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ABSTRACT

Accurately estimating the Q-function is a central challenge in offline reinforcement
learning. However, existing approaches often rely on a single global Q-function,
which struggles to capture the compositional nature of tasks involving diverse sub-
tasks. We propose In-context Compositional Q-Learning (ICQL), the first offline
RL framework that formulates Q-learning as a contextual inference problem, using
linear Transformers to adaptively infer local Q-functions from retrieved transitions
without explicit subtask labels. Theoretically, we show that under two assump-
tions—linear approximability of the local Q-function and accurate weight inference
from retrieved context—ICQL achieves bounded Q-function approximation error,
and supports near-optimal policy extraction. Empirically, ICQL substantially im-
proves performance in offline settings: improving performance in kitchen tasks
by up to 16.4%, and in Gym and Adroit tasks by up to 8.6% and 6.3%. These
results highlight the underexplored potential of in-context learning for robust and
compositional value estimation, positioning ICQL as a principled and effective
framework for offline RL.

1 INTRODUCTION

Offline reinforcement learning (Offline RL) aims to learn effective policies from fixed datasets
without further interaction with the environment (Fujimoto et al., 2019; Lange et al., 2012). This
setting is particularly important in real-world domains such as robotics (Kalashnikov et al., 2018),
logistics (Wang et al., 2021), and operations research (Hubbs et al., 2020; Mazyavkina et al., 2021),
where environment access is limited, data collection is expensive or risky, and historical data is
often the only available resource. The central challenge of this modeling paradigm is the potential
distributional shift: when the learned policy queries state-action pairs outside the dataset support,
value function extrapolation can lead to severe overestimation and degenerate performance. (Fu et al.,
2020; Kumar et al., 2020)

Contemporary methods primarily employ policy constraints (Chen et al., 2021b) or value regulariza-
tion (Kumar et al., 2020; Kostrikov et al., 2021) to address this challenge. However, policy constraints
are largely limited by the behavior policy that are used to collect offline data, and exhibit a trade-off
between generalization and safe constraint adherence. While recent value regularization methods aim
to provide conservative references for softer penalty on out-of-distribution actions, the optimality of
the learned value function is not guaranteed due to limited and potentially biased static dataset.

We observe that, for each RL control task, the state space can be inherently divided into multiple
sub-tasks. Although ideally a action-value function can be expressive enough to perfectly capture
state-action value, the knowledge may not be fully transferrable among sub-tasks. For example, in
Mujoco Locomotion tasks, knowledge about how to walk faster may not be helpful for solving how
to recover from an unexpected non-nominal states. A visualization of this situation can be found
in Figure 1, which shows the distribution of states after dimensionality reduction, colored by their
actual future return in the offline dataset. Moreover, although states in the dataset can be grouped into
coherent clusters, where each typically corresponding to a specific subtask, two clusters that appear
geometrically may nevertheless correspond to semantically different behaviors and exhibit distinct
long-horizon returns. Under the condition of insufficient offline data and inability of exploration, this
property are not naturally captured by an offline value learning algorithm that fits a single global
value function.
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Figure 1: Center: dimension-reduced state distribution and corresponding value estimation by an
SAC critic on Walker2d-Medium-Expert dataset. Left and right grids are two groups of similar
states.

To address these challenges, we propose to cast value learning in offline reinforcement learning as
a contextual inference problem, enabling local Q-function approximation via in-context learning.
Specifically, we introduce In-context Compositional Q-Learning (ICQL), a general framework for
offline RL that leverages the in-context learning capabilities of linear Transformers to infer local
Q-functions from small, retrieved transition sets. Rather than fitting global approximators of value
function, ICQL leverages the compositional nature and local structure of the task to learn the family
of value functions, enabling flexible adaptation of value estimation locally within context windows.
Our key contributions are summarized as follows:

• We introduce the first offline RL framework ICQL that formulates Q-learning as a con-
textual inference problem, leveraging in-context learning with linear Transformers to
adaptively infer local Q-functions without requiring explicit subtask labels or structure.

• We provide a theoretical analysis showing that ICQL achieves bounded approximation
error under two assumptions: linear approximability of the local Q-function and accurate
weight inference from retrieved context, and prove the greedy policy with respect to it is
guaranteed to be near-optimal.

• ICQL improves the performance in offline settings through in-context local approx-
imation, and we demonstrate the effectiveness of our approach ICQL under both offline
Q-learning and offline actor-critic frameworks. On the Gym and Adroit tasks, ICQL yields
score improvements by 8.6% and 6.3%. Notably, on the Kitchen tasks, ICQL achieves a
16.4% performance improvement over the second best baseline. We also show that ICQL
does produce better value estimation. These results highlight the underexplored potential of
linear attention in enabling robust and compositional value estimation for offline RL.

• We conduct extensive ablation studies to isolate the contributions of in-context learning and
localized value inference. In addition, we investigate the impact of different retrieval strate-
gies—including similarity metrics and context selection criteria—on overall performance
and stability.

