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ABSTRACT

A main challenge of Visual-Language Tracking (VLT) is the misalignment be-
tween visual inputs and language descriptions caused by the movement of targets.
Previous trackers have explored many effective feature modification methods to
preserve more aligned features. However, an important yet unexplored factor ul-
timately hinders their capabilities, which is the inherent differences in the tem-
poral and spatial scale of information between visual and language inputs. To
address this issue, we propose a novel visual-language tracker that enhances the
effect of feature modification by Aligning Temporal and Spatial scales of differ-
ent input components, named as ATSTrack. Specifically, we decompose each
language description into phrases with different attributes based on their tempo-
ral and spatial correspondence with visual inputs, and modify their features in
an attribute-specific manners. Moreover, we introduce a Visual-Language token
that comprises modified linguistic information from the previous frame to guide
the model to extract visual features that are more relevant to language description,
thereby reducing the impact caused by the differences in spatial scale. Experimen-
tal results show that our proposed ATSTrack achieves performance comparable to
existing methods. Our code is provided in Supplementary Material and will be
released.

1 INTRODUCTION

Visual-Language tracking aims to track targets based on initial bounding boxes and additional natu-
ral language descriptions. This approach could overcome the limitations of relying solely on visual
modalities and thus improve the tracking performance by leveraging high-level semantic informa-
tion in language descriptions Hu et al. (2023); Li et al. (2024a;b).

A major challenge of visual-language tracking is the misalignment between visual inputs and lan-
guage descriptions Shao et al. (2024); Zhou et al. (2023). In most cases, language descriptions either
specify the target’s initial state or offer a brief summary over time. However, as the target moves, it
may undergo deformation or changes in action, leading to inconsistency with the original language
description. As illustrated in Figure 1(a), the target’s actions and positions are continuously chang-
ing. More examples are shown in A.2. Regarding this issue, it is crucial to modify language features
in order to filter out the information that does not align with the current state of the target.

Although some effective feature modification methods have been explored by previous visual-
language trackers Li et al. (2023); Ma & Wu (2023); Ma et al. (2024); Zhou et al. (2023); Sun
et al. (2024a), these methods tend to overlook the inherent differences in the temporal and spatial
scales of information contained in different components of visual and language inputs Wu et al.
(2024); Chen et al. (2023a), and fail to achieve the optimal modification effect. Specifically, visual
inputs provide detailed spatial information of the entire scene, while language descriptions typically
correspond to only a small portion of the image and have limited spatial scale. Conversely, language
descriptions convey broader temporal context by summarizing the behavior of the target over time
(e.g., moving fast or slowly), while the search feature that was used by existing trackers to modify
the language feature lacks this temporal depth. As illustrated in Figure 1(b), previous trackers use
visual and language features as two distinct entireties during modification, which inevitably suffer
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Figure 1: Comparison with previous trackers. (a) The misalignment between language and visual
inputs. Compared with (b) previous trackers, (c) our tracker has been improved in both feature ex-
traction and modification: we utilize a token containing linguistic information to guide the extraction
of visual features, and propose a fine-grained modulation module to modify language features.

from the misalignment of temporal and spatial scales. For example, when using visual features to
modify the description about the target’s appearance, excessive background information would inad-
vertently introduce interference. To address this issue, we propose a novel visual-language tracking
framework that enhances the effect of language feature modification by Aligning the Temporal and
Spatial scales of different input components, termed ATSTrack. Specifically, we decompose lan-
guage descriptions into attribute-specific phrases based on their correspondence with different visual
cues. Features of different attribute then processed by the Attribute-Specific Modification module
(ASM), where they interacts only with the most relevant visual features, and through distinct inter-
action manners that were designed based on the characteristics of different attributes. This design
enables more precise and interpretable feature refinement, avoiding the interference introduced by
temporal and spatial difference.

Another problem caused by the spatial scale difference arises during the extraction of visual features.
As mentioned above, the spatial scale of visual inputs is usually larger than languages descriptions.
In previous trackers, visual features are extracted independently without the involvement of linguis-
tic information, which can cause the visual backbone to pay unnecessary attention to those irrelevant
visual details (e.g., irrelevant objects, background), while neglecting features that are related to the
language descriptions. Even if the model pays sufficient attention to the target through the inter-
action with the template, the focus of the features it extracts (e.g., texture, edges) may still diverge
from the language descriptions (e.g., color, action). To address this issue, we introduce a Visual-
Language token (VL token) that incorporates modified linguistic information and propagates it to
the visual backbone of the following frame. In such a way, the model can extract visual features that
are more relevant to language descriptions with the guidance of linguistic information.

Our main contributions are summarized as follows:

• We propose ATSTrack, a novel visual-language tracking framework, which could enhance
the effect of feature modification by Aligning the Temporal and Spatial scales of different
input components.

• We address the interference caused by the temporal and spatial misalignment between vi-
sual and language features with a Attribute-Specific Modification module, and enhance
the cross-modality correlation by using a Visual-Language token that incorporates lin-
guistic information to guide the extraction of visual features.

