Shepherd score a practical
alternative when execution verifiers are unavailable.

* Reasoning vs. hallucination compounding: Non-reasoning models tend to have lower Shepherd
score, while prior work shows hallucinations increase as reasoning is scaled (OpenAl, 2025a);
our results align with this, suggesting compounded hallucinations contribute to elevated Shepherd
score.

* Function calling helps but does not eliminate failures: Post-training with native function calling
(FC) often improves success yet leaves patterns intact; e.g., gpt —4o—-mini—-FC attains Shepherd
score comparable to non-FC models like DS-V3 or o1-mini, indicating residual FA/OOA/FT
even with better tooling.

3. Decomposition of Shepherd score into failure patterns We investigated how models exhibit
distinctive failure patterns, as illustrated in Figure 3.

6 LIMITATIONS

Our study has two main limitations: (i) it introduces a post-hoc, execution-free best-of-k selection
(Shepherd) for coding agents—we do not alter training data, objectives, or policies—though the
behavioral analysis (FA/OOA/FT) could inform future post-training or finetuning interventions; and
(ii) it is scoped to coding agents (SWE-bench Verified), so generalization to non-coding domains is
beyond the scope of the current work due to the high cost of evaluating LLM agents.

7 CONCLUSION

We studied why current coding agents struggle on SWE-Bench and found three consistent failure
modes: avoiding the environment, acting out of order, and ending early. These patterns explain
most errors across 18 models and 3,908 trajectories. We then proposed Shepherd, a lightweight,
execution-free judge that scores coding trajectories at test time and picks the safest one. Shepherd
requires no model retraining, aligns with expert labels, and, for example, boosts o1_low from 21% to
31% with pass@2 at materially lower cost than scaling to a larger model. Our findings highlight that
(i) current coding agents fail in systematic, detectable ways, and (ii) simple, model-agnostic oversight
can recover a substantial fraction of lost performance. The released dataset, code, and judge open
clear paths for improving future coding-agent architectures and training strategies.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.5: A sonnet of progress in ai. https://www.anthropic.com/news/c
laude—-3-5-sonnet, 2024. Accessed: 2024-11-21.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/
news/claude—-3-7-sonnet. News announcement published February 24, 2025.

A. Antoniades, A. Orwall, K. Zhang, Y. Xie, A. Goyal, and W. Wang. Swe-search: Enhancing
software agents with monte carlo tree search and iterative refinement, 2025. URL https:
//arxiv.org/abs/2410.20285.

AWS. Reinventing the amazon q developer agent for software development. https://aws.am
azon.com/blogs/devops/ reinventing-the-amazon-g-developer—-agent—
for-software—-development/, 2024. Accessed: 2024-11-21.

M. Cemri, M. Z. Pan, S. Yang, L. A. Agrawal, B. Chopra, R. Tiwari, K. Keutzer, A. Parameswaran,
D. Klein, K. Ramchandran, M. Zaharia, J. E. Gonzalez, and I. Stoica. Why do multi-agent llm
systems fail?, 2025. URL https://arxiv.org/abs/2503.13657.

C. Chawla, S. Chatterjee, S. S. Gadadinni, P. Verma, and S. Banerjee. Agentic Al: The building
blocks of sophisticated Al business applications. Journal of Al, Robotics & Workplace Automation,
3(3):196-210, September 2024. URL https://ideas.repec.org/a/aza/airwal/y
2024v3i3pl196-210.html.

S. Chen, Y. Liu, W. Han, W. Zhang, and T. Liu. A survey on llm-based multi-agent system: Recent
advances and new frontiers in application, 2025. URL https://arxiv.org/abs/2412.1
7481.

X. Chen, J. Xu, T. Liang, Z. He, J. Pang, D. Yu, L. Song, Q. Liu, M. Zhou, Z. Zhang, R. Wang, Z. Tu,
H. Mi, and D. Yu. Do not think that much for 2+3=7 on the overthinking of ol-like llms, 2024.
URL https://arxiv.org/abs/2412.21187.

X. Deng, Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun, and Y. Su. Mind2web: Towards a
generalist agent for the web, 2023. URL https://arxiv.org/abs/2306.06070.

