
Diffeomorphic Explanations with Normalizing Flows

Ann-Kathrin Dombrowski * 1 Jan E. Gerken * 2 Pan Kessel 1 3

Abstract
Normalizing flows are diffeomorphisms which
are parameterized by neural networks. As a result,
they can induce coordinate transformations in the
tangent space of the data manifold. In this work,
we demonstrate that such transformations can be
used to generate interpretable explanations for de-
cisions of neural networks. More specifically, we
perform gradient ascent in the base space of the
flow to generate counterfactuals which are clas-
sified with great confidence as a specified target
class. We analyze this generation process theo-
retically using Riemannian differential geometry
and establish a rigorous theoretical connection be-
tween gradient ascent on the data manifold and in
the base space of the flow.

original x counterfactual x′ heatmap δx

Figure 1. Diffeomorphic explanation for hair-color classification.

1. Introduction
Explaining a complex system can be drastically simplified
using a suitable coordinate system. As an example, the solar
system can be explained either by using a reference sys-
tem for which the sun is at rest (heliocentristic) or, alterna-
tively, for which the earth is at rest (geocentristic). Despite

*Equal contribution 1Machine Learning Group, Department
of Electrical Engineering & Computer Science, Technische Uni-
versität Berlin, Germany 2Department of Mathematical Sci-
ences, Chalmers University of Technology, Gothenburg, Sweden
3BIFOLD - Berlin Institute for the Foundations of Learning and
Data, Technische Universität Berlin, Berlin, Germany. Correspon-
dence to: Pan Kessel <pan.kessel@tu-berlin.de>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

wide-held belief, both reference system are physically valid.
However, the dynamics of the planets is significantly easier
to describe in heliocentristic coordinates since the planets
will follow geometrically simple trajectories.

Explanation methods for neural networks have recently
gained significant attention because they promise to make
black-box classifiers more transparent, see (Samek et al.,
2019) for a detailed overview. In this paper, we use the bi-
jectivity of a normalizing flow to consider a classifier in the
base space of the flow. This amounts to a coordinate trans-
formation in the data space (or mathematically more precise:
a diffeomorphism). We will show that in this coordinate
system, the classifier is more easily interpretable and can
be used to construct counterfactual explanations that lie on
the data manifold. Using Riemannian differential geometry,
we will analyze the advantages of creating counterfactual
explanations in the base space of the flow and establish a
process by which the tangent space of the data manifold
can be estimated from the flow. We strongly expect these
theoretical insights to be useful beyond explainability.

In summary, our main contributions are as follows:
• We propose a novel application domain for flows:

inducing a bijective transformation to a more inter-
pretable space on which counterfactuals can be easily
generated.

• We analyze the properties of this generation process
theoretically using Riemannian differential geometry.

• We experimentally demonstrate superior performance
compared to more traditional approaches for gener-
ating counterfactuals for classification tasks in three
different domains.

2. Counterfactual Explanations
Let f : X → RK be a classifier whose component f(x)k
is the probability for the point x ∈ X to be of class k ∈
{1, . . . ,K}. We make no assumptions on the architecture
of the classifier f and only require that we can evaluate f(x)
and its derivative ∂xf(x) for a given input x ∈ X .1

In this work, we will follow the well-established paradigm
of counterfactual explanations – see (Verma et al., 2020) for

1This assumption can be relaxed: if we do not have access to
the gradient, we can approximate it by finite differences.



Diffeomorphic Explanations with Normalizing Flows

a recent review. These methods aim to explain the classifier
f by providing an answer to the question which minimal
deformations x′ = x+ δx need to be applied to the original
input x in order to change its prediction. Often, the differ-
ence δx is then visualized by a heatmap highlighting the
relevant pixels for the change in classification, see Figure 1
for an example.