• The proposed ATSTrack outperforms state-of-the-art vision-language trackers. We con-
ducted extensive experiments including ablation studies to demonstrate the effectiveness of
the proposed framework and modules.
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2 RELATED WORK

Visual Single Object Trackers. Single object tracking aims to locate the target in a video se-
quence according to the given bounding box in the first frame. Existing mainstream trackers Cai
et al. (2023b); Xie et al. (2022); Guo et al. (2020); Yan et al. (2021); Cai et al. (2023a); He et al.
(2023); Kim et al. (2022) typically rely on the matching between the template and the search re-
gion. MixFormer Cui et al. (2022) uses iterative mixed attention to integrate feature extraction and
target information. OSTrack Ye et al. (2022) proposes a single-stream framework that can jointly
perform feature extraction and relation modeling, along with an early candidate elimination module
to eliminate unnecessary search region tokens.

However, these methods may face significant challenge when the appearance of the target under-
goes drastic changes (i.e., rapid motion or occlusion) Huang et al. (2024), since they use only the
visual information for feature relationship modeling. Some methods have focused on utilizing mo-
tion information. SeqTrack Chen et al. (2023b) models object tracking as a sequence generation
task, offers a simple framework by removing the redundant prediction head and loss function. AR-
Track Wei et al. (2023) treats tracking as a coordinate sequence interpretation task and uses a time
autoregressive method to model changes in trajectory sequences, thereby maintaining cross-frame
tracking of the target. Despite using additional motion information, these methods still heavily rely
on visual matching and cannot completely eliminate the aforementioned limitation.

Visual-Language Trackers. Visual-Language tracking aims to track targets based on visual features
and additional natural language descriptions. TNL Li et al. (2017) first introduces natural language
into tracking, achieving more robust results than visual trackers. SNLT Feng et al. (2021) uses
language and visual information to predict the state of the target individually and then fuses these
predictions to obtain the final tracking result. VLT Guo et al. (2022) proposes modality mixer
for unified Visual-Language representation learning and the asymmetric searching strategy to mix
Visual-Language representation.

Recently, more researchers are beginning to notice the mismatch between visual and language in-
puts. DecoupleTNL Ma & Wu (2023) decouples the tracking task into short-term context matching
and long-term context perceiving. QueryNLT Shao et al. (2024) proposes a multi-modal prompt
modulation module to filter out information by leveraging the complementarity between visual in-
puts and language descriptions. Unlike other methods that rely on manual language annotations,
CiteTracker Li et al. (2023) uses CLIP Radford et al. (2021) to generate initial attributes for the
target and adjust the weights of these attributes in each frame. However, these methods still suffer
from the temporal and spatial differences between visual and language inputs. To this end, we pro-
pose a novel framework that enhances the effect of feature modification by aligning the temporal
and spatial scale of different input components.

3 METHOD

3.1 OVERVIEW

Figure 2 shows the general framework of the ATSTrack. The input of the visual backbone in-
cludes the search image, the template sequence, and the Visual-Language token from the previ-
ous frame. The output of the visual backbone consists of: search feature Fsearch, template features
Ftemp = {F0, ..., Fn-1, Fn}, the cls token of the visual backbone is defined as visual token Tvi. We
utilize a Large Language Model (LLM) to segment each language description into four phrases
with different attributes based on their correspondence with visual inputs: Category, Appearance,
Action, and Location. The language backbone subsequently extracts features of these various at-
tributes: category feature Fcate, appearance feature Fapp, action feature Fact and location feature Floc.

These visual and language features are then fed into the Attribute-Specific Modulation module to
acquire modified language features Flang =

{
Fcate, F app, F act, F loc

}
. We generate a language token

Tlang from Flang and aggregate Tlang with Tvi as the Visual-Language token TVL, which is propagated
to the visual backbone of the next frame to guide the extraction of visual features. Flang and Fsearch
are merged through cross attention and sent to the prediction head to obtain the tracking result.
Supplementary details of our design rationale are elaborated in A.3
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Figure 2: Overview of the ATSTrack framework. ATSTrack has been improved in two aspects: 1)
A Visual-Language token is used to guide the extraction of visual features. 2) An Attribute-Specific
Modulation module is designed to make more effective modification to the language features.

3.2 VISUAL LANGUAGE CORRESPONDENCE

As previously mentioned, we segment each complete language description into four phrases with
different attributes based on their correspondence with different visual inputs: Category, Appear-
ance, Action, and Location. For instance, “Yellow airplane flying in the air” will be segmented as
{“Category: airplane”, “Appearance: yellow”, “Action: flying”, “Location: in the air”}, more exam-
ples are shown in Figure 4. In this section, we provide a detailed explanation of the characteristics
of different attributes and their correspondences with visual inputs. Details about the usage of LLM
are shown in A.4.

Category and Appearance. “Category” and “Appearance” correspond to the latest template rather
than search frame, as template contains less background and can better reflect the object’s category
and appearance. The category descriptions are usually accurate and require no further modification,
while the appearance may vary, so we categorize them separately.

Action. “Action” refers to the motion state of the target. We consider that “Action” corresponds
to the entire template sequence because it could be difficult to distinguish between actions such as
“walking” and “running” using a single template. It should be noted that the interaction between the
target and other objects is considered as “Location”, as other objects may be distant from the target
and thus not appear in the template.

Location. Descriptions of an object’s location often involve other objects in the background, so
“Location” should correspond to the search image. As mentioned above, “Location” includes not
only the literal description of where an object is located, but also other descriptions that help locate
the target, such as “played by a man”.