2 RELATED WORK

Offline Reinforcement Learning. Offline RL aims to learn effective policies from static datasets
without further environment interaction. Several recent approaches address distributional shift
and overestimation in this setting by modifying Q-learning objectives or introducing conservative
regularization. Notable examples include CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022)
and TD3+BC (Fujimoto & Gu, 2021). CQL introduces a conservative penalty on Q-values for
out-of-distribution actions to prevent value overestimation in offline settings. TD3+BC combines
TD3 with behavior cloning loss to bias policy updates toward the dataset actions while retaining Q-
learning. And IQL removes explicit policy optimization and learns value-weighted regression targets
to implicitly extract high-value actions from offline data. These methods rely on global Q-function
approximators trained across the entire state-action space, often leading to poor generalization
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in compositional environments. In contrast, our approach decomposes value learning into local
estimation problems, using in-context inference to adapt Q-functions to local transition dynamics
without requiring additional supervision.

In-context Learning in RL. Recent work has applied Transformers to offline RL, using sequence
modeling to learn return-conditioned policies (Zhao et al., 2025). For example, Decision Transformer
(Chen et al., 2021a) and Gato (Reed et al., 2022) treat trajectories as sequences, while replay-based
in-context RL (Chen et al., 2021a; Reed et al., 2022) uses Transformers for behavior cloning and
reward learning. These approaches leverage the ability of pre-trained Transformers to adapt via
prompt conditioning or in-context learning. In-context learning has shown both strong theoretical
foundation (von Oswald et al., 2023; Shen et al., 2024; Wang et al., 2025b) and empirical performance
across tasks (Hollmann et al., 2023; Micheli et al., 2023) and is increasingly studied in supervised
settings (Laskin et al., 2023; Lee et al., 2023; Mukherjee et al., 2024). (Laskin et al., 2023) proposes
Algorithm Distillation (AD) to mimic the data collection policy, but it is constrained by the quality of
the original algorithm. DPT (Lee et al., 2023) improves regret in contextual bandits via in-context
learning, but assumes access to optimal actions, which is often unrealistic in offline RL. PreDeToR
(Mukherjee et al., 2024) adds reward prediction to decision transformers, yet still focuses on action
generation. While these approaches focus on directly generating actions or policies from trajectories,
they do not explicitly target value estimation, which are out of our research scope. Hence, we will not
include these methods as our baselines. While recent works have explored Transformers in offline RL
primarily for trajectory modeling or return-conditioned generation (Chen et al., 2021a; Laskin et al.,
2023; Mukherjee et al., 2024) , we instead focus on using linear attention as a tool for in-context
value learning. Our results suggest that linear attention, when applied for local Q-function estimation,
offers strong performance and generalization benefits. To our knowledge, this is the first work to
demonstrate such potential of linear attention for compositional value-based offline RL.

3 METHODOLOGY

3.1 LOCAL Q-FUNCTIONS

In this section, we define the local Q-functions for offline RL based on the local neighborhood
corresponding to each state. We define D as the dataset collecting all the offline transitions.
Definition 3.1. (Local Q-function Approximation) Given a transition (s, a, r, s′, a′) ∈ D, there exist
d, d̄ > 0 such that any nearby transition (s̄, ā, r̄, s̄′, ā′) ∈ D is defined as

(s̄, ā, r̄, s̄′, ā′) ∈
{
(si, ai, ri, s

′
i, a

′
i) ∈ D

∣∣∣∥si − s∥22 ≤ d2 and ∥s′i − si∥22 ≤ d̄2
}
≜ Ω(d,d̄)

s . (1)

For any transition (s̄, ā, r̄, s̄′, ā′) ∈ Ω
(d,d̄)
s , there exists an optimal uniform local weight vector w∗

s
such that the local Q-function approximation is defined as

Q̂
Ω

(d,d̄)
s

(s̄, ā) ≜ w∗
s
Tϕ(s̄, ā), ∀(s̄, ā, r̄, s̄′, ā′) ∈ Ω(d,d̄)

s , (2)

where the function ϕ : S ×A → Rd is the feature function of the state-action pair (s̄, ā). The best
approximation of local Q-function Q

Ω
(d,d̄)
s

(s̄, ā) is Q̂
Ω

(d,d̄)
s

(s̄, ā), i.e., there exists some εsapprox > 0

such that ∣∣∣Q
Ω

(d,d̄)
s

(s̄, ā)− w∗
s
⊤ϕ(s̄, ā)

∣∣∣ ≤ εsapprox, ∀(s̄, ā, r̄, s̄′, ā′) ∈ Ω(d,d̄)
s . (3)

In the rest of this paper, we will ignore d̄ in the notation of Ω(d,d̄)
s in Equation (1), since the condition

∥s̄′ − s̄∥22 ≤ d̄2 for some d̄ > 0 can be easily held in real continuous problems. We will use Ωd
s to

represent Ω(d,d̄)
s instead. The local Q-function defined in Equation (2) is a local formalization for

the general linear Q-function approximation, which has been widely used in previous research (Yin
et al., 2022; Du et al., 2019; Poupart et al., 2002; Parr et al., 2008). We assume that for each local
domain Ωd

s , the local Q-function should have its own state-dependent local structure. This has been
examined both theoretically and practically to give a better Q-function approximation and show great
performances in complex tasks (see more details about related work in Section C). In practice, the
radius d is not directly tunable: it depends on the underlying density and geometry of the dataset and
is unknown to the algorithm. Therefore, we adopt a retrieval mechanism with size parameter k to
practically controls locality.
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Figure 2: An overview of In-Context Compositional Q-Learning (ICQL). Given a query state-action
pair (squery, aquery), the model embeds it via our feature extractor ϕ, retrieves top-k similar transitions
from a static offline dataset D, and forms a local context set. A local linear Q-function approximation
Q̂(s, a|Ωdk

squery
) = ws(Ω

dk
squery

)⊤ϕ(s, a) defined in Definition 3.1 is then fitted using the retrieved
context Ωdk

squery
defined in Section 3.2, and used to update the actor. This enables compositional

reasoning over local subtasks without requiring explicit subtask labels.

