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ABSTRACT

Fine-tuning large language models (LLMs) is computationally intensive because
it requires updating all parameters. Low-Rank Adaptation (LoRA) improves effi-
ciency by modifying only a subset of weights but introduces a trade-off between
expressivity and computational cost: lower ranks reduce resources but limit ex-
pressiveness, while higher ranks enhance expressivity at increased cost. Despite
recent advances in adaptive LoRA techniques, existing methods fail to provide a
theoretical basis for optimizing the trade-off between model performance and effi-
ciency. We propose Geometric Low-Rank Adaptation (GeLoRA), a novel frame-
work that computes the intrinsic dimensionality of hidden state representations
to adaptively select LoRA ranks. We demonstrate that the intrinsic dimension
provides a lower bound for the optimal rank of LoRA matrices, allowing for a
principled selection that balances efficiency and expressivity. GeLoRA dynami-
cally adjusts the rank for each layer based on the intrinsic dimensionality of its in-
put and output representations, recognizing that not all model parameters equally
impact fine-tuning. Empirical validation on multiple tasks shows that GeLoRA
consistently outperforms recent baselines within the same parameter budget.

1 INTRODUCTION

LLMs are currently at the forefront of natural language processing tasks, yet achieving effective
personalization requires additional fine-tuning. Pretraining an LLM on a diverse corpus enables it to
learn general linguistic patterns and representations, which can be further refined through fine-tuning
on task-specific datasets. However, fine-tuning the entire model is computationally expensive, both
in terms of time and memory. To address this, a more efficient approach involves adjusting only
a subset of the model’s parameters, known as Parameter-Efficient Fine-Tuning (PEFT) (Han et al.,
2024). PEFT methods include techniques such as adapter layers (Houlsby et al., 2019), which in-
troduce new trainable layers into the model’s backbone, and approaches like BitFit (Zaken et al.,
2022), which modify a subset of the model’s original weights (e.g. bias weights). Low-rank adapta-
tion methods, such as LoRA (Hu et al., 2021), decompose update matrices into low-rank components
and are particularly prominent in reducing computational costs, while maintaining comparable per-
formance to full fine-tuning.

LoRA and its variants operate under the assumption that pre-trained language models possess a
low “intrinsic dimension” (Aghajanyan et al., 2020; Li et al., 2018), suggesting that weight updates
should similarly exhibit low rank. However, a key challenge with these techniques lies in determin-
ing the optimal rank values, which involves balancing expressivity and computational efficiency.
Expressivity refers to the model’s ability to capture complex patterns in the data, while computa-
tional efficiency pertains to the speed and resource requirements for fine-tuning. The trade-off is
evident: lower ranks reduce expressivity but enhance memory efficiency and computational speed,
whereas higher ranks increase expressivity at the cost of greater memory usage, longer computation
times, and most likely more data to learn weights reliably. Typically, ranks are set uniformly across
all layers, with practitioners relying on trial-and-error to achieve a balance between expressivity and
efficiency. This process is time-consuming and may not always yield optimal results.

On the other hand, using random projection to reduce the dimensionality of the parameter space
until achieving 90% of the full fine-tuning performance may not be ideal, as it inherently limits
the model’s potential to achieve higher performance. Recent studies on the geometry of hidden
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representations (Valeriani et al., 2023) reveal that these representations also exhibit low intrinsic
dimensionality, reflecting the compression occurring at each layer of the model. This raises a natural
question:

Is there a connection between the manifold of data representations and the
manifold of model parameters?

We theoretically investigate the relationship between the intrinsic dimensionality of data represen-
tations and the ranks of weight updates in language models, deriving a lower bound for the optimal
rank based on the intrinsic dimensionalities of the input and output of each transformer block. Build-
ing on this foundation, we propose a novel approach, Geometric Low-Rank Adaptation (GeLoRA),
to address the trade-off between expressivity and computational efficiency by exploiting the geomet-
ric properties of the model’s hidden representations. GeLoRA leverages intrinsic dimensionalities to
provide a more principled mechanism for adjusting ranks, thereby achieving an optimal balance be-
tween model expressivity and computational constraints. Our method dynamically adjusts the ranks
for low-rank adaptation by considering both the compression occurring at each transformer block
and the specific characteristics of the model and dataset, offering a more precise and theoretically
motivated balance between performance and resource efficiency.

Determining the ground truth intrinsic dimension of each hidden state is impractical; however, vari-
ous techniques can provide reliable estimates. Among these, we will adopt the Two Nearest Neigh-
bors (TwoNN) method (Facco et al., 2017), which has proven to be an effective estimator. It is robust
to variations in curvature and density within the data and has been widely used to analyze representa-
tions in deep neural networks in previous studies (Ansuini et al., 2019; Doimo et al., 2020; Valeriani
et al., 2023; Cheng et al., 2023; Kvinge et al., 2023; Basile et al., 2024).

Contributions. The contributions of our work are as follows:

• Theoretical Framework for LoRA Effectiveness: We establish a theoretical framework
that explains the effectiveness of LoRA. Specifically, we derive a theoretical lower bound
that connects the intrinsic dimensionalities of the data representation manifolds at the inputs
and outputs of transformer blocks with the ranks of their constituent layers.

• Introduction of the GeLoRA Approach: Building upon the derived lower bound, we
introduce the GeLoRA approach, which dynamically adjusts the LoRA ranks across model
weights to better align with the intrinsic dimensionalities of data representations.

• Empirical Validation of GeLoRA: Through extensive experiments and analyses, we val-
idate the practical performance and efficiency of the GeLoRA framework. Our results
demonstrate that GeLoRA outperforms existing baselines while maintaining the same pa-
rameter budget.

