
Detecting and Characterizing Planning
in Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Modern large language models (LLMs) have demonstrated impressive performance1

across a wide range of multi-step reasoning tasks. Recent work suggests that LLMs2

may perform planning — selecting a future target token in advance and generating3

intermediate tokens that lead towards it — rather than merely improvising one4

token at a time. However, existing studies assume fixed planning horizons and often5

focus on single prompts or narrow domains. To distinguish planning from improvi-6

sation across models and tasks, we present formal and causally grounded criteria7

for detecting planning and operationalize them as a semi-automated annotation8

pipeline. We apply this pipeline to both base and instruction-tuned Gemma-2-2B9

models on the MBPP code generation benchmark and a poem generation task10

where Claude 3.5 Haiku was previously shown to plan. Our findings show that11

planning is not universal: unlike Haiku, Gemma-2-2B solves the same poem gen-12

eration task through improvisation, and on MBPP it switches between planning13

and improvisation across similar tasks and even successive token predictions. We14

further show that instruction tuning refines existing planning behaviors in the base15

model rather than creating them from scratch. Together, these studies provide a16

reproducible and scalable foundation for mechanistic studies of planning in LLMs.17

1 Introduction18

Large language models (LLMs) have achieved impressive results on complex reasoning tasks, from19

creative writing to code generation [1, 2]. These tasks often require multi-step reasoning, yet LLMs20

are trained as next-token predictors that would presumably generate outputs by improvising each21

token step-by-step without foresight. An alternative hypothesis is that LLMs solve these tasks22

by planning: using intentional processes, whether internal or external, that guide generation in a23

structured, goal-directed way to improve coherence and reasoning. This distinction is critical because24

planning may be necessary for reliable chain-of-thought reasoning and long-horizon problem solving,25

while hidden planning mechanisms could enable models to pursue unintended goals or conceal their26

reasoning. Therefore, it is essential to determine not just whether or not planning occurs, but also the27

mechanisms through which planning arises.28

Recent work provides evidence that LLMs engage in internal planning. For example, researchers29

have probed for representations of future tokens at fixed distances ahead in language models [3, 4, 5]30

and games like chess [6, 7] and Sokoban [8]. Lindsey et al. [9] showed that Claude 3.5 Haiku was31

shown to generate a poem by storing candidate rhyme words before writing the next line, and ablating32

the representations for these rhyme words alone can potentially change the entire next line. However,33

these studies have key limitations: they assume fixed planning horizons, need task-specific probes, or34

work only in narrow domains. Without unified and robust tools for distinguishing between planning35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

. . .

. . .

x , x ... x0 1 n-1

yn y , y ∈[y y]m p n+1, N

Improv

say ym

ynsay

say yp

Planning?

Planning?

. . . y’n

yn

y ∉[y y]m n+1, N
Change

No change
y , y ∈[y y]m p n+1, N

Planning!

say ym

say yp

-αx

-αx

Negative
Steering

Circuit

. . .
Circuit

Model
Logit Lens

Step 2: Future Token Encoding Step 3: Precursor InfluenceStep 1: Circuit Discovery future token
input token
next token

Legend

Figure 1: Planning detection at a glance. While predicting the next token yn, we ask if the model is
already planning for a later token ym. Step 1 isolates a smaller SAE-feature circuit that causes yn.
Step 2 (Future-Token Encoding, FTE) uses a Logit-Lens readout to see which features “write” towards
a future token (blue) versus the next token (red); future-writing features are planning candidates. Step
3 (Precursor Influence, PI) negatively steers each candidate at its earliest use (orange −αx). If this
steering changes the future token yn, perturbs intermediate tokens, and removes ym from the output,
we call it PLANNING.

and improvisation, it is difficult to systematically compare behaviors across architectures and prompts36

or understand how planning in LLMs fundamentally works.37

In this work, we address these gaps by formalizing a general, falsifiable definition of planning that38

applies to arbitrary LLMs and tasks (§2). Our approach makes two technical advances. First, we39

translate the intuitive notion of planning into concrete, causally grounded criteria at the activation40

level and provide an operational pipeline for annotating a forward pass as planning or improvisation.41

Second, we apply this pipeline to the planning in poems example from Lindsey et al. [9] as well as a42

subset of the MBPP [2] code generation benchmark. Our findings include the following:43

• In contrast with Lindsey et al. [9], who found clear evidence for backward planning in Claude on44

a rhyming task, we find that Gemma-2-2B solves the same task successfully by improvisation,45

without explicit intermediate planning signals (§3.1).46

• When we generalized to the larger MBPP benchmark, we found that Gemma-2-2B switches47

between planning and improvisation within tasks and even within successive token predictions.48

We also demonstrate the examples where our criteria do not have a sure answer (§3.2.4).49

• In all cases where Gemma-2-2B Instruct can solve an MBPP task, Gemma-2-2B Base consis-50

tently solves the improvisation cases correctly but shows lower performance on cases where51

planning is involved. The base model still engages in planning, but executes it less effectively.52

(§3.3). We find evidence that instruction tuning refines planning behavior rather than creating it.53

With these studies, alongside an explicit and reproducible pipeline for verifying planning and54

improvisation, we aim to scale up and advance mechanistic studies of LLM reasoning.55

2 Defining and Detecting Planning56

We aim to turn the intuitive idea of planning in LLMs into a general-purpose, and empirically57

verifiable definition. This section introduces the formal criteria we use throughout the paper and an58

operational pipeline for verifying it on real datasets and models.59

2.1 Motivating Example60

Consider the task of completing a rhyming couplet as studied by Lindsey et al. [9], where the model61

is given the following prompt:62

A rhyming couplet:\n He saw a carrot and had to grab it,\n63

In this task, the model is expected to return a line that rhymes with the end words “grab it". To write64

the next line, the model could use either of the following strategies:65

2

• Improvisation. Generate each token one-by-one and choose a rhyming end word (e.g. “rabbit”66

and “habit”) only at the final position.67

• Planning. Decide on the rhyming word in advance (e.g. “rabbit”) and generate each subsequent68

token to ensure the line ends with the chosen word.69

Lindsey et al. [9] investigated a variant of the above prompt in Claude 3.5 Haiku [10] and demonstrated70

that it plans ahead for two possible rhyming words, “rabbit" and “habit". To do this, they showed71

that internal representations of the words “rabbit" and “habit" are active at the next position after the72

prompt. By default, the model returned a line ending with “like a starving rabbit", but suppressing73

features associated with the word “rabbit" led to the model returning “a powerful habit” instead. The74

fact that suppressing the “rabbit" features led the model towards a different output indicates that those75