In the following, we will assume that the data lies on a
submanifold S ⊂ X which is of (significantly) lower di-
mension n than the dimension N of its embedding space X .
We stress that this is also known as the manifold assumption
and is expected to hold across a wide range of machine
learning tasks, see e.g. (Goodfellow et al., 2016). In these
situations, we are often interested in only the deformations
x′ which lie on the data manifold S. As an example, a
customer of a bank may want to understand how their fi-
nancial data needs to change in order to receive a loan. If
the classification changes off-manifold, for example for zip
codes that do not exist, this is of no relevance since the user
is obliged to enter their correct zip code. Furthermore, it
is often required that the deformation is minimal, i.e. the
perturbation δx should be as small as possible. However, the
relevant norm is the one of the data manifold S and not of its
embedding pixel space X . For example, a slightly rotated
number in an MNIST image may have large pixel-wise dis-
tance but should be considered an infinitesimal perturbation
of the original image.

More precisely, we define counterfactuals as follows: let
t = argmaxj fj(x) be the predicted class for the data point
x ∈ S. The set ∆k,δ ⊂ S of counterfactuals x′ of the point
x with respect to the target class k ∈ {1, . . . ,K} \ {t} and
confidence δ ∈ (0, 1] is defined by

∆k,δ = {x′(x) ∈ S : argmaxj fj(x
′) = k ∧ fk(x′) > δ} ,

i.e. all points on the data manifold which are classified to be
of the target class k with at least the confidence δ. A mini-
mal counterfactual x′ ∈ ∆k,δ is then a counterfactual with
smallest distance dγ(x′, x) to the original point x, where dγ
is the distance on the data manifold (induced by its Rieman-
nian metric γ). Note that there may not be a unique minimal
counterfactual.

3. Construction of Counterfactual
We propose to estimate the minimal counterfactual x′ of
the data sample x with respect to the classifier f by using
a diffeomorphism g : Z → X modelled by a normalizing
flow.

The flow g equips the space X with a probability density

qX(x) = qZ(g−1(x))

∣∣∣∣det
∂z

∂x

∣∣∣∣ (1)

by push-forward of a simple base density qZ , such as
N(0, 1), defined on the base space Z. We assume that
the flow was successfully trained to approximate the data
distribution pX by minimizing the forward KL-divergence
as usual (this assumption will be made more precise in
Section 4).

We then perform gradient ascent in the base space Z to
maximize the probability of the target class k, i.e.

z(t+1) = z(t) + λ
∂(f ◦ g)k

∂z
(z(t)) , (2)

where λ is the learning rate and we initialize by mapping
the original point x to the base space by z(0) = g−1(x). We
then take the sample x(T ) = g(z(T )) as an estimator for a
minimal counterfactual if x(T ) is the first optimization step
to be classified as the target k with given confidence δ:

argmaxj fj(x
(T )) = k and fk(x(T )) > δ .

This is because generically taking further steps only in-
creases the distance to the original sample ||z(T ) − z0|| >
||zT+t − z0|| for t > 0 and we want to find (an estimate of
a) minimal counterfactual. This may also be validated by
continuing optimization for a certain number of steps and
selecting the sample with the minimal distance.

As discussed in Section 6, generative-model-based methods
to estimate (minimal) counterfactuals have previously been
proposed, for example based on Generative Adversarial
Networks or Autoencoders. However, the relevance of nor-
malizing flows in this domain has so far not be recognized.
This is unfortunate as normalizing flows have important
advantages in this application domain compared to other
generative models: firstly, a flow g is a diffeomorphism and
therefore no information is lost by considering the classifier
f ◦g on Z instead of the original classifier f onX , i.e. there
is a unique z = g−1(x) ∈ Z for any data point x ∈ X .
Secondly, performing gradient ascent in the base space Z of
a well-trained flow will ensure (to good approximation) that
each optimization step x(t) = g(z(t)) will stay on the data
manifold S ⊂ X . Since the base space Z has the same di-
mension as the data space X , the latter statement is far from
obvious and is substantiated with theoretical arguments in
the next section.

4. Theoretical Analysis
In the following, it will be shown that performing gradient
ascent in Z space and then mapping the result in X space
will stay on the data manifold S.