2 RELATED WORK

LLMs have achieved state-of-the-art performance in a wide range of natural language processing
(NLP) tasks across diverse domains. Models such as GPT (Brown et al., 2020) and BERT (Devlin
et al., 2019) have demonstrated exceptional proficiency in tasks including language modeling, sen-
timent analysis, machine translation, and question answering, which showcases their versatility in
natural language understanding and generation.

However, developing a more personalized model requires additional fine-tuning, which must be
handled efficiently due to the substantial computational costs involved. This is where PEFT (Han
et al., 2024) comes into play. It aims to balance the fine-tuning performance with the need to reduce
computational overhead by selectively adjusting a small subset of the model’s parameters, thereby
minimizing resource consumption, as compared to the more resource-intensive process of full fine-
tuning.

Within this framework, different lines of research in model fine-tuning explore various approaches
to optimizing efficiency. One such approach focuses on parameter tuning techniques, where only a
subset of model parameters is trained while others remain fixed. An example is BitFit (Zaken et al.,
2022), which exclusively adjusts the bias terms and the task-specific head within the model, leaving
the remaining parameters unchanged. Another research direction involves the use of adapter layers
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by introducing small trainable layers, known as “adapters” (Houlsby et al., 2019), into the model,
which enable adaptation to new tasks without altering the model’s original weights. Moreover,
context-based fine-tuning methods (Petrov et al., 2024) are used to influence model outputs through
input representation modification. Prefix tuning (Li & Liang, 2021), for instance, appends task-
specific parameters to the input’s embedding, guiding the model’s responses without altering its core
parameters. Finally, LoRA (Hu et al., 2021; Dettmers et al., 2023; Hayou et al., 2024) represents
a significant line of research that involves decomposing update matrices into the product of two
low-rank matrices to reduce the number of trainable parameters, while maintaining comparable
performance to full fine-tuning. Despite its advantages, LoRA faces challenges in determining the
appropriate rank for the low-rank matrices. Typically, the rank is set uniformly across layers through
a trial-and-error process, which is often suboptimal.

More recently, several LoRA variants have been developed to address the issue of setting uniform
rank values by dynamically adjusting the rank for each layer. These variants compute importance
scores or prune unnecessary ranks based on budget constraints, thereby optimizing rank alloca-
tion. Notable examples include AdaLoRA (Zhang et al., 2023), SaLoRA (Hu et al., 2023), SoRA
(Ding et al., 2023), and ALoRA (Liu et al., 2024), each offering strategies to improve fine-tuning
efficiency. AdaLoRA dynamically allocates the parameter budget across weight matrices during
fine-tuning using singular value decomposition (SVD). It adjusts the rank of matrices by assign-
ing higher ranks to critical singular values and pruning less important ones, resulting in a sparse
selection of ranks. However, its heuristic criterion for sparsity selection lacks strong theoretical jus-
tification. Additionally, the computational complexity is increased due to operations like computing
moving averages for importance scores and handling gradients from orthogonality regularization
during training. On the other hand, SaLoRA dynamically learns the intrinsic rank of each incremen-
tal matrix using a binary gating mechanism and a differentiable relaxation method, which selectively
removes non-critical components. While this improves efficiency, removing these components may
introduce instability during training. To mitigate this, orthogonality regularization is applied to the
factor matrices, improving training stability and generalization. However, the optimization process,
which involves Lagrangian relaxation and orthogonal regularization, increases the computational
overhead. SoRA also adjusts the intrinsic rank dynamically during training by employing a sparse
gating unit, which is learned through the minimization of the l0 norm via the proximal gradient
method. Despite its promise, the sparsifying process lacks a strong theoretical foundation and may
struggle to generalize to new domains effectively. Lastly, ALoRA enables dynamic rank adjustment
during the adaptation process through two key steps: first, estimating the importance scores of each
LoRA rank, and then pruning less important or negatively impactful ranks while reallocating re-
sources to critical transformer modules that require higher ranks. However, the computational cost
of performing adaptive budget LoRA (AB-LoRA) can be high, which may hinder its practicality in
certain settings.

3 GELORA: GEOMETRIC LOW RANK ADAPTATION

3.1 INTUITION

Consider a linear map f : x 7→ Wx, where the matrix W has low rank r. The low rank of W
implies that f compresses the semantic information of x into a lower-dimensional space, such that
dimℑmf = r. While the functions approximated by transformer blocks are far more complex than
a linear map, we will later show that intrinsic dimension profiles can provide valuable insight for
selecting appropriate ranks for each layer of a language model. Specifically, they offer a lower bound
on the number of parameters required to effectively encode information. To rigorously examine how
the rank of hidden states correlates with the number of parameters needed for effective fine-tuning
in a transformer block, we present a formal theoretical framework in the next section.

3.2 THEORETICAL FORMULATION

For clarity and consistency, we maintain the notation used in the original low-rank adaptation paper
(Hu et al., 2021). Without loss of generality, we will focus on the language modeling problem, where
the goal is to maximize conditional probabilities given a task-specific prompt. Each downstream task
can be represented by a dataset comprising context-target pairs Z = {(xi, yi)}, where both xi and
yi are sequences of tokens. The primary objective is to accurately predict yi given xi. For example,
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in a summarization task, xi represents the original content and yi its summary. Mathematically, this
can be modeled as follows:

max
ϕ∈Φ

∑
(x,y)∈Z

|y|∑
t=1

log(Pϕ(yt | x, y<t))

Here, Φ denotes the parameter set of the model, and PΦ(· | ·) represents the conditional probability
describing the relationship between context and target pairs. This probability distribution can be
understood as a point on a neuromanifold M = {NNϕ | ϕ ∈ Φ}.

