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ABSTRACT

Finding the best way to schedule operations in a computation graph is a classical
NP-hard problem which is central to compiler optimization. However, evaluating
the goodness of a schedule on the target hardware can be very time-consuming.
Traditional approaches as well as previous machine learning ones typically opti-
mize proxy metrics, which are fast to evaluate but can lead to bad schedules when
tested on the target hardware. In this work, we propose a new approach to schedul-
ing by sampling proportionally to the proxy metric using a novel GFlowNet
method. We introduce a technique to control the trade-off between diversity and
goodness of the proposed schedules at inference time and demonstrate empirically
that the pure optimization baselines can lead to subpar performance with respect
to our approach when tested on a target model. Furthermore, we show that condi-
tioning the GFlowNet on the computation graph enables generalization to unseen
scheduling problems for both synthetic and real-world compiler datasets.

1 INTRODUCTION

Efficient execution of computation graphs is paramount to many scientific and industrial applica-
tions, with deep learning being a prominent example (Amodei & Hernandez, 2018). Scheduling
is the action of assigning operations to the available compute resources, such as threads, cores, or
nodes in a cluster (Kwok & Ahmad, 1999; Hennessy & Patterson, 2011; Pinedo, 2012). Unfortu-
nately, finding the schedule with the shortest possible makespan (start-to-end runtime) is in general
NP-hard (Papadimitriou & Steiglitz, 1998). As a result, domain experts have come up with heuristics
that are tailored to specific problem instances (Ibarra & Kim, 1977). Machine learning approaches
promise the possibility to automate this process allowing for fast adaptation to new graph distri-
butions (Wang & O’Boyle, 2018; Bengio et al., 2021c). In this work, we consider the problem
of scheduling a set of operations with precedence constraints on a fixed number of homogeneous
devices, i.e., any operation can run on any device and the runtime is the same on all devices.

Evaluating the makespan of a schedule involves running all operations in the computation graph on
some target hardware. This can be very resource intensive, especially when the computation graph
includes lengthy operations, the evaluated schedule is inefficient, or the intended target hardware is a
cluster with many nodes. Heuristic optimizers, like genetic algorithms (Hou et al., 1994), or machine
learning (Mao et al., 2019) approaches further exacerbate this problem because they require many
evaluations to converge (Chen et al., 2018). Proxies are a much faster alternative that estimates the
makespan using a simplified model of the hardware. However, this comes at the cost of discrepancies
between the proxy makespan and the one observed on the hardware; as a result, performant solutions
on the proxy might ultimately be unsatisfactory once tested on the target. Nonetheless, proxies
remain a good indicator for most schedules and are essential due to their efficiency. We aim to learn
a scheduler that can be trained using the proxy, whilst being robust to its inaccuracies.

The common approach to scheduling problems (and combinatorial optimization problems in gen-
eral) is to look for the single best schedule that minimizes a makespan measure which can be an
analytical proxy (Paliwal et al., 2020), the output of a simulator (Zhou et al., 2020), or even the real
makespan on hardware (Khadka et al., 2021). We propose a different philosophy: generate a set
of candidate schedules that have a low makespan according to the proxy and are diverse. By hav-
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Figure 1: Full pipeline of our generative scheduling approach. Conditioned on the computation
graph we generate multiple candidate schedules using GFlowNet, filter for the best k with the proxy
and pick the best performing one out of the k that we check on the target. Here we illustrate the
pipeline for k = 2 and two devices, d1, d2.

ing multiple good schedules that are significantly different, we can reduce the impact of systematic
errors in the proxy, and hope for robust performance on the target.

Our goal is to learn a generative model that assigns higher probability to low-makespan schedules,
and importantly can also discover the different modes associated with local optima of the makespan
cost. Generative Flow Networks (GFlowNets) have recently been introduced as a method for learn-
ing a stochastic policy that can piece-by-piece construct discrete and composite objects, proportional
to a given reward (Bengio et al., 2021b). By computing the reward from the proxy-makespan we
can use GFlowNets to sample a diverse set of candidate schedules.

Our main contributions are: 1. We introduce an alternative to the pure proxy optimization view-
point of scheduling that achieves better robustness to proxy errors, by generating multiple candidate
schedules to evaluate directly on the target hardware. 2. We extend GFlowNets to generate sched-
ules conditioned on a computation graph. Additionally, we introduce a method to control diversity
and goodness at inference time, without the need for retraining. These contributions may be of
general interest, beyond the scheduling problem. 3. We empirically demonstrate the robustness of
our method to proxy errors and verify the generalization ability on a diverse set of synthetic and
real-world computation graphs.

2 ROBUST SCHEDULING

In this section, we first provide a definition of the scheduling problem we consider in this work.
Then, we discuss how a proxy simulates the schedule execution as well as the difficulties of speci-
fying a reliable proxy. Finally, we describe our proposed generative scheduling framework.

2.1 PROBLEM DEFINITION

In scheduling, we are given a computation graph GC = (O,P ) that is a direct acyclic graph (DAG)
consisting of operations (nodes) o ∈ O and precedence constraints (edges) p ∈ P that encode a
partial order in which the operations need to be executed. In particular, the edge pij encodes that
operation oi needs to finish before oj can start, for example because oj requires the output of oi as
input. Our task is to run all operations on a set of devices D = {d1, . . . , dm}, without violating
the precedence constraints. In addition to the precedence constraints, the devices can only run one
operation at a time. We can then view scheduling as performing two distinct tasks: assign a device
to each operation, and determine a (complete) order among all operations on the same device that is
compatible with the precedence constraints encoded in GC . We can model the schedule as a chain
of operations for each device, where the chain denotes the order in which the operations run on that
device. See Figure 1 for a visual example of the chain graphs. Our aim is to find the schedule with
the lowest makespan for some target hardware.

