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Abstract

Modern large language models (LLMs) have demonstrated impressive performance
across a wide range of multi-step reasoning tasks. Recent work suggests that LLMs
may perform planning — selecting a future target token in advance and generating
intermediate tokens that lead towards it — rather than merely improvising one
token at a time. However, existing studies assume fixed planning horizons and often
focus on single prompts or narrow domains. To distinguish planning from improvi-
sation across models and tasks, we present formal and causally grounded criteria
for detecting planning and operationalize them as a semi-automated annotation
pipeline. We apply this pipeline to both base and instruction-tuned Gemma-2-2B
models on the MBPP code generation benchmark and a poem generation task
where Claude 3.5 Haiku was previously shown to plan. Our findings show that
planning is not universal: unlike Haiku, Gemma-2-2B solves the same poem gen-
eration task through improvisation, and on MBPP it switches between planning
and improvisation across similar tasks and even successive token predictions. We
further show that instruction tuning refines existing planning behaviors in the base
model rather than creating them from scratch. Together, these studies provide a
reproducible and scalable foundation for mechanistic studies of planning in LLMs.

1 Introduction

Large language models (LLMs) have achieved impressive results on complex reasoning tasks, from
creative writing to code generation [1, 2]. These tasks often require multi-step reasoning, yet LLMs
are trained as next-token predictors that would presumably generate outputs by improvising each
token step-by-step without foresight. An alternative hypothesis is that LLMs solve these tasks
by planning: using intentional processes, whether internal or external, that guide generation in a
structured, goal-directed way to improve coherence and reasoning. This distinction is critical because
planning may be necessary for reliable chain-of-thought reasoning and long-horizon problem solving,
while hidden planning mechanisms could enable models to pursue unintended goals or conceal their
reasoning. Therefore, it is essential to determine not just whether or not planning occurs, but also the
mechanisms through which planning arises.
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Figure 1: Planning detection at a glance. While predicting the next token yn, we ask if the model is
already planning for a later token ym. Step 1 isolates a smaller SAE-feature circuit that causes yn.
Step 2 (Future-Token Encoding, FTE) uses a Logit-Lens readout to see which features “write” towards
a future token (blue) versus the next token (red); future-writing features are planning candidates. Step
3 (Precursor Influence, PI) negatively steers each candidate at its earliest use (orange −αx). If this
steering changes the future token yn, perturbs intermediate tokens, and removes ym from the output,
we call it PLANNING.

Recent work provides evidence that LLMs engage in internal planning. For example, researchers
have probed for representations of future tokens at fixed distances ahead in language models [3, 4, 5]
and games like chess [6, 7] and Sokoban [8]. Lindsey et al. [9] showed that Claude 3.5 Haiku was
shown to generate a poem by storing candidate rhyme words before writing the next line, and ablating
the representations for these rhyme words alone can potentially change the entire next line. However,
these studies have key limitations: they assume fixed planning horizons, need task-specific probes, or
work only in narrow domains. Without unified and robust tools for distinguishing between planning
and improvisation, it is difficult to systematically compare behaviors across architectures and prompts
or understand how planning in LLMs fundamentally works.

In this work1, we address these gaps by formalizing a general, falsifiable definition of planning that
applies to arbitrary LLMs and tasks (§2). Our approach makes two technical advances. First, we
translate the intuitive notion of planning into concrete, causally grounded criteria at the activation
level and provide an operational pipeline for annotating a forward pass as planning or improvisation.
Second, we apply this pipeline to the planning in poems example from Lindsey et al. [9] as well as a
subset of the MBPP [2] code generation benchmark. Our findings include the following:

• In contrast with Lindsey et al. [9], who found clear evidence for backward planning in Claude on
a rhyming task, we find that Gemma-2-2B solves the same task successfully by improvisation,
without explicit intermediate planning signals (§3.1).

• When we generalized to the larger MBPP benchmark, we found that Gemma-2-2B switches
between planning and improvisation within tasks and even within successive token predictions.
We also demonstrate the examples where our criteria do not have a sure answer (§3.2.4).

• In all cases where Gemma-2-2B Instruct can solve an MBPP task, Gemma-2-2B Base consis-
tently solves the improvisation cases correctly but shows lower performance on cases where
planning is involved. The base model still engages in planning, but executes it less effectively.
(§3.3). We find evidence that instruction tuning refines planning behavior rather than creating it.

With these studies, alongside an explicit and reproducible pipeline for verifying planning and
improvisation, we aim to scale up and advance mechanistic studies of LLM reasoning.

2 Defining and Detecting Planning

We aim to turn the intuitive idea of planning in LLMs into a general-purpose, and empirically
verifiable definition. This section introduces the formal criteria we use throughout the paper and an
operational pipeline for verifying it on real datasets and models.

1Code is available at ambitious-mechinterp/plan_trace, Appendix E
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2.1 Motivating Example

Consider the task of completing a rhyming couplet as studied by Lindsey et al. [9], where the model
is given the following prompt:

A rhyming couplet:\n He saw a carrot and had to grab it,\n

In this task, the model is expected to return a line that rhymes with the end words “grab it". To write
the next line, the model could use either of the following strategies:

• Improvisation. Generate each token one-by-one and choose a rhyming end word (e.g. “rabbit”
and “habit”) only at the final position.

• Planning. Decide on the rhyming word in advance (e.g. “rabbit”) and generate each subsequent
token to ensure the line ends with the chosen word.