“rabbit" features had a causal effect on the resulting output.76

This intuition suggests that planning requires an internal representation of a future token that is active77

at an earlier position in the sequence and causally influences the generation of all subsequent tokens78

leading up to it. We formalize these two requirements below.79

2.2 Formalizing Planning80

In this paper we use sparse autoencoder (SAE) latents [11] as interpretable representations of tokens81

and concepts in the model. We denote these representations through triples (l, f, t), where l is a82

layer index, f is an SAE latent, and t is a token position. Consider a prompt (x0, . . . , xn−1) and83

let (yn, . . . , yN) be the output tokens generated by the model. We call yn the current token and ym84

(m > n) a future token.85

Definition 1 (Future-Token Encoding). Let Wl[f] be the decoding direction for latent f at layer86

l. For any candidate future token ym with n < m ≤ N , if ym appears in the top K tokens when87

projecting Wl[f] through the unembedding matrix, then f is said to be a future-token encoding for88

ym.89

Definition 2 (Precursor Influence). For some α > 0 and token position t, if subtracting a scaled90

decoding direction αWl[f] from the residual stream at (l, t) during the forward pass and regenerating91

the sequence from t+ 1 causes92

(i) a change in the next token yn93

(ii) a change in at least one intermediate token yn+1, . . . , ym−194

(iii) removal of ym from the generated output95

then the latent f has a precursor influence on the future token ym.96

Definition 3 (Planning). A model is planning at position (l, t), during the prediction of yn, for a97

future token ym (m > n > t) if there exists a latent f at (l, t) that is a future-token encoding (FTE)98

and has a precursor influence (PI) on the future token ym.99

We are not proposing that these definitions are complete and exhaustive. They are built considering100

the following working assumptions, and knowing these help us describe the boundaries of where101

these definitions will work.102

1. If a model is planning for ymduring the prediction of yn, then the circuit for predicting ynwill103

have latents related to ym.104

2. If ymis in the top K of logit lens [12] for a latent, then the latent is increasing the logit probability105

for ymor “thinking” about ymand it is “related to ym”.106

3. If planning for a future token occurs, then intermediate tokens are affected.107

4. Negative steering a latent suppresses the token/concept it is related to from the activation space.108

2.3 Feature Roles Induced by the Criteria109

The Future-Token Encoding (FTE) and Precursor Influence (PI) criteria can be used to partition the110

set of (l, f, t) triples into the following behaviorally distinct classes:111

3

Planning: A planning feature satisfies both FTE and PI for some future token ym that is absent112

from the prompt. In other words, it stores a representation of ym and exerts an early causal influence113

that shapes the intermediate trajectory towards ym. Removing the feature at the point where it first114

activated will prevent the token ym from being generated, and usually steers the generation down a115

semantically unrelated path.116

Improvisation: A feature satisfies FTE for some ym but not PI; it only exerts a causal influence at117

the position just before ym is generated. In other words, steering or ablating that feature right before118

ym can change the next token, but doing the same at an earlier position will not change ym or any of119

the intermediate tokens leading up to it.120

Neither: A feature fails FTE for every future token. This does not mean that the feature is not121

important; it could be encoding computations that keep the language model “on track” without122

explicitly referencing a future goal. These can include local syntax, formatting, short-range semantics,123

discourse markers, duplicate-token detectors, or many others.124

Can’t Say: This category represents scenarios that could be ambiguous, meaning the existence of a125

causal effect need not be interpreted as planning behavior.126

• Overlap with Prompt: The goal token ym already appears earlier or ties another future token in127

the Logit Lens ranking. Even if FTE is satisfied, it is unclear whether this is just attending to a128

token in the prompt or planning for a future token.129

• Out-of-Distribution Steering: When steering at an earlier position results in degenerate or130

nonsensical outputs, it is unclear whether to consider this to be the same as suppressing the131

planning mechanism. Hence even though the feature technically satisfies PI, we do not label it132

as a planning feature.133

Appendix C includes examples and potential strategies for identifying planning and improvisation in134

these scenarios. For this work, we exclude these cases from all quantitative metrics.135

2.4 Identifying Planning at Scale136

For any model and prompt, we could apply Definition 3 to every (l, f, t) triple and label them as137

PLAN or IMPROV. However, this is usually infeasible in practice. For example, Gemma-2-2B would138

require 26 layers × 16K latents × 100 tokens ≈ 4.2 × 106 tests per prompt. Indeed, many prior139

works on planning in LLMs focus on a single prompt or a handful of prompts.140

We provide a pipeline to trim the search space by a factor of ∼ 104 while preserving almost all141

genuine planning positions. An overview of our detection pipeline (circuit discovery to FTE to PI) is142

shown in Fig. 1.143

Step 0 Circuit Discovery: Because PI already requires a causal effect on the next token yn, we144

first isolate the sparse feature circuit that explains the prediction of yn. Starting with the145

latents that have the highest indirect causal effect, we build the smallest set of (l, f, t) triples146

C that can recover the original logit distribution Pmodel(yn) by at least 60% when all other147

(l, f, t) triples are zero-ablated. Empirically we find that |C| ∈ [2× 104, 3× 104], which is148

represents a decrease by a factor of 150×.149

Step 1 Future-Token Encoding Filter: Apply FTE to every triple (l, f, t) ∈ C with t < n. Keep150

a triple only if its Logit-Lens top-K contains some future token ym, otherwise label it as151

NEITHER. Triples that share the same (l, t) and point to the same ym are merged into a152

cluster S. In our experiments, each cluster contained on average ∼50 (l, f, t) triples.153

Step 2 Cluster-Level Precursor Influence Check: Steering the whole cluster at once is ∼154

50× cheaper than steering its individual members. We subtract α
∑

(l,f,t)∈SWl[f] when155

predicting yn for a range of α values. If PI is satisfied for the target ym without a degenerate156

output, the cluster is kept as a PLAN candidate; otherwise the whole cluster is considered157

a candidate for IMPROV or CAN’T SAY for nonsensical generations. Note that all (l, f, t)158

triples inside S satisfy FTE by construction, so NEITHER cannot occur here.159

Step 3 Earliest-Moment Search: For within surviving clusters, greedily walk backwards through160

the positions where S is active, ablating one triple at a time until PI fails. The last triple161

whose removal still deletes ym is recorded as the first backward-planning moment. Other162