3.3 ATTRIBUTE-SPECIFIC MODIFICATION

The structure of the Attribute-Specific Modulation module is shown in Figure 2. Compared to
the coarse-grained interaction used by previous trackers, attribute-specific interaction enables more
precise feature modification by explicitly aligning the temporal and spatial scales of different input
components. Moreover, we design distinct modification strategies based on the unique character-
istics of different attributes: 1) Since the category of target usually remains constant, we keep the
category feature Fcate unchanged. 2) The appearance feature is modified with the latest template in
the template sequence, denoted as Fn. We employ a Visual Feature Modification (VFM) module
that leverages Fcate to suppress background information in Fn to prevent interference. 3) The action
feature Fact is modified using all template features Ftemp through cross attention since they both con-
tain rich temporal context. We set the number of templates to 3 following the setting in Zheng et al.
(2024) and Li et al. (2025), detailed experiments about the effect of multiple templates are provided
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Figure 3: (a) The structure of the Visual Feature Modification module and (b) Language Feature
Ablation module.

in A.5. 4) We utilize a Language Feature Ablation (LFA) module that could selectively removes
the misaligned components in location features.

Visual Feature Modification. The structure of the VFM is illustrated in Figure 3 (a). Previous
methods Shao et al. (2024); Li et al. (2025) typically aim to directly remove background from the
template. However, since we use the template features to modify language features, we hope to
suppress background while preserving small, language-related attachment of target (e.g., handbag,
umbrella). Therefore, we design a more flexible approach to adjust the weight of each token in Fn.
Given the category feature Fcate ∈ RL×C and the template feature Fn ∈ R(Ht×Wt)×C as input,
we adopt linear projection layers to project them to the same dimension and calculate the similarity
matrix Msim ∈ [0, 1](Ht×Wt)×L between category and template features:

Msim = softmax
(
δt(Fn)× δc(Fcate)√

C

)
(1)

where δc and δt are projection layers for category features and template features. Since the im-
portance of the information contained in different tokens of Fcate also varies Shao et al. (2024),
we calculate the importance score map of Fcate with softmax function and multiply it by Msim to
increase the difference between target and background in the target map Mt ∈ [α, 1](Ht×Wt)×1.
Finally, the modified template feature F n ∈ R(Ht×Wt)×C is acquired by:

Mt = Φ(Msim × softmax (δt(Fn))) (2)

F n = Fn ⊙Mt (3)
Φ is a mapping function, and we provide more detailed explanations in A.6. The values in Mt

reflect the probability that the features belong to the target. Through this method, we can suppress
background features while retaining attention on attachments that are semantically associated with
the target.

Language Feature Ablation. The structure of the LFA is illustrated in Figure 3 (b). Existing
positional descriptions can be categorized into two forms: either general (“at location A”) or de-
tailed (“from A to B”). General form are usually very broad (e.g., on the ground) and therefore
more accurate, while detailed form, due to involving too many specifics, are typically not entirely
accurate at most given moment. Based on this observation, LFA should satisfy two requirements:
1) when misalignment exists, it should completely remove the misaligned components. 2) when no
misalignment exists, it should preserve as much valid information as possible. Motivated by this, we
design a gating mechanism based on dynamic threshold. The gating operation adjusts the values in
the similarity matrix Msim ∈ [0, 1](Hs×Ws)×L between search feature Fsearch ∈ R(Hs×Ws)×C and
location feature Floc ∈ RL×C , which is used as the weight to aggregate information in Floc:

θ = med
(
M j

sim

)
+ φstd

(
M j

sim

)
(4)

Gj = sigmoid
(
α
(
M j

sim − θ
))

(5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

M = Msim ⊙G (6)
where α = 50, φ = 0.5. M j

sim is the jth column of Msim. We use the weighted sum of the
median and variance of M j

sim to initialize a threshold θ, when the values in M j
sim are less discrete

(i.e., the information among different tokens Floc is more consistent), θ is smaller and allows more
valid information to be retained. We subtract θ from M j

sim and multiply it with scaling factor α
before applying the sigmoid function to obtain Gj , which represents the jth column of gating matrix
G ∈ (0, 1)(Hs×Ws)×L. The values in G are directly proportional to the similarity scores in Msim.
By multiplying G with Msim, the weights of tokens in Floc that exhibit low similarity between Fsearch
will be projected to close to 0. The modified location feature F loc ∈ RL×C is acquired by:

F loc = M × δv(Floc) + Floc (7)

where δv represents the projection layer for Floc.

3.4 VISUAL-LANGUAGE TOKEN

The need for early cross-modal interaction has already been noticed in the field of object detection
Liu et al. (2023). However, previous visual-language trackers still confine the backbone’s access to
information to a single modality. This overlook of cross-modality information interaction exacer-
bates the misalignment between visual and language features, thereby affecting the effectiveness of
subsequent operations.