Lindsey et al. [9] investigated a variant of the above prompt in Claude 3.5 Haiku [10] and demonstrated
that it plans ahead for two possible rhyming words, “rabbit" and “habit". To do this, they showed
that internal representations of the words “rabbit" and “habit" are active at the next position after the
prompt. By default, the model returned a line ending with “like a starving rabbit", but suppressing
features associated with the word “rabbit" led to the model returning “a powerful habit” instead. The
fact that suppressing the “rabbit" features led the model towards a different output indicates that those
“rabbit" features had a causal effect on the resulting output.

This intuition suggests that planning requires an internal representation of a future token that is active
at an earlier position in the sequence and causally influences the generation of all subsequent tokens
leading up to it. We formalize these two requirements below.

2.2 Formalizing Planning

In this paper we use sparse autoencoder (SAE) latents [11] as interpretable representations of tokens
and concepts in the model. We denote these representations through triples (l, f, t), where l is a
layer index, f is an SAE latent, and t is a token position. Consider a prompt (x0, . . . , xn−1) and
let (yn, . . . , yN ) be the output tokens generated by the model. We call yn the current token and ym
(m > n) a future token.
Definition 1 (Future-Token Encoding). Let Wl[f ] be the decoding direction for latent f at layer
l. For any candidate future token ym with n < m ≤ N , if ym appears in the top K tokens when
projecting Wl[f ] through the unembedding matrix, then f is said to be a future-token encoding for
ym.
Definition 2 (Precursor Influence). For some α > 0 and token position t, if subtracting a scaled
decoding direction αWl[f ] from the residual stream at (l, t) during the forward pass and regenerating
the sequence from t+ 1 causes

(i) a change in the next token yn

(ii) a change in at least one intermediate token yn+1, . . . , ym−1

(iii) removal of ym from the generated output

then the latent f has a precursor influence on the future token ym.
Definition 3 (Planning). A model is planning at position (l, t), during the prediction of yn, for a
future token ym (m > n > t) if there exists a latent f at (l, t) that is a future-token encoding (FTE)
and has a precursor influence (PI) on the future token ym.

We are not proposing that these definitions are complete and exhaustive. They are built considering
the following working assumptions, and knowing these help us describe the boundaries of where
these definitions will work.

1. If a model is planning for ymduring the prediction of yn, then the circuit for predicting ynwill
have latents related to ym.

2. If ymis in the top K of logit lens [12] for a latent, then the latent is increasing the logit probability
for ymor “thinking” about ymand it is “related to ym”.
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3. If planning for a future token occurs, then intermediate tokens are affected.
4. Negative steering a latent suppresses the token/concept it is related to from the activation space.

2.3 Feature Roles Induced by the Criteria

The Future-Token Encoding (FTE) and Precursor Influence (PI) criteria can be used to partition the
set of (l, f, t) triples into the following behaviorally distinct classes:

Planning: A planning feature satisfies both FTE and PI for some future token ym that is absent
from the prompt. In other words, it stores a representation of ym and exerts an early causal influence
that shapes the intermediate trajectory towards ym. Removing the feature at the point where it first
activated will prevent the token ym from being generated, and usually steers the generation down a
semantically unrelated path.

Improvisation: A feature satisfies FTE for some ym but not PI; it only exerts a causal influence at
the position just before ym is generated. In other words, steering or ablating that feature right before
ym can change the next token, but doing the same at an earlier position will not change ym or any of
the intermediate tokens leading up to it.

Neither: A feature fails FTE for every future token. This does not mean that the feature is not
important; it could be encoding computations that keep the language model “on track” without
explicitly referencing a future goal. These can include local syntax, formatting, short-range semantics,
discourse markers, duplicate-token detectors, or many others.

Can’t Say: This category represents scenarios that could be ambiguous, meaning the existence of a
causal effect need not be interpreted as planning behavior.

• Overlap with Prompt: The goal token ym already appears earlier or ties another future token in
the Logit Lens ranking. Even if FTE is satisfied, it is unclear whether this is just attending to a
token in the prompt or planning for a future token.

• Out-of-Distribution Steering: When steering at an earlier position results in degenerate or
nonsensical outputs, it is unclear whether to consider this to be the same as suppressing the
planning mechanism. Hence even though the feature technically satisfies PI, we do not label it
as a planning feature.

Appendix C includes examples and potential strategies for identifying planning and improvisation in
these scenarios. For this work, we exclude these cases from all quantitative metrics.

2.4 Identifying Planning at Scale

For any model and prompt, we could apply Definition 3 to every (l, f, t) triple and label them as
PLAN or IMPROV. However, this is usually infeasible in practice. For example, Gemma-2-2B would
require 26 layers × 16K latents × 100 tokens ≈ 4.2 × 106 tests per prompt. Indeed, many prior
works on planning in LLMs focus on a single prompt or a handful of prompts.

We provide a pipeline to trim the search space by a factor of ∼ 104 while preserving almost all
genuine planning positions. An overview of our detection pipeline (circuit discovery to FTE to PI) is
shown in Fig. 1.

Step 0 Circuit Discovery: Because PI already requires a causal effect on the next token yn, we
first isolate the sparse feature circuit that explains the prediction of yn. Starting with the
latents that have the highest indirect causal effect, we build the smallest set of (l, f, t) triples
C that can recover the original logit distribution Pmodel(yn) by at least 60% when all other
(l, f, t) triples are zero-ablated. Empirically we find that |C| ∈ [2× 104, 3× 104], which is
represents a decrease by a factor of 150×.