2.2 TARGET MODEL VS. PROXIES

The makespan of any schedule can be evaluated on the target hardware by running all the operations
in the specified order and on the specified devices. However, this can take up significant time
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and compute resources when the computation graph is large, has costly operations, or the target
hardware is a cluster with many nodes. In addition to this, when optimizing the makespan one needs
to evaluate many different schedules, further exacerbating the resource requirements.

A proxy is any tool that allows one to estimate the makespan of a given schedule, without having
to run the schedule on the target hardware. Proxies come with significant speed advantages, which
remedy the problems mentioned above. However, this comes at the cost of possible mistakes in the
estimation of the makespan and relative comparison of schedules. Mistakes can occur for example
when the task durations are not accurately profiled, memory movements are too complex to fully
model, or additional hardware-specific features are changed. Ideally, we would like to rely on a
proxy for the majority of the schedule evaluations, and only evaluate a small fraction of promising
schedules on the target hardware. This approach differs from previous works, that either evaluate
every schedule on the target (Khadka et al., 2021), leading to very long optimization times, or
evaluate everything on the proxy (Paliwal et al., 2020), which is susceptible to modeling failures.

Next, we describe how the proxy we use in this work assigns start times to each operation given
a schedule and estimates the makespan based on those. We recall that a schedule is an order of
operations for each device, which can be represented by one chain graph per device. For each of
these, let us denote with Cd, d ∈ D the set of edges of the chain graph for device d and with
D :=

⋃m
k=1 Cdk the set of all device constraints. The operations correspond to graph nodes and are

labeled in the same way as inGC . No other operation can run on the same device during the runtime
or duration ρi of operation oi In practice, ρi is estimated directly on the hardware in a profiling stage
that precedes scheduling. We denote the start time of oi as τi and can thus express the precedence
constraints as:

τj ≥ τi + ρi, ∀(i, j) ∈ P ∪D (1)
An operation cannot start unless all of those that produce its inputs and all of those that precede it on
its assigned device have finished first. To ensure that these constraints are satisfied the proxy assigns
each operation oi the start time

τi = max
k
{τk + ρk|(k, i) ∈ P ∪D} (2)

If a node has no parents in P∪D the proxy assigns the start time τi = 0. The start times of all oi ∈ O
can be computed by assigning a start time to a node whenever it has no parents or all its parents have
an assigned start time. If the graph (O,P ∪D) is a DAG, then this algorithm is guaranteed to assign
start times that satisfy Equation 2. The proxy then estimates the makespan T of the schedule x as:

T (x) := max
i

(τi + ρi)−min
i
(τi) (3)

Optimizing this cost over the set of all possible schedules is already a very rich problem, and yet,
we made significant simplifying assumptions in the construction of the proxy. In particular, we as-
sume perfectly estimated runtimes, and in Equation 2 we effectively assume that an operation can
start as soon as all of the operations producing its inputs finish, meaning that data can be moved be-
tween devices instantaneously (zero latency) independently of their size (infinite bandwidth). These
assumptions might be unrealistic, depending on the specific target devices (Valiant, 1990).

2.3 GENERATIVE SCHEDULING

Our aim is to come up with a good set of candidate schedules to be tested on the target hardware
while relying only on the proxy for generating this set. While the proxy is imperfect, it still of-
fers good guidance for most schedules; thus, we would like to include schedules that perform well
according to the proxy. Nevertheless, we also know that systematic errors in the proxy can cause
it to incorrectly predict a low makespan for some schedules. Therefore, we would like the set of
candidate schedules to be diverse, while still high-quality from the point of view of the proxy.

If we had a ranking over all the schedules according to the proxy, we could just go through the list
top-to-bottom, and add a schedule to the batch whenever it is significantly different from the previous
ones. A full ranking like this is infeasible to construct, but we can instead learn a generative model
that samples higher ranked schedules with higher probability. When generating schedules we need
to satisfy the precedence and device constraint outlined in Section 2.1. To avoid generating invalid
schedules we construct a schedule in a step-by-step process: start with an empty schedule at the
initial state s0, and at each step add an operation to the partial schedule until the schedule contains
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all operations at the terminal state sn. At each intermediate state st, an action at consists in picking
an operation and assigning it to one of the devices, leading to a new state st+1. We define the
set of valid actions at every step t in a way such that the precedence constraints are automatically
satisfied. In particular, adding an operation ot is a valid action if and only if ∀k : (k, t) ∈ P , ok
is already in the partial schedule at state st. This is a sufficient condition for the final “schedule”
graph (O,P ∪D) to be a DAG, implying that the constructed schedule is feasible. The final states
represent full schedules x, for which we can compute the makespan T (x) with the proxy, given the
runtimes {ρi}ni=1. We compute the relative speedup compared to the makespan on a single device
as U(x)=

∑
i ρi/T (x), from which we compute the reward as we present in the next section.

3 GENERATIVE FLOW NETWORKS FOR SCHEDULING

GFlowNets (Bengio et al., 2021a;b) are methods for training a stochastic policy to sample discrete
and composite objects proportionally to a given reward. Each object x is generated incrementally
by a sequence of actions. In the previous section, we discussed how to limit the action space to
guarantee that we sample valid schedules. After a brief introduction to GFlowNets, the following
sections will present our proposed extensions that include a new training objective that is suitable for
learning conditional GFlowNets and a method for controlling the selectivity of samples at inference
time.