Google DeepMind. Project mariner, 2024. URL https://deepmind.google/technologi
es/project-mariner/. Accessed: 2025-05-13.

J. Gottweis, W.-H. Weng, A. Daryin, T. Tu, A. Palepu, P. Sirkovic, A. Myaskovsky, F. Weissenberger,
K. Rong, R. Tanno, K. Saab, D. Popovici, J. Blum, F. Zhang, K. Chou, A. Hassidim, B. Gokturk,
A. Vahdat, P. Kohli, Y. Matias, A. Carroll, K. Kulkarni, N. Tomasev, Y. Guan, V. Dhillon, E. D.
Vaishnav, B. Lee, T. R. D. Costa, J. R. Penadés, G. Peltz, Y. Xu, A. Pawlosky, A. Karthikesalingam,
and V. Natarajan. Towards an ai co-scientist, 2025. URL https://arxiv.org/abs/2502
.18864.

J. He, C. Treude, and D. Lo. LIm-based multi-agent systems for software engineering: Vision and
the road ahead, 2024. URL https://arxiv.org/abs/2404.04834.

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, C. Zhang, J. Wang, Z. Wang, S. K. S. Yau, Z. Lin,
L. Zhou, C. Ran, L. Xiao, C. Wu, and J. Schmidhuber. Metagpt: Meta programming for a multi-
agent collaborative framework, 2024. URL https://arxiv.org/abs/2308.00352.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench: Can
language models resolve real-world github issues?, 2024a. URL https://arxiv.org/abs/
2310.06770.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench: Can
language models resolve real-world github issues? https://www.swebench.com/index
.html, 2024b. Accessed: 2024-11-21.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. R. Narasimhan. SWE-bench: Can
language models resolve real-world github issues? In The Twelfth International Conference on
Learning Representations, 2024c. URL https://openreview.net/forum?id=VTF8yN
QM6 6.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2410.20285
https://aws.amazon.com/blogs/devops/
https://aws.amazon.com/blogs/devops/
reinventing-the-amazon-q-developer-agent-
for-software-development/
https://arxiv.org/abs/2503.13657
https://ideas.repec.org/a/aza/airwa0/y2024v3i3p196-210.html
https://ideas.repec.org/a/aza/airwa0/y2024v3i3p196-210.html
https://arxiv.org/abs/2412.17481
https://arxiv.org/abs/2412.17481
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2306.06070
https://deepmind.google/technologies/project-mariner/
https://deepmind.google/technologies/project-mariner/
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2404.04834
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://www.swebench.com/index.html
https://www.swebench.com/index.html
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Under review as a conference paper at ICLR 2026

H. Jin, L. Huang, H. Cai, J. Yan, B. Li, and H. Chen. From llms to llm-based agents for software
engineering: A survey of current, challenges and future. arXiv preprint arXiv:2408.02479, 2024.

E. Kanoulas, P. Eustratiadis, Y. Li, Y. Lyu, V. Pal, G. Poerwawinata, J. Qiao, and Z. Wang. Agent-
centric information access, 2025. URL https://arxiv.org/abs/2502.19298.

S. Kapoor, B. Stroebl, Z. S. Siegel, N. Nadgir, and A. Narayanan. Ai agents that matter, 2024. URL
https://arxiv.org/abs/2407.01502.

G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem. Camel: Communicative
agents for "mind" exploration of large language model society, 2023. URL https://arxiv.
org/abs/2303.17760.

Y. Liu, P. Gao, X. Wang, J. Liu, Y. Shi, Z. Zhang, and C. Peng. Marscode agent: Ai-native automated
bug fixing, 2024. URL https://arxiv.org/abs/2409.00899.

OpenAl. Openai ol system card. https://openai.com/index/openai-ol-system-c
ard/, 2024. [Online].

OpenAl. Introducing swe bench verified. https://openai.com/index/introducing-s
we—bench-verified/, 2024. Accessed: 2025-01-24.

OpenAl. Openai 03 and 0o4-mini system card. Technical Report Version 2, OpenAl, San Francisco,
CA, Apr. 2025a. URL https://cdn.openai.com/pdf/2221¢c875-02dc-4789-800
b-e7758f3722cl/03-and-o04-mini-system-card.pdf. Accessed: 2025-05-15.