Step 1 Future-Token Encoding Filter: Apply FTE to every triple (l, f, t) ∈ C with t < n. Keep
a triple only if its Logit-Lens top-K contains some future token ym, otherwise label it as
NEITHER. Triples that share the same (l, t) and point to the same ym are merged into a
cluster S. In our experiments, each cluster contained on average ∼50 (l, f, t) triples.

Step 2 Cluster-Level Precursor Influence Check: Steering the whole cluster at once is ∼
50× cheaper than steering its individual members. We subtract α

∑
(l,f,t)∈SWl[f ] when

predicting yn for a range of α values. If PI is satisfied for the target ym without a degenerate
output, the cluster is kept as a PLAN candidate; otherwise the whole cluster is considered
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a candidate for IMPROV or CAN’T SAY for nonsensical generations. Note that all (l, f, t)
triples inside S satisfy FTE by construction, so NEITHER cannot occur here.

Step 3 Earliest-Moment Search: For within surviving clusters, greedily walk backwards through
the positions where S is active, ablating one triple at a time until PI fails. The last triple
whose removal still deletes ym is recorded as the first backward-planning moment. Other
(l, f, t) triples in S that satisfy both FTE and PI are also labeled PLAN.

Step 4 Improvisation Check: We rerun Step 2 for all (l, f, t) that are not already labeled as PLAN
but with ym as the next token. Any (l, f, t) triple that has a causal effect on ym without
satisfying PI for any of the previous tokens is labeled as IMPROV. For all ym already present
in the input prompt, we also assign CAN’T SAY. The remaining are labeled as NEITHER.

Step 0 focuses solely on yn because any feature that fails to influence the next token being predicted
cannot satisfy PI. Following from Lindsey et al. [9], we use cluster-level steering in Step 2 to amortize
compute since discarding even two clusters early saves ∼ 100 individual PI checks later. In the next
section, we will empirically evaluate the above pipeline on real-world data.

3 Empirical Evaluation

We empirically evaluate our detection framework on the BASE and INSTRUCT versions of Gemma-2-
2B [13]. We used TopK SAEs trained on MLP_out from the GemmaScope suite [14]. These SAEs
are trained on the outputs of each MLP block before RMSNorm is applied.

Our analysis consists of three main components. We first provide a motivating example of our
criteria/pipeline on several rhyming-couplet tasks (§3.1) to give a direct comparison to prior work
Lindsey et al. [9]. We then demonstrate our detection framework on several programming tasks
(§3.2). Finally, we provide a comparative analysis of planning in BASE vs. INSTRUCT models (§3.3).
In our analysis, we stuck with negative steering for PI as motivated by Lindsey et al. [9].

3.1 Planning in Poems

We now revisit the example in §2.1 to evaluate our criteria and pipeline. Lindsey et al. [9] showed
that Claude 3.5 Haiku activates latent features for candidate rhyme words such as habit and rabbit
at the end of the first line (“\n”), six tokens before the model predicts the second rhyme - “rabbit”.
When the same prompt, “A rhyming couplet:\n He saw a carrot and had to grab it, \n”, is given to
Gemma-2-2B INSTRUCT, it completes it with “A tasty treat, a crunchy habit.”

Running our FTE + PI pipeline (§2.4) over every intermediate prediction (from y1 = "A" through y6
= "tasty") reveals that no circuit satisfies both criteria. In other words, Gemma shows no evidence of
planning during this poem generation.

A binary verdict alone does not illuminate the model’s internal strategy, so we manually inspected
the full circuit for predicting “habit”(∼ 26k latents, ≥ 60% logit recovery), similar to the setup of
Lindsey et al. [9].

The circuit contains two distinct groups of latents: one that activates on phoneme-level tokens
(e.g. “/t/”, “/et/”), and another that activates on compulsion tokens(e.g. “had to grab”, “must”).
Latents writing to “habit” only become causally relevant at the final token. Lindsey et al. [9] also
demonstrated that negative steering on the “habit” latents caused a change in the intermediate tokens,
which didn’t happen for this circuit in Gemma. Thus, our working hypothesis is one of improvisation:
local phonetic and thematic cues combine late to select the rhyme, rather than a plan propagated
forward from line one.

Differences in planning are expected given variations in architecture, scale, and training data. Our
semi-automated pipeline surfaces those discrepancies, providing a systematic lens for future work on
how modeling choices shape emergent planning behavior. We now move to evaluating the pipeline
on code generations tasks, as coding tasks are well represented in the training data for Gemma 2 [15].

3.2 Planning in Code

We next execute and analyze the detection framework on several programming tasks. For this we
consider the Mostly Basic Programming Problems (MBPP) dataset [16] . We filtered the tasks to
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Figure 2: Planning in MBPP tasks. (A) Sort tuples by the 2nd element: While predicting the comma
after “sorted(marks”, a feature already promotes the future token "1" present in key=lambda
x: x[1] (FTE). Suppressing it changes the generation to close the bracket instead (PI). (B) n-th
tetrahedral number: While predicting the first parenthesis of the closed form, a feature encodes the
later "2" in (n+2) (FTE). Suppressing removes the plan: the model drifts to a recursive sketch (PI).

include only those that the INSTRUCT model solves correctly, picking the first 60 for analysis. We
then run the pipeline on this set of tasks. In the following, we provide a selection of case studies
where the model exhibits planning by our criteria.