3.1 BACKGROUND

We start by introducing some notation. We denote by s=(s0, s1, . . . , sn) a trajectory that consists
of a sequence of states st. In the case of scheduling, trajectories start with the empty schedule s0,
followed by partial schedules, and end with a complete schedule sn. We denote by T the set of
all such trajectories and by Tx the set of trajectories that end at x. Based on this, we define a flow
function F : T → R+ and its associated normalized probability distribution P (s) = F (s)/Z, Z =∑
s∈T F (s). A flow function that fulfills the condition: R(x) =

∑
s∈Tx F (s) (every terminal state

has a total flow matching its reward), results in a probability over schedules P (x) =
∑
s∈Tx F (s)/Z

that is proportional to the reward P (x) ∝ R(x), and further entails that Z =
∑
xR(x).

For any Markovian flow, we can decompose the probability of a trajectory in terms of the forward
probability:

P (s) =

n∏
t=1

PF (st|st−1) (4)

This way, we can generate trajectories s by sampling a sequence of actions starting from s0. In Sec-
tion 2.3 we described how to limit the action space appropriately to guarantee that every sampled
schedule is valid. Similarly, we can define a backward probability PB that factorizes the trajectory
probability conditioned on a terminal state:

P (s|sn = x) =

n∏
t=1

PB(st−1|st) (5)

The training objectives considered in previous works aim to achieve a consistent flow (Bengio
et al., 2021b; Malkin et al., 2022), where consistency means that the flow estimated for the forward
direction should equal the flow for the backward direction. A consistent flow F (s) for trajectories
s ∈ Tx can then be written in terms of PF and PB and has to fulfill the equality:

Z

n∏
t=1

PF (st|st−1) = R(x)

n∏
t=1

PB(st−1|st) (6)

Based on this equation, Malkin et al. (2022) propose to estimate Z, PF , and PB by optimizing the
trajectory balance loss which is the squared difference between the logarithms of the l.h.s. and the
r.h.s. of Equation 6.

3.2 LOG-PARTITION VARIANCE LOSS

In order to apply the trajectory balance loss in the conditional case, we would need to learn an addi-
tional regression model that estimates the log-partition function logZ conditioned on GC . Training
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such a network accurately is difficult but crucial for learning the probabilities PF . In particular, a
wrong estimation of logZ can incorrectly change the direction of the gradients of the loss func-
tion. We explain why this occurs in Appendix B. In practice, we found this approach to perform
poorly when different computation graphs had large differences in their logZ value. Instead, we can
rewrite Equation 6 to implicitly estimate logZ based on the forward and backward flows of a single
trajectory s, where PF and PB are neural networks with parameters θ:

ζ(s;θ) = logR(x) +

n∑
t=1

logPB(st−1|st;θ)−
n∑
t=1

logPF (st|st−1;θ) (7)

In the optimal case, ζ(s;θ) is equal to the true logZ which is the same for all trajectories corre-
sponding to the same computation graph GC . Thus, our optimization goal turns into minimizing the
variance of ζ(s;θ) over different trajectories s with the loss

LV(s;θ) = (ζ(s;θ)− Es [ζ(s;θ)])2 (8)

In practice, we use the training distribution to estimate Es [ζ(s)] with a mini-batch of sampled
trajectories. For more details on the training process, we refer to Appendix C.

We note that by optimizing the log-partition variance loss in Equation 8, one only needs to
parametrize the forward and backward probabilities PF and PB . This is similar to the non-forward
trajectory loss mentioned in the appendix by Malkin et al. (2022), which also does not involve
learning any state flows, including the initial flow Z. However, our loss does not mix forward and
backward steps from different trajectories and directly optimizes the consistency of the total flow Z
for each trajectory associated with a given computation graph GC .

3.3 TEMPERATURE-CONDITIONED TOPOFORMER

Reward temperature. We compute the reward as a function of the speedup. In particular, we
choose logR(x;m,σ) = (U(x) − m)/σ where U(x) is the speedup of the schedule x, m is the
number of devices, and σ ∈ R+ plays the role of a temperature. The temperature allows us to
concentrate the distribution on the modes and control the selectivity of the generator. This is useful
since there can be many more schedules with low speedup when compared to good ones. For
example, when simply setting the reward equal to the speedup, we observed that finding schedules
with high speedup requires a prohibitively large amount of samples. We expect this temperature
term to allow trade-offs between diversity and shifting the mean of the sampling distribution towards
better schedules.

Previous works on GFlowNets apply a constant temperature value during training and at inference
time (Bengio et al., 2021a; Jain et al., 2022). This can lead to low performance (when set too
high), and low diversity or unstable training (when set too low). Furthermore, different computation
graphs can have different ideal temperature values, making this approach less suitable when learning
conditional GFlowNets. Instead, we propose to learn a single model for multiple different reward
functions R(x;m,σ), by conditioning the policy networks (PF and PB) on the temperature σ. Ap-
proximating the temperature-conditioned policy with a neural network is feasible because flows for
a given temperature can be continuously morphed into flows for any other temperature. Since our
reward R(x;m,σ) is continuous with respect to the temperature σ, we expect the change of flow
for different temperatures to be learnable by a neural network. We provide a proof for the following
theorem in Appendix A.

Theorem 1 (Flow Continuity). Let {Ri}∞i=1 be a sequence of non-negative reward functions such
that for all terminal states x, Ri(x) → R(x) as i → ∞. Then, for any flow FR with reward R,
there exists a sequence of flow functions {FRi}∞i=1 with FRi(s)→ FR(s) for all s ∈ T .