3.2 RETRIEVAL METHODS

In this section, we will introduce the approach to retrieve the transitions from the offline dataset
D. We mainly focus on state-similar retrieval, random retrieval and state-similar-with-high-reward
retrieval. Each retrieval approach captures different coverage number of the local neighborhood
Ωdk

squery
corresponding to the query state squery. Both state-similar retrieval and state-similar-with-

high-reward retrieval are supposed to capture more accurate and thorough local information from the
local neighborhood Ωd

s , and the main difference is that the state-similar retrieval is able to capture
more diversity in the action space while the state-similar-with-high-rewards retrieval can ideally
retrieve high-quality transitions. We will give the definition for state-similar retrieval in this section.
Refer Section D to see more details and the definitions for the other two retrieval methods.
Definition 3.2 (State-Similar Retrieval). Given the query state squery, ICQL retrieves k many
transitions based on the smallest l2-distance between the retrieved state si and squery, i.e.,

Ω
k

squery
≜
{
(si, ai, ri, s

′
i, a

′
i) ∈ D

∣∣∣si ∈ arg top-k
{
−∥squery − si∥22

}}
. (4)

Let us set dsquery

k ≜ max
(si,ai,ri,s′i,a

′
i)∈Ω

k
squery

{∥squery−si∥2}, then we can conclude that Ω
k

squery =

Ω
d
squery
k

squery . d
squery

k should be dependent on the query state squery, but to make it easier for readers
to follow, we will use dk to represent dsqueryk . Since our main ICQL utilizes the fixed state-similar
retrieval method, we will use Ωdk

squery
to denote the retrieved context fed into the context of ICQL for

notation consistency. In the next section, we will show how we use the transitions from Ωdk
squery to

learn the best local Q-function approximation Q̂
Ω

dk
squery

(s, a) for all (s, a, r, s′, a′) ∈ Ωdk
squery through

in-context learning.

3.3 IN-CONTEXT COMPOSITIONAL Q-LEARNING

Now, we are ready to show how we can learn compositional Q-functions through contextual inference.
First, we will define the context-dependent weight function to estimate the optimal local weight
vector w∗

s defined in Definition 3.1 corresponding to each state s.
Definition 3.3 (Context-dependent Weights). The local weight function ws : P(Ω) → Rd is a
context-dependent weight function inferred through in-context learning or retrieval-based adaptation,
where P(Ω) = {A|A ⊆ Ω} is the power set of Ω and Ω contains all the possible transitions for some
certain task.

We want to clarify that the offline dataset D ⊆ Ω. Based on Definition 3.3, there should exists some
Ω∗

s ⊆ Ω which leads to ws(Ω
∗
s) = w∗

s . And it is not necessary that Ω∗
s ⊆ D. We can use different

retrieval methods to cover Ω∗
s as much as possible to achieve a better weight approximation. Then for

any query state squery and action aquery, suppose Ωdk
squery is the set collecting the k many retrieved

4
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transitions by the state-similarity distance dmin from D defined in Section 3.2 and we feed Ωd
squery

into the prompt matrix, we can learn a context-dependent Q-function approximation denoted as

Q̂(s, a|Ωdk
squery) = wsquery(Ω

dk
squery)

Tϕ(s, a) (5)

to approximate Q̂
Ω

dk
squery

(s, a) defined in Equation (2). Next, we will explain how we can learn the lo-

cal weight vector wsquery(Ω
dk
squery

) by in-context TD learning. The network updates w(squery|Ωdk
squery)

iteratively as for each retrieved transition (s, a, r, s′, a′) ∈ Ωdk
squery :

wnew
squery

(Ωdk
squery

)

=wsquery
(Ωdk

squery
) + α

(
r + γQ̂(s′, a′|Ωdk

squery)− Q̂(s, a|Ωdk
squery)

)
∇wQ̂(s, a|Ωdk

squery)

=w(squery) + α
(
r + γwsquery

(Ωdk
squery)

Tϕ(s′, a′)− wsquery(Ω
dk
squery)

Tϕ(s, a)
)
ϕ(s, a),

(6)

where α is the learning rate, the first equality is due to SARSA (Sutton & Barto, 2018) and the second
equality is due to Equation (5). Please refer Section E to see more details about the construction of
our linear transformers and the theorem to prove our proposed ICQL can implement in-context TD
learning.