3.2.1 Sorting a list of tuples.

This task involves sorting a list of tuples subjectmarks in-place by the second element of each
tuple. The INSTRUCT model correctly solves the task by using a lambda function to key into the
index 1 of the tuple for sorting: subjectmarks.sort(key=lambda x: x[1]).

Planning evidence. During prediction of the comma (yn = 297), the model is already planning for the
future token "1" (ym = 305) as early as (ℓ=0, t=294) "sorted". The earliest feature responsible
writes in the direction of "1", ranking it first among top-10 logits (FTE). Suppressing (negative
steering) this feature flips the next token from the comma to a closing parenthesis (i). The generation
just adds a newline and ends the function (ii), and "1" never appears in the continuation (iii). More
intuitively, the model outputs the comma because it is planning to emit "1" later (it must sort by
the second element of each tuple). Suppressing "1" features at this position causes the model to
just close the bracket. The steered generation fails the unit test. See Fig. 2A for a schematic of this
example (Appendix §B.1).

3.2.2 Computing the n-th tetrahedral number.

This task involves computing the n-th tetrahedral number T (n). The INSTRUCT model correctly
solves the task by using the closed form (n*(n+1)*(n+2))//6 after handling small n, satisfying
the tests.

Planning evidence. During prediction of the first opening bracket of the tetrahedral number formula
(yn=180), the model is already planning for the future token "2" as early as (ℓ=0, t=18) ("find").
The earliest feature responsible writes in the direction of "2", ranking it among the top-10 logits
(FTE). Suppressing (negative steering) this feature switches the model from the closed form to the
recursive update tetrahedral_number(n-1)+1: (i) "tet" is predicted as the next token instead
of the opening parenthesis, (ii) the predictions after "tet" complete the recursive call, and (iii) "2"
never appears (PI). This generation fails the unit tests. Intuitively, the model places the parenthesis
because it is planning to emit the "2" needed for the ×(n+ 2) factor; removing that plan pushes it
back to a simpler recursive sketch that does not pass the tests. See Fig. 2B for the corresponding
schematic (Appendix §B.2).
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3.2.3 Forming the maximum number from digits.

Given a list of digits, the task is to return the largest possible integer formed by concatenating all
elements from the list. The INSTRUCT model correctly solves the task by sorting the list in descending
order and traverses it with a for-loop whose index variable is i.

Planning evidence. During prediction of "digits" (the first non-docstring token, yn=191), the
model is already planning for the future token "sort" as early as (ℓ=17, t=190), which is the first
tab ("\t") after the docstring. The earliest feature responsible writes toward "sort", placing it in
the top-10 logits (FTE). Suppressing (or negatively steering) the "sort" feature at the "digits"
token position (i) flips the next token to max, (ii) yields a program that instead begins max_num = and
fails all hidden tests, and (iii) removes "sort" entirely from the continuation (PI). Intuitively, the
model commits to "digits" because it is planning to immediately call sort; without that plan, it
never orders the digits and thus cannot construct the maximum number. See Fig. 4 for the schematic
(Appendix §B.3).

3.2.4 Examples of “can’t say” cases.

Divisible tuples. The task is to return only those tuples whose elements are all divisible by a given
number k. The baseline generation correctly completes the comprehension "== 0 for element
in tup)" and appends matching tuples before returning, satisfying the tests. For the prediction of the
next token "==", we find features writing to the direction of "for", which is a future token. With the
steering token "for" (coeff −80), the output collapses around the divisor check into something like
", k"): and loses the generator expression, yielding a syntactically invalid snippet. This satisfies
both FTE and PI, but because for is also in the input we label it as “can’t say” (Appendix §C.1).

Largest number from digits. The task is to rearrange a list of digits to form the maximum possible
integer. The baseline sorts the list and builds the number by concatenating digits in reverse order (e.g.,
max_num += str(digits[n-i-1])) and returns int(max_num), which passes the tests. For the
prediction of the next token "num", we find features writing to "-", which is a future token and is
not in the input. Under steering with the token "-" (coeff −80), the model veers into nonsense (e.g.,
digits = len(digits) followed by stray triple-quoted lines), so the steered output is degenerate
(Appendix §C.2).

Tetrahedral number. This is the same task as §3.2.2, but for a different forward pass. With else
being the next token.

With the steering token "(" (coeff −100), the generation devolves into a stream of “the/The” without
code or logic, so the steered output is degenerate. Note that the steered token "(" is in the original
prompt already, in the function signature and assertions. (Appendix §C.3).

Across all three case studies the same pattern emerges: an SAE-cluster that (i) linearly encodes a
distant goal token and (ii) causally steers multiple intermediate tokens is necessary for the model’s
success, thereby validating our planning labels. Overall, our pipeline identifies the INSTRUCT model
as either planning or improvising on 24 out of 60 tasks.

3.3 Comparing Base and Instruction-Tuned Models

Although base models are trained to predict the next token, post-training methods such as instruction
tuning and RL introduce multi-step or goal-oriented objectives, and we hypothesize that these post-
training methods result in stronger planning behavior. In this section, we explore this hypothesis and
compare the planning behaviors between the INSTRUCT and BASE models.