This is in stark contrast to gradient ascent directly in X
space, i.e.

x(t+1) = x(t) + λ
∂fk
∂x

(x(t)) , (3)



Diffeomorphic Explanations with Normalizing Flows

where λ is the learning rate. It is well-known that such an
optimization procedure would very quickly leave the data
manifold S, see for example (Goodfellow et al., 2015).

For gradient ascent in Z space (2), each step z(t) can
uniquely be mapped to X space by x(t) = g(z(t)). In
the Supplement A.1, we derive the following result:

Theorem 1. Let z(t) be defined as in (2) and x(t) = g(z(t)).
Then, to leading order in the learning rate λ,

x(t+1) = x(t)+λ γ−1|g−1(x(t))

∂fk
∂x

(x(t)) +O(λ2) , (4)

where γ−1 = ∂g
∂z

∂g
∂z

T ∈ RN,N is the pull-back of the flat
metric on Z under the flow g.

Therefore, performing gradient ascent inX orZ space is not
equivalent because (3) and (4) do not agree. In particular, the
presence of the inverse metric γ−1 in the update formula (4)
effectively induces separate learning rates for each direction
in tangent space.

In the following, we prove that directions orthogonal to
the data manifold S ⊂ X are heavily suppressed by the
inverse metric and thus gradient ascent (4) stays on the data
manifold S to very good approximation.

In practice, the data manifold is only approximately of lower
dimension. Specifically, we assume that the data manifold
is a product manifold, equipped with the canonical product
metric, of the form

S = D ×Bδ1 × · · · ×BδN−n , (5)

where D is a n-dimensional manifold and Bδ is an open
one-dimensional ball with radius δ (with respect to the flat
metric of the embedding space X). Since we will choose
all the radii δi to be small, the data manifold S is thus
approximately n-dimensional.

We choose Gaussian normal coordinates x =
(x1‖, . . . , x

n
‖ , x

1
⊥, . . . , x

N−n
⊥ ) on X , where the xi⊥ are

slice coordinates for Bδi and the (x1‖, . . . , x
n
‖ ) are slice

coordinates of D, see Figure 2. We furthermore require that
in our coordinates xi⊥(p) ∈ (−δ,+δ) for p ∈ S. We then
show in the Supplement A.2:

Theorem 2. Let pX denote the data density with
supp(pX) = S, and the flow g be well-trained such that

KL(pX , qX) < ε ,

and the base density be bounded. Let γ−1 = ∂g
∂z

∂g
∂z

T
be the

inverse of the induced metric γ in the canonical basis of
coordinates x.

S

D
x‖

x⊥

Bδ

X

Figure 2. Gaussian normal coordinates, see Appendix D of (Car-
roll, 2019) for a detailed mathematical introduction.

In this basis, γ−1 is given by

γ−1 =


γ−1D

γ−1Bδ1
. . .

γ−1BδN−n

 ,

where γ−1M is the inverse of the induced metric on the sub-
manifoldM∈ {D, Bδ1 , . . . , BδN−n}.
Furthermore, γ−1Bδi → 0 for vanishing radius δi → 0.

We therefore conclude that gradient ascent in Z space cor-
responds to gradient ascent in X where the learning rate of
all gradient components ∂x⊥f orthogonal to the data mani-
fold are effectively scaled by a vanishingly small learning
rate. As a result, the gradient ascent in Z will, to very good
approximation, not leave the data manifold.

5. Experiments
Tangent Space: A non-trivial consequence of our theoret-
ical insights is that we can infer the tangent plane of each
point on the data manifold from our flow g. Specifically,
we perform a singular value decomposition of the Jacobian
∂g
∂z = U ΣV and rewrite the inverse induced metric as

γ−1 =
∂g

∂z

∂g

∂z

T

= U Σ2 UT . (6)

For an approximately n-dimensional data manifold S in an
N -dimensional embedding space X , Theorem 2 shows that
the inverse induced metric γ−1 hasN−n small eigenvalues.
The corresponding eigenvectors of the large eigenvalues
will then approximately span the tangent space of the data
manifold. In order to demonstrate this in a toy example, we
train flows to approximate data manifolds with the shape of
a helix and torus respectively. Figure 3 shows that we can
indeed recover the tangent planes of these data manifolds to
very good approximation. We refer to the Supplement B for
details about the used flow and the data generation.