To address this issue, we generate a Visual-Language token TVL ∈ R2×C for each video frame and
propagate it to the visual backbone of the following frame. TVL is the aggregation of the visual token
Tvi ∈ R1×C and language token Tlang ∈ R1×C . Tvi is the cls token of the visual backbone, which
consists of the global visual information. After acquiring the modified language features Flang, we
take the global average of Flang as language token Tlang and concatenate Tvi with Tlang to acquire the
Visual-Language token TVL. The overall process can be formulated as:

Tlang = avg
(
concat

[
Fcate, F app, F act, F loc

])
(8)

TVL = concat [Tlang, Tvi] (9)

where concat[·,·] denotes the concatenation operation. TVL is concatenated with visual input of
the next frame. From the perspective of context understanding, TVL contains global visual and
linguistic information from the previous frame, which helps the model to better model the temporal
relationships between frames. From the perspective of visual-language alignment, the linguistic
information contained in TVL guides the model to extract features that are more relevant to language
descriptions by participating in subsequent attention operations within the visual backbone.

3.5 PREDICTION HEAD AND LOSS FUNCTION

We employ a commonly used prediction head Ye et al. (2022); Gao et al. (2023); Zheng et al. (2025)
comprising 3 conventional branches to obtain the center score map C ∈ [0, 1)

Hx
p ×Hx

p , an offset
map O ∈ [0, 1)2×

Hx
p ×Hx

p and a normalized size map S ∈ [0, 1)2×
Hx
p ×Hx

p , where p is the size of
the image patches. The final tracking results are computed as follows:

(x, y, w, h) = map (xc +Ox, yc +Oy, Sx, Sy) (10)

where (xc, yc) = argmax (C) and map (·) represents the operation of mapping the bounding box
back to its original size.

We adopt the focal loss as classification loss Lcls, and the L1 loss and GIoU loss as regression loss.
The overall loss function can be formulated as:

L = Lcls + λ1L1 + λ2LGIoU (11)

we set λ1 = 5 and λ2 = 2 following the common setting in SOT.
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Method Source TNL2K LaSOT OTBlang

AUC Pnorm P AUC Pnorm P AUC Pnorm P

V
is

ua
l-

on
ly

tr
ac

ke
rs

SwinTrack-B384Lin et al. (2022) NIPS22 55.9 - 57.1 71.3 - 76.5 - - -
OSTrack384Ye et al. (2022) ECCV22 54.3 - - 71.1 81.1 77.6 - - -
MixFormer-v2 Cui et al. (2023) CVPR22 57.4 - 58.4 70.6 80.8 76.2 - - -
ARTrack-B384Wei et al. (2023) CVPR23 58.9 - - 72.6 81.7 79.1 - - -
SeqTrack-B384Chen et al. (2023b) CVPR23 56.4 - - 71.5 81.1 77.8 - - -
DropTrack384Wu et al. (2023) CVPR23 56.9 - 57.9 71.8 81.8 78.1 - - -
AQATracker384Xie et al. (2024) CVPR24 59.3 - 62.3 72.7 82.9 80.2 - - -
ODTrack-B384Zheng et al. (2024) AAAI24 60.9 - - 73.2 83.2 80.6 - - -
LoRAT-B378Lin et al. (2024) ECCV24 59.9 - 63.7 72.9 81.9 79.1 - - -

V
is

ua
l-

L
an

gu
ag

e
tr

ac
ke

rs

SNLTFeng et al. (2021) CVPR21 27.6 - 41.9 54.0 63.6 - 66.6 - 80.4
VLTGuo et al. (2022) NIPS22 53.1 - 53.3 67.3 - 72.1 65.3 - 85.6
JointNLT320Zhou et al. (2023) CVPR23 56.9 69.4 58.1 60.4 73.5 63.6 65.3 - 85.6
MMTrack384Zheng et al. (2023) TCSVT23 58.6 75.2 59.4 70.0 82.3 75.7 70.5 - 91.8
CiteTracker384 Li et al. (2023) ICCV23 57.7 73.6 59.6 69.7 78.6 75.7 69.6 92.2 85.1
UVLTrack-B256Ma et al. (2024) AAAI24 63.1 - 66.7 69.4 - 74.9 69.3 - 89.9
QueryNLTShao et al. (2024) CVPR24 57.8 75.6 58.7 59.9 69.6 63.5 66.7 82.4 88.2
ATSTrack-ViT256 Ours 64.7 83.0 68.9 70.1 80.7 76.2 71.3 87.8 95.7
ATSTrack-ViT384 Ours 66.2 84.2 71.5 72.6 82.4 79.5 71.0 87.6 94.4

Trackers with more advanced backbone
SUTrack224Chen et al. (2025) AAAI25 65.0 - 67.9 - - - 70.8 - 93.4
SUTrack384Chen et al. (2025) AAAI25 65.6 - 69.3 - - - 69.7 - 91.2
DUTrack256Li et al. (2025) CVPR25 64.9 82.9 70.6 73.0 83.8 81.1 70.9 - 93.9
DUTrack384Li et al. (2025) CVPR25 65.6 83.2 71.9 74.1 84.9 82.6 71.3 - 95.7
ATSTrack-HiViT256 Ours 65.8 84.1 70.9 71.7 82.6 79.3 70.5 85.6 93.8
ATSTrack-HiViT384 Ours 66.8 84.5 72.7 73.4 83.9 81.4 72.1 87.9 95.2

Table 1: Comparison with state-of-the-art visual and visual-language trackers on TNL2K, LaSOT
and OTBlang . The best two results in each part are shown in bold and bold respectively.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

The proposed model is implemented in Pytorch. The models are trained and tested on 4 NVIDIA
A6000 GPUs. We utilize CLIP-B as the language backbone and train two versions of models with
different visual backbones: ATSTrack-ViT employs vanilla ViT-Base Dosovitskiy (2020) and was
trained for 300 epochs with an initial learning rate of 1×104. ATSTrack-HiViT utilizes HiViT-Base
Zhang et al. (2023), which is commonly used by latest trackers, and was trained for 200 epochs
with an initial learning rate of 2 × 104. Both versions of the model are optimized using AdamW,
with a batch size of 8 and 6,000 samples per epoch. We present the model’s speed and number of
parameters in A.7.