The geometry of this manifold is characterized by the Fisher Information Matrix (FIM) (Fisher,
1922) with respect to ϕ, which is given by:

I(ϕ) = Ex∼Pdata,y∼P(·|x;ϕ)

[(
∂

∂ϕ
logP(y | x;ϕ)

)(
∂

∂ϕ
logP(y | x;ϕ)

)T]

The FIM defines a Riemannian metric on the learning parameter space (Amari, 2021), characteriz-
ing its curvature (Čencov, 1982). However, learning models often exhibit singularities (Watanabe,
2009), meaning that the rank of the matrix is less than its full dimension.

Transformer models typically have an extremely large number of parameters, often ranging in the
millions or even billions, due to their deep and wide architectures. This high-dimensional parameter
space can lead to parameter redundancy and strong correlations between parameters, as noted by
Dalvi et al. (2020). Such redundancy, or multicollinearity, can result in linear dependencies among
the gradients of the log-likelihood with respect to different parameters. Another motivation stems
from the behavior of optimizers such as Stochastic Gradient Descent (SGD) (Ruder, 2017). These
optimizers tend to prefer flatter minima during gradient descent (Jastrzebski et al., 2018), often
resulting in plateaus in the gradient learning process. As a result, the FIM may exhibit eigenvalues
close to zero, indicating singular or near-singular behavior.

In this context, the rank of I(ϕ), defined by the number of non-zero eigenvalues of the FIM, reflects
the number of degrees of freedom (directions) at a point ϕ that can modify the probabilistic model
PΦ(· | ·). This is often referred to as the local dimensionality (Sun & Nielsen, 2024). Figure 1
illustrates this concept, where the local dimensionality is 1, while the dimension of the space is 2.

Eigenvalue Spectrum

i

λi

λ
1
≫

ϵ

λ
2
≈

ϵ

θ1

θ2

L(θ)

Θ(0)ˆidim(θ) = 1

Quadratic Loss

θ1

L(θ)

Informative Direction

Constant Loss

θ2

L(θ)

Uninformative Direction

Figure 1: Assume that locally around Θ(0), the loss function can be approximated by L(θ1, θ2) =
1
2θ

2
1 . In this scenario, the loss landscape exhibits a single free direction. The loss depends exclusively

on θ1, while θ2 has no influence on it. As a result, changing θ2 alone does not affect the loss, making
θ2 a free direction in the landscape. In contrast, variations in θ1 lead to changes in the loss, meaning
that the zero-loss set forms a line along the θ2-axis. Therefore, the local dimensionality of the low-
loss region is 1.

Definition 3.1 (Local Dimensionality). The local dimensionality, denoted as d(ϕ), is defined as
the rank of the information matrix I(ϕ). It represents the number of parameters that need to be
optimized in the model, indicating the effective dimensionality of the parameter space around the
point ϕ.
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Ideally, we aim to compute the local dimensionality of the parameter space at each gradient step.
However, two primary challenges hinder this approach. Firstly, the information matrix behaves as a
random matrix, typically maintaining full rank with probability 1 (Feng & Zhang, 2007). Secondly,
the computational feasibility poses a significant obstacle, as computing the FIM at each step requires
extensive computational resources.

While the FIM is almost surely of full rank, it often has very small eigenvalues, on the order of
ϵ ∈ R+. According to the Cramér-Rao bound, the variance of the parameter estimates is greater
than or equal to 1/ϵ. Therefore, parameters associated with such small eigenvalues provide negli-
gible information about the model and can be considered effectively uninformative. Disregarding
parameters with very small eigenvalues leads us to the concept of intrinsic dimension. The intrinsic
dimension is defined as the minimum number of parameters required to capture the local variance
of the data points effectively. Consequently, the intrinsic dimension represents a lower bound on the
local dimensionality.

Theorem 3.1 (Intrinsic Dimension Lower Bound). The estimated intrinsic dimension ˆidim(ϕ) is
a lower bound to the local dimensionality d(ϕ).

d(ϕ) ≥ ˆidim(ϕ).

Several significant challenges persist. First, the computation of the FIM and the determination of
its rank are prohibitively expensive in terms of computational resources. Second, estimating the
intrinsic dimension of the neuromanifold is also infeasible. Furthermore, the required number of
parameters to optimize (i.e. the rank of the FIM) pertains to the entire model rather than to each
independent matrix, resulting in a high lack of granularity.

However, we have access to the input data and its representations across different transformer blocks
within the large language model. Consequently, we can shift our focus to the data manifold, which
is subjected to a series of transformations that map it to new representations, resulting in manifolds
with differing geometries. To analyze the changes in geometry, particularly the alterations in dimen-
sionality, we will begin by defining the components of the transformer blocks. Each transformer
block comprises two primary components: a multi-head attention mechanism and a feed-forward
network. Additionally, it incorporates skip connections, which are essential for mitigating the rank
collapse problem, and a normalization layer.
Definition 3.2 (Single-head Self-attention Layer). Let k, d ∈ N. Consider matrices Q,K, V ∈
Rk×d. For any integer n ∈ N and vectors x1, . . . , xn ∈ Rd, self-attention with parameters (Q,K, V )
maps the sequence (x1, . . . , xn) ∈ Rd×n to

f(x1, . . . , xn) =

V n∑
j=1

softmax
(
x⊤i Q

⊤Kxj√
k

)
xj


1≤i≤n

∈ (Rk)n, (1)

Definition 3.3 (Multi-head Self Attention Layer). Let d ∈ N andH be a divisor of d. For 1 ≤ h ≤
H , let Q(h),K(h), V (h) ∈ Rk×d with k := d/H , and W (h) ∈ Rd×k. Multi-head self-attention
with parameters (Q(h),K(h), V (h),W (h))1≤h≤H maps any sequence (x1, . . . , xn) ∈ (Rd)n to

fMH(x1, . . . , xn) =

H∑
h=1

W (h)f (h)(x1, . . . , xn) ∈ (Rd)n, (2)

where f (h) denotes single-head self-attention with parameters (Q(h),K(h), V (h)).
Theorem 3.2 (Rank of a Transformer Block). Let M denote a language model consisting of N
transformer blocks. For each i ∈ {1, 2, . . . , N}, the i-th transformer block is represented by Ti :
Rni−1×Rpi−1 → Rni , which maps the hidden state Hi−1 ⊂ Rni−1 and parameters θi−1 ∈ Rpi−1 to
the next hidden state Hi ⊂ Rni . Assume that the hidden state Hi lies on a manifold Ni with intrinsic
dimension di embedded in Rni , while Hi−1 lies on a manifold Ni−1 with intrinsic dimension di−1

embedded in Rni−1 .