The output policy changes more rapidly as a function of the temperature for values close to 0 than
for larger values. To account for this, we use the logarithm of the temperature as input to the
policy instead. During training, we sample temperatures from the log-uniform distribution with
support between [log σmin, log σmax], where σmin is a minimum temperature that is necessary for
numerical stability. In comparison to sampling from U(σmin, σmax), this avoids oversampling from
high temperature regions that have little difference in the resulting flow network. At inference time,
we choose how close the samples are to the mode by adjusting the σ.
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Topoformer architecture. For the neural network architecture of our policy, we use the Topo-
former (Gagrani et al., 2022), which has been recently introduced for learning topological orderings
of computation graphs. It builds on the Transformer encoder (Vaswani et al., 2017) and additionally
masks the multi-head attention depending on the topology of the computation graph. Both forward
and backward policies use separate MLP heads on top of a shared Topoformer encoder. Taking
inspiration from the successful use of time conditioning in diffusion models (Song et al., 2020; Ho
et al., 2020), we add temperature conditioning by first embedding the temperature using an MLP to
produce eσ , and then reuse the embedding in every first linear layer block of the Topoformer:

lin(h, eσ) = linscale(eσ)� lin(h) + linshift(eσ) (9)

Here linscale and linshift are linear layers and � is the elementwise multiplication (Perez et al.,
2018). In contrast to diffusion models, we observe better performance on large temperature ranges
with the ReLU (Nair & Hinton, 2010) activation function. We hypothesize that this is connected
to the monotonicity of the underlying policy function with respect to decreasing temperatures
(see Corollary 1 in the Appendix) and the propensity for linear extrapolation of ReLU MLPs (Xu
et al., 2020). For a detailed description of the neural network architecture, we refer to Appendix D.

Sub-graph training. Training with a full computation graph might not always be necessary and
we hypothesize that learning on sub-graphs can lead to policies that generalize to the full computa-
tion graph. This can be seen as a form of data augmentation and increases the amount of training
data, while simultaneously improving the training time. We shall use sub-graph training for the
larger graphs that we study in this work.

4 RELATED WORK

Reinforcement learning for scheduling. Reinforcement learning has been the predominant ma-
chine learning approach to optimize the makespan for computation graph schedules (Addanki et al.,
2019; Paliwal et al., 2020; Zhang et al., 2020). The rewards used include simple analytical proxies
of the makespan (Paliwal et al., 2020; Zhou et al., 2020), but also more refined proxies which incor-
porate modeling of memory movements (Addanki et al., 2019). Khadka et al. (2021) directly train
on the target hardware, but consider only a few computation graphs, and do not show generalization
to unseen ones. Addanki et al. (2019) use a sophisticated simulator of the makespan which is cus-
tomized to the target hardware. Similar to our work, Zhang et al. (2020) also construct the schedule
piece-by-piece. Instead of finding a single (local) mode of the proxy, our work proposes to learn the
full distribution over the proxy to improve the robustness against inaccuracies in the proxy.

Generative Flow Networks. GFlowNets have been applied to generating small molecules (Ben-
gio et al., 2021a), Bayesian networks (Deleu et al., 2022), discrete images (Zhang et al., 2022), and
biological sequences (Jain et al., 2022). We extend its application to scheduling, a classical combina-
torial optimization problem. Similar to previous works, our state-action space is also a DAG, hence
training the policy with maximum entropy reinforcement learning methods is inadequate (Bengio
et al., 2021a). Our robust scheduling approach shares the same motivation as methods in drug dis-
covery which leverage cheap proxies to generate multiple candidates to be evaluated in the true
environment (Bengio et al., 2021a; Jain et al., 2022). Conditional GFlowNets have previously only
been theoretically discussed by Bengio et al. (2021b). We enable training conditional GFlowNets
with our proposed log-partition variance loss and empirically demonstrate generalization to un-
seen computation graphs. Note that this differs from previous work that tests the generalization of
GFlowNets to unseen data (Nica et al., 2022). To control the selectiveness of the generator, previous
works augment the reward with a fixed temperature (Bengio et al., 2021a; Deleu et al., 2022; Jain
et al., 2022). Instead, we condition the policy neural network on the temperature term which allows
us to tune the selectiveness of the generator at inference time.

5 EXPERIMENTS

In this section, we evaluate different aspects of our generative scheduling approach by incrementally
adding complexity to the computation graph dataset. First, we restrict training and evaluation to
a single computation graph, which corresponds to the same unconditional setting considered by
previous works on GFlowNets (Bengio et al., 2021a; Deleu et al., 2022; Jain et al., 2022). Next, we
train with multiple computation graphs and evaluate on unseen ones. To the best of our knowledge,
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this is the first time that the generalization of conditional GFlowNets to unseen conditioning is tested
empirically. Finally, we verify the generalization ability on real-world computation graphs of neural
networks that are being used in a diverse set of AI products.

Experimental setup. In all experiments, we only use the node time duration as a feature of the
computation graph. For simplicity and ease of reproducibility, we avoid any complicated heuristics
to add extra features. All our experiments are based on four homogenous devices, which implies
that the speedup is upper bounded by 4. In practice, most computation graphs have a lower maximal
possible speedup due to their precedence constraints.

Candidate sampler. We consider two heuristic and two neural methods for generating candidate
schedules. The first is our GFlowNet approach described in Section 3 from which we generate 1000
samples at temperature σ = 0.005 and take the top 100 following the proxy; the other three are:

• Critical path-based list scheduling, a heuristic algorithm for scheduling on homogeneous
devices (Micheli, 1994). List scheduling first forms a topological order of the operations
and then assigns them in that order one by one to a free device. In our implementation,
we use the Critical Path method (Micheli, 1994) to order the operations. It ensures that
operations on the time critical path are scheduled first. This method produces a single
schedule.

• Biased Random Key Genetic Algorithm (BRKGA) (Gonçalves & Resende, 2011), a ge-
netic algorithm that has previously shown good performance on scheduling tasks (Paliwal
et al., 2020). We use the top 100 schedules from the final population as the candidate
schedules.