Our training datasets comprise TNL2K Wang et al. (2021), LaSOT Fan et al. (2019) GOT-
10k Huang et al. (2021) and TrackingNet Muller et al. (2018), with an equal sampling ratio. TNL2K
and LaSOT contain manually annotated language descriptions, and we use LLM to segment the lan-
guage descriptions into different attributes. GOT-10k includes annotations for category and motion,
we set other attributes to “None”. TrackingNet contains category labels, and we use the pre-trained
CLIP in Citetracker Li et al. (2023) to predict the color of each target as appearance description.

4.2 STATE-OF-THE-ART COMPARISON

We compare our tracker with both state-of-the-art visual and visual-language methods on three com-
monly used datasets with language annotation, including TNL2K, LaSOT, and OTBlang. Results are
shown in Table 1.

TNL2k contains a total of 2k sequences and 663 words. It introduces two new challenges, i.e. ad-
versarial samples and camera switching, while providing more detailed descriptions, making itself
a benchmark specifically dedicated to the visual-language tracking. Our method demonstrates sub-
stantial performance enhancement on the TNL2k, with improvements of 3.1% and 1.2% in terms of
AUC compared to ViT-based and HiViT-based visual-language trackers respectively. The favorable
performance demonstrates the promising potential of our tracker to deal with adversarial samples
and modality switch problems.

LaSOT is a large-scale long-term tracking benchmark with an average video length of more than
2,500 frames. It includes 1120 sequences for training and 280 sequences for testing. ATSTrack
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Method AUC Pnorm P
Baseline 70.6 80.7 77.1
w/o ASM 71.1 80.6 77.4
w/o VFM 71.6 81.5 78.4
w/o LFA 71.5 81.2 78.4
w/ FGM 72.0 82.1 79.0

(a) Ablation study of the ASM.

Method AUC Pnorm P
w/o token 72.0 82.1 79.0

w/o V token 71.7 82.0 78.6
w/o L token 72.0 82.4 78.6

Attn 72.4 82.6 78.9
Concat 72.6 82.4 79.5

(b) Ablation study of VL token.

Attr AUC Pnorm P
w/o Cate 72.3 82.2 78.7
w/o App 72.1 81.8 78.8
w/o Act 72.5 82.1 79.2
w/o Loc 72.4 82.6 79.1

Full 72.6 82.4 79.5

(c) Ablation study of attributes.

Table 2: Ablation Studies of modules in ATSTrack. The best result are shown in bold

outperforms the second best ViT-based tracker by 1.8% in terms of AUC, and achieves a perfor-
mance comparable to SoTA HiViT-based trackers. It could be observed that most Visual-Language
trackers perform worse than visual trackers due to the quality of language descriptions Sun et al.
(2024b). ATSTrack further narrows this gap with visual trackers, demonstrating that our proposed
strategy enables more effective feature refinement. Furthermore, Figure 7 shows detailed results on
different attributes in LaSOT.

OTBlang Feng et al. (2021) is OTB-100 Wu et al. (2015) dataset extended with a language de-
scription of the target object per sequence. It encompasses 11 challenging interference attributes,
such as motion blur, scale variation, occlusion, and background clutter. ATSTrack also achieves the
state-of-the-art performance with an AUC improvement of 0.8% compared with both ViT-based and
HiViT-based trackers.

4.3 ABLATION STUDIES

We conduct ablation studies on the LaSOT dataset to verify the effectiveness of each component in
our model.

Effect of Attribute-Specific Modulation. The ablation results of ASM are shown in Table 2a. We
construct a baseline by removing components related to language and token propagation mecha-
nism from our model, while preserving template sequence. Performing coarse-grained interaction
between language features and visual features through cross-attention (w/o ASM) leads to an in-
crease in the AUC by 0.5%. w/ ASM shows that the use of attribute-specific modulation improved
the AUC score by 0.9% compared to coarse-grained interaction, demonstrating the necessity of re-
ducing the effect caused by the temporal and spatial difference between modality. We also verify the
effectiveness of VFM and LFA module by replacing them with cross attention. The results show that
VFM improves the AUC score by 0.4%, and the LFA improves the AUC score by 0.5%. t should
be noted that, since not every language description contains all attributes, the actual effectiveness of
VFM and LFA is expected to be even higher. Detailed analysis can be found in A.9.

Effect of Visual-Language token. The ablation results of VL token are shown in Table 2b. Without
the VL token (w/o token), the model decreases in the AUC score by 0.6%. We further analyze the
influence of information from different modalities. Using the visual token independently (w/o L
token) does not lead to notable improvements. Using the Language token independently (w/o V
token) leads to a decrease in the AUC score by 0.3%. These results show that both global visual and
language tokens are essential to help the model better understand the target features. We compare
different ways to aggregate visual and language information. We have found that performing cross
attention between tokens slightly improves the precision but leads to AUC decrease compared to
concatenation and chose to concatenate visual and language tokens to acquire VL token.