The rank of the transformer block Ti is constrained by the inequality

di ≤ rank(Ti),
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where the rank of Ti at θi−1 is defined as
rank(Ti) = max

x∈Hi−1

rank(J(Ti, x, θi−1)),

with J(Ti, x, θi−1) representing the Jacobian matrix of Ti evaluated at x ∈ Hi−1 and θi−1.
Corollary 3.2.1. Let Ni−1 be the number of required parameters to optimize at transformer block
i. We have

max(di − di−1, 0) ≤ Ni−1

Recomputing the optimal number of parameters after each gradient step is computationally expen-
sive. However, as training progresses, the model learns to compress data, resulting in fewer param-
eters being responsible for the local variance of data points. Therefore, it is reasonable to assume
that the intrinsic dimensionality of the data and the rank of the transformer blocks decrease during
training.
Conjecture 3.1. Let i ∈ {1, 2, . . . , N}, during fine-tuning, both the rank of each transformer block
rank(Ti) and the intrinsic dimension di of the manifold Ni decrease. Let d0i represent the initial
intrinsic dimension. The inequality:

d0i ≤ rank(T t
i )

becomes tighter as fine-tuning progresses, where T t
i is the transformer block after the t-th gradient

step. Thus, the gap between the initial intrinsic dimension and the rank of the transformer block
shrinks during the fine-tuning process.

3.3 METHODOLOGY

Figure 2 provides a schematic representation of the GeLoRA methodology, which begins by com-
puting the the intrinsic dimensions of data representations across the model’s hidden states, allowing
for an understanding of the manifold structure that each layer captures. For each layer i, let di repre-
sent the intrinsic dimension of the data manifold at the input, and di+1 the intrinsic dimension at the
output. To ensure efficient low-rank adaptation (LoRA) parameters that align with the model’s ge-
ometry, the minimal rank ri is set for each layer according to the condition ri ≥ max(di+1 − di, 0),
where the difference di+1 − di indicates the required capacity to capture any dimensional expan-
sion of the data manifold between consecutive layers. An adaptive scaling factor αi is then applied
across layers to maintain a consistent ratio αi/ri = const, preserving the proportion of adaptation
strength relative to rank. This enables an efficient fine-tuning process that balances expressivity with
computational efficiency.

Step 1: Compute Intrinsic
Dimensions

di

Transformer Block i

di+1

Step 2: Set Minimal LoRA
Ranks

Block Index

Rank

ri ≥ max(di+1 − di, 0)
(Minimal Rank)

Step 3: Efficient Finetuning

Expressivity

Computational Cost

GeLoRA

Better Tradeoff

Figure 2: Schematic of the GeLoRA methodology. The process includes intrinsic dimension anal-
ysis (Step 1), setting minimal LoRA ranks based on these dimensions (Step 2), and performing
efficient fine-tuning to achieve an optimal balance between computational efficiency and model ex-
pressivity (Step 3).

To estimate the intrinsic dimension di of the hidden state i, we employ the two-nearest-neighbors
(2-NN) method Facco et al. (2017). Given a dataset in a high-dimensional feature space, we begin
by identifying, for each data point xj , its nearest and second-nearest neighbors, computing their
respective distances r1(j) and r2(j). We then compute the ratio µj = r2(j)

r1(j)
, which encapsulates

local geometric information. Under the assumption of locally uniform data density, the cumulative
distribution function of the ratio µ = r2

r1
is given by

F (µ|di) = 1− µ−di
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for µ ≥ 1 and di > 0. The intrinsic dimension di can be estimated by fitting the empirical dis-
tribution of the observed ratios {µj}Nj=1 to this theoretical distribution, either through maximum
likelihood estimation or through linear regression in log-log space of the complementary cumulative
distribution.

In high-dimensional settings, the 2-NN method tends to provide a conservative estimate, often serv-
ing as a lower bound on the true intrinsic dimension. To illustrate this, we conduct experiments on
established benchmark datasets, observing the 2-NN method’s behavior relative to the ground truth.
To mitigate the risk of underestimating the intrinsic dimension—resulting in an inaccurate value of
zero rank in some cases—we add a small offset of 1 to each rank lower bound. Furthermore, rank
lower bound is computed for each transformer block as a whole, including the Key, Query, Value,
and Output matrices. Since we cannot localize the specific important parameters within each matrix,
we set the rank of each matrix in the transformer block equal to the computed intrinsic dimension.

rKi
= rQi

= rVi
= rOi

= max(di+1 − di, 0) + 1,

where rKi
, rQi

, rVi
, and rOi

are, respectively, the LoRA ranks of the Key, Query, Value and Output
matrices of the transformer block i.