Diffeomorphic Explanations: We now demonstrate ap-
plications to image classification in several domains. The



Diffeomorphic Explanations with Normalizing Flows

Figure 3. Approximate tangent planes for points on the data man-
ifold S. As predicted by theory, the parallelepiped spanned by
all three eigenvectors of the inverse induced metric scaled by the
corresponding eigenvalues is to good approximation of the same
dimension as the data manifold and tangential to it.

discussion is necessarily concise, see Supplement C for
more details.
Datasets: We use the MNIST (Deng, 2012), CelebA (Liu
et al., 2015), as well as the CheXpert datasets (Irvin et al.,
2019). The latter is a dataset of labeled chest X-rays.
Classifiers: We train a ten-class classifier on MNIST (test
accuracy of 99%). For CelebA, we train a binary classi-
fier on the blonde attribute (test accuracy of 94%). For
CheXpert, we train a binary classifier on the cardiomegaly
attribute (test accuracy of 86%). All classifiers consists of
a few standard convolutional, pooling and fully-connected
layers with ReLU-activations and batch normalization.
Flows: We choose a flow with RealNVP-type couplings
(Dinh et al., 2016) for MNIST and the Glow architecture
(Kingma & Dhariwal, 2018) for CelebA and CheXpert.
Estimation of Counterfactuals: We select the classes ‘nine’,
‘blonde’, and ‘cardiomegaly’ as targets k for MNIST,
CelebA, and CheXpert, respectively, and take the confidence
threshold to be δ = 0.99. We use Adam for optimization.
Results: Counterfactuals produced by the flow indeed show
semantically meaningful deformations in particular when
compared to counterfactuals produced by gradient ascent
in the data space X , see Figure 4. For Figure 5, we train
a linear SVM for the same classification tasks and show
that the flow’s counterfactuals generalize better to such a
simple model suggesting that they indeed use semantically
more relevant deformations than conventional counterfactu-
als produced by gradient ascent in X space.

6. Related Works
An influential reference for our work is (Singla et al., 2019)
which uses generative adversarial networks (GANs) to gen-
erate counterfactuals, see also (Liu et al., 2015; Samangouei
et al., 2018) for similar methods. Other approaches (Dhu-
randhar et al., 2018; Joshi et al., 2019) use Autoencoders
instead of GANs. While both classes of generative models
can currently sample more realistic high-dimensional sam-
ples, they are not bijective. As a result, an encoder network

Figure 4. Counterfactuals for MNIST (‘four’ to ‘nine’), CelebA
(‘non-blonde’ to ‘blonde’), and CheXpert (‘healthy’ to ‘car-
diomegaly’). Columns of each block show original image x, coun-
terfactual x′, and difference δx for three selected datapoints. First
row is our method, i.e. gradient ascent in Z space. Second row
is standard gradient ascent in X space. Heatmaps show sum over
absolute values of color channels.

MNIST CelebA CheXpert0

25

50

75

ac
c

ta
rg

et
cl

as
s

original images gradient ascent in X gradient ascent in Z

MNIST CelebA CheXpert0

200

400

600

||z
−

z′
||

Figure 5. Generalization of counterfactuals to linear SVMs. Left:
accuracy with respect to the target class k generalizes better to
SVM for Z-based counterfactuals. Right: distance in the base
space is smaller for Z than for X-based counterfactuals.

has to be used which comes at the risk of mode-dropping
and without any theoretical guarantees in contrast to our
work. (Sixt et al., 2021) propose to train a linear classifier in
the base space of a normalizing flow and show that this clas-
sifier tends to use highly interpretable features. In contrast
to their approach, our method is completely model-agnostic.
In (Rombach et al., 2020; Esser et al., 2020), an invertible
neural network is used to decompose latent representations
of an autoencoder into semantic factors to automatically
detect interpretable concepts as well as invariances of clas-
sifiers.