(l, f, t) triples in S that satisfy both FTE and PI are also labeled PLAN.163

4

Step 4 Improvisation Check: We rerun Step 2 for all (l, f, t) that are not already labeled as PLAN164

but with ym as the next token. Any (l, f, t) triple that has a causal effect on ym without165

satisfying PI for any of the previous tokens is labeled as IMPROV. For all ym already present166

in the input prompt, we also assign CAN’T SAY. The remaining are labeled as NEITHER.167

Step 0 focuses solely on yn because any feature that fails to influence the next token being predicted168

cannot satisfy PI. Following from Lindsey et al. [9], we use cluster-level steering in Step 2 to amortize169

compute since discarding even two clusters early saves ∼ 100 individual PI checks later. In the next170

section, we will empirically evaluate the above pipeline on real-world data.171

3 Empirical Evaluation172

We empirically evaluate our detection framework on the BASE and INSTRUCT versions of Gemma-2-173

2B [13]. We used TopK SAEs trained on MLP_out from the GemmaScope suite [14]. These SAEs174

are trained on the outputs of each MLP block before RMSNorm is applied.175

Our analysis consists of three main components. We first provide a motivating example of our176

criteria/pipeline on several rhyming-couplet tasks (§3.1) to give a direct comparison to prior work177

Lindsey et al. [9]. We then demonstrate our detection framework on several programming tasks178

(§3.2). Finally, we provide a comparative analysis of planning in BASE vs. INSTRUCT models (§3.3).179

3.1 Planning in Poems180

We now revisit the example in §2.1 to evaluate our criteria and pipeline. Lindsey et al. [9] showed181

that Claude 3.5 Haiku activates latent features for candidate rhyme words such as habit and rabbit at182

the end of the first line (’\n’), six tokens before the model predicts the second rhyme - “rabbit”.183

When the same prompt, “A rhyming couplet:\n He saw a carrot and had to grab it, \n”, is given to184

Gemma-2-2B INSTRUCT, it completes it with “A tasty treat, a crunchy habit.”185

Running our FTE + PI pipeline (§2.4) over every intermediate prediction (from y1 = "A" through y6186

= "tasty") reveals that no circuit satisfies both criteria. In other words, Gemma shows no evidence of187

planning during this poem generation. A binary verdict alone does not illuminate the model’s internal188

strategy, so we manually inspected the full circuit for predicting “habit”(∼ 26k latents, ≥ 60% logit189

recovery), similar to the setup of Lindsey et al. [9]. The circuit contains two distinct groups of latents:190

one that activates on phoneme-level tokens (e.g. “/t/”, “/et/”), and another that activates on compulsion191

tokens(e.g. “had to grab”, “must”). Latents writing to “habit” only become causally relevant at the192

final token. Lindsey et al. [9] also demonstrated that negative steering on the “habit” latents caused a193

change in the intermediate tokens, which didn’t happen for this circuit in Gemma. Thus, our working194

hypothesis is one of improvisation: local phonetic and thematic cues combine late to select the rhyme,195

rather than a plan propagated forward from line one.196

Differences in planning are expected given variations in architecture, scale, and training data. Our197

semi-automated pipeline surfaces those discrepancies, providing a systematic lens for future work on198

how modeling choices shape emergent planning behavior. We now move to evaluating the pipeline199

on code generations tasks, as coding tasks are well represented in the training data for Gemma 2 [15].200

3.2 Planning in Code201

We next execute and analyze the detection framework on several programming tasks. For this we202

consider the Mostly Basic Programming Problems (MBPP) dataset [16] . We filtered the tasks to203

include only those that the INSTRUCT model solves correctly, picking the first 60 for analysis. We204

then run the pipeline on this set of tasks. In the following, we provide a selection of case studies205

where the model exhibits planning by our criteria.206

3.2.1 Sorting a list of tuples.207

This task involves sorting a list of tuples subjectmarks in-place by the second element of each208

tuple. The INSTRUCT model correctly solves the task by using a lambda function to key into the209

index 1 of the tuple for sorting: subjectmarks.sort(key=lambda x: x[1]).210

5

def tetrahedral_number(n):\n\treturn

 (n * (n + 1) * (n + 2))...

say 2

 (say
. . .

 (

tetrahedral_number(n-1) + 1Change

No change n * (n + 1) * (n + 2))...

Planning!

. . .
Circuit Circuit

say *

say //
say *-αxsay //

say 2
-αx

B
future token
input token
next token

Legend

def subject_marks(marks):\n\treturn sorted(marks

, key=lambda x: x[1])

say 1

,say
. . .)