3.4 FINE-TUNING TECHNIQUES AND DATASETS

We evaluate the performance of our GeLoRA technique across several natural language processing
tasks. First, we assess its performance on the GLUE benchmark for natural language understand-
ing (Wang et al., 2019), using tasks such as CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013), MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QNLI (Rajpurkar et al., 2016),
and RTE (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007). We then evaluate
question answering performance using the SQuAD dataset (Rajpurkar et al., 2016). Finally, we
investigate instruction-following tasks by fine-tuning the model on the Alpaca dataset (Taori et al.,
2023) and evaluating on MT-Bench (?). For natural language understanding and question answering,
we use the DeBERTaV3 model (He et al., 2021), following established practices in the literature.
For instruction-following tasks, we fine-tune using Phi-2 (?). We compare GeLoRA’s performance
against several fine-tuning techniques, including weight update tuning (Zaken et al., 2022), adapter-
based methods (Houlsby et al., 2019; Pfeiffer et al., 2021), and LoRA and its variants (Hu et al.,
2021; Ding et al., 2023; Zhang et al., 2023).

3.5 EXPERIMENTAL SETTING

We implemented all algorithms using PYTORCH, based on the publicly available HUGGINGFACE
TRANSFORMERS (Wolf et al., 2020) code-base. For optimization, we used the ADAMW optimizer
(Loshchilov & Hutter, 2019), which features parameters set to ϵ = 10−6, β1 = 0.9, and β2 = 0.999,
and we fixed the batch size to 32. To facilitate fair comparisons across different fine-tuning methods,
we employed OPTUNA (Akiba et al., 2019) for hyperparameter tuning, optimizing parameters such
as learning rate, weight decay, warm-up ratio, learning scheduler type, and LoRA dropout over 50
trials for each method. The numerical results were averaged over five runs with random seeds, and
we report standard deviations to ensure statistical robustness. The alpha rank ratio for low-rank
adaptation techniques was fixed at 32, consistent with prior work (Hu et al., 2021; Zhang et al.,
2023), and was not fine-tuned further. For estimating intrinsic dimension, we used the SCIKIT-
DIMENSION package (Bac et al., 2021). All experiments were conducted on NVIDIA A100-SXM4
GPUS. Additional details regarding the training process can be found in the Appendix E.

3.6 NUMERICAL RESULTS

3.6.1 NATURAL LANGUAGE UNDERSTANDING: GLUE BENCHMARK

Our experimental results demonstrate the effectiveness of GeLoRA across multiple tasks in the
GLUE benchmark. As shown in Table 3, GeLoRA achieves competitive or superior performance
compared to existing parameter-efficient fine-tuning methods while maintaining a minimal param-
eter footprint. Specifically, GeLoRA obtains an average score of 87.12 across all evaluated tasks,
outperforming strong baselines like HA Adapter (85.96), LoRA (85.93) and its adaptive variants.
On individual tasks, GeLoRA shows particularly strong performance on CoLA (70.96) and MRPC
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(89.90), achieving the best results among all parameter-efficient methods, while maintaining com-
petitive performance on other tasks. The results are particularly impressive when considering the
performance-to-parameter ratio. While other techniques achieves better results on some tasks (e.g.,
95.55 on SST-2), it requires six orders of magnitude more parameters. Our method maintains compa-
rable performance while being substantially more parameter-efficient, making it particularly suitable
for resource-constrained scenarios.

Table 1: Results with DeBERTaV3-base on GLUE test set. The best results for each dataset are
highlighted in bold, while the second-best results are underlined. We report the average correlation
for STS-B. Full FT represent full fine-tuning, HA Adapter represents Houlsby Adapters, and PF
Adapter represents Pfeiffer Adapters.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE Average
Full FT 184.42M 68.28± 1.39 91.32± 0.45 73.53± 3.25 93.81± 0.21 94.68± 0.30 73.67± 1.33 82.52
BitFit 0.11M 68.66± 1.87 89.40± 0.57 85.2± 1.56 92.10± 0.13 94.54± 0.30 75.11± 2.52 84.17

HA Adapter 0.65M 68.46± 1.08 91.26± 0.13 86.76± 0.44 93.52± 0.40 95.32± 0.35 80.43± 2.78 85.96
PF Adapter 0.62M 68.59± 1.43 89.85± 0.13 88.24± 1.07 93.33± 0.30 95.55± 0.41 79.14± 2.95 85.78

LoRAr=1 0.08M 69.68± 0.92 88.29± 3.28 88.43± 1.37 93.83± 0.13 95.04± 0.43 80.29± 1.33 85.93
LoRAr=2 0.15M 69.04± 1.51 88.60± 3.09 87.75± 0.69 93.79± 0.17 95.04± 0.22 80.43± 1.60 85.78

SoRAr=1 0.08M 61.78± 2.37 78.88± 6.55 87.45± 3.06 88.66± 0.68 91.94± 0.52 82.32± 2.49 81.17
SoRAr=2 0.15M 67.85± 1.33 84.33± 3.90 88.04± 2.00 89.76± 0.41 91.40± 0.32 78.84± 3.74 84.04

AdaLoRAr=1 0.15M 69.28± 0.33 92.08± 0.15 84.61± 0.91 93.84± 0.15 95.07± 0.42 74.96± 3.82 84.97
AdaLoRAr=2 0.22M 64.76± 1.49 91.56± 0.12 87.25± 0.93 94.07± 0.12 95.44± 0.34 81.87± 0.95 85.83

GeLoRA −− 70.96± 0.96 91.66± 0.48 89.9± 0.79 93.87± 0.23 95.05± 0.24 81.29± 1.64 87.12

What’s particularly noteworthy is GeLoRA’s parameter efficiency, as detailed in Table 2. The
method adaptively allocates parameters based on task complexity, ranging from 0.09M parameters
for simpler tasks like QNLI and SST-2, to 0.13M parameters for more complex tasks such as MRPC
and RTE. This adaptive parameter allocation results in optimal mean ranks while using significantly
fewer parameters compared to full fine-tuning (184.42M parameters) and competitive with other ef-
ficient methods like LoRA and its variants (0.08M-0.22M parameters). Furthermore, our approach
is more intuitive because models do not need to treat all datasets or tasks equally. During the pre-
training phase, they may have already gained prior knowledge relevant to certain tasks or datasets,
which reduces the need for extensive fine-tuning to achieve strong performance.