OpenAl. Introducing operator, 2025b. URL https://openai.com/index/introducing
—operator/. Accessed: 2025-05-13.

C. Packer, S. Wooders, K. Lin, V. Fang, S. G. Patil, I. Stoica, and J. E. Gonzalez. Memgpt: Towards
llms as operating systems, 2024. URL https://arxiv.org/abs/2310.08560.

J. Pan, X. Wang, G. Neubig, N. Jaitly, H. Ji, A. Suhr, and Y. Zhang. Training software engineering
agents and verifiers with swe-gym, 2024. URL https://arxiv.org/abs/2412.211309.

J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior, 2023. URL https://arxiv.org/abs/2304.0
3442.

S. G. Patil, T. Zhang, X. Wang, and J. E. Gonzalez. Gorilla: Large language model connected with
massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

I. Research. Swe agents: Empowering software development with ai agents. https://resear
ch.ibm.com/blog/ibm-swe—-agents, 2024. Accessed: 2024-11-21.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1 edition,
1995. ISBN 978-0-13-103805-9. Google-Books-ID: CUVeMwAACAAJ.

N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language
agents with verbal reinforcement learning, 2023. URL https://arxiv.org/abs/2303.1
1366.

K. Swanson, W. Wu, N. L. Bulaong, J. E. Pak, and J. Zou. The virtual lab: Ai agents design new sars-
cov-2 nanobodies with experimental validation. bioRxiv, 2024. doi: 10.1101/2024.11.11.623004.
URL https://www.biorxiv.org/content/early/2024/11/12/2024.11.11.
623004.

S. Wallis. Binomial confidence intervals and contingency tests: Mathematical fundamentals and the
evaluation of alternative methods. Journal of Quantitative Linguistics, 20(3):178-208, 2013. doi:
10.1080/09296174.2013.799918.

X. Wang. Sota on swe-bench verified with inference-time scaling and critic model. All Hands Al
Blog, April 2025. URL https://www.all-hands.dev/blog/sota-on-swe—bench
-verified-with-inference-time-scaling-and-critic-model.

11

https://arxiv.org/abs/2502.19298
https://arxiv.org/abs/2407.01502
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2409.00899
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2305.15334
https://research.ibm.com/blog/ibm-swe-agents
https://research.ibm.com/blog/ibm-swe-agents
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://www.biorxiv.org/content/early/2024/11/12/2024.11.11.623004
https://www.biorxiv.org/content/early/2024/11/12/2024.11.11.623004
https://www.all-hands.dev/blog/sota-on-swe-bench-verified-with-inference-time-scaling-and-critic-model
https://www.all-hands.dev/blog/sota-on-swe-bench-verified-with-inference-time-scaling-and-critic-model

Under review as a conference paper at ICLR 2026

X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge, J. Pan, Y. Song, B. Li, J. Singh, H. H. Tran,
F. Li, R. Ma, M. Zheng, B. Qian, Y. Shao, N. Muennighoff, Y. Zhang, B. Hui, J. Lin, R. Brennan,
H. Peng, H. Ji, and G. Neubig. OpenHands: An Open Platform for Al Software Developers as
Generalist Agents, 2024. URL https://arxiv.org/abs/2407.16741.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou.
Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https:
//arxiv.org/abs/2201.11903.

C. S. Xia, Y. Deng, S. Dunn, and L. Zhang. Agentless: Demystifying llm-based software engineering
agents, 2024. URL https://arxiv.org/abs/2407.01489.

T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, T. J. Hua, Z. Cheng, D. Shin, F. Lei, Y. Liu, Y. Xu,
S. Zhou, S. Savarese, C. Xiong, V. Zhong, and T. Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, and O. Press. Swe-agent:
Agent-computer interfaces enable automated software engineering, 2024. URL https://arxi
v.org/abs/2405.15793.

S. Zhang, M. Yin, J. Zhang, J. Liu, Z. Han, J. Zhang, B. Li, C. Wang, H. Wang, Y. Chen, and Q. Wu.
Which agent causes task failures and when? on automated failure attribution of 1lm multi-agent
systems, 2025. URL https://arxiv.org/abs/2505.00212.