Table 1: Pass rates by task subset for the INSTRUCT and BASE Gemma-2-2B models. Values are
percentages; n denotes the number of tasks evaluated in each subset.

Task subset INSTRUCT model BASE model
Planning tasks (n = 13) 100% 54%
Improvisation tasks (n = 11) 100% 100%

For this comparison, we focus on the 24 MBPP tasks identified in Section 3.2 and described in Table
1, where our detection pipeline classified whether the INSTRUCT model was planning or improvising.
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Figure 3: Instruction tuning refines plan selection. (A) Competing plans (Tetrahedral number):
Both models plan toward "2", but BASE also plans toward an alternative "-" path that yields an
incorrect closed form. Suppressing "-" for BASE removes the competing plan and recovers the
correct solution, matching INSTRUCT. (B) Incorrect Target (Largest number): INSTRUCT plans
to sort the digits, but BASE plans toward max and never sorts, leading to failure. Suppressing
INSTRUCT’s sort plan reproduces the failed BASE trajectory. Diagrams highlight planning features;
−αx indicates steering.

We evaluate the BASE model on our chosen subset of MBPP that the INSTRUCT model solves, and
compare the performance on the IMPROV cases vs. the PLAN cases.

We find that BASE solves all tasks where INSTRUCT was improvising, but only 54% (7 out of
13) of tasks where INSTRUCT was planning. The BASE model’s ability to solve these planning
tasks suggests two possibilities: either BASE already possesses some planning capabilities without
instruction tuning, or it can solve these tasks without planning.

To examine these hypotheses, we apply our planning detection pipeline to the BASE model on the
same planning tasks. We find that in many cases BASE is still capable of planning, but there are
distinct failure modes that result in incorrect answers. We identify two primary failure patterns in the
following subsections.

3.3.1 Competing Plans

In the Nth Tetrahedral Number task covered in §3.2.2 (Fig. 3A, Appendix §B.2), BASE exhibits
planning by targeting the correct token "2", but also plans for an incorrect alternative "-". When the
model follows the incorrect plan, it generates the wrong formula (1+2(n-1)). In contrast, INSTRUCT
focuses solely on the correct plan and produces the right solution (n*(n+1)*(n+2)/6).

Given these results, one potential explanation is that the BASE model is still planning, but the plan is
not yet specific enough. If this were true, suppressing the wrong token that the model is also planning
for should bring the behavior of BASE closer to that of INSTRUCT. Indeed we find that suppressing
the "-" token features causes BASE to return the correct formula.

3.3.2 Incorrect Target

In the task for forming largest number from list covered in §3.2.3 (Fig. 3B, Appendix §B.3), BASE is
planning for the "max" token unlike INSTRUCT which is planning for the "digits" token. However,
unlike in the previous example, BASE does not have "digits" as a potential plan, and therefore fails
return a correct answer. Suppressing the "digits" feature in INSTRUCT leads it to return the same
incorrect answer that BASE does.

8



Overall, these results suggest that base models still exhibit planning behavior, and instruction tuning
is likely not the source of planning per se. However, instruction tuning can improve performance on
planning tasks by helping the model select the right tokens to target.

4 Conclusion

In this work, we introduced a general, falsifiable definition of planning in language models that
generalizes and extends insights from prior case studies. We operationalized this definition through
two criteria, Future-Token Encoding (FTE) and Precursor Influence (PI), and implemented a semi-
automated pipeline to detect them. Applying this framework to the base and instruction-tuned
versions of Gemma-2-2B on various MBPP code generation tasks, we demonstrated that:

• Planning is not universal. The model solves some tasks by improvising and others by planning,
and we found no clear rule governing which strategy is used. Planning does not appear to be
task-specific either; Gemma-2-2B improvises on a poem generation task where Claude 3.5
Haiku was shown to plan [9], though both models still generated valid poems.

• Planning can be done poorly. We found cases where the model deliberately planned toward
incorrect answers or selected incorrectly among multiple competing plans.

• Instruction tuning refines planning behavior but does not create it. Both base and instruction
tuned models are capable of planning, but it is possible that instruction tuning helps with
choosing between competing plans or filtering out incorrect plans.

4.1 Limitations

SAEs Our analysis was conducted using SAEs trained on the Gemma-2-2B base model but applied
to the instruction-tuned version of Gemma-2-2B. While this approach is supported by prior work [17],
it may introduce some mismatch in representation. Furthermore, we focused only on MLP-attached
SAEs, inspired by their interpretability in prior work [9]. That said, our detection pipeline and criteria
are general and can be extended to other types of SAEs and representation spaces.

Polysemantic latents We found cases where some latents satisfy both FTE and PI, but upon manual
investigation, we see that only one of the top 10 tokens is a future token and the others seem unrelated
to the task. This is probably because the latent is polysemantic. We could potentially mitigate this
by requiring stricter criteria such as a minimum threshold on autointerp scores. As an alternative
to Logit-Lens top-K, we also tested cosine similarity between each latent’s decoded direction and
candidate future tokens; it did not reduce polysemantic false positives and correlated weakly with
monosemanticity. We plan to explore activation-pattern-based filters as a stronger criterion.