7. Conclusion
In this work, we have used the fact that a normalizing flow is
a diffeomorphism to map the data space to its base space. In
this space, we can then straightforwardly perform gradient
ascent on the data manifold, as we have established rigor-
ously using Riemannian differential geometry. For future



Diffeomorphic Explanations with Normalizing Flows

work, more high-dimensional classification tasks will be
considered as well as the dependence of the explanations
on the chosen flow architecture. Furthermore, it would be
interesting to evaluate the robustness of these explanations
with respect to adversarial model and input manipulations
(Ghorbani et al., 2019; Dombrowski et al., 2019; Anders
et al., 2020; Heo et al., 2019).

Acknowledgments
We want to thank the anonymous reviewers for their
valuable and detailed feedback. A.K.D. is supported by
the Research Training Group “Differential Equation- and
Data-driven Models in Life Sciences and Fluid Dynam-
ics (DAEDALUS)” (GRK 2433). J.G. is supported by the
Swedish Research Council and by the Knut and Alice Wal-
lenberg Foundation. P.K. is supported in part by the German
Ministry for Education and Research (BMBF) under Grants
01IS14013A-E, 01GQ1115, 1GQ0850, 01IS18025A and
01IS18037A. P.K. also wants to thank Shinichi Nakajima
for insightful discussions.

References
Anders, C., Pasliev, P., Dombrowski, A.-K., Müller, K.-

R., and Kessel, P. Fairwashing explanations with off-
manifold detergent. In International Conference on Ma-
chine Learning, pp. 314–323. PMLR, 2020.

Carroll, S. M. Spacetime and Geometry. Cambridge Uni-
versity Press, 2019.

Deng, L. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P.,
Shanmugam, K., and Das, P. Explanations based on the
missing: Towards contrastive explanations with pertinent
negatives. preprint arXiv:1802.07623, 2018.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using Real NVP. preprint arXiv:1605.08803,
2016.

Dombrowski, A.-K., Alber, M., Anders, C., Ackermann,
M., Müller, K.-R., and Kessel, P. Explanations can be
manipulated and geometry is to blame. In Advances
in Neural Information Processing Systems, pp. 13567–
13578, 2019.

Esser, P., Rombach, R., and Ommer, B. A disentangling
invertible interpretation network for explaining latent rep-
resentations. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
9223–9232, 2020.

Ghorbani, A., Abid, A., and Zou, J. Interpretation of Neural
Networks is fragile. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3681–3688,
2019.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining
and Harnessing Adversarial Examples. In International
Conference on Learning Representations, 2015.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Heo, J., Joo, S., and Moon, T. Fooling Neural Network
Interpretations via Adversarial Model Manipulation. In
Advances in Neural Information Processing Systems, pp.
2921–2932, 2019.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpan-
skaya, K., et al. CheXpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 590–597, 2019.

Joshi, S., Koyejo, O., Vijitbenjaronk, W., Kim, B., and
Ghosh, J. Towards realistic individual recourse and ac-
tionable explanations in black-box decision making sys-
tems. preprint arXiv:1907.09615, 2019.

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow
with Invertible 1x1 Convolutions. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Lee, J. M. Smooth manifolds. In Introduction to Smooth
Manifolds, pp. 1–31. Springer, 2013.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning Face
Attributes in the Wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Rombach, R., Esser, P., and Ommer, B. Making sense of
CNNs: Interpreting deep representations & their invari-
ances with INNs. preprint arXiv:2008.01777, 2020.

Samangouei, P., Saeedi, A., Nakagawa, L., and Silberman,
N. ExplainGAN: Model Explanation via Decision Bound-
ary Crossing Transformations. In Proceedings of the
European Conference on Computer Vision (ECCV), pp.
666–681, 2018.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., and
Müller, K.-R. Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning, volume 11700. Springer
Nature, 2019.