Effect of Each attribute. An important issue in visual-language tracking lies in determining which
kinds of description are the most conducive to effective tracking. As shown in Table 2c, removing
category descriptions (w/o Cate) leads to a decrease in AUC by 0.3%. Removing appearance
descriptions (w/o App) causes a notable decrease in AUC by 0.5%, as appearance is usually the
most obvious factor distinguishing the target from other objects. It should be noted that since exist-
ing datasets provide fewer appearance descriptions compared with other attributes, its actual effect
would be greater. The action descriptions (w/o act) have the weakest impact on tracking results.
We consider the reason that action is only useful to distinguishing targets from other similar objects.
However, similar objects always share the same actions in existing datasets. Location descriptions
(w/o loc) also have a weak effect on tracking result. Consider that the location features are already
modified by the LFA module, we believe existing location descriptions are more likely to cause
interference rather than enhance tracking.
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Figure 4: Top half: Visualized results of ATSTrack on challenging scenarios. Bottom half: Visual-
ized results of the VL token

4.4 VISUALIZATION

To intuitively demonstrate the excellent performance of the proposed method, we visualize the track-
ing results of our model and two representative trackers: a visual tracker OSTrack Ye et al. (2022),
whose structure closely matches our baseline, and a visual-language tracker CiteTracker Li et al.
(2023). In Figure 4, the challenge of performing visual tracking on these four sequences arises from
severe occlusion (Swing, Spiderman), fast motion (Yoyo, Spiderman), and view changes (Trans-
form). The results show that ATSTrack outperforms other trackers in these three scenarios, indicat-
ing its ability to fully utilize advanced semantic information contained in language descriptions.

Furthermore, we visualize the change of attention maps after introducing the Visual-Language token.
As shown in the bottom half of Figure 4, in the ball sequence, the visual backbone pays more
attention to the target than distracting object (black ball). In the basketball sequence, the model
pays more attention to elements referenced in the language description (basketball and woman) and
reduces the focus on irrelevant texture in the background.

4.5 CONCLUSION

In this work, we present ATSTrack, which enhances the effect of visual-language tracking by reduc-
ing interference caused by the difference in scale of information between visual and language inputs.
Specifically, we segment language descriptions into different attributes based on their temporal and
spatial correspondence with visual inputs, and modify their features in an attribute-specific manner.
Moreover, we introduce a Visual-Language token that comprises modified linguistic information to
guide the model to extract visual features that are more relevant to language description. Experi-
ments show that the proposed method achieves a performance comparable to existing methods.

9
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A APPENDIX

A.1 EXPERIMENTS OF HYPERPARAMETERS

We conduct experiments on LaSOT Fan et al. (2019) with different batch sizes and learning rates,
the experimental results are shown in Table 3 and Table 4. We found that the learning rate of
1× 10−4 and batch size of 8 are the optimal.

We also conducted experiments to examine the impact of different gating weight on the effectiveness
of LFA. The results are shown in Table 5, our model achieve the best result with gating weight of
50.

Lr AUC Pnorm P
4 × 10−4 71.4 81.0 78.0
2 × 10−4 72.0 81.8 78.7
1 × 10−4 72.6 82.4 79.5
5× 10−5 70.7 80.6 77.4

Table 3: Comparison of dif-
ferent learning rate with batch
size of 8.

Batch AUC Pnorm P
8 72.6 82.4 79.5
6 72.1 81.8 78.9
4 71.1 81.2 77.9

Table 4: Comparison of dif-
ferent batch size with learning
rate of 1× 10−4.

α AUC Pnorm P
500 71.4 81.0 77.8
100 71.9 81.7 78.7
50 72.0 82.1 79.0
25 71.3 81.2 78.0

Table 5: Comparison of dif-
ferent gating weight in LFA.

A.2 VISUALIZATION ABOUT THE MISALIGNMENT OF LANGUAGE DESCRIPTIONS

The figure provides more examples of misalignment between language and visual inputs, with the
misaligned components in the language descriptions highlighted in red.

Figure 5: Visualization about the misalignment of language descriptions.

A.3 THE DESIGN RATIONALE OF ATSTRACK

The overall model. Recent studies have begun to recognize the problem of misalignment of lan-
guage descriptions Li et al. (2023); Shao et al. (2024). However, these works primarily focus on
preserving the components of language features that are related to target appearance. For humans,
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other components of language descriptions (such as the target’s action or its position within the
scene) are equally useful for localization. As illustrated in Fig 4, existing tracking models are ca-
pable of attending to different instances in the language descriptions (i.e., basketball and woman),
while the attention visualization in Chen et al. (2023b) demonstrates that models can capture spatial
cues such as the upper-left or lower-right corners of the target. This evidence suggests that current
tracking models have the potential to exploit additional components of language descriptions for
effective tracking. Motivated by this, our objective is to design a model that can fully leverages all
components of language descriptions. Once this design goal is established, it naturally leads to
the idea of decomposing language into attributes and notice their differences temporal and spatial
scales.