For training ICQL, we follow IQL (Kostrikov et al., 2021) to performs value iteration via expectile
regression and policy extraction via advantaged-weighted regression. To be more specific, the critic
loss is calculated with our local Q-function approximation:

Lcritic = E(s,a,r,s′)∼D

[
ρτ

(
Q̂(s, a|Ωdk

s )− y
)]

, (7)

where y = r + γV (s′|Ωdk

s′ ), V (s′|Ωdk

s′ ) = Ea′∼π

[
Q̂(s′, a′|Ωdk

s′ )
]
, V is also a context dependent

value estimator and ρτ (·) denotes the expectile regression error. The policy is optimized via advantage-
weighted regression, given the advantage based on local value estimation depending on current state
and its retrieved similar states:

Lpolicy = Es∼D

[
Ea∼π

[
exp

(
β · (Q̂(s, a|Ωdk

s )− V (s|Ωdk
s ))

)
log π(a|s)

]]
. (8)

After training, the extracted policy can be evaluated on its own without extra retrieval process or
contextual inference.

3.4 THEORETICAL ANALYSIS ON ICQL

In this section, we analyze the theoretical properties of our algorithm ICQL. ICQL captures the
compositional and local structures of complex decision-making tasks by enabling the Q-function to
vary flexibly across different state regions. However, the performance of such local approximators
depends critically on two factors:

(i) the expressiveness of the feature representation ϕ(s, a),

(ii) the accuracy of the learned weight function ws(Ω
dk
s ) in approximating the optimal local

weight w∗
s corresponding to the state s and the retrieved offline transition set Ωdk

s .

To show that the performance of the greedy policy with respect to our ICQL is guaranteed to
be near-optimal, we first need to derive point-wise and expected bounds on the local Q-function
approximation error, highlighting how both approximation and weight estimation errors contribute
to the total error. Building on these results, we further characterize how the approximation error
propagates to policy sub-optimality through the performance difference lemma. These analyses
provide theoretical justification for the importance of accurate local value estimation in achieving
strong policy performance in offline RL settings. We will only show some necessary assumptions
and the main theorem of near-optimal policy by ICQL in this section. Refer Section F to see more
detailed and comprehensive proofs.

Assumption 3.1. Let ϕ : S ×A → Rd be a fixed feature map. We assume that for all (s, a) ∈ S×A,
the feature norm is bounded as ∥ϕ(s, a)∥ ≤ Bϕ.

5
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Algorithm 1 In-context Q-Learning (ICQL)
1: Input: Offline dataset D, the number of retrieved transitions k, feature dimension d.
2: Initialize: Linear transformer TFQ

θ with parameters θ, feature extractor ϕ.
3: Sample trajectory {(si, ai, ri)}T−1

i=0 ∼ D.
4: For each query state si, retrieve k sample states s0i , · · · , sk−1

i based on state-similar retrieval method defined
in Definition 3.2 and extract each of the corresponding transitions {(sji , a

j
i , r

j
i , s

′j
i , a

′j
i )}

k−1
j=0 .

5: //In-context Q value estimation.
6: for t = 0, . . . , T − 1 do
7: Construct the input prompt matrix Zt by Equation (24).
8: Q̂t ← TFQ

θ (Zt)[2d+ 1, k + 1] by Equation (16).
9: end for

10: Update the parameters θ, ϕ based on Equation (7) and Equation (8).

Remark 3.2. Assumption 3.1 is commonly used in previous research (Wang & Zou, 2020; Bhandari
et al., 2018; Shen et al., 2020). In our experiments, we use tanh activation function at the last layer of
our feature extractor ϕ, which means each component of the feature vector ϕ(s, a) is bounded by the
positive constant 1. Hence, we can conclude that ∥ϕ(s, a)∥ ≤ d, where d is the feature dimension.
This remark validates our Assumption 3.1.
Assumption 3.3 (Set Coverage). For each query state squery ∈ S, let Ω∗

squery denote the ideal local
transition set defined in Section 3.3. Suppose the retrieved set Ωdk

squery satisfies

κsquery ≜

∣∣Ωdk
squery ∩ Ω∗

squery

∣∣
|Ω∗

squery |
≥ σ, (9)

for some coverage ratio σ ∈ (0, 1]. Equivalently, at least m = σ|Ω∗
squery | transitions from Ω∗

squery are
contained in Ωdk

squery
.

Remark 3.4. We use Assumption 3.3 to claim how many transitions from Ω∗
squery can be covered by

our retrieved set Ωdk
squery

. This type of coverage condition is standard in nonparametric regression
(Györfi et al., 2002; Devroye et al., 1996; Cover & Hart, 1967; Kpotufe, 2011) and has also been
widely adopted in the analysis of offline RL through concentrability or coverage coefficients (Munos,
2003; 2007; Antos et al., 2008; Chen et al., 2019; Xie et al., 2021). The distance dk and which
retrieval method is used should affect the value κs. We show the ablation study on the number of
transitions retrieved and the retrieval method in Section 4.3.

We now show our main theorem that the performance of the greedy policy with respect to the learned
local Q-function approximation Q̂(s, a|Ωdk

squery) is guaranteed to be near-optimal.

Theorem 3.5 (Policy Performance Gap). Suppose Assumptions 3.1 and 3.3 hold, and the learned
policy π is greedy with respect to Q̂(s, a|Ωdk

s ). Then, with probability at least 1− δ, the performance
gap is bounded as

J(π∗)− J(π) ≤ 2

1− γ
Es∼dπ

[
εsapprox(1 +Bϕ) + CBϕ

√
d+ log(1/δ)

σ |Ωdk
s |

]
, (10)

where C > 0 depends on Bϕ, Br and the conditioning of the local Gram matrix.

Proof. See more details in Section F.1.