Scaling to larger models and broader datasets. Our study focuses on the base and instruct
versions of Gemma-2-2B, mainly due to the availability of SAEs for all layers [14]. We plan to
apply our detection framework to larger models in the Gemma family to understand how planning
capabilities emerge as a function of scale. Additionally, our experiments have thus far focused on the
MBPP dataset and the poem generation prompt from Lindsey et al. [9]. Extending this analysis to
more challenging and diverse benchmarks could reveal deeper insights into planning behavior.

4.2 Future Work

Understanding edge and “can’t say” cases. A significant portion of our effort was spent on
ambiguous or edge cases, where labels could not be clearly assigned. More details on such cases can
be found in Appendix C; investigating these further could refine our definition and improve detection.

Automating offline detection We found cases where steered generations satisfied our criteria for
Precursor Influence, but the generated text itself was degenerate and nonsensical. It is not clear to us
if this is an instance of planning behavior switching off or if the intervention pushed the model out of
distribution. Setting thresholds for repeating tokens and perplexity could potentially help resolve this.

Online detection This paper focuses on offline detection, i.e., detecting planning after the sequence
is generated. with the knowledge of future tokens. However, we believe it is possible to extend our
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approach to detect planning at test time, where we have no knowledge of the future tokens. For
example, at each token prediction we can find latents that write to tokens that are not present in the
input; these become candidates for planning.
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A Background

We review the three ingredients our method builds on: sparse autoencoders, causal-influence localiza-
tion, and prior work on planning in neural networks.

A.1 Sparse Autoencoders

Sparse autoencoders (SAEs) have gained popularity as an unsupervised interpretability method for
analyzing activations of large language models. An SAE generally consists of an encoder-decoder
structure: the encoder transforms the original activations into a higher-dimensional but sparse latent
representation, while the decoder reconstructs the original activations from this sparse representation.

We use SAEs from the GemmaScope suite (Lieberum et al. [14]). From this suite, we used TopK
SAEs trained on MLP_out. These SAEs are trained on the outputs of each MLP block, before
RMSNorm is applied.

A.2 Causal influence: activation & attribution patching

We follow Marks et al. [18] for notations and approximations for circuit discovery with SAEs.

Indirect effects Following Vig et al. [19], Finlayson et al. [20], let m be any scalar metric of the
forward pass (e.g. −logPθ(yn)) and let a be an internal activation. For a clean / patch input pair
(xclean, xpatch) we measure the indirect effect (IE) [21] of a on m as

IE
(
m; a;xclean, xpatch

)
= m

(
xclean

∣∣do(a=apatch)
)
−m

(
xclean

)
, (1)

where the do-operator fixes a to its value apatch taken from the patched run.

However, computing (1) for every candidate a is expensive, so we adopt two gradient-based approxi-
mations. Attribution patching [22, 23, 24] linearizes IE with a first-order Taylor expansion, needing
only two forward passes and one back-propagation:

ÎEAP = ∇am
∣∣
a=aclean

(
apatch − aclean

)
. (2)

Integrated gradients (IG) [25] trades extra compute for a tighter fit. Using N=10 evenly spaced
interpolation points α∈ [0, 1] we form

ÎEIG =
1

N

N∑
k=1

∇am
∣∣∣
a=aclean+

k
N

(
apatch−aclean

) (apatch − aclean
)
, (3)

which markedly improves accuracy.

Single-prompt variant. When only one prompt is available we replace (xclean, xpatch) with (x, x)
and set apatch = 0, i.e. we measure the drop in m under zero-ablation of a; the same formulas (2)–(3)
apply after substituting apatch←0.

A.3 Planning in neural networks

Predicting future tokens (fixed k). Early work asked whether a single intermediate representation
linearly encodes the final logits k steps ahead. Pal et al. [3] trained an affine probe that can predict
the top-k logits four tokens in the future in GPT-2, but only for some layers. Pochinkov et al. [4]
extend this to paragraph-level topics, showing that the newline token between paragraphs already
carries topical information. Wu et al. [5] repeat the experiment across model scales and find that
small models exhibit little signal, whereas larger models show modest top-token predictability. In all
cases the horizon k is fixed by the probe designer.

Learned look-ahead in games and RL. Outside language, neural agents sometimes plan several
moves ahead. Jenner et al. [7] detect representations of optimal next moves up to three ply ahead in
Leela ChessZero [6] by training chess-specific linear heads. Bush et al. [8] identify state vectors in a
Sokoban-playing agent that encode the sequence of box moves needed to solve the puzzle, again with
a fixed look-ahead. These studies reinforce the possibility of learned planning but remain task-specific
and horizon-bound.
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def find_Max_Num(digits):\n\t

digits .sort()\nn=len(digits)...

say sort

digitssay
. . . max

digits

_num=0...
Change

No change .sort()....

Planning!

. . .
Circuit Circuit

say in

say =
say in-αxsay =
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-αx

future token
input token
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Legend

Figure 4: Forming the max number from digits: While predicting the the first non-docstring “digits”,
a feature already promotes the future token "sort" present in digits.sort()\n (FTE). Suppressing
it changes the generation to not sort instead and start with max_num = 0 (PI).

Variable-horizon planning. The poem-rhyme case study of Lindsey et al. [9] shows that a large
language model (Claude 3.5 Haiku) stores candidate rhyme words an arbitrary number of tokens in
advance and that ablating this latent collapses the rhyme. This example motivates the formal criteria
we adopt in Section 2.