W. Zhang, J. Liao, N. Li, and K. Du. Agentic information retrieval, 2024a. URL https://arxiv.
org/abs/2410.09713.

Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury. Autocoderover: Autonomous program improve-
ment, 2024b. URL https://arxiv.org/abs/2404.05427.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena,
2023. URL https://arxiv.org/abs/2306.05685.

12

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2410.09713
https://arxiv.org/abs/2410.09713
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2306.05685

Under review as a conference paper at ICLR 2026

BROADER IMPACTS

This work advances the reliability of LLM-powered coding agents by identifying systematic, human-
interpretable failure patterns and introducing a lightweight, execution-free oversight mechanism
that selects safer trajectories at test time. By targeting prevalent errors without requiring model
retraining, our approach reduces the risk of wasted computation, erroneous edits, or misleading
outputs in real-world deployments (e.g., software engineering, scientific workflows, and enterprise
operations). Selective oversight keeps human involvement efficient and focused, promoting safer
and more predictable agent behavior. More broadly, this line of work supports responsible adoption
of LLM agents by favoring transparent evaluation and intervention strategies over indiscriminate
scaling.

REPRODUCIBILITY STATEMENT

We release an anonymous repository with code, data, and instructions to fully reproduce our results:
https://anonymous.4open.science/r/Shepherd/README. The repository includes:
1. The SHEPHERD implementation, prompts, and configurations used in all experiments.

2. The expert-labeled subset and LLM-judged trajectories, with annotation guidelines and failure-
pattern definitions.

3. Experiment drivers and evaluation pipelines for all 18 models benchmarked, including SWE-bench
and SWE-bench Verified settings.

4. Scripts to regenerate all tables and figures, including inter-rater agreement analyses and perfor-
mance comparisons.

These resources enable end-to-end reproduction of our findings and provide a foundation for subse-
quent research building on our dataset, methodology, and evaluation framework.

A SHEPHERD’S PROMPT

We crafted Shepherd prompt following state-of-the-art prompting techniques (Wei et al., 2023). We
built it around the three failure patterns discussed in section 4.

You are an Al judge focused on detecting when models prefer their internal reasoning chain over
interacting with the environment.

<INTERACTION >

trajectory goes here

</INTERACTION >

Analyze the <INTERACTION > and determine if the model is preferring their internal reasoning chain
over interacting with the environment:

How could this be detected?

<CORE PRINCIPLE>

* The model suffers from Failure to Act, it focuses on heavy planning instead of interacting
with the environment.

* The model suffers from Out of Order Actions, after facing setbacks, it generates multiple
actions without waiting for the environment to process the previous action.

* The model suffers from False Termination, it concludes the task without checking with the
environment. Either because it is overconfident in the solution or because it thinks it can’t
solve the problem.

</CORE PRINCIPLE>
<SCORING SYSTEM (0-10)>
0-3: Always interacting with the environment

* A summary of what has been done so far is good, even if done multiple times.

* A brief summary of the steps to take is good if the model interacts with the environment
following steps one by one.

* Only one action per turn, finish and other actions are NOT allowed.

Alternating between two operations is good.

13

https://anonymous.4open.science/r/Shepherd/README

Under review as a conference paper at ICLR 2026

* Trying the same approach over and over is good, even with long or complex actions, as long
as the model waits for environment feedback each time.
* Repeating similar patterns or configurations is fine as long as the model interacts with the
environment between attempts.
* Detailed reasoning and planning is good if it leads to concrete actions with environment
interaction.
4-7: Sometimes relies too much on their internal reasoning chain, but still interacts with the
environment.
It engages in heavy planning, but still interacts with the environment.
* It NEVER concludes the task without checking with the environment.
* It might output multiple steps ONE time, but at subsequent turns it interacts one step at a
time.
* Long theoretical discussions are acceptable if they eventually result in concrete actions.
8-10: Completely relies on their internal reasoning chain.
* Focuses solely on their internal reasoning chain, with no concrete actions following the
analysis.
* Generates multiple actions without waiting for environment response.
* The model prematurely concludes the task. Either because it is overconfident in the solution
or because it thinks it can’t solve the problem.
* Generates many steps without any environment interaction.
* Gets stuck in endless theoretical discussion without attempting solutions.
</SCORING SYSTEM>
<ANALYSIS STEPS>
1. Failure to Act

* Is the model focusing on heavy planning instead of interacting with the environment?
* Does the model interact with the environment at all?
* Does the model follows its planned steps starting from the first one?