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Diffeomorphic Explanations with Normalizing Flows

Singla, S., Pollack, B., Chen, J., and Batmanghelich,
K. Explanation by progressive Exaggeration. preprint
arXiv:1911.00483, 2019.

Sixt, L., Schuessler, M., Weiß, P., and Landgraf, T. Inter-
pretability Through Invertibility: A Deep Convolutional
Network With Ideal Counterfactuals And Isosurfaces,
2021. URL https://openreview.net/forum?
id=8YFhXYe1Ps.

Verma, S., Dickerson, J., and Hines, K. Counterfactual
Explanations for Machine Learning: A Review. preprint
arXiv:2010.10596, 2020.

A. Proofs
A.1. Proof of Theorem 1

We repeat the theorem for convenience:

Theorem. Let z(t) be defined as in (2) and x(t) = g(z(t)).
Then, to leading order in the learning rate λ,

x(t+1) = x(t)+λ γ−1|g−1(x(t))

∂fk
∂x

(x(t)) +O(λ2) , (7)

where γ−1 = ∂g
∂z

∂g
∂z

T ∈ RN,N is the pull-back of the flat
metric on Z under the flow g.

Proof. The step x(t+1) = g(z(t+1)) can be rewritten using
the update formula (2) of the gradient ascent in Z as

x(t+1) = g

(
z(t) + λ

∂(fk ◦ g)

∂z
(z(t))

)
. (8)

We now perform a Taylor expansion to leading order in the
learning rate λ using index notation as it eases notation

x
(t+1)
i = g(z(t))i + λ

∑
j,l

∂gi
∂zj

∂gl
∂zj

∂fk
∂xl

(g(z(t))) +O(λ2) .

The result then follows by identifying g(z(t)) = x(t) and
γ−1il =

∑
j
∂gi
∂zj

∂gl
∂zj

which in matrix notation is given by

γ−1 = ∂g
∂z

∂g
∂z

T
.

A.2. Proof of Theorem 2

Following the notation used throughout the main part, we
denote by pX the data probability density. In particular, it
holds that the data manifold is given by S = supp(p). The
flow g : Z → X induces the probability density qX on the
target space X by push-forward of a base density qZ on the
base space Z, i.e. qX(x) = qZ(g−1(x))| ∂z∂x |.
Before giving the proof of Theorem 2, we will first derive
the following result:

Theorem 3. Let the flow be well-trained such that

KL(pX , qX) < ε , (9)

for some small ε ∈ R. Then, we have for the data manifold
S ⊂ X ∫

S

qX(x) dx > 1− ε . (10)

Proof. By assumption,

−KL(p, q) > −ε .

Using the definition of the KL-divergence and the inequality
ln(a) ≤ a− 1, it the follows that

−ε <
∫
S

pX(x) ln

(
qX(x)

pX(x)

)
dx

≤
∫
S

pX(x)

(
qX(x)

pX(x)
− 1

)
dx

=

∫
S

qX(x) dx− 1 ,

and thus ∫
S

qX(x) dx > 1− ε . (11)

We repeat Theorem 2 for convenience:

Theorem. Let pX denote the data density with
supp(pX) = S, and the flow g be well-trained such
that

KL(pX , qX) < ε ,

and the base density be bounded. Let γ−1 = ∂g
∂z

∂g
∂z

T
be the

inverse of the induced metric γ in the canonical basis of
coordinates x.

In this basis, γ−1 is given by

γ−1 =


γ−1D

γ−1Bδ1
. . .

γ−1BδN−n

 ,

where γ−1M is the inverse of the induced metric on the sub-
manifoldM.

Furthermore, γ−1Bδi → 0 for vanishing radius δi → 0.

https://openreview.net/forum?id=8YFhXYe1Ps
https://openreview.net/forum?id=8YFhXYe1Ps


Diffeomorphic Explanations with Normalizing Flows

Proof. In the chosen coordinates, the metric γ takes the
block-diagonal form (in the canonical basis)

γ =


γD

γBδ1
. . .