Gap addressed by our work. All prior studies either assume a fixed horizon or require task-specific
probes. Our criteria work for any distance m− n ≥ 1 and rely only on model-intrinsic SAEs plus
causal steering.

B Additional details for “planning” cases

This appendix presents three representative “planning” cases. For each case, we show:

• the Prompt Prefix (truncated to the noted token),

• the Baseline Generation continuation,

• the Steering Token and its Coefficient, and

• the resulting Steered Continuation.

All snippets below are exact text captures.

B.1 Sorting list of tuples (MBPP task 64)

Prompt Prefix (up to token 297):

<bos>You are an expert Python programmer, and here is your task: Write a function
to sort a list of tuples using the second value of each tuple. Your code should
pass these tests:

assert subject_marks([(’English’, 88), (’Science’, 90), (’Maths’, 97), (’Social
sciences’, 82)])==[(’Social sciences’, 82), (’English’, 88), (’Science’, 90),
(’Maths’, 97)]
assert subject_marks([(’Telugu’,49),(’Hindhi’,54),(’Social’,33)])==([(’Social’,33),
(’Telugu’,49),(’Hindhi’,54)])
assert
subject_marks([(’Physics’,96),(’Chemistry’,97),(’Biology’,45)])==([(’Biology’,45),
(’Physics’,96),(’Chemistry’,97)])
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def subject_marks(marks):

"""
Sorts a list of tuples by the second value of each tuple.

Args:
marks: A list of tuples, where each tuple represents a subject and its

corresponding mark.

Returns:
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A new list of tuples, sorted by the second value of each tuple.
"""
return sorted(marks

Baseline Generation:

, key=lambda x: x[1])

Steering Token and Coefficient: ‘1’, Coeff -80

Steered Continuation:

)

B.2 Computing the n-th tetrahedral number (MBPP task 80)

Prompt Prefix (up to token 180):

<bos>You are an expert Python programmer, and here is your task: Write a function
to find the nth tetrahedral number. Your code should pass these tests:

assert tetrahedral_number(5) == 35
assert tetrahedral_number(6) == 56
assert tetrahedral_number(7) == 84
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def tetrahedral_number(n):

"""
Calculates the nth tetrahedral number.

Args:
n: The position of the tetrahedral number in the sequence.

Returns:
The nth tetrahedral number.

"""
if n <= 0:

return 0
elif n == 1:

return 1
else:

return

Baseline Generation:

(n * (n + 1) * (n + 2)) // 6

Steering Token and Coefficient: ‘1’, Coeff -80

Steered Continuation:

tetrahedral_number(n-1) + 1

B.3 Forming the maximum number from digits (MBPP task 57)

Prompt Prefix (up to token 311):

<bos>You are an expert Python programmer, and here is your task: Write a python
function to find the largest number that can be formed with the given list of
digits. Your code should pass these tests:
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assert find_Max_Num([1,2,3]) == 321
assert find_Max_Num([4,5,6,1]) == 6541
assert find_Max_Num([1,2,3,9]) == 9321
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def find_Max_Num(digits):

"""
Finds the largest number that can be formed with the given list of digits.

Args:
digits: A list of digits.

Returns:
The largest number that can be formed with the given digits.

"""

Baseline Generation:

digits.sort()
n = len(digits)
max_num = ’’
for i in range(n):

max_num += str(digits[n-i-1])
return int(max_num)

Steering Token and Coefficient: ‘sort’, Coeff -60

Steered Continuation:

max_num = 0
for num in digits:

if num > max_num:
max_num = num

return max_num

C Details for “can’t say” cases

This appendix presents three representative “can’t say” cases. For each case, we show the same
information as §B.

C.1 Overlap with Prompt

MBPP task 75, Prompt Prefix (up to token 311):

<bos>You are an expert Python programmer, and here is your task: Write a function
to find tuples which have all elements divisible by k from the given list of
tuples. Your code should pass these tests:

assert find_tuples([(6, 24, 12), (7, 9, 6), (12, 18, 21)], 6) == [(6, 24, 12)]
assert find_tuples([(5, 25, 30), (4, 2, 3), (7, 8, 9)], 5) == [(5, 25, 30)]
assert find_tuples([(7, 9, 16), (8, 16, 4), (19, 17, 18)], 4) == [(8, 16, 4)]
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def find_tuples(tuples_list, k):

"""
Finds tuples in a list of tuples that have all elements divisible by k.

Args:
tuples_list: A list of tuples.
k: The divisor.
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Returns:
A list of tuples that have all elements divisible by k.

"""
result = []
for tup in tuples_list:

if all(element % k

Baseline Generation:

== 0 for element in tup):
result.append(tup)

return result

Steering Token and Coefficient: ‘for’, Coeff -80

Steered Continuation:

, k):
result.append(tup)

return result

C.2 Out-of-Distribution Steering

Prompt Prefix (up to token 223):

<bos>You are an expert Python programmer, and here is your task: Write a python
function to find the largest number that can be formed with the given list of
digits. Your code should pass these tests:

assert find_Max_Num([1,2,3]) == 321
assert find_Max_Num([4,5,6,1]) == 6541
assert find_Max_Num([1,2,3,9]) == 9321
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def find_Max_Num(digits):

"""
Finds the largest number that can be formed with the given list of digits.

Args:
digits: A list of digits.

Returns:
The largest number that can be formed with the given digits.