,

```Change

No change  key=lambda x: x[1])

Planning!

. . .
Circuit Circuit

say =

say key
say =-αxsay key

say 1
-αx

A

Figure 2: Planning in MBPP tasks. (A) Sort tuples by the 2nd element: While predicting the comma
after “sorted(marks”, a feature already promotes the future token "1" present in key=lambda
x: x[1] (FTE). Suppressing it changes the generation to close the bracket instead (PI). (B) n-th
tetrahedral number: While predicting the first parenthesis of the closed form, a feature encodes the
later "2" in (n+2) (FTE). Suppressing removes the plan: the model drifts to a recursive sketch (PI).

Planning evidence. During prediction of the comma (yn = 297), the model is already planning for the211

future token "1" (ym = 305) as early as (ℓ=0, t=294) "sorted". The earliest feature responsible212

writes in the direction of "1", ranking it first among top-10 logits (FTE). Suppressing (negative213

steering) this feature flips the next token from the comma to a closing parenthesis (i). The generation214

just adds a newline and ends the function (ii), and "1" never appears in the continuation (iii). More215

intuitively, the model outputs the comma because it is planning to emit "1" later (it must sort by216

the second element of each tuple). Suppressing "1" features at this position causes the model to217

just close the bracket. The steered generation fails the unit test. See Fig. 2A for a schematic of this218

example (Appendix §B.1).219

3.2.2 Computing the n-th tetrahedral number.220

This task involves computing the n-th tetrahedral number T (n). The INSTRUCT model correctly221

solves the task by using the closed form (n*(n+1)*(n+2))//6 after handling small n, satisfying222

the tests.223

Planning evidence. During prediction of the first opening bracket of the tetrahedral number formula224

(yn=180), the model is already planning for the future token "2" as early as (ℓ=0, t=18) ("find").225

The earliest feature responsible writes in the direction of "2", ranking it among the top-10 logits226

(FTE). Suppressing (negative steering) this feature switches the model from the closed form to the227

recursive update tetrahedral_number(n-1)+1: (i) "tet" is predicted as the next token instead228

of the opening parenthesis, (ii) the predictions after "tet" complete the recursive call, and (iii) "2"229

never appears (PI). This generation fails the unit tests. Intuitively, the model places the parenthesis230

because it is planning to emit the "2" needed for the ×(n+ 2) factor; removing that plan pushes it231

back to a simpler recursive sketch that does not pass the tests. See Fig. 2B for the corresponding232

schematic (Appendix §B.2).233

3.2.3 Forming the maximum number from digits.234

Given a list of digits, the task is to return the largest possible integer formed by concatenating all235

elements from the list. The INSTRUCT model correctly solves the task by sorting the list in descending236

order and traverses it with a for-loop whose index variable is i.237

Planning evidence. During prediction of "digits" (the first non-docstring token, yn=191), the238

model is already planning for the future token "sort" as early as (ℓ=17, t=190), which is the first239

tab ("\t") after the docstring. The earliest feature responsible writes toward "sort", placing it in240

the top-10 logits (FTE). Suppressing (or negatively steering) the "sort" feature at the "digits"241

token position (i) flips the next token to max, (ii) yields a program that instead begins max_num = and242

6



fails all hidden tests, and (iii) removes "sort" entirely from the continuation (PI). Intuitively, the243

model commits to "digits" because it is planning to immediately call sort; without that plan, it244

never orders the digits and thus cannot construct the maximum number. See Fig. 4 for the schematic245

(Appendix §B.3).246

3.2.4 Examples of “can’t say” cases.247

Divisible tuples. The task is to return only those tuples whose elements are all divisible by a given248

number k. The baseline generation correctly completes the comprehension "== 0 for element249

in tup)" and appends matching tuples before returning, satisfying the tests. For the prediction of the250

next token "==", we find features writing to the direction of "for", which is a future token. With the251

steering token "for" (coeff −80), the output collapses around the divisor check into something like252

", k"): and loses the generator expression, yielding a syntactically invalid snippet. This satisfies253

both FTE and PI, but because for is also in the input we label it as “can’t say” (Appendix §C.1).254

Largest number from digits. The task is to rearrange a list of digits to form the maximum possible255

integer. The baseline sorts the list and builds the number by concatenating digits in reverse order (e.g.,256

max_num += str(digits[n-i-1])) and returns int(max_num), which passes the tests. For the257

prediction of the next token "num", we find features writing to "-", which is a future token and is258

not in the input. Under steering with the token "-" (coeff −80), the model veers into nonsense (e.g.,259

digits = len(digits) followed by stray triple-quoted lines), so the steered output is degenerate260

(Appendix §C.2).261

Tetrahedral number. This is the same task as §3.2.2, but for a different forward pass. With else262

being the next token.263

With the steering token "(" (coeff −100), the generation devolves into a stream of “the/The” without264

code or logic, so the steered output is degenerate. Note that the steered token "(" is in the original265

prompt already, in the function signature and assertions. (Appendix §C.3).266

Across all three case studies the same pattern emerges: an SAE-cluster that (i) linearly encodes a267

distant goal token and (ii) causally steers multiple intermediate tokens is necessary for the model’s268

success, thereby validating our planning labels. Overall, our pipeline identifies the INSTRUCT model269

as either planning or improvising on 24 out of 60 tasks.270

3.3 Comparing Base and Instruction-Tuned Models271

Although base models are trained to predict the next token, post-training methods such as instruction272

tuning and RL introduce multi-step or goal-oriented objectives, and we hypothesize that these post-273

training methods result in stronger planning behavior. In this section, we explore this hypothesis and274

compare the planning behaviors between the INSTRUCT and BASE models.275

Table 1: Pass rates by task subset for the INSTRUCT and BASE Gemma-2-2B models. Values are
percentages; n denotes the number of tasks evaluated in each subset.

Task subset INSTRUCT model BASE model
Planning tasks (n = 13) 100% 54%
Improvisation tasks (n = 11) 100% 100%

For this comparison, we focus on the 24 MBPP tasks identified in Section 3.2 and described in Table276

1, where our detection pipeline classified whether the INSTRUCT model was planning or improvising.277

We evaluate the BASE model on our chosen subset of MBPP that the INSTRUCT model solves, and278

compare the performance on the IMPROV cases vs. the PLAN cases.279

We find that BASE solves all tasks where INSTRUCT was improvising, but only 54% (7 out of280

13) of tasks where INSTRUCT was planning. The BASE model’s ability to solve these planning281

tasks suggests two possibilities: either BASE already possesses some planning capabilities without282

instruction tuning, or it can solve these tasks without planning.283

To examine these hypotheses, we apply our planning detection pipeline to the BASE model on the284

same planning tasks. We find that in many cases BASE is still capable of planning, but there are285

7



def tetrahedral_number(n):\n\treturn

 ( n * ( n + 1) * (n + 2))...

say 2

 (say
. . .. . .

Instruct Circuit Base Circuit

say *

say //

future token
input token
next token

Legend1 + 2 * (n - 1)