Table 2: Number of parameters in GeLoRA for each task.

Task CoLA STS-B MRPC QNLI SST-2 RTE
# Params 0.10M 0.11M 0.13M 0.09M 0.09M 0.13M
Mean Rank 1.33 1.50 1.75 1.25 1.17 1.75
Rounded Mean Rank 1 2 2 1 1 2

A potential question that arises is how increasing the LoRA ranks uniformly, or introducing greater
complexity into the adaptive variants AdaLoRA and SoRA, might impact their performance, and
how they would compare to GeLoRA. To address this, we conduct a comparison in a high-rank
setting, where we adjust the lower rank bounds of GeLoRA by applying an offset to align with the
higher ranks selected for the other fine-tuning techniques. Specifically, we set the ranks as follows:

rKi = rQi = rVi = rOi = max(di+1 − di, 0) + o,

where o is the applied offset to GeLoRA ranks.

Table 3: Results with DeBERTaV3-base on GLUE test set using higher ranks. The best results for
each dataset are highlighted in bold, while the second-best results are underlined. We report the
average correlation for STS-B.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE Average
LoRAr=4 0.3M 67.52± 0.38 89.84± 1.36 89.12± 2.09 93.77± 0.10 95.39± 0.40 81.73± 1.55 86.23
SoRAr=4 0.3M 63.47± 1.99 81.68± 7.93 87.06± 1.15 90.04± 0.67 92.46± 0.59 86.09± 2.69 83.47
AdaLoRAr=4 0.44M 68.62± 1.22 90.54± 0.23 84.31± 1.45 94.11± 0.12 95.39± 0.44 79.71± 1.24 85.45

GeLoRA −− 68.53± 0.71 91.38± 0.43 88.12± 0.73 93.15± 0.17 95.44± 0.35 80.92± 1.47 86.26

Moreover, using dataset-specific ranks aligns with a common practice used to enhance performance
during fine-tuning across various benchmarks, which is intermediate task tuning. This approach
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involves fine-tuning a model on a different task from the target task as a preliminary warm-up step.
While this methodology is primarily intuitively motivated—rooted in the idea of learning common
features and fostering common-sense reasoning—its theoretical justification remains less clear. In
this regard, we aim to provide a plausible explanation for the effectiveness of this approach. We
focus on three tasks: MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), and RTE (Dagan
et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007). Although each dataset has a specific
focus, they all assess semantic relationships between pairs of texts, presenting a strong case for a
sequential fine-tuning strategy. MRPC targets the identification of paraphrases, where two sentences
convey the same idea using different wording. STSB evaluates the degree of semantic similarity
between sentences on a continuous scale ranging from 0 to 5. RTE determines whether one sentence
entails another, reflecting a distinct aspect of semantic relationships. These tasks require the model
to comprehend nuanced semantic properties, including synonyms, paraphrases, and entailment. As a
result, the underlying language representations across these datasets exhibit significant similarities.
Consequently, we hypothesize that fine-tuning on MRPC can facilitate the subsequent fine-tuning
processes for STSB and RTE.

We posit that the main reason for this enhanced performance stems from data compression, as the
model learns features relevant to the target tasks during intermediate training. To evaluate this
hypothesis, we theorize that the lower bound of intrinsic dimensions will become looser after com-
pression. Our experimental results support this hypothesis. For instance, we observe a decrease in
the mean intrinsic dimension for RTE (from 13.47 to 12.97) as shown in Figure 3a, while Figure
3b shows that the mean intrinsic dimension for STS-B remains consistent (from 13.19 to 13.01),
albeit with a change in their profiles as shown in Figure 3a and Figure 3b. Additionally, we note
similarities in the behavior of different layers: the lower layers, responsible for basic features (such
as syntax and grammar), remain largely unchanged; however, the higher layers, which capture more
complex features, exhibit significant compression. The intermediate layers, as indicated by recent
studies on the geometry of hidden representations, show a slight increase in their capacity due to the
model’s specialization in the semantics of the intermediate task. Thus, the decrease in the mean in-
trinsic dimensions corresponds to a reduction in the lower bounds presented in Corollary 3.2.1. This
loosening of the bounds indicates that the number of parameters required for optimal performance
has decreased, leading to more efficient training.

(a) Intrinsic dimension profile of the RTE dataset us-
ing DebertaV3 before and after intermediate task tun-
ing using MRPC.

(b) Intrinsic dimension profile of the STS-B dataset
using DebertaV3 before and after intermediate task
tuning using MRPC.

Figure 3: Intrinsic dimension profiles of RTE and STS-B datasets using DebertaV3 before and after
intermediate task tuning using MRPC.

Finally, we evaluate the efficiency of different techniques pertaining to the same budget constraint.
We measured the clock time for training across six datasets, conducting experiments for 20 epochs
on all datasets except for RTE, which was run for 50 epochs. All experiments were executed on
identical computing infrastructure, using eight NVIDIA A100-SXM4 GPUS with a consistent
batch size of 32. To ensure a fair comparison between different techniques, we adjusted the ranks of
LoRA and its variants to match the rounded mean rank of GeLoRA.