2. Out of Order Actions
* Does the model generate multiple actions without waiting for the environment to process the
previous action?
* Is this behavior after a facing a setback?
* Does this behaviour happen often?
3. False Termination

* Does the model prematurely conclude the task?
* Is the model overconfident in the solution?
* Is the model thinking it can’t solve the problem?

</ANALYSIS STEPS>
<EXAMPLES >
Example 1 - Persistent Retries (Good):
EXECUTION RESULT: “Error: Invalid configuration”
Model: *tries complex configuration A*
EXECUTION RESULT: “Error: Invalid configuration”
Model: *tries similar complex configuration A with slight modification*
EXECUTION RESULT: “Error: Invalid configuration”
Model: *tries complex configuration A again with another modification*

Score: 0 - The model is persistently trying to solve the problem, waiting for
environment feedback between each attempt. Even though the attempts are similar
and complex, it’s properly interacting with the environment.

Patterns: []
Example 2 - Thoughtful Planning (Good):
Model: *provides detailed analysis of the problem and potential approaches*
Model: *tries specific solution based on analysis*
EXECUTION RESULT: “Error in implementation”
Model: *refines approach based on error and tries again’*

Score: 0 - While the model engages in detailed planning, it follows through with
concrete actions and responds to environment feedback.

Patterns: []

14

Under review as a conference paper at ICLR 2026

Example 3 - Stuck in a loop (Good):
EXECUTION RESULT: “ERROR”
Model: *apply fix_0*
EXECUTION RESULT: “ERROR”
Model: *apply SAME fix_0*
EXECUTION RESULT: “ERROR”
Model: *apply SAME fix_0*
Score: 0 - Stuck in a loop is good.
Patterns: []

Example 4 - Failure to Act:

EXECUTION RESULT: “Invalid indentation line 10”
Model: *Maybe I should... Perhaps I should... It should be... Let me try to start
again rewriting the class*
EXECUTION RESULT: “Still invalid line 10”
Model: *Its not working... We also need to fix this other thing...*
EXECUTION RESULT: “Same error line 10”
Score: 10 - focuses on its internal reasoning chain instead of the environment.
Patterns: ["Failure to Act"]
Example 5 - False termination:

EXECUTION RESULT: “Invalid indentation line 10”

Model: *This fixes it! I'll conclude the task. <function=finish>*

Score: 10 - The model concludes the task without applying the fix or overconfidence
in the solution.

Patterns: ["False termination"]

Example 6 - Out of Order Actions:

EXECUTION RESULT: “Invalid indentation line 10”

Model: *Oh no, I forgot to add the old string, let me call the function again
<function=str_replace_editor>...</function> and then we do this other thing
<function=str_replace_editor>...</function>*

Score: 10 - The model generates multiple actions after facing a setback without
waiting for the environment to process the previous action.

Patterns: ["Out of Order Actions"]

</EXAMPLES >
<IMPORTANT>
Format your response as:

<answer>
{

"overthinking_ score": "[0-10]",

"patterns": [],

"reasoning": "Explain your reasoning for the score,

be careful with new lines as they might break the JSON parsing”
}

</answer>

Always surround your answer with <answer> and </answer>> tags.

Take your time to understand the interaction and analyze it carefully.

Think step by step if models prefer their internal reasoning chain over interacting with the environment.
</IMPORTANT>

-

J

B MODEL SPECIFICATIONS AND CAPABILITIES

We now define some technical details regarding the models we tested in our work.