γBδN−n

 ,

see e.g. Example 13.2 of (Lee, 2013) for a proof. In these
coordinates, we can then perform the integral (10) of Theo-
rem 3:

1− ε <
∫
S

∣∣∣∣det
∂z

∂x

∣∣∣∣ qZ(g−1(x)) dx

=

∫
S

√
det |γ| qZ(g−1(x)) dx ,

where in the second step, we have used the definition of the
induced metric γ = ∂z

∂x
∂z
∂x

T
which implies that det |γ| =

det | ∂z∂x |2. Using the Gaussian normal coordinates, we can
rewrite the integral as

∫
D

√
|γD|

N−n∏
i=1

(∫ δi

−δi

√
|γBδi | dxi⊥

)
qZ(g−1(x)) dnx‖ .

Using the assumption that the base density qZ is bounded,
i.e. qZ(z) ≤ C, we arrive at the inequality

1−ε < C

∫
D

√
det |γD|

N−n∏
i=1

(∫ δi

−δi

√
|γBδi | dxi⊥

)
dnx‖ .

(12)

The integral however vanishes in the limit of vanishing
radius δi since∫ δi

−δi

√
|γBδi | dxi⊥ → 0 for δi → 0 ,

unless
√
|γBδi | → ∞. Thus for the inequality (12) to hold

the metric γBδi has to diverge in the limit of vanishing δi.

Since the induced metric γ is block-diagonal, its inverse is
given by

γ−1 =


γ−1D

γ−1Bδ1
. . .

γ−1BδN−n

 .

Because γBδi ∈ R diverges for vanishing radius, it follows
that γ−1Bδi → 0 for δi → 0.

B. Toy Example for Tangent Space
Flow The flow used for the toy example is composed of 12
RealNVP-type coupling layer blocks. Each of these blocks
includes a three-layer fully-connected neural network with
leaky ReLU activations for the scale and translation func-
tions. For training, we sample from the target distribution.
We train for 5000 epochs using a batch of 500 samples per
epoch. We use the Adam optimizer with standard parame-
ters and learning rate λ = 1× 10−4. This takes around 10
minutes on a standard CPU.

Latent distribution We use a 3D standard Gaussian dis-
tribution as the latent distribution.

Helix To get a data sample from the helix we sample from
a uniform distribution x3 ∼ U(−4, 4) and define x1 =
sin(x3) and x2 = cos(x3).

Torus We define a torus with outer radius R = 3 and unit
inner radius. To get a data sample from the Helix we sample
from a uniform distribution φ, θ ∼ U(0, 2π) and define
x0 = cos(θ)(R + cos(φ)), x1 = sin(θ)(R + cos(φ)), and
x3 = sin(φ).

C. Details on Experiments
C.1. Flows

Architecture: We use the RealNVP architecture2 for
MNIST and the Glow architecture3 for CelebA and CheX-
pert.

Training: We use the Adam optimizer with a learning
rate of 1 × 10−4 and weight decay of 5 × 10−4 for all
flows. MNIST: we train for 30 epochs on all available
training images. Bits per dimension on the test set average
to 1.21. CelebA: we train for 8 epochs on all available
training images. We use 5 bit images. Bits per dimension on
the test set average to 1.32. CheXpert: we train for 4 epochs
on all available training images. Bits per dimension on the
test set average to 3.59.

C.2. Classifier

Architecture: All classifiers have a similar structure con-
sisting of convolutional, pooling and fully connected layers.
We use ReLU activations and batch normalization. For
MNIST we use four convolutional layers and three fully
connected layers. For CelebA and CheXpert we use six
convolutional layers and four fully connected layers.

2adapted from https://github.com/fmu2/realNVP
3adapted from https://github.com/rosinality/

glow-pytorch

https://github.com/fmu2/realNVP
https://github.com/rosinality/glow-pytorch
https://github.com/rosinality/glow-pytorch


Diffeomorphic Explanations with Normalizing Flows

Training: We use the Adam optimizer with a weight de-
cay of 5× 10−4 for all classifiers.