say 2

 say

say -

say *

 

. . .
Base Circuit

say -
-αx

 (

n * ( n + 1) * (n + 2))...

def find_Max_Num(digits):\n\treturn

digits .sort()\nn=len(digits)...

say sort

digitssay
. . .. . . say in

say =

Correct Answer 
Base → Instruct

. . .
Instruct Circuit Base Circuit

maxsay
say in

say =

Instruct Circuit

say sort
-αx

max

_num=0...

max _num=0...
Incorrect Answer 
Instruct → Base

Correct Incorrect

IncorrectCorrect

A

B

Figure 3: Instruction tuning refines plan selection. (A) Competing plans (Tetrahedral number):
Both models plan toward "2", but BASE also plans toward an alternative "-" path that yields an
incorrect closed form. Suppressing "-" for BASE removes the competing plan and recovers the
correct solution, matching INSTRUCT. (B) Incorrect Target (Largest number): INSTRUCT plans
to sort the digits, but BASE plans toward max and never sorts, leading to failure. Suppressing
INSTRUCT’s sort plan reproduces the failed BASE trajectory. Diagrams highlight planning features;
−αx indicates steering.

distinct failure modes that result in incorrect answers. We identify two primary failure patterns in the286

following subsections.287

3.3.1 Competing Plans288

In the Nth Tetrahedral Number task covered in §3.2.2 (Fig. 3A, Appendix §B.2), BASE exhibits289

planning by targeting the correct token "2", but also plans for an incorrect alternative "-". When the290

model follows the incorrect plan, it generates the wrong formula (1+2(n-1)). In contrast, INSTRUCT291

focuses solely on the correct plan and produces the right solution (n*(n+1)*(n+2)/6).292

Given these results, one potential explanation is that the BASE model is still planning, but the plan is293

not yet specific enough. If this were true, suppressing the wrong token that the model is also planning294

for should bring the behavior of BASE closer to that of INSTRUCT. Indeed we find that suppressing295

the "-" token features causes BASE to return the correct formula.296

3.3.2 Incorrect Target297

In the task for forming largest number from list covered in §3.2.3 (Fig. 3B, Appendix §B.3), BASE is298

planning for the "max" token unlike INSTRUCT which is planning for the "digits" token. However,299

unlike in the previous example, BASE does not have "digits" as a potential plan, and therefore fails300

return a correct answer. Suppressing the "digits" feature in INSTRUCT leads it to return the same301

incorrect answer that BASE does.302

Overall, these results suggest that base models still exhibit planning behavior, and instruction tuning303

is likely not the source of planning per se. However, instruction tuning can improve performance on304

planning tasks by helping the model select the right tokens to target.305

4 Conclusion306

In this work, we introduced a general, falsifiable definition of planning in language models that307

generalizes and extends insights from prior case studies. We operationalized this definition through308

two criteria, Future-Token Encoding (FTE) and Precursor Influence (PI), and implemented a semi-309

8



automated pipeline to detect them. Applying this framework to the base and instruction-tuned310

versions of Gemma-2-2B on various MBPP code generation tasks, we demonstrated that:311

• Planning is not universal. The model solves some tasks by improvising and others by planning,312

and we found no clear rule governing which strategy is used. Planning does not appear to be313

task-specific either; Gemma-2-2B improvises on a poem generation task where Claude 3.5314

Haiku was shown to plan [9], though both models still generated valid poems.315

• Planning can be done poorly. We found cases where the model deliberately planned toward316

incorrect answers or selected incorrectly among multiple competing plans.317

• Instruction tuning refines planning behavior but does not create it. Both base and instruction318

tuned models are capable of planning, but it is possible that instruction tuning helps with319

choosing between competing plans or filtering out incorrect plans.320

4.1 Limitations321

SAEs Our analysis was conducted using SAEs trained on the Gemma-2-2B base model but applied322

to the instruction-tuned version of Gemma-2-2B. While this approach is supported by prior work [17],323

it may introduce some mismatch in representation. Furthermore, we focused only on MLP-attached324

SAEs, inspired by their interpretability in prior work [9]. That said, our detection pipeline and criteria325

are general and can be extended to other types of SAEs and representation spaces.326

Polysemantic latents We found cases where some latents satisfy both FTE and PI, but upon manual327

investigation, we see that only one of the top 10 tokens is a future token and the others seem unrelated328

to the task. This is probably because the latent is polysemantic. We could potentially mitigate this by329

requiring stricter criteria such as a minimum threshold on autointerp scores.330

Scaling to larger models and broader datasets. Our study focuses on the base and instruct331

versions of Gemma-2-2B, mainly due to the availability of SAEs for all layers [14]. We plan to332

apply our detection framework to larger models in the Gemma family to understand how planning333

capabilities emerge as a function of scale. Additionally, our experiments have thus far focused on the334

MBPP dataset and the poem generation prompt from Lindsey et al. [9]. Extending this analysis to335

more challenging and diverse benchmarks could reveal deeper insights into planning behavior.336

4.2 Future Work337

Understanding edge and “can’t say” cases. A significant portion of our effort was spent on338

ambiguous or edge cases, where labels could not be clearly assigned. More details on such cases can339

be found in Appendix C; investigating these further could refine our definition and improve detection.340

Automating offline detection We found cases where steered generations satisfied our criteria for341

Precursor Influence, but the generated text itself was degenerate and nonsensical. It is not clear to us342

if this is an instance of planning behavior switching off or if the intervention pushed the model out of343

distribution. Setting thresholds for repeating tokens and perplexity could potentially help resolve this.344

Online detection This paper focuses on offline detection, i.e., detecting planning after the sequence345

is generated. with the knowledge of future tokens. However, we believe it is possible to extend our346

approach to detect planning at test time, where we have no knowledge of the future tokens. For347

example, at each token prediction we can find latents that write to tokens that are not present in the348

input; these become candidates for planning.349

References350

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-351

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-352

wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,353

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-354

teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,355

Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.356

9



In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in357

Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,358

Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/359

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.360

[2] Augustus Odena, Charles Sutton, David Martin Dohan, Ellen Jiang, Henryk Michalewski, Jacob361

Austin, Maarten Paul Bosma, Maxwell Nye, Michael Terry, and Quoc V. Le. Program synthesis362

with large language models. In n/a, page n/a, n/a, 2021. n/a.363

[3] Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens:364

Anticipating subsequent tokens from a single hidden state. In Proceedings of the 27th365

Conference on Computational Natural Language Learning (CoNLL), page 548–560. As-366