Table 4 reveals that GeLoRA demonstrates superior performance while incurring less computational
overhead compared to the other techniques. In contrast, the SoRA method experiences additional
computational overhead during training due to the gradient calculations required for the proximal
gradient approach used to enforce sparsity via the l0 norm. On the other hand, BitFit requires
training the task-specific head for better performance which adds complexity to the method.
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Table 4: Training computational cost (runtime) in seconds for DeBERTaV3-base fine-tuning on
GLUE tasks. The runtime for each fine-tuning is indicated in seconds. The best results for each
dataset are highlighted in bold.

Dataset GeLoRA SoRA LoRA AdaLoRA BitFit HAdapter PAdaper
CoLA 85.68± 2.27 159.42± 0.80 100.95± 10.53 165.43± 0.28 157.27± 1.07 117.98± 0.07 113.52± 0.11
STS-B 59.13± 3.26 116.19± 0.50 78.26± 6.92 157.50± 8.36 122.68± 0.40 84.51± 0.06 81.27± 0.04
MRPC 40.42± 0.30 86.03± 1.13 58.75± 1.73 112.61± 1.36 94.93± 0.34 57.41± 0.10 55.09± 0.03
QNLI 736.57± 3.34 1617.92± 1.94 865.76± 4.11 2328.60± 24.81 1341.47± 21.03 1254.14± 1.21 1205.86± 1.83
SST-2 475.58± 5.10 1041.62± 1.82 482.38± 5.11 1140.65± 2.25 871.10± 5.05 807.91± 0.57 775.33± 0.56
RTE 75.62± 0.29 158.25± 1.43 116.28± 7.30 207.89± 4.42 80.5± 0.24 104.38± 0.06 100.40± 0.11

Average 245.5 529.91 283.73 685.45 444.66 404.39 388.58

3.6.2 QUESTION ANSWERING: SQUAD

Our experimental results demonstrate the efficiency of GeLoRA against baseline approaches on
SQuADv1.1 and SQuADv2.0 benchmarks. GeLoRA achieves state-of-the-art performance with
EM/F1 scores of 86.97/92.94 and 83.59/86.83 respectively, surpassing full fine-tuning while utiliz-
ing only a fraction of trainable parameters. Table 5 reveals consistent performance improvements
over existing parameter-efficient methods. GeLoRA outperforms LoRA variants by margins of 0.82-
2.28 points in EM score on SQuADv1.1, with similar gains observed on SQuADv2.0. The perfor-
mance delta is more pronounced when compared to adapter-based methods, showing improvements
of 2.58 and 3.93 points over HAdapter and PAdapter respectively.

Table 5: Results with DeBERTaV3-base on SQuADv1.1 and SQuADv2.0. Here # Params is the
number of trainable parameters. We report both the exact match and F1-score. The best results in
each setting are shown in bold.

# Params SQuADv1.1 SQuADv2.0
EM F1 EM F1

Full FT 183.83M 86.13 92.69 83.72 86.87
HAdapter 0.06M 84.39 91.54 80.79 82.06
PAdapter 0.03M 83.04 90.44 77.64 81.52
LoRA 2 0.01M 86.15 92.54 82.14 85.12
LoRA 1 7e−3M 84.69 91.52 81.01 84.09

GeLoRA 8e−3M 86.97 92.94 83.59 86.83

4 CONCLUSION AND FUTURE WORK

In this work, we introduced GeLoRA, a theoretically grounded technique designed for the efficient
fine-tuning of large language models. GeLoRA effectively addresses the expressivity-efficiency
trade-off inherent in low-rank adaptation techniques. Our approach is straightforward yet pow-
erful, supported by theoretical analyses that ensure an optimal balance between expressivity and
computational efficiency. We theoretically demonstrated that the number of parameters requiring
optimization per transformer block is lower bounded by the difference in the intrinsic dimensions
of the corresponding input and output hidden representations. This finding provides a method for
estimating the optimal ranks for low-rank adaptation techniques, and connecting the manifold of
data representations to the manifold of model parameters. Empirically, our methodology surpasses
current state-of-the-art approaches on the GLUE benchmarks while maintaining computational ef-
ficiency. Additionally, GeLoRA offers a potential theoretical justification for the effectiveness of
intermediate task tuning in certain scenarios. However, we acknowledge that our technique shifts
some computational overhead to the preprocessing step and relies on a local estimator of intrinsic
dimensions, specifically the Two Nearest Neighbors (TwoNN) method. We believe this aspect can
be further improved through the application of persistent homology dimensions to estimate intrinsic
dimensions, as this approach considers both local and global topological features of the manifold.
Moreover, it can be computed efficiently on GPUs by leveraging parallelization.

A GLUE DATASETS STATISTICS

We present the statistics for the GLUE (Wang et al., 2019) datasets used in our experiments in Table
6.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Table 6: Summary of the GLUE benchmark datasets.

Corpus Task #Train #Dev #Test #Label Metrics
CoLA Acceptability 8.5k 1k 1k 2 Matthews Corr.

SST-2 Sentiment 67k 872 1.8k 2 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

STS-B Similarity 7k 1.5k 1.4k – Pearson/Spearman Corr.

B SQUAD DATASETS STATISTICS

We present the statistics for the SQUAD (Rajpurkar et al., 2016) datasets used in our experiments in
Table 7.

Table 7: Statistics of the SQuAD dataset.

# Train # Validation

SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

C EXAMPLES OF RANK PATTERNS

Figure 4: GeLoRA rank pattern for CoLA
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Figure 5: GeLoRA rank pattern for MRPC

Figure 6: GeLoRA rank pattern for RTE

Figure 7: GeLoRA rank pattern for SST-2
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Figure 8: GeLoRA rank pattern for QNLI

Figure 9: GeLoRA rank pattern for STSB

D PROOFS

Intuitive Proof. Before fine-tuning, the hidden states explore a large, unconstrained space, leading
to a high intrinsic dimension d0i of the manifold Ni and a relatively high rank for the transformer
block T 0

i . During fine-tuning, the model becomes specialized for a specific task. It learns to focus
on relevant features, causing the hidden states to lie on a lower-dimensional subspace, which reduces
the intrinsic dimension di. Simultaneously, the rank of Ti decreases as the block’s transformation
focuses on fewer independent directions, filtering out irrelevant information. As both the intrinsic
dimension and rank decrease during fine-tuning, the inequality d0i ≤ rank(Ti) becomes tighter.
Empirical evidence supports this observation.