Definition of Attributes. As emphasized in the main text, we divide the complete language de-
scription into four attributes: Category, Appearance, Action, and Location, and provide additional
definitions for Action and Location. Beyond separating components with different temporal and spa-
tial scales, this definition of attributes offers the following advantages: 1) For all existing datasets,
these attributes can cover nearly all words in each language annotations, leaving very few omissions;
2) This categorization aligns with human linguistic habits, allowing the attributes to be concatenated
in the order of Category to Location to form coherent sentences, thereby preserving the contextual
relationships of the original descriptions.

VFM and LFA. We designed VFM and LFA in a spirit of inspiration by the ideal of feature modi-
fication in Shao et al. (2024), and adapted them to better suit the needs of our task. Previous works
often bluntly remove background tokens using operations such as top-k selection or binary masking
Shao et al. (2024); Chen et al. (2025). This approach is reasonable when the template is only used
for visual tracking. However, in our work, we use the template to modulate the target’s appearance
features, and appearance descriptions may include objects that are not of the same category as the
target but are visually distinct due to their shape or characteristics (e.g., “with his sword,” “hold-
ing an umbrella,” “carrying a bag”). To better modulate the appearance features, we hope these
objects to be preserved in the template features. Therefore, VFM ultimately adjusts the weight of
each token rather than directly removing tokens that do not belong to the target. In LFA, we aim to
eliminate misaligned components while preserving as much valid information as possible. From our
observations, a natural conclusion emerges: more general and broad descriptions (containing less
valid information and with more consistent information across tokens) are usually more accurate,
whereas more detailed descriptions, due to including more specifics (more information and varying
emphasis across tokens), are naturally more prone to misalignment with the target’s state. Based on
this insight, we design a dynamic threshold that reflects the consistency among tokens. In addition,
we employ a sigmoid function to project tokens with low similarity to visual features close to zero,
achieving stronger elimination.. As shown in Table 2a, both VFM and LFA are more effective than
standard cross-attention.

A.4 DETAILS ABOUT THE USEGE OF LLM

We use Kimi Chat Team et al. (2025), a Large Language Model (LLM) equipped with exceptional
contextual understanding ability produced by Moonshot AI, to segment the language description
into four attributes. The prompt we use is as follows:

Each line in the following document is a description of a specific target. Please divide each de-
scription into the following four parts: ”Category”, ”Appearance”, ”Action”, and ”Location”.
The general characteristics of each section are as follows: ”Category” should be the subject of this
sentence; ”Appearance” is a description of the appearance of the subject; ”Action” usually refers
to the action of the subject itself or interaction with accessory items such as handheld items, back-
packs, etc.; ”Location” includes the position of the subject and the interaction between the subject
and other independent objects, such as playing tennis together or chasing each other. Here is an
example of segmentation. Please strictly follow this format for output: ”Yellow airplane flying in
the air” will be segmented into ”Category:airplane\n Color:yellow\n Action:flying\n Location:in
the air\n”.

It should be noted that the segmentation results acquired with LLM still require manual adjustment.
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A.5 EFFECT OF MUTIPLE TEMPLATES

Recently, many single-object trackers have begun to incorporate multiple templates and achieve
improved performance by providing richer temporal context. To achieve temporal scale alignment,
we also adopt multiple templates. For a fair comparison, we conduct experiments with different
numbers of templates, and the results are shown in Table 6 and Table 7. Together with Table 1,
it can be observed that ATSTrackV iT surpasses all ViT-based trackers even with single template.
ATSTrackHiV iT achieves comparable performance to HiViT-based trackers using three (DUTrack
Li et al. (2025)) and two templates (SUTrack Chen et al. (2025)), respectively.

We uniformly sampled templates from historical tracking results during inference. Our model
achieved optimal results with three templates, which is consistent with that of ODTrack Zheng
et al. (2024). By observation, we found that excessively long template sequences increase the prob-
ability of capturing templates with occluded targets or tracking errors, thereby degrading tracking
performance.

Num LaSOT TNL2K
AUC Pnorm P AUC Pnorm P

1 71.7 81.8 78.2 64.7 81.7 69.2
2 72.1 82.0 78.8 65.5 83.1 70.3
3 72.6 82.4 79.5 66.2 84.2 71.5
4 71.8 82.5 78.0 64.2 81.5 69.3
5 71.0 81.2 77.6 63.9 81.2 69.3

Table 6: ATSTrackV iT with different number of
templates.

Num LaSOT TNL2K
AUC Pnorm P AUC Pnorm P

1 72.0 82.0 79.0 65.3 83.4 70.2
2 72.8 82.9 80.1 66.0 84.2 71.1
3 73.4 83.9 81.4 66.8 84.5 72.7
4 72.6 82.3 79.4 66.1 83.9 71.1
5 71.9 81.9 78.9 64.9 82.0 69.7

Table 7: ATSTrackHiV iT with different number
of templates.

A.6 MAPPING FUNCTION IN VFM

For an input X of size L × C, we first apply a linear mapping along each channel to project it into
the range [0, 1], allowing us to determine the importance of each token at the channel level.

Xnorm
j =

Xj −min(Xj)

max(Xj)−min(Xj) + ϵ
, j = 1, . . . , C (12)

where j represents the j-th channel. For Xnorm, we compute its average value along the channel
dimension to obtain an importance score for each token Xscore ∈ [0, 1]L×1, and then use a mapping
function to project the importance scores into the range [α, 1] to obtain the final weight matrix.