• Proximal Policy Optimization (PPO) (Schulman et al., 2017), a deep reinforcement learn-
ing method that has been successfully applied to scheduling problems (Zhou et al., 2020).
PPO also trains a stochastic policy, which makes it a natural choice for comparison with
GFlowNets (Bengio et al., 2021a). We employ the same definitions of states, actions, and
reward function (with temperature σ = 0.25; lower was not beneficial) as the GFlowNet
approach. To ensure that PPO keeps exploring even after finding a local optimum we em-
ploy entropy regularization and decay both the entropy coefficient (Ahmed et al., 2019)
and the learning rate to ensure convergence to a good solution. Same as for GFlowNets,
we sample 1000 schedules and pick the top 100 as the candidate schedules.

Metrics. We measure the performance in terms of the speedup U(x). For the diversity, we report
three different measures: graph-edit distance (GED), the L2 distance between the proxy start-times
(dinv), and the L2 distance between the proxy start-times concatenated with the device placement
(dsen). For diversity, we report the average pairwise distances over the top 100 candidate schedules.
See Appendix E.2 for more details on diversity measures.

5.1 PROXY ERRORS: DIVERSITY FOR ROBUST SCHEDULING
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Figure 2: Correlation between proxy and target
speedup for different target environments. Modes
with varying performance can be observed for a
fixed proxy speedup.

We examine how differences between the proxy
and the target performance model can affect the
final runtime. To do so, we first focus on a
single computation graph that is used both for
training and testing to avoid possible confound-
ing factors that may happen in the generaliza-
tion setting. Based on the possible reasons for
proxy errors discussed in Section 2.2 we design
three different target models that each reflect a
different setting. In the first setting node dura-
tions are incorrectly profiled (Noisy Runtimes).
In the second and third settings, the target mod-
els the memory movement across devices with
a linear model (Valiant, 1990), which can be ei-
ther bottlenecked by limited bandwidth (Band-
width Limited), or by high latency (Latency Limited). The linear model has been shown to be a
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Table 1: Robustness results on a single computation graph. We compare different methods for gen-
erating candidate schedules. Higher diversity correlates with better robustness against a mismatch of
the proxy and the target, with GFlowNet achieving the best diversity and the best target performance
on average.

Speedup Diversity

Proxy Noisy
Runtimes

Bandwidth
Limited

Latency
Limited GED dinv dsen

List scheduling 3.23±0.00 2.75±0.00 1.02±0.00 1.74±0.00 0 0 0
BRKGA 3.22±0.00 2.86±0.15 1.29±0.45 1.80±0.34 55.92±2.56 22.83±2.39 56.21±1.50
PPO 3.28±0.07 3.07±0.09 1.38±0.49 1.87±0.38 85.08±3.54 31.71±0.05 105.64±0.08
GFlowNet 3.21±0.02 3.05±0.04 1.78±0.03 2.11±0.03 94.79±0.15 42.08±0.33 115.98±0.09

good makespan estimator for certain devices (Hockney, 1994; Culler et al., 1993). We refer to Ap-
pendix E.3 for more details. In Figure 2, we show the correlation between the proxy and the different
target environments. For all three targets, the proxy is highly correlated but can have target speedups
that differ by a factor of up to ×2 for the schedules with high proxy speedups.

We report the speedups and diversity measures in Table 1. The results highlight that any method that
can generate multiple good candidate schedules achieves higher speedups on the target environments
than list scheduling, which only produces a single unique schedule. Furthermore, if the candidate
schedules are more diverse — as is the case for GFlowNet — the target performance is also better
on average. PPO and BRKGA exhibit high variability in performance between different runs, where
a few runs end up with high speedups on some targets, and other runs result in much lower target
speedups. In contrast, the GFlowNet model is consistent over the different random seeds, both in
terms of diversity and speedup. The results confirm our hypothesis that a diverse set of candidate
schedules with high average proxy speedups can improve robustness towards a misspecified proxy.

5.2 GENERALIZING TO UNSEEN COMPUTATION GRAPHS

Next, we evaluate how well our conditional GFlowNet can generalize to unseen computation graphs.
We train and evaluate on a diverse set of synthetic computation graphs sampled from different ran-
dom graph distributions. In particular, we train on graphs of size 50 sampled from the random graph
distributions (a) Erdős–Rényi (Erdős et al., 1960), and (b) Layered Graphs (Gagrani et al., 2022)
and evaluate, in addition to (a) and (b), on stochastic block model (Holland et al., 1983), Watts-
Strogatz (Watts & Strogatz, 1998), and Barabási–Albert (Albert & Barabási, 2002). For details on
the generative process of the computation graphs, we refer to Appendix E.5.

In Table 2, we demonstrate that both PPO and the conditional GFlowNet are able to generalize to
previously unseen computation graphs, regardless of whether they originate from the same random
graph distribution. Next, we ablate our proposed temperature conditioning method by generating
1000 samples at different temperature values. In Figure 3, we observe that decreasing the tempera-
ture does indeed shift the sample distribution to the right and also sharpens it when the temperature
approaches zero. Notably, the temperature σ = 0.005 is not in the training distribution, which
demonstrates that the model can extrapolate to temperature values outside of the training range.
Surprisingly, we observe that training with a variable temperature can improve the performance
further than is possible with a fixed temperature, which we demonstrate in Appendix F.

Table 2: Generalization to different random graph distributions. We report the speedup and diversity
for the top 100 schedules. PPO and GFlowNet are trained on graphs from the Erdos-Renyi and Lay-
ered Graph distribution and we report the average performance over all random graph distributions.
The Speedup Proxy 100 column reports the average proxy speedup over the top 100 schedules.

Speedup Diversity

Proxy 1 Proxy 100 GED dinv dsen

List scheduling 3.44 3.44 0 0 0
BRKGA 3.46 3.45 46.59 12.75 40.11
PPO 3.48 3.46 69.54 13.45 80.84
GFlowNet 3.46 3.41 92.02 24.27 90.17
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Figure 3: Empirical reward distribution on a 25-node Erdos-Renyi graph for different inference
temperatures in the conditional GFlowNet. Lower temperatures allocate more probability mass to
better schedules.