Proof. Given the result of Theorem 3.2, we have:

dim(Ti(Hi−1)) ≤ rank(Ti).

Now, rank(Ti) is the number of non-noisy directions of its input, meaning θi and the dimensions of
Rni−1 when x ∈ Hi−1.

By definition of intrinsic dimensions, we have

Number of non-noisy directions at Hi−1 ≤ di−1
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Hence, we can rewrite the rank inequality as follows:

di ≤ di−1 +Ni−1

And we have
0 ≤ Ni−1

Hence, we have
max(di − di−1, 0) ≤ Ni−1

Proof. Let i ∈ {1, 2, . . . , N}, and consider the map Ti : Rni−1 × Rpi−1 → Rni to be the i-th
transformer block, which maps the hidden state Hi−1 ⊂ Rni−1 and parameters θi−1 ∈ Rpi−1 to the
next hidden state Hi ⊂ Rni . Assume that idim(Hi−1) = di−1 and idim(Hi) = di.

Given that idim(Hi−1) = di−1 ≤ ni−1, we can define a smooth bijective parameterization ϕ :
U → Rni−1 from an open set U ⊂ Rdi−1 to an open subset O ⊂ Hi−1. We now extend this
parameterization to include the parameters θi−1 ∈ Rpi−1 by considering the map ψ : U → Rni−1 ×
Rpi−1 that maps each point x ∈ U to (x, θi−1).

Since Ti is smooth almost everywhere, we can apply the constant rank theorem 1 for manifolds to
the composed map Ti ◦ ψ, obtaining:

dim(Ti(Hi−1)) = rank(Ti ◦ ψ) = rank(JTi◦ψ),

where JTi◦ψ is the Jacobian matrix of the composition Ti ◦ ψ.

Using the chain rule, the rank of the composition is bounded by the minimum rank of the individual
Jacobians:

rank(JTi◦ψ) = rank(JTi · Jψ) ≤ rank(JTi)

Thus, the dimension of Ti(Hi−1), which corresponds to the intrinsic dimension di of the hidden
state Hi, satisfies:

dim(Ti(Hi−1)) ≤ rank(Ti).

E TRAINING DETAILS

We employ OPTUNA to fine-tune the hyperparameters for the following techniques: LoRA,
GeLoRA, BitFit, and Full Finetuning, while using the optimal parameters for SoRA from the orig-
inal paper. The ranges for hyperparameters include a learning rate between 8e−5 and 1e−3, LoRA
dropout, warmup ratio, and weight decay between 0 and 0.1, as well as two types of schedulers:
linear and cosine.

Hereafter, we summarize the optimal parameters identified across 50 trials, which were used in the
fine-tuning process.

Table 8: Hyperparameters for GeLoRA for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 8.00e−5 1.69e−4 7.53e−4 1.88e−4 1.61e−4 1.51e−4

Weight Decay 1.00e−1 9.43e−2 5.48e−2 3.00e−2 3.22e−2 6.78e−2

Warmup Ratio 6.00e−2 1.65e−2 3.04e−2 5.91e−2 7.63e−2 6.35e−2

LoRA Dropout 5.00e−2 5.69e−2 1.88e−2 5.36e−2 4.68e−2 7.16e−2

Scheduler Type Linear Cosine Linear Linear Cosine Cosine

1By Sard’s Theorem (Guillemin & Pollack, 2010), critical points—where the Jacobian rank is lower—map
to a set of measure zero. These regions of lower ranks contribute negligibly to the representation manifolds.
Therefore, we can disregard them and focus only on regions where the rank is constant and maximal.
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Table 9: Hyperparameters for LoRA for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 3.88e−4 9.80e−5 4.14e−4 2.12e−4 1.27e−4 3e−4

Weight Decay 4.88e−2 3.30e−2 8.94e−2 3.03e−4 3.90e−2 2.96e−2

Warmup Ratio 9.63e−2 3.99e−2 6.28e−2 7.89e−2 8.33e−2 4.9e−2

LoRA Dropout 9.85e−2 1.00e−1 5.51e−2 7.19e−2 8.09e−3 5.13e−2

Scheduler Type Cosine Linear Linear Linear Linear Cosine

Table 10: Hyperparameters for Full Finetuning for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 1.12e−4 1.03e−4 6.87e−4 1.03e−4 1.27e−4 9.29e−5

Weight Decay 5.53e−2 3.21e−2 7.48e−2 5.63e−3 3.90e−2 6.35e−2

Warmup Ratio 2.34e−2 9.30e−2 7.44e−2 4.76e−2 8.33e−2 3.33e−2

Scheduler Type Cosine Cosine Cosine Cosine Linear Cosine

Table 11: Hyperparameters for BitFit for each task

Hyperparameter CoLA STS-B MRPC QNLI SST-2 RTE

Learning Rate 7.94e−4 5.53e−4 8.61e−4 7.91e−4 3.36e−4 1.00e−3

Weight Decay 2.00e−2 8.89e−2 9.89e−2 4.70e−3 3.16e−2 1.11e−2

Warmup Ratio 1.00e−1 2.75e−2 8.10e−2 7.07e−2 8.33e−2 6.19e−2

Scheduler Type Cosine Linear Cosine Linear Cosine Linear
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lenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché Buc
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