sociation for Computational Linguistics, 2023. doi: 10.18653/v1/2023.conll-1.37. URL367

http://dx.doi.org/10.18653/v1/2023.conll-1.37.368

[4] Nicholas Pochinkov, Angelo Benoit, Lovkush Agarwal, Zainab Ali Majid, and Lucile Ter-369

Minassian. Extracting paragraphs from llm token activations, 2024. URL https://arxiv.370

org/abs/2409.06328.371

[5] Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future372

tokens? In First Conference on Language Modeling, 2024. URL https://openreview.net/373

forum?id=BaOAvPUyBO.374

[6] Gian-Carlo Pascutto and Gary Linscott. Leela chess zero. URL http://lczero.org/.375

[7] Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.376

Evidence of learned look-ahead in a chess-playing neural network, 2024. URL https://377

arxiv.org/abs/2406.00877.378

[8] Thomas Bush, Stephen Chung, Usman Anwar, Adrià Garriga-Alonso, and David Krueger.379

Interpreting emergent planning in model-free reinforcement learning, 2025. URL https:380

//arxiv.org/abs/2504.01871.381

[9] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.382

Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael383

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas384

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam385

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the386

biology of a large language model. Transformer Circuits Thread, 2025. URL https:387

//transformer-circuits.pub/2025/attribution-graphs/biology.html.388

[10] Anthropic. Claude haiku. https://www.anthropic.com/claude/haiku, 2024. Large389

language model.390

[11] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse391

autoencoders find highly interpretable features in language models. In The Twelfth International392

Conference on Learning Representations, 2024. URL https://openreview.net/forum?393

id=F76bwRSLeK.394

[12] Nostalgebraist. Interpreting gpt: the logit lens. https://www.lesswrong.com/posts/395

logit-lens, 2020.396

[13] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya397

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan398

Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,399

Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,400

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,401

Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-402

son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,403

Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu404

Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David405

Weinberger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma406

Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel407

Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska,408

Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff409

Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe410

Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,411

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dx.doi.org/10.18653/v1/2023.conll-1.37
https://arxiv.org/abs/2409.06328
https://arxiv.org/abs/2409.06328
https://arxiv.org/abs/2409.06328
https://openreview.net/forum?id=BaOAvPUyBO
https://openreview.net/forum?id=BaOAvPUyBO
https://openreview.net/forum?id=BaOAvPUyBO
http://lczero.org/
https://arxiv.org/abs/2406.00877
https://arxiv.org/abs/2406.00877
https://arxiv.org/abs/2406.00877
https://arxiv.org/abs/2504.01871
https://arxiv.org/abs/2504.01871
https://arxiv.org/abs/2504.01871
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://www.anthropic.com/claude/haiku
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://www.lesswrong.com/posts/logit-lens
https://www.lesswrong.com/posts/logit-lens
https://www.lesswrong.com/posts/logit-lens


Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin412

Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena413

Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas414

Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat415

Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg416

Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,417

Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta418

Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul419

Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,420

Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh421

Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,422

Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting423

Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh424

Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han,425

Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe426

Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral,427

Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol428

Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya,429

Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and430

Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL431

https://arxiv.org/abs/2408.00118.432

[14] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,433

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope:434

Open sparse autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.435

org/abs/2408.05147.436

[15] Google. Gemma 2 Model Card. https://ai.google.dev/gemma/docs/core/model_437

card_2, 2025. Training-dataset section, accessed 2 Aug 2025.438

[16] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David439

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis440

with large language models, 2021. URL https://arxiv.org/abs/2108.07732.441

[17] Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Saes (usually)442

transfer between base and chat models, 2024. URL https://www.lesswrong.com/posts/443

fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models.444

LessWrong, published July 18, 2024.445

[18] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.446

Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.447

arXiv preprint arXiv:2403.19647, 2024.448

[19] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,449

and Stuart Shieber. Investigating gender bias in language models using causal mediation450

analysis. Advances in neural information processing systems, 33:12388–12401, 2020.451

[20] Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and452

Yonatan Belinkov. Causal analysis of syntactic agreement mechanisms in neural language453

models. arXiv preprint arXiv:2106.06087, 2021.454

[21] Judea Pearl. Direct and indirect effects. In Probabilistic and causal inference: the works of455

Judea Pearl, pages 373–392. 2022.456

[22] Neel Nanda. Attribution patching: Activation patching at industrial scale. URL: https://www.457

neelnanda. io/mechanistic-interpretability/attribution-patching, 2023.458

[23] Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated459

circuit discovery, 2023. URL https://arxiv.org/abs/2310.10348.460

[24] János Kramár, Tom Lieberum, Rohin Shah, and Neel Nanda. Atp*: An efficient and scalable461

method for localizing llm behaviour to components. arXiv preprint arXiv:2403.00745, 2024.462

[25] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In463

International conference on machine learning, pages 3319–3328. PMLR, 2017.464

11

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://ai.google.dev/gemma/docs/core/model_card_2
https://ai.google.dev/gemma/docs/core/model_card_2
https://ai.google.dev/gemma/docs/core/model_card_2
https://arxiv.org/abs/2108.07732
https://www.lesswrong.com/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://www.lesswrong.com/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://www.lesswrong.com/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://arxiv.org/abs/2310.10348


[26] Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.465

Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,466

2025. URL https://arxiv.org/abs/2403.19647.467

12

https://arxiv.org/abs/2403.19647


A Background468

We review the three ingredients our method builds on: sparse autoencoders, causal-influence localiza-469