4 EXPERIMENTS
4.1 ENVIRONMENTS AND DATASETS

We evaluate our method on a diverse set of continuous control benchmarks from the D4RL suite (Fu
et al., 2020), which includes three types of offline reinforcement learning environments:

Mujoco tasks (e.g., HalfCheetah-Medium) are standard locomotion environments based on
MuJoCo (Todorov et al., 2012), featuring smooth dynamics and dense rewards. These tasks are
commonly used to assess sample efficiency and stability.

6
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Adroit tasks (e.g., Pen-Human) involve high-dimensional dexterous manipulation using a 24-DoF
robotic hand. The action spaces are complex and the datasets are collected from human demonstration
or behavior imitation, making them challenging due to limited action coverage.

Kitchen tasks (e.g., Kitchen-Complete) are long-horizon goal-conditioned tasks that require
solving compositional subtasks (e.g., turning on lights, opening cabinets). These tasks emphasize
multi-stage behavior and compositional reasoning.

4.2 MAIN RESULTS

We compare our method against five widely adopted offline RL algorithms: BC, DT (Chen et al.,
2021b), TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022).
These baselines represent two complementary paradigms: the first three represent policy constraints,
and the last two represents value regularization. The experiment results are shown in Table 1.

Table 1: Performance comparison across Mujoco, Adroit, and Kitchen tasks. Average and standard
deviation of scores are reported over 5 random seeds.

Mujoco Tasks BC DT TD3+BC CQL IQL ICQL(Ours) Gain(%)

Walker2d-Medium-Expert-v2 107.5 70.7 109.2 98.7 109.8 113.3±2.0 3.1%
Walker2d-Medium-v2 75.3 70.2 77.0 79.2 71.5 80.3±5.2 1.4%

Walker2d-Medium-Replay-v2 26.0 54.8 41.5 77.2 61.0 81.9±5.4 6.1%
Hopper-Medium-Expert-v2 52.5 57.5 78.2 105.4 98.5 108.8±4.5 3.2%

Hopper-Medium-v2 52.9 57.1 53.5 58.0 63.3 62.6 ±7.9 -1.5%
Hopper-Medium-Replay-v2 18.1 65.8 59.4 95.0 82.4 96.4±4.9 1.5%

HalfCheetah-Medium-Expert-v2 55.2 70.8 62.8 62.4 83.4 89.1±4.2 6.8%
HalfCheetah-Medium-v2 42.6 42.8 43.1 44.4 42.5 45.9±0.3 3.5%

HalfCheetah-Medium-Replay-v2 36.6 39.5 41.8 45.5 38.9 44.7 ±0.1 -1.8%

Average 51.9 58.8 62.9 74.0 72.4 80.3 8.6%

Adroit Tasks BC DT TD3+BC CQL IQL ICQL Gain(%)

Pen-Human-v1 63.9 79.5 64.6 37.5 89.5 85.6±5.6 -4.3%
Pen-Cloned-v1 37.0 74.0 76.8 39.2 4.9 89.4±4.8 5.4%

Hammer-Human-v1 1.2 1.7 1.5 4.4 7.2 3.7±3.2 -49.4%
Hammer-Cloned-v1 0.6 3.7 1.8 2.1 0.5 4.5±5.5 23.4%

Door-Human-v1 2.0 5.5 0.2 9.9 9.8 17.1±5.5 73.1%
Door-Cloned-v1 0.0 3.2 -0.1 0.1 7.6 11.7±4.4 53.6%

Average 17.45 27.9 24.2 15.5 33.2 35.3 6.3%

Kitchen Tasks BC DT TD3+BC CQL IQL ICQL Gain(%)

Kitchen-Complete-v0 65.0 52.5 57.5 43.8 59.2 79.3±2.1 22.0%
Kitchen-Mixed-v0 51.5 60.0 53.5 51.0 53.3 59.5±6.0 -0.8%
Kitchen-Partial-v0 38.0 55.0 46.7 49.8 45.8 61.5±5.8 11.8%

Average 51.5 55.8 52.6 48.2 52.8 66.8 16.4%

Results demonstrate that, on Mujoco tasks, ICQL outperforms second best baseline CQL by 8.6% on
average. On Adroit tasks, ICQL improves IQL by 6.3%. Notably, on Kitchen task, ICQL achieves
a 16.4% improvement over DT on Kitchen tasks, highlighting the importance of compositional
value estimation in environments with complex, multi-stage structure. However on Hammer-Human
dataset, ICQL is inferior to two baseline methods, which may relate to the dataset quality issue.
In Hammer-Human, the size of the dataset is smaller and the distance between query states and
retrieved similar states are larger than those of Hammer-Cloned, making it harder for in-context
learning. Overall, these results validate the general applicability of ICQL across both value-learning
and actor-critic paradigms.

For investigating whether ICQL can produce more accurate value estimation than baseline methods,
we conduct analysis on the learned Q function by comparing the Q prediction among ICQL, IQL
and online RL method SAC. We plot their Q estimations of the same set of offline dataset entries, and
leverage t-SNE for showing their respective Q-estimate distribution over the same state space. Figure 3
shows the results on Walker2d-Medium dataset, where ICQL shares an approximately 69%
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similarity with SAC on Q estimation, while IQL can only achieve a similarity score about 0.29. This
indicates that the superior performance of ICQL on IQL comes from a better Q estimation, ensured
by local Q function estimation, over the noisy dataset.