Xscore
i =

1

C

C∑
j=1

Xnorm
i,j (13)

W = (1− α) · Xscore −minXscore

maxXscore −minXscore + ϵ
+ α (14)

Through the above operations, we obtain a token-level weight matrix. The parameter α ensures that
semantically relevant attachments are not completely eliminated, and we set α to 0.2.

A.7 SPEED AND PARAMETERS

Table 8 shows the number of parameters and FLOPs of our ATSTrack. Our model achieves an
average speed of 49fps on the LaSOT dataset, achieving real-time performance and comparable
with other advanced models. We avoid additional computational overhead from using CLIP Radford
et al. (2021) by extracting language features only in the initial frame and saving them for subsequent
inference.

A.8 USING BERT AS LANGUAGE BACKBONE

Existing vision-language trackers either employ CLIP Radford et al. (2021) or RoBERTa Liu et al.
(2019) as the language backbone. Our model utilizes CLIP. For a more comprehensive presentation,
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Method Params Flops Speed Device
ATSTrackHiV iT384 77M 71G 40 fps 3090
ATSTrackV iT384 93M 90G 49 fps 3090
ODTrackZheng et al. (2024) 92M 73G 32 fps 2080Ti
SeqTrackChen et al. (2023b) 89M 148G 11 fps 2080Ti
ARTrackWei et al. (2023) 181M 172M 13.5 fps V100

Table 8: Comparison of parameters and speed.

we trained a version that uses RoBERTa as the language backbone, and the results are shown in the
9. It should be noted that since RoBERTa produces variable-length outputs, and our model involves
direct matrix addition, which requires structural modifications (adaptive interpolation) to accommo-
date variable-length features, the results in 9 are mostly for reference and could not precisely reflect
the upper limit of our model’s capabilities.

Method LaSOT TNL2K
AUC Pnorm P AUC Pnorm P

CLIP 73.4 83.9 81.4 66.8 84.5 72.7
RoBERTa 72.9 83.0 80.3 66.0 84.1 71.7

Table 9: Comparison of different language backbone.

A.9 QUANTITATIVE DIFFERENCES OF ATTRIBUTES

We divide the complete language description of the target into four phrases with different attributes
to align the temporal and spatial scales between different visual and language inputs. We con-
duct quantitative analysis on different attributes on TNL2KWang et al. (2021) and LaSOTFan et al.
(2019), which play important roles in both the training and testing sets. As shown in 6, the number of
Appearance descriptions is less than other attributes, which means that the influence of appearance
descriptions on tracking results may be greater than that reflected in the ablation experiment. The
average length of Location is significantly larger than other attributes, suggesting to a certain degree
that location descriptions are more likely to contain information that does not align with visual input.

A.10 ANALYSIS OF FAILURE CASES

We have already demonstrated the improvements of ATSTrack over other models through visualiza-
tions. This section mainly focuses on intuitively analyzing the scenarios in which our modifications
lead to degradation compared with the baseline through visualization.

Ambiguity of the language description. The first two sequences in Fig 8 illustrate the cases where
our model degrades due to ambiguities in the language description. Specifically, when multiple
distractors in the scene exhibit extremely similar appearances to the target, we expect the language
description to help the model differentiate them. However, in these two cases, the language de-
scription itself matches the distractors and lacks discriminability, which increasing the likelihood of
distraction and making recovery from tracking errors more difficult.

Interference from secondary components. demonstrate that the model may be disturbed by other
components in the sentence (i.e. panda, boy). It is worth noting that such cases are rare, typically
occurring only when the distractor overlaps with the target itself, and the model usually corrects
itself quickly. Nevertheless, this phenomenon also reveals that it could be a potential direction
for improving vision-language tracking by providing the model with clearer cues to distinguish
foreground from background Sun et al. (2024b).

A.11 LIMITATION AND FUTURE WORKS

In this paper, we have achieved significant improvements in feature modification by minimizing the
interference caused by the temporal and spatial discrepancies between visual and language inputs.
Consequently, we have mitigated the adverse effects of mismatches between visual and language
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Figure 6: Quantitative analysis on different attributes on TNL2K and LaSOT dataset.

Figure 7: AUC scores of different attributes
in LaSOT. Figure 8: Visualization of failure cases

inputs on visual-language tracking. We believe that our proposed decomposition of inputs based
on temporal and spatial scales could be an important approach to enhancing the cross-modal under-
standing capability of trackers, and we will continue to pursue this direction. However, our work has
not yet fully addressed the underlying problem as we did not fundamentally alter the information the
model receives, and it remains constrained by the content and style of manually annotated language
descriptions. Currently, some works are exploring the generation of textual descriptions through
multi-modal large models Sun et al. (2024b); Li et al. (2025). However, this approach requires sub-
stantial computational resources and does not align with the fundamental requirements of tracking.
In our future work, we will focus on exploring lightweight methods for updating language features.
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A.12 MORE VISUALIZATION RESULTS

To demonstrate the advantages of our proposed ATSTrack more intuitively, we provide more visual-
ization results compared with OSTrack Ye et al. (2022), and CiteTrackerLi et al. (2023) in 9. Results
demonstrate that ATSTrack achieves favorable performance in a variety of challenging scenarios in-
cluding fast motion, severe occlusion, similar targets and deformation.

Figure 9: Visualized results of the proposed ATSTrack.
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