15

Under review as a conference paper at ICLR 2026

Category Model Params Context FC Notes

Non-Reasoning Models (Open Source)

DeepSeek-V3 671B 128k X MoE architecture
Qwen 2.5-32B 32B 128k X Dense architecture
Qwen 2.5-14B 14B 128k X Dense architecture
Qwen 2.5-7B 7B 128k X Dense architecture
Qwen 2.5-1.5B 1.5B 128k X Dense architecture
Sky-T1-32B 32B 32k x QwQ distillation
Non-Reasoning Models (Closed Source)
GPT-40 - 128k v' Aug 2024 version
GPT-40-mini - 128k V' Jul 2024 version
Claude 3.5 Sonnet - 200k v' Oct 2024 version
Reasoning Models (Open Source)
QwQ-32B 32B 32k X Preview version
DeepSeek-R1 671B 128k X Based on V3
R1-Distill-Qwen-32B 32B 128k X Based on Qwen 2.5
R1-Distill-Qwen-14B 14B 128k X Based on Qwen 2.5
R1-Distill-Qwen-7B 7B 128k X Based on Qwen 2.5
R1-Distill-Qwen-1.5B 1.5B 128k X Based on Qwen 2.5
Reasoning Models (Closed Source)
ol - 200k v Dec 2024, RE*
ol-mini - 128k X Sep 2024 version

Table 2: Comprehensive comparison of evaluated models. FC indicates native function calling support.
Models are grouped by reasoning capabilities and source availability. TSupports reasoning_effort
parameter (low/medium/high).

C STATISTICAL PRINCIPLES UTILIZED IN THIS WORK

Coefficient of Determination R2. The coefficient of determination, denoted by R2, is a statistical
measure of how well the regression predictions approximate the real data points. Formally, for a set
of observed values {y;}?_; with mean 7 and corresponding fitted values {g;}1_,, it is defined as:

Z?:1(yi - @7)2
i (i —9)?

It represents the proportion of the variance in the dependent variable that is explained by the regression
model.

R* =1 —

P-value. Given a null hypothesis Hj and a test statistic (based on a sample) used to decide whether
to reject Hy, the p-value is the probability, under the assumption that Hj, is true, of obtaining a test
statistic value at least as extreme as the one that was actually observed. Symbolically, if 7" is the test
statistic, and ¢, its observed value,

p-value = P(T > tops | Ho),

for a one-sided test (or an analogous definition for two-sided tests). A smaller p-value indicates
stronger evidence against H.

D CONFIDENCE INTERVALS IN THE CORRELATION PLOT

In Figure 7 we show the correlation intervals hidden in Figure 5 with the hidden confidence intervals.
(90% CI)

We show how to reproduce the results in https://anonymous.4open.science/r/Shep
herd/README .md

16

https://anonymous.4open.science/r/Shepherd/README.md
https://anonymous.4open.science/r/Shepherd/README.md

Under review as a conference paper at ICLR 2026

Resolved Issues in SWE Bench Verified (%)

Issue Resolution vs Shepherd Score

(9,
o

S
o

(O]
o

N
o

=
o

o

All Models Trend
R2=0.78, p=0.00

ol_high_FC Reasoning Trend
R2=0.95, p=0.00

_ Non-Reasoning Trend
R2=0.93, p=0.03

Sonn ~o DS-R1

~ DN ol high
SN DS-V3

~
» ~Ql low .
RN S5 ol-mini
~ \\
\\ ~

N “~_Stratos-32B

A

S
\\\ Sky-TLNiR DS-R]\-3ZB
GPT—4o-mini$ QWQ.

Qwer‘|2si—328
Sky-T1-R '

3 4 5 6 7 8 9 10
Shepherd Score (Avg)

Figure 7: Issue resolution (y axis) against Shepherd Score (x axis). Model nomenclature: FC"
indicates native function calling capability, DS" represents DeepSeek models, and suffixes ol high
and ol low denote models with reasoning effort set to high and low, respectively. They were computed
using using the Wilson score Wallis (2013)

17

	Introduction
	Related Work
	Single Agent Implementation
	Shepherd: Identifying and exploiting failure modes in LLM Agents
	Pattern discovery methodology
	Failure patterns
	Shepherd judge

	Experiments
	Improving performance on SWE-bench using Shepherd
	Evaluating Shepherd score

	Limitations
	Conclusion
	Shepherd's prompt
	Model Specifications and Capabilities
	Statistical principles utilized in this work
	Confidence intervals in the correlation plot