5.3 REAL WORLD COMPUTATION GRAPHS

Finally, we verify the generalization ability on a small set of real-world computation graphs used for
the commercial development of our artificial intelligence hardware and software products (see Ap-
pendix E.6 for details). We report the speedup on the same target models used in Section 5.1 to
assess robustness on unseen real-world computation graphs. To speed up training, we apply the
graph subsampling strategy presented in Section 3.3 to randomly pick between 25 to 75 nodes at
every training step.

In Table 3, we observe that the conditional GFlowNet retains the benefits of high diversity and
robustness to misspecifications in the proxy even when applied to graphs not seen during training
and of larger sizes. PPO shows unstable training behavior and the reward training curve does not
converge, despite using the same hyperparameters that worked for the previous two experiments. We
conjecture that this is due to the inhomogeneous maximum possible speedup of the training graphs
that lead to different reward scales per training graph. In comparison, GFlowNet still converges as
before without any changes to the hyperparameters. Note that while PPO exhibits higher diversity
than compared to BRKGA, it still underperforms BRKGA due to low average proxy speedups. This
highlights that high diversity alone is not sufficient, otherwise, a uniform distribution as the forward
policy would already suffice.

We ablate our proposed log-partition variance loss by comparing it against the trajectory balance
loss that uses a Topoformer to predict logZ given a computation graph. Learning such a model
is difficult due to large differences in the output space of different computation graphs that arise
from the differences in the number of nodes, which in turn impedes the training progress of the
policy network. We confirm in Appendix E.6 that our proposed loss function remedies the slow start
problem of the baseline and achieves a higher speedup in the end.

Table 3: Generalization on real-world graphs. We train on a small set of real-world graphs and
evaluate on unseen ones. GFlowNet retains a high diversity and exhibits consistently better per-
formances than the baselines on the target models. PPO uses the same hyperparameters as in the
previous experiments but does not manage to converge on this dataset.

Speedup Diversity

Proxy 1 Proxy 100 Noisy
Runtimes

Bandwidth
Limited

Latency
Limited GED dinv dsen

List scheduling 2.74±0.00 2.74±0.00 2.51±0.00 0.89±0.00 1.43±0.00 0 0 0
BRKGA 2.59±0.18 2.58±0.18 2.46±0.16 1.55±0.17 1.80±0.18 52.32±21.59 17.14±8.17 42.64±12.23
PPO 2.41±0.20 2.23±0.27 2.28±0.26 0.91±0.20 1.43±0.10 53.05±7.27 42.70±3.44 64.92±4.08
GFlowNet 2.71±0.03 2.66±0.01 2.71±0.01 1.73±0.01 1.95±0.03 87.95±0.13 26.56±0.56 91.33±0.15

6 CONCLUSION

We have empirically demonstrated how the conventional optimization approach to scheduling,
which optimizes a proxy of the real makespan, is brittle to modeling failures in the proxy itself.
Our proposed approach evaluates multiple schedules on the target and thereby achieves more ro-
bustness to discrepancies between the proxy and the target. We demonstrated that GFlownets can
sample a diverse set of candidate schedules that achieve better target performance than alternative
methods which achieve lower diversity. Further, we showed that conditioning on temperature allows
a trade-off between diversity and proxy performance, and that conditional GFlowNets can gener-
alize to unseen computation graphs. Interesting future directions include scaling up our method to
larger graphs and integrating scheduling heuristics to speed up training.
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A PROOF FOR THEOREM 1

In the following, we will denote FR to be the flow corresponding to a flow function F : T → R≥0
with corresponding reward R. That is, FR : T → R≥0 is a flow function such that for any terminal
state x we have R(x) =

∑
s∈Tx F

R(s), where
∑
s∈Tx F

R(s) =: FR(x) is the total flow at the
terminal state x.
Theorem (Flow Continuity). Let {Ri}∞i=1 be a sequence of nonnegative reward functions such that
for all terminal states x, Ri(x) → R(x) as i → ∞. Then, for any flow FR with reward R, there
exists a sequence of flow functions {FRi}∞i=1 with FRi(s)→ FR(s) for all s ∈ T .

Proof. Let {xi}Mi=1 be the set of terminal states and define

FRi(s = (s0, . . . , x)) :=

{
FR(s)Ri(x)R(x) if R(x) > 0,
Ri(x)
|Tx| else.

(10)

To see that FRi is a valid flow for Ri, we note that FRi ≥ 0 and for any terminal state x with
R(x) > 0 we have

FRi(x) =
∑
s∈Tx

FRi(s) =
Ri(x)

R(x)

∑
s∈Tx

FR(s)

=
Ri(x)

R(x)
R(x) = Ri(x).

(11)

Using similar reasoning we arrive at FRi(x) = Ri(x) when R(x) = 0. Finally, for any s ∈ T with
terminal state x and R(x) > 0 we have

FRi(s) =
Ri(x)

R(x)
FR(s)→ FR(s). (12)

In the case of R(x) = 0, we note that FR(s) = 0 and

FRi(s) =
Ri(x)

|Tx|
→ R(x)

|Tx|
= 0, (13)

thus proving convergence of FRi to FR. �

Corollary 1. Let logRσi := logR(x;m,σi) = (U(x) − m)/σi be a sequence of temperature
conditioned log reward functions with σi ↘ σ0. Then, for any ε > 0 and flow FRσ0 there exists
a neighborhood (σ0, σ0 + δ) containing flow functions FRσ with FRσ (s) − FRσ0 (s) < ε for all
s ∈ T . Furthermore, FRσi (s) monotonically decreases to FRσ0 (s) for all s ∈ T as i goes to 0.