MNIST: we use training and test data as specified in torchvi-
sion. We use 10% of the training data for validation. We
train for 4 epochs using a learning rate of 1× 10−3. We get
a test accuracy of 0.99.

CelebA: we take training and test data set as specified in
torchvision. We use 10% of the training images for valida-
tion. We scale and crop the images to 64×64 pixels. We
partition the data sets into all images for which the blonde
attribute is positive and the rest of the images. We treat the
imbalance by undersampling the class with more examples.
We train for 10 epochs using a learning rate of 5×10−3. We
get a balanced test accuracy of 93.63% by averaging over
true positive rate (93.95%) and true negative rate (93.31%).

CheXpert: we choose the first 6500 patients from the train-
ing set for testing. The remaining patients are used for
training. We select the model based on performance on the
original validation set. We only consider frontal images
and scale and crop the images to 128×128 pixels. For the
training data the cardiomegaly attibute can have four differ-
ent values: blanks, 0, 1, and -1. We label images with the
blank attribute as 0 if the no finding attribute is 1, otherwise
we ignore images with blank attributes. We also ignore
images where the cardiomegaly attribute is labeled as uncer-
tain. Using this technique, we obtain 25717 training images
labelled as healthy and 20603 training images labelled as
cardiomegaly. We do not treat the imbalance but train on
the data as is. We train for 9 epochs using a learning rate
of 1 × 10−4. We test on the test set, that was produced in
the same way as the training set. We get a balanced test
accuracy of 86.07% by averaging over true positive rate
(84.83%) and true negative rate (87.27%).

0.1 0.25 0.5 0.75 0.99

Figure 6. left: original image, first row: evolution throughout opti-
mization. Numbers indicate confidence with which the image is
classified as ‘blonde’. Second row: heatmaps of δx

C.3. Optimization Counterfactuals

Counterfactuals are found using the Adam optimizer with
standard parameters. We vary only the learning rate λ.

For MNIST we use λ = 5× 10−4 for conventional counter-

factuals and λ = 5× 10−2 for counterfactuals found via the
flow. We do a maximum of 2000 steps stopping early when
we reach the target confidence of 0.99. We perform attacks
on 500 images of the true class ‘four’. All conventional
attacks and 498 of the attacks via the flow reached the target
confidence of 0.99 for the target class ‘nine’.

For CelebA we use λ = 7× 10−4 for conventional counter-
factuals and λ = 5× 10−3 for counterfactuals found via the
flow. We do a maximum of 1000 steps stopping early when
we reach the target confidence of 0.99. We perform attacks
on 500 images of the true class ‘non-blonde’. 492 conven-
tional attacks and 496 of the attacks via the flow reached the
target confidence of 0.99 for the target class ‘blonde’.

For CheXpert we use λ = 5× 10−4 for conventional coun-
terfactuals and λ = 5 × 10−3 for counterfactuals found
via the flow. We do a maximum of 1000 steps stopping
early when we reach the target confidence of 0.99. We
perform attacks on 1000 images of the true class ‘healthy’.
All conventional attacks and 990 of the attacks via the flow
reached the target confidence of 0.99 for the target class
‘cardiomegaly’.

D. Examples for Counterfactuals
In this supplement, we present results on randomly selected
images from the three datasets for which we produce coun-
terfactuals via the flow. For the heatmaps, we visualize both
the sum over the absolute values of color channels as well
as the sum over the color channnels.



Diffeomorphic Explanations with Normalizing Flows

Figure 7. Randomly selected examples MNIST ‘four’ to ‘nine’
Figure 8. Randomly selected examples CelebA ‘not blonde’ to
‘blonde’



Diffeomorphic Explanations with Normalizing Flows

Figure 9. Randomly selected examples CheXpert ‘healthy’ to ‘car-
diomegaly’