tion, and prior work on planning in neural networks.470

A.1 Sparse Autoencoders471

Sparse autoencoders (SAEs) have gained popularity as an unsupervised interpretability method for472

analyzing activations of large language models. An SAE generally consists of an encoder-decoder473

structure: the encoder transforms the original activations into a higher-dimensional but sparse latent474

representation, while the decoder reconstructs the original activations from this sparse representation.475

We use SAEs from the GemmaScope suite (Lieberum et al. [14]). From this suite, we used TopK476

SAEs trained on MLP_out. These SAEs are trained on the outputs of each MLP block, before477

RMSNorm is applied.478

A.2 Causal influence: activation & attribution patching479

We follow Marks et al. [18] for notations and approximations for circuit discovery with SAEs.480

Indirect effects Following Vig et al. [19], Finlayson et al. [20], let m be any scalar metric of the481

forward pass (e.g. −logPθ(yn)) and let a be an internal activation. For a clean / patch input pair482

(xclean, xpatch) we measure the indirect effect (IE) [21] of a on m as483

IE
(
m; a;xclean, xpatch

)
= m

(
xclean

∣∣do(a=apatch)
)
−m

(
xclean

)
, (1)

where the do-operator fixes a to its value apatch taken from the patched run.484

However, computing (1) for every candidate a is expensive, so we adopt two gradient-based approxi-485

mations. Attribution patching [22, 23, 24] linearizes IE with a first-order Taylor expansion, needing486

only two forward passes and one back-propagation:487

ÎEAP = ∇am
∣∣
a=aclean

(
apatch − aclean

)
. (2)

Integrated gradients (IG) [25] trades extra compute for a tighter fit. Using N=10 evenly spaced488

interpolation points α∈ [0, 1] we form489

ÎEIG =
1

N

N∑
k=1

∇am
∣∣∣
a=aclean+

k
N

(
apatch−aclean

) (apatch − aclean
)
, (3)

which markedly improves accuracy.490

Single-prompt variant. When only one prompt is available we replace (xclean, xpatch) with (x, x)491

and set apatch = 0, i.e. we measure the drop in m under zero-ablation of a; the same formulas (2)–(3)492

apply after substituting apatch←0.493

A.3 Planning in neural networks494

Predicting future tokens (fixed k). Early work asked whether a single intermediate representation495

linearly encodes the final logits k steps ahead. Pal et al. [3] trained an affine probe that can predict496

the top-k logits four tokens in the future in GPT-2, but only for some layers. Pochinkov et al. [4]497

extend this to paragraph-level topics, showing that the newline token between paragraphs already498

carries topical information. Wu et al. [5] repeat the experiment across model scales and find that499

small models exhibit little signal, whereas larger models show modest top-token predictability. In all500

cases the horizon k is fixed by the probe designer.501

Learned look-ahead in games and RL. Outside language, neural agents sometimes plan several502

moves ahead. Jenner et al. [7] detect representations of optimal next moves up to three ply ahead in503

Leela ChessZero [6] by training chess-specific linear heads. Bush et al. [8] identify state vectors in a504

Sokoban-playing agent that encode the sequence of box moves needed to solve the puzzle, again with505

a fixed look-ahead. These studies reinforce the possibility of learned planning but remain task-specific506

and horizon-bound.507

13



def find_Max_Num(digits):\n\t

digits .sort()\nn=len(digits)...

say sort

digitssay
. . . max

digits

_num=0...
Change

No change .sort()....

Planning!

. . .
Circuit Circuit

say in

say =
say in-αxsay =

say sort
-αx

future token
input token
next token

Legend

Figure 4: Forming the max number from digits: While predicting the the first non-docstring “digits”,
a feature already promotes the future token "sort" present in digits.sort()\n (FTE). Suppressing
it changes the generation to not sort instead and start with max_num = 0 (PI).

Variable-horizon planning. The poem-rhyme case study of Lindsey et al. [9] shows that a large508

language model (Claude 3.5 Haiku) stores candidate rhyme words an arbitrary number of tokens in509

advance and that ablating this latent collapses the rhyme. This example motivates the formal criteria510

we adopt in Section 2.511

Gap addressed by our work. All prior studies either assume a fixed horizon or require task-specific512

probes. Our criteria work for any distance m− n ≥ 1 and rely only on model-intrinsic SAEs plus513

causal steering.514

B Additional details for “planning” cases515

This appendix presents three representative “planning” cases. For each case, we show:516

• the Prompt Prefix (truncated to the noted token),517

• the Baseline Generation continuation,518

• the Steering Token and its Coefficient, and519

• the resulting Steered Continuation.520

All snippets below are exact text captures.521

B.1 Sorting list of tuples.522

Prompt Prefix (up to token 297):523

524
<bos>You are an expert Python programmer, and here is your task: Write a function525

to sort a list of tuples using the second value of each tuple. Your code should526

pass these tests:527

528

assert subject_marks([(’English’, 88), (’Science’, 90), (’Maths’, 97), (’Social529

sciences’, 82)])==[(’Social sciences’, 82), (’English’, 88), (’Science’, 90),530

(’Maths’, 97)]531

assert subject_marks([(’Telugu’,49),(’Hindhi’,54),(’Social’,33)])==([(’Social’,33),532

(’Telugu’,49),(’Hindhi’,54)])533

assert534

subject_marks([(’Physics’,96),(’Chemistry’,97),(’Biology’,45)])==([(’Biology’,45),535

(’Physics’,96),(’Chemistry’,97)])536

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".537

‘‘‘python538

def subject_marks(marks):539

"""540

Sorts a list of tuples by the second value of each tuple.541

542

Args:543

marks: A list of tuples, where each tuple represents a subject and its544

corresponding mark.545

546

Returns:547

14



A new list of tuples, sorted by the second value of each tuple.548

"""549

return sorted(marks550551

Baseline Generation:552

553
, key=lambda x: x[1])554555

Steering Token and Coefficient: ‘1’, Coeff -80556

Steered Continuation:557

558
)559560

B.2 Computing the n-th tetrahedral number.561

Prompt Prefix (up to token 180):562

563
<bos>You are an expert Python programmer, and here is your task: Write a function564

to find the nth tetrahedral number. Your code should pass these tests:565

566

assert tetrahedral_number(5) == 35567

assert tetrahedral_number(6) == 56568

assert tetrahedral_number(7) == 84569

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".570

‘‘‘python571

def tetrahedral_number(n):572

"""573

Calculates the nth tetrahedral number.574

575

Args:576

n: The position of the tetrahedral number in the sequence.577

578

Returns:579

The nth tetrahedral number.580

"""581

if n <= 0:582

return 0583

elif n == 1:584

return 1585

else:586

return587588

Baseline Generation:589

590
(n * (n + 1) * (n + 2)) // 6591592

Steering Token and Coefficient: ‘1’, Coeff -80593

Steered Continuation:594

595
tetrahedral_number(n-1) + 1596597

B.3 Forming the maximum number from digits.598

Prompt Prefix (up to token 311):599

600
<bos>You are an expert Python programmer, and here is your task: Write a python601

function to find the largest number that can be formed with the given list of602

digits. Your code should pass these tests:603

15



604

assert find_Max_Num([1,2,3]) == 321605

assert find_Max_Num([4,5,6,1]) == 6541606

assert find_Max_Num([1,2,3,9]) == 9321607

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".608

‘‘‘python609

def find_Max_Num(digits):610

"""611

Finds the largest number that can be formed with the given list of digits.612

613

Args:614

digits: A list of digits.615

616

Returns:617

The largest number that can be formed with the given digits.618

"""619

620621

Baseline Generation:622

623
digits.sort()624