The above corollary suggests that it is feasible to use a single neural network — that can approximate
arbitrary continuous functions — to learn all flow functions for different temperature values.

B FAILURE MODES WHEN ESTIMATING THE LOG-PARTITION FUNCTION

In this section, we present the different cases in which an incorrect estimate of logZ can lead to
gradients that point in the opposite direction of the “true gradients”. We start by rewriting the
trajectory balance loss (Malkin et al., 2022) as:

LTB(s;θ) =
1

2

(
logZ(GC ;θZ) +

n∑
t=1

logPF (st|st−1;θP )

− logR(x)−
n∑
t=1

logPB(st−1|st;θP )
)2

(14)
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For better readability, we do not explicitly write out the dependence on the computation graph GC
for the trajectories, their probabilities, and the reward. The parameters of the neural networks are
denoted as θP and θZ respectively. We can rearrange the terms in Equation 14, such that:

LTB(s;θ) =
1

2

( n∑
t=1

logPF (st|st−1;θP )︸ ︷︷ ︸
ϕF

−
(
logR(x) +

n∑
t=1

logPB(st−1|st;θP )− logZ(GC ;θZ)︸ ︷︷ ︸
ϕRBZ

))2
(15)

In words, ϕF is the log probability of the trajectory s as computed by the forward distribution, and
ϕRBZ can also be viewed as the log probability of s but instead estimated by a combination of the
reward, log-partition function, and the backward distribution. To simplify the argument, we assume
that the backward distribution is independent of θ, which can be realized for example by setting
it equal to the distribution that assigns equal probability to all parents. Thus, we denote the true
log-partition function as logZ∗(GC) and by assuming access to it when computing the loss we can
rewrite part of Equation 15 as:

ϕRBZ∗ = logR(x) +

n∑
t=1

logPB(st−1|st)− logZ∗(GC) (16)

We denote the loss using ϕRBZ∗ as L∗TB(s;θ).

There exist two cases in which L∗TB(s;θ) can be non-zero and in both cases, inaccurate estimation
of the log-partition function can lead to wrong gradients for the policy neural network. In the first
case, we assume that the neural network that estimates PF is overestimating the probability of s:

ϕF − ϕRBZ∗ > 0 . (17)

Furthermore, we consider the scenario in which the regression model makes an error when predicting
the log-partition value. In particular, we assume that the neural network is underestimating the true
value by an amount that is greater than the error ϕF − ϕRBZ∗ , i.e., we assume:

ϕF − ϕRBZ∗ < logZ∗(GC)− logZ(GC ;θZ) (18)

The implications of this are:

ϕF − ϕRBZ∗ < logZ∗(GC)− logZ(GC ;θZ) (19)
⇒ ϕF < logZ∗(GC)− logZ(GC ;θZ) + ϕRBZ∗ (20)
⇒ ϕF < ϕRBZ (21)
⇒ ϕF − ϕRBZ < 0 (22)

Equation 17 and Equation 22 imply that −∇θPLTB(s;θ) is an ascent direction for L∗TB(s;θ),
instead of the desired descent direction. In detail, for non-zero gradients the inner product is positive:

〈−∇θPLTB(s;θ),∇θPL∗TB(s;θ)〉 (23)
= 〈−(ϕF − ϕRBZ)∇θPϕF, (ϕF − ϕRBZ∗)∇θPϕF〉 (24)
> 0 (25)

In the second case, ϕF − ϕRBZ∗ < 0, we assume that the neural network overestimates the log-
partition function. Analog to the first case we can show that the gradients point in the opposite
direction of the true gradients.

These two cases happen more frequently when logZ(GC ;θZ) is more challenging to regress ac-
curately. For example, when there are computation graphs with drastically different node numbers,
their logZ(GC ;θZ) values can have significant differences (e.g., 10s vs. 1000s). Training a re-
gression model on such large ranges is notoriously difficult (Pohlen et al., 2018). Our proposed
log-partition variance loss in Equation 8 avoids this regression task completely, and we confirm its
benefits empirically in Appendix E.6.
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C GFLOWNET TRAINING PROCESS

In each parameter update step, we first sample a single computation graph from the training dataset,
next we sample a single reward temperature from the log-uniform distribution, then we sample b tra-
jectories — we refer to these as a mini-batch — for that computation graph and reward temperature,
and finally, we compute the loss based on the mini-batch of trajectories. The trajectories are sampled
using the current forward policy PF conditioned on the temperature. Empirically we observe that
the temperature conditioning method allows us to forgo using a special exploratory policy that mixes
PF and a uniform distribution over the allowed actions, which was used by previous works.

D TEMPERATURE-CONDITIONED TOPOFORMER

The Topoformer (Gagrani et al., 2022) has the same structure as the Transformer (Vaswani et al.,
2017) encoder, that is it stacks L layers and each layer l (for 1 ≤ l ≤ L) consists of two steps:

ĥ(l) = h(l−1) + MHATopoformer(LayerNorm(h
(l−1))) (26)

h(l) = ĥ(l) + MLP(LayerNorm(ĥ(l))) (27)

where MHATopoformer denotes the Topoformer version of the multi-head attention, and h(0) is the
input to the Topoformer, which is the output of a linear layer (i.e., an affine transformation with no
activation function) applied on the computation graph and state features. Topoformer uses the same
MLP as in the original Transformer:

MLP(ĥ(l)) = lin2(ReLU(lin1(ĥ
(l)))) (28)

We inject the temperature σ by replacing lin1(ĥ
(l)) with lin1(ĥ

(l), eσ):

eσ = ReLU(linb(ReLU(lina(σ)))) (29)

lin1(ĥ
(l), eσ) = linscale(eσ)� lin1(ĥ

(l)) + linshift(eσ) (30)

Note that eσ is the same for all layers l and Equation 30 corresponds to Equation 9 in the main paper.