SAC

0
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0.5

0.75

1
ICQL

0
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0.5
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1
IQL

0

0.25
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Figure 3: Q-value distribution on states after t-SNE dimension reduction, of Walker2d-Medium
dataset. The partitioned value patterns support our hypothesis that Q-functions are inherently
compositional, motivating localized value modeling.

4.3 ABLATION STUDIES

4.3.1 NUMBER OF IN-CONTEXT LEARNING LAYERS

In this experiment, we investigate the effect of in-context learning steps, which is controlled by
the number of layers in the in-context critic network. The number of layers are selected from
{4, 8, 16, 20}. The experiments are conducted on Mujoco tasks and on the ICQL. Figure 4 displays the
experiment outcomes and Table 7 provides further numerical results. From Figure 4, the normalized
scores generally get higher as the number of layers get larger in most of the tasks, indicating that a
larger number of layers may lead to more sufficient in-context value-learning. While the phenomenon
is not obvious in Hopper tasks, one possible reason is the significant distribution shift in Hopper
environment due to the high variance of transitions dynamics.
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Figure 4: Normalized scores of different number of in-context learning layers on Mujoco tasks. Each
color represents different number of layers, and the y-axis represents the normalized score.

4.3.2 INFLUENCE OF CONTEXT LENGTH

In this experiment, we investigate the effect of context lengths in ICQL. The context lengths are
selected from {10, 20, 30, 40}. As shown in Figure 5, a context length of 20 yields the generally best
performance for in-context TD-learning in Gym tasks, where too long or too short context lengths
lead to sub-optimal results. Thess results provide evidence that the “locality” of context is crucial for
in-context learning performance. While the context lengths get longer, the distance between query
state and context transitions also gets larger, which may break the “local” definition and bring noise
into the in-context learning process. Detailed numerical results are shown in Table 7.
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Figure 5: Normalized scores of context lengths on Mujoco tasks. Each color represents different
context lengths, and the y-axis represents the normalized score.

4.3.3 CONTEXT RETRIEVAL STRATEGIES

In this experiment, we investigate the impact of retrieval quality, by applying different context retrieval
strategies on ICQL. Besides the standard State-Similar Retrieval, we compare two extra retrieval
strategies: (1) Random Retrieval, which selects transitions uniformly at random from the offline
dataset; and (2) State-Similar-with-High-Rewards Retrieval, which further filters the similar-state
candidates by selecting those with higher rewards. The definitions of these three retrieval methods
are defined in Sections 3.2 and D.

Our results show that the Random Retrieval performs poorly and leads to unstable training across
environments, highlighting the importance of context relevance. The State-Similar Retrieval yields
overall strong and consistent performance, demonstrating the benefit of local state-based context
construction. Interestingly, in certain tasks with lower data quality, such as walker2d-medium
and door-human, the State-Similar-with-High-Rewards Retrieval outperforms others. This
suggests that incorporating reward information during retrieval can help identify more informative
transitions, leading to better Q-function estimation in noisy or suboptimal datasets.

Table 2: Ablation study on retrieval strategies used in ICQL. We compare three variants: Random
Retrieval, State-Similar Retrieval, and State-Similar-with-High-Rewards Retrieval.

Dataset Random State-Similar State-Similar-with-High-Rewards

Walker2d-Medium-v2 78.14 79.59 83.86
Walker2d-Medium-Replay-v2 67.45 84.81 75.12

Hopper-Medium-v2 74.14 67.36 59.93
Hopper-Medium-Replay-v2 81.04 91.63 90.82

HalfCheetah-Medium-v2 45.53 46.08 46.38
HalfCheetah-Medium-Replay-v2 43.35 44.48 43.15

Pen-Human-v1 75.10 84.37 84.82
Hammer-Human-v1 1.42 2.05 4.39

Door-Human-v1 11.99 12.89 15.59
Kitchen-Complete-v0 70.00 80.00 71.25

Kitchen-Mixed-v0 53.75 62.50 60.00
Kitchen-Partial-v0 47.5 62.50 50.00

5 CONCLUSION AND FUTURE WORK

We introduced ICQL, a novel offline RL framework that casts value estimation as an in-context
inference problem using linear attention. By retrieving local transitions and fitting context-dependent
local Q-functions, ICQL enables compositional reasoning without requiring subtask supervision.
We provide theoretical guarantees to derive a near-optimal policy based on ICQL via greedy action
extraction. Experiments show that ICQL achieves strong performance gains and provides closer value
estimation to online reinforcement algorithms. These results highlight the potential of in-context
learning as a powerful inductive bias for offline reinforcement learning. While the methodology
of ICQL is agnostic to the distance metric, the quality of retrieval stands as a practical concern for
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complex, high-dimensional state space. An important and promising direction for future work is
incorporating ICQL with more sophisticated retrieval methods, such as pre-trained state encoders or
value-aware learnable retriever.

REFERENCES

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 5048–5058, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89–129, 2008.

Rushiv Arora. Hierarchical universal value function approximators, 2024. URL https://arxiv.
org/abs/2410.08997.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Satinder Singh and
Shaul Markovitch (eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA, pp. 1726–1734. AAAI Press, 2017. doi:
10.1609/AAAI.V31I1.10916. URL https://doi.org/10.1609/aaai.v31i1.10916.

Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Ja-
yaraman, and Sergey Levine. Smirl: Surprise minimizing reinforcement learning in unstable
environments. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=cPZOyoDloxl.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691–1692.
PMLR, 2018.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 15084–15097, 2021a. URL https://proceedings.neurips.cc/paper/
2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling, 2021b.

Xi Chen, Nan Jiang, and Alekh Agarwal. Information-theoretic considerations in batch reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning (ICML), pp.
1049–1058, 2019.

Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function de-
composition. J. Artif. Intell. Res., 13:227–303, 2000. doi: 10.1613/JAIR.639. URL https:
//doi.org/10.1613/jair.639.

10

https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://arxiv.org/abs/2410.08997
https://arxiv.org/abs/2410.08997
https://doi.org/10.1609/aaai.v31i1.10916
https://openreview.net/forum?id=cPZOyoDloxl
https://openreview.net/forum?id=cPZOyoDloxl
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simon Shaolei Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation
sufficient for sample efficient reinforcement learning? ArXiv, abs/1910.03016, 2019. URL
https://api.semanticscholar.org/CorpusID:203902511.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=SJx63jRqFm.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
20132–20145, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a8166da05c5a094f7dc03724b41886e5-Abstract.html.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.
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APPENDIX

A MORE EXPLANATIONS ABOUT COMPOSITIONAL Q-FUNCTIONS

We observed similar results when replacing return-to-go with reward or Q-values estimated by an
online reinforcement learning-trained action-value function, which further strengthens our motivation.
Taking Figure 1(c) as an example, which exhibits the most pronounced state clustering structure. We
visualize randomly sampled states within neighboring regions. Dividing the space into four quadrants,
we observe that: (a) States in the first quadrant are primarily associated with moving the kettle on
the stove, (b)The second quadrant corresponds mainly to interacting with the light switch, (c) The
third quadrant mostly involves manipulating the cabinet, and (d) the fourth quadrant includes states
related to operating the microwave. These observations validate the motivation that similar states may
share the same subtask to finish that it might be beneficial utilizing nearby context for Q-function
estimation. Our experiments also show that ICQL has largely boosted performance on Kitchen tasks.
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B PRELIMINARY

B.1 REINFORCEMENT LEARNING

We consider an infinite-horizon Markov Decision Process (MDP) defined by the tuple
(S,A, p0, pMDP,R, γ), where S and A denote finite state and action spaces, respectively. The
reward function is R : S × A → R, and the transition dynamics are governed by pMDP(s

′|s, a),
which denotes the probability of transitioning to state s′ from state s after taking action a. The initial
state distribution is p0 : S → [0, 1], and γ ∈ [0, 1) is the discount factor.

At each timestep t, the agent observes state st, selects an action at ∼ π(·|st) according to a stochastic
policy π : A × S → [0, 1], receives a reward rt = R(st, at), and transitions to the next state
st+1 ∼ pMDP(·|st, at). This interaction generates trajectories of the form (s0, a0, r0, s1, a1, r1, . . . ).

Given a policy π, the associated Q-function and value function quantify the expected cumulative
discounted rewards starting from state-action pair (st, at) and state st, respectively:

Qπ(st, at) ≜ Eat+1,at+2,···∼π

[ ∞∑
i=0

γiR(st+i+1, at+i+1)|st, at

]
, (11a)

V π(st) ≜ Eat∼π(·|st) [Q
π(st, at)] . (11b)

The Q-function satisfies the Bellman Expectation Equation:

Qπ(s, a) = R(s, a) + γ Es′∼pMDP(·|s,a) [V
π(s′)] . (12)

Similarly, the value function satisfies:

V π(s) = Ea∼π(·|s) [Q
π(s, a)] . (13)

The goal of reinforcement learning is to learn a policy πθ(a|s) that maximizes the expected cumulative
discounted rewards. The optimal value functions satisfy the Bellman Optimality Equations:

Q∗(s, a) = R(s, a) + γ Es′∼pMDP(·|s,a)

[
max
a′

Q∗(s′, a′)
]
, (14a)

V ∗(s) = max
a∈A

Q∗(s, a). (14b)

In the offline setting, rather than interacting with the environment, the agent is provided with a fixed
dataset D = {(s, a, r, s′)}, collected by a behavior policy πβ . Offline RL algorithms aim to learn an
effective policy entirely from this static dataset D, without any further environment interaction. A
key challenge in offline RL is the distributional shift (Kumar et al., 2019; Jaques et al., 2019; Levine
et al., 2020; Wu et al., 2019) between the learned policy π and the behavior policy πβ , which often
leads to overestimation and poor generalization when estimating Q-values for out-of-distribution
state-action pairs.

B.2 IN-CONTEXT LEARNING WITH LINEAR ATTENTIONS

Recently, there has been significant interest in understanding the theoretical capabilities of in-context
learning with linear attention mechanisms (Wang et al., 2025b), particularly in the context of random
instances of linear regression and simple classification tasks. We will formally introduce these
problem settings in this section. Throughout this paper, all vectors are treated as column vectors. We
denote the identity matrix in Rn by In, and the m× n all-zero matrix by 0m×n. For any matrix Z,
we use Z⊤ to denote its transpose, and use both ⟨x, y⟩ and x⊤y interchangeably to denote the inner
product.