"""
digits.sort()
n = len(digits)
max_num = ’’
for i in range(n):

max_

Baseline Generation:

num += str(digits[n-i-1])
return int(max_num)

Steering Token and Coefficient: ‘-’, Coeff -80

Steered Continuation:

digits = len(digits)
"""
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"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""

C.3 Both Overlap and Out-of-Distribution

Prompt Prefix (up to token 173):

<bos>You are an expert Python programmer, and here is your task: Write a function
to find the nth tetrahedral number. Your code should pass these tests:

assert tetrahedral_number(5) == 35
assert tetrahedral_number(6) == 56
assert tetrahedral_number(7) == 84
Write your code below starting with "‘‘‘python" and ending with "‘‘‘".
‘‘‘python
def tetrahedral_number(n):

"""
Calculates the nth tetrahedral number.

Args:
n: The position of the tetrahedral number in the sequence.

Returns:
The nth tetrahedral number.

"""
if n <= 0:

return 0
elif n == 1:

return 1

Baseline Generation:

else:
return (n * (n + 1) * (n + 2)) // 6
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Steering Token and Coefficient: ‘(’, Coeff -100

Steered Continuation:

the

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

D Ethics Statement

While planning detection has potential beneficial applications for enhancing model controllability, it
also raises ethical concerns. The ability to manipulate model outputs could be misused to bypass
safety measures or to make models generate harmful content. We emphasize the importance of
responsible use of these techniques and suggest the development of countermeasures to protect
against potential misuse.

E Artifacts

E.1 MBPP Dataset

The original Mostly Basic Programming Problems (MBPP) dataset [16] features 974 python pro-
gramming problems featuring a text description of a function, along with a set of unit tests that
a model’s generated code is supposed to pass. We filtered this dataset down to the first 60 tasks
that Gemma-2-2B solves correctly with deterministic sampling (temperature 0). The entire subset
was used for all analysis; no train/dev/test split required since we perform interpretability on fixed
generations.

Compliance This dataset uses the Creative Commons Attribution 4.0 International (CC BY 4.0)
license.
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Task Function Name Task ID
Sort list of tuples subject_marks 64
Find nth tetrahedral number tetrahedral_number 80
Largest number from digits find_max_num 57
Divisible tuples find_tuples 75

Table 2: MBPP Tasks.

Table 3: Reproduction Card, Github: ambitious-mechinterp/plan_trace
Area Fixed knob / default

Model gemma-2-2b-it (Hugging Face ID)
SAE suite Gemma-Scope 2B MLP canonical 16k SAEs (layerwise; MLP_out)
Dataset path data/first_100_passing_examples.json
Token window –start-offset 0, –max-tokens 50
Docstrings handling Skip by default (–include-docstrings off)
Circuit discovery (IG on SAE latents) –ig-steps 10
Circuit K-sweep –k-max 90001, –k-step 10000, threshold –k-thres 0.6
FTE (Future-Token Encoding) top-K Top-10 logits
PI (Precursor Influence) steering grid –coeff-start -100, –coeff-end 0, –coeff-step 20
Outputs (per token) circuit_entries.pt, clusters.json,

steering_results.json, metadata.json under
outputs/prompt_{idx}/token_{pos}/

E.2 Gemma-2-2B

We use Gemma-2-2B (2 billion parameters) – a decoder-only Transformer with 26 layers and
RMSNorm pre- and post-normalization (see Team et al., 2024 for full architecture and training
details).

Compliance Gemma-2 models are released under Google’s commercially-friendly Gemma License,
which permits model usage for research and evaluation purposes only.

E.3 Sparse Autoencoders

We used code and sparse autoencoder weights (SAE) from the GemmaScope release, trained on the
base Gemma-2-2B model. We 26 SAEs, one for each layer, trained to reconstruct the outputs of the
MLP layers, before the post-RMSNorm is applied. These SAEs use the TopK activation function
with K = 32, a latent dimension of 2048 matching the MLP out dimension, and have an expansion
factor of 8 for a total of 16384 features per layer.

E.4 Replication table

Table 3 contains the necessary parameters to run our code and replicate results.

F Experimental Details

Hardware and Compute We used a single node of 4x NVIDIA A40 GPUs (48 GB VRAM).
Total compute 250 GPU-hours across all experiments: Computing Sparse Feature Circuits using
attribution patching took 10 hours to run across all prompts and token generations. Computing
precursor influence by steering clusters of features took the bulk of the compute with about 240
GPU-hours total.

Algorithm Hyperparameters We based our implementation for attribution patching from the
source code from [26], code available here. The original algorithm uses clean and counterfactual
pairs of prompts, whereas we use only clean prompts then perform zero ablations on intermediate
representations.
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The algorithm takes a metric m to backpropagate through, a hyperparemeter τ for the metric, and
number of integrated gradient steps n. We use the probability of the correct token p(ycorrect) as the
metric. We set τ = 0.60, meaning we keep nodes that preserve the correct token’s probability to be
above 60%, and set n = 10.

G Statement on the Usage of Generative AI

We used generative AI tools (e.g., GitHub Copilot and ChatGPT) to streamline routine coding
tasks—such as writing data-loading scripts. In each case, all AI-suggested code was carefully
reviewed, tested, and revised by the authors to ensure correctness and maintain consistent coding
style. We used ChatGPT with search to generate high-level literature summaries that informed our
reference list and contextual background, which were cross-checked against original papers before
inclusion.
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