E EXPERIMENT DETAILS

E.1 CANDIDATE SAMPLERS

We use the popular open-source library pymoo (Blank & Deb, 2020) to implement the BRKGA
candidate sampler. Our PPO implementation is based on algorithm 1 at https://spinningup.
openai.com/en/latest/algorithms/ppo.html, and we follow Schulman et al. (2017)
to implement the entropy regularisation by adding the entropy term directly to the PPO-clip loss. We
decay this entropy term during training similar to Ahmed et al. (2019). We use the same learning
rate for both the actor and the critic, and we decay it with an exponential schedule.

We train GFlowNets conditioned on a temperature randomly sampled between 0.01 and 1. At infer-
ence, we use 0.005 for the temperature in all experiments. We use the Adam optimizer with default
hyperparameters to optimize the parameters. We compute the gradients at each update step based on
a minibatch that consists of 100 sampled trajectories for a single computation graph and use a single
temperature value to compute their rewards. We observed no benefits in our initial experiments that
used multiple computation graphs or temperatures in a single minibatch.

We represent the computation graph as a directed graph with a single node feature (runtime of the
operation). In addition, we represent different states by concatenating a state feature vector to each
node, which consists of:

• Start time assigned by the proxy (default: −1)
• Device placement as a one-hot vector (default: 0 vector)
• Binary indicator: 1 if adding it to the schedule is a valid action, else 0

• Binary indicator: 1 if removing it is a valid backward-action, else 0
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• Binary indicator: 1 if the node is already part of the schedule, else 0

The combined computation graph and state features are treated as a single graph by the Topoformer
neural network.

E.2 METRICS

The graph-edit distance (GED) compares two schedules in their chain-graphs form. In particular,
we can model a schedule for a computation graph, by constructing a chain graph for each device
that specifies the additional precedence constraints we introduce to complete the order in which
the operations are run on each device. The GED is then computed simply by taking the difference
between the adjacency matrices and normalizing it by the total number of edges.

The L2 distance between the start (dinv) times simply takes the start times as assigned by the proxy
model and computes the L2 norm of the difference.

The L2 distance including the device assignment (dsen) additionally concatenates the device place-
ment to the times.

E.3 TARGET ENVIRONMENT WITH LINEAR MEMORY MODEL

The linear memory model (Valiant, 1990) computes the delay as a linear function f(m) = am+b of
the memory m with a modeling the amount of data that can be transferred per time and b modeling
the startup delay. In the Bandwidth Limited setting the a term dominates the delay, while in the
Latency Limited setting b has a greater effect.

E.4 PROXY ERRORS: DIVERSITY FOR ROBUST SCHEDULING

In this experiment, we consider a single real-world graph that has around 78 nodes.

E.5 GENERALIZATION TO UNSEEN COMPUTATION GRAPHS

We generate the synthetic graph dataset from random graph distributions over undirected graphs. To
get DAGs from these graphs, we randomly choose a direction for every edge in a way that produces
no cycles. We closely follow the setup described in Appendix A.1.4 by Paliwal et al. (2020), and the
setup described in Appendix A by Gagrani et al. (2022).

We sample the runtimes for each node from the uniform distribution U(0, 1).
For training, we use 1000 different computation graphs, with equally many sampled from the two
random graph distributions: Erdős–Rényi (Erdős et al., 1960), and Layered Graphs (Gagrani et al.,
2022). We report test performances on 50 different computation graphs with equally many sam-
pled from the five different random graph distributions: Erdős–Rényi (Erdős et al., 1960), Layered
Graphs (Gagrani et al., 2022), stochastic block model (Holland et al., 1983), Watts-Strogatz (Watts
& Strogatz, 1998), and Barabási–Albert (Albert & Barabási, 2002).

E.6 REAL-WORLD COMPUTATION GRAPHS

The computation graphs in this dataset originate from a diverse set of neural network architectures
with different applications, including for example classification and denoising. We train on 8 real-
world computation graphs of sizes below 100 nodes and evaluate on 4 different computation graphs
of sizes between a dozen and 128 nodes. Note that the maximal achievable speedup is on average
lower for the real-world computation graphs compared to the synthetic ones. Furthermore, the
synthetic graphs are also more homogenous in terms of the maximal achievable speedup, with a
lower limit of at least 3. In contrast, some real-world graphs could not exceed a speedup of 1.5 and
others went beyond 3.

In Figure 4, we report the average speedup of the schedules sampled during training, at varying
training steps. We compare our proposed log-partition variance loss against the trajectory balance
loss (Malkin et al., 2022) that uses a Topoformer (Gagrani et al., 2022) to regress the log-partition
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Figure 4: Average speedup of schedules sampled during training. We compare the log-partition
variance loss against the trajectory balance loss that models the log-partition function with a neural
network. The log-partition variance loss starts improving earlier and achieves a much higher final
speedup.

function. The results demonstrate that the log-partition variance loss starts to improve the average
speedup much earlier on during training and achieves a better performance in the end.

F TEMPERATURE CONDITIONING ABLATION

In order to increase the likelihood of sampling good schedules, one could introduce a fixed tempera-
ture throughout training and inference. However, we have observed that this procedure is unreliable
for small temperatures. Figure 5 shows generalization performance during training on the syn-
thetic graph experiment of Section 5.2. As can be seen, choosing a temperature of 0.01 results in
a smaller maximum reward as opposed to training on a higher temperature of 0.03. On the other
hand, sampling a range of temperatures between 0.01 and 1 and evaluating on 0.01 samples the best
performing schedules on unseen computation graphs.
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Figure 5: The impact of different temperature regimes on top-1 generalization performance. Train-
ing on single temperatures prevents learning when set too low (orange). On the other hand, training
on a range of different temperatures (blue) results in better performance when performing inference
with the minimum training temperature.
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