n = len(digits)625

max_num = ’’626

for i in range(n):627

max_num += str(digits[n-i-1])628

return int(max_num)629630

Steering Token and Coefficient: ‘sort’, Coeff -60631

Steered Continuation:632

633
max_num = 0634

for num in digits:635

if num > max_num:636

max_num = num637

return max_num638639

C Details for “can’t say” cases640

This appendix presents three representative “can’t say” cases. For each case, we show the same641

information as §B.642

C.1 Overlap with Prompt643

Prompt Prefix (up to token 311):644

645
<bos>You are an expert Python programmer, and here is your task: Write a function646

to find tuples which have all elements divisible by k from the given list of647

tuples. Your code should pass these tests:648

649

assert find_tuples([(6, 24, 12), (7, 9, 6), (12, 18, 21)], 6) == [(6, 24, 12)]650

assert find_tuples([(5, 25, 30), (4, 2, 3), (7, 8, 9)], 5) == [(5, 25, 30)]651

assert find_tuples([(7, 9, 16), (8, 16, 4), (19, 17, 18)], 4) == [(8, 16, 4)]652

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".653

‘‘‘python654

def find_tuples(tuples_list, k):655

"""656

Finds tuples in a list of tuples that have all elements divisible by k.657

658

Args:659

tuples_list: A list of tuples.660

k: The divisor.661

16



662

Returns:663

A list of tuples that have all elements divisible by k.664

"""665

result = []666

for tup in tuples_list:667

if all(element % k668669

Baseline Generation:670

671
== 0 for element in tup):672

result.append(tup)673

return result674675

Steering Token and Coefficient: ‘for’, Coeff -80676

Steered Continuation:677

678
, k):679

result.append(tup)680

return result681682

C.2 Out-of-Distribution Steering683

Prompt Prefix (up to token 223):684

685
<bos>You are an expert Python programmer, and here is your task: Write a python686

function to find the largest number that can be formed with the given list of687

digits. Your code should pass these tests:688

689

assert find_Max_Num([1,2,3]) == 321690

assert find_Max_Num([4,5,6,1]) == 6541691

assert find_Max_Num([1,2,3,9]) == 9321692

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".693

‘‘‘python694

def find_Max_Num(digits):695

"""696

Finds the largest number that can be formed with the given list of digits.697

698

Args:699

digits: A list of digits.700

701

Returns:702

The largest number that can be formed with the given digits.703

"""704

digits.sort()705

n = len(digits)706

max_num = ’’707

for i in range(n):708

max_709710

Baseline Generation:711

712
num += str(digits[n-i-1])713

return int(max_num)714715

Steering Token and Coefficient: ‘-’, Coeff -80716

Steered Continuation:717

718
digits = len(digits)719

"""720

17



"""721

"""722

"""723

"""724

"""725

"""726

"""727

"""728

"""729

"""730

"""731

"""732

"""733

"""734

"""735

"""736

"""737

"""738

"""739

"""740

"""741

"""742

"""743

"""744

"""745

"""746

"""747

"""748

"""749

"""750751

C.3 Both Overlap and Out-of-Distribution752

Prompt Prefix (up to token 173):753

754
<bos>You are an expert Python programmer, and here is your task: Write a function755

to find the nth tetrahedral number. Your code should pass these tests:756

757

assert tetrahedral_number(5) == 35758

assert tetrahedral_number(6) == 56759

assert tetrahedral_number(7) == 84760

Write your code below starting with "‘‘‘python" and ending with "‘‘‘".761

‘‘‘python762

def tetrahedral_number(n):763

"""764

Calculates the nth tetrahedral number.765

766

Args:767

n: The position of the tetrahedral number in the sequence.768

769

Returns:770

The nth tetrahedral number.771

"""772

if n <= 0:773

return 0774

elif n == 1:775

return 1776777

Baseline Generation:778

779
780

else:781

return (n * (n + 1) * (n + 2)) // 6782783

18



Steering Token and Coefficient: ‘(’, Coeff -100784

Steered Continuation:785

786
the787

788

The789

The790

The791

The792

The793

The794

The795

The796

The797

The798

The799

The800

The801

The802

The803

The804

The805

The806

The807

The808

The809

The810

The811

The812

The813

The814

The815

The816

The817

The818

The819

The820821

D Ethics Statement822

While planning detection has potential beneficial applications for enhancing model controllability, it823

also raises ethical concerns. The ability to manipulate model outputs could be misused to bypass824

safety measures or to make models generate harmful content. We emphasize the importance of825

responsible use of these techniques and suggest the development of countermeasures to protect826

against potential misuse.827

E Artifacts828

E.1 MBPP Dataset829

The original Mostly Basic Programming Problems (MBPP) dataset [16] features 974 python program-830

ming problems featuring a text description of a function, along with a set of unit tests that a model’s831

generated code is supposed to pass. We filtered this dataset down to the 120 tasks that Gemma-2-2B832

solves correctly with deterministic sampling (temperature 0). The entire subset used for all analysis;833

no train/dev/test split required since we perform interpretability on fixed generations.834

E.1.1 Tasks835

Compliance This dataset uses the Creative Commons Attribution 4.0 International (CC BY 4.0)836

license.837

19



E.2 Gemma-2-2B838

We use Gemma-2-2B (2 billion parameters) – a decoder-only Transformer with 26 layers and839

RMSNorm pre- and post-normalization (see Team et al., 2024 for full architecture and training840

details).841

Compliance Gemma-2 models are released under Google’s commercially-friendly Gemma License,842

which permits model usage for research and evaluation purposes only.843

E.3 Sparse Autoencoders844

We used code and sparse autoencoder weights (SAE) from the GemmaScope release, trained on the845

base Gemma-2-2B model. We 26 SAEs, one for each layer, trained to reconstruct the outputs of the846

MLP layers, before the post-RMSNorm is applied. These SAEs use the TopK activation function847

with K = 32, a latent dimension of 2048 matching the MLP out dimension, and have an expansion848

factor of 8 for a total of 16384 features per layer.849

Compliance The code and model checkpoints are distributed freely under the Apache 2.0 license.850

F Experimental Details851

Hardware and Compute We used a single node of 4x NVIDIA A40 GPUs (48 GB VRAM).852

Total compute 250 GPU-hours across all experiments: Computing Sparse Feature Circuits using853

attribution patching took 10 hours to run across all prompts and token generations. Computing854

precursor influence by steering clusters of features took the bulk of the compute with about 240855

GPU-hours total.856

Algorithm Hyperparameters We based our implementation for attribution patching from the857

source code from [26], code available here. The original algorithm uses clean and counterfactual858

pairs of prompts, whereas we use only clean prompts then perform zero ablations on intermediate859

representations.860

The algorithm takes a metric m to backpropagate through, a hyperparemeter τ for the metric, and861

number of integrated gradient steps n. We use the probability of the correct token p(ycorrect) as the862

metric. We set τ = 0.60, meaning we keep nodes that preserve the correct token’s probability to be863

above 60%, and set n = 10.864

G Statement on the Usage of Generative AI865

We used generative AI tools (e.g., GitHub Copilot and ChatGPT) to streamline routine coding866

tasks—such as writing data-loading scripts. In each case, all AI-suggested code was carefully867

reviewed, tested, and revised by the authors to ensure correctness and maintain consistent coding868

style. We used ChatGPT with search to generate high-level literature summaries that informed our869

reference list and contextual background, which were cross-checked against original papers before870

inclusion.871

20

https://github.com/saprmarks/feature-circuits