We define a prompt matrix Z ∈ R(d+1)×(n+1) as follows:

Z ≜
[
z(0) z(1) . . . z(n−1) z(n)

]
=

[
x(0) x(1) . . . x(n−1) x(n)

y(0) y(1) . . . y(n−1) 0

]
, (15)
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where {x(i), y(i)}n−1
i=0 are context examples, x(n) is the query input with its corresponding response

value y(n) masked as zero, and each x(i) ∈ Rd and y(i) ∈ R for all i = 0, · · · , n. Following (von
Oswald et al., 2023), we define linear self-attention over the same prompt as

LinAttn(Z;P,G) ≜ PZM
(
Z⊤GZ

)
, (16)

where P,G ∈ R(d+1)×(d+1) are learnable parameter matrices, and M ∈ R(n+1)×(n+1) is a fixed
mask matrix defined as

M ≜

[
In 0n×1

01×n 0

]
. (17)

The goal of training linear transformers in this setting is to recover the unknown response variable
corresponding to x(n), which is represented as zero in the prompt matrix Z. By appropriately
constructing the parameter matrices P and G, the linear attention model in Equation (16) can
successfully perform in-context learning for linear regression and simple classification tasks. However,
the ability of such models to perform in-context learning for offline reinforcement learning remains
poorly understood. And these analyses are purely theoretical and have not been empirically validated
on practical tasks. Transformers can perform in-context supervised learning by mimicking gradient
descent updates (von Oswald et al., 2023), and in-context reinforcement learning through TD-like
methods via appropriately constructed linear attention mechanisms (Wang et al., 2025b). However,
(Wang et al., 2025b) considers only the simplified setting of Markov Reward Processes (MRPs), where
transitions and rewards depend solely on the current state, i.e., st+1 ∼ p(·|st) and rt+1 = r(st),
with time-dependent context representations. More precisely, their formulation assumes that each
trajectory consists solely of temporally continuous steps. These restrictive assumptions do not hold
in real-world decision-making problems, and their empirical results are limited to synthetic MRPs,
which is hard to predict its performance on real-life RL tasks. To bridge this gap, we extend the
analysis from MRPs to the more general MDP setting by estimating the state-action value function
Q(s, a) directly and removing the time dependency from the context representations.

C OTHER RELATED WORK

Goal-conditioned and Hierarchical RL. Goal-conditioned methods such as UVFA (Schaul et al.,
2015) and HER (Andrychowicz et al., 2017) condition policies or value functions on explicit goal
inputs to facilitate generalization across tasks. Extensions to compositional settings further decom-
pose Q-functions into subgoal components (Arora, 2024). However, these approaches assume access
to goal specifications or subtask labels, which are typically unavailable in offline settings. ICQL
addresses this limitation by learning Q-functions conditioned on retrieved transition contexts, elimi-
nating the need for task supervision and enhancing sample efficiency. Hierarchical reinforcement
learning decomposes tasks into subgoals or options, enabling temporal abstraction and subpolicy
reuse. Classical methods such as MAXQ (Dietterich, 2000), Option-Critic (Bacon et al., 2017),
and HIRO (Nachum et al., 2018) explicitly model subtask boundaries and learn separate value func-
tions for each. While effective when task structure is known or discoverable, these methods often
rely on subgoal specification or auxiliary termination conditions. In contrast, ICQL operates without
predefined subtask structure and efficiently leverages offline data to rapidly converge to a provable
accurate local value function approximation. Unsupervised RL methods such as DIAYN (Eysenbach
et al., 2019) and SMiRL (Berseth et al., 2021) aim to discover diverse behaviors or latent subpolicies
without external rewards or supervision. Although these methods can implicitly uncover structure,
they are typically designed for unsupervised exploration or pretraining rather than for accurate value
estimation in offline settings. ICQL instead focuses on precise local Q-function inference conditioned
on retrieved experiences, thereby improving compositional generalization and training stability in the
offline RL regime.

Linear Q-function Approximation. Linear Q-function approximation has been widely used in
previous research (Yin et al., 2022; Du et al., 2019; Poupart et al., 2002; Parr et al., 2008). Metric
MDPs (Kakade et al., 2003), which gives the definition of the Q-function according to the state dis-
tance metric, are a natural complement to more direct parametric assumptions on value functions and
dynamics (Kakade et al., 2003). But none of them considers the local linear Q-function approximation
based on the state distance metric. In our work, we focus on learning the better approximations of
local value functions, while Kakade et al. (2003) formed an accurate approximation of the local
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environment. We assume that for each local domain Ωd
s , the local Q-function should have its own

state-dependent local structure. This has been examined both theoretically and practically to give a
better Q-function approximation and show great performances in complex tasks.

D DETAILED DEFINITIONS OF RETRIEVAL METHODS

Retrieval methods show great performance among a lot of domains (Wang et al., 2024; 2025a). In
this section, we will show the definitions for the other two retrieval methods – random retrieval and
state-similar-with-high-rewards retrieval.

Definition D.1 (Random Retrieval). Given the query state squery, randomly retrieved context for
ICQL is defined as

Ω
random

squery
≜
{
(si, ai, ri, s

′
i, a

′
i) ∈ D

∣∣∣(si, ai, ri, s′i, a′i) ∼ D
}k−1

i=0
. (18)

Definition D.2 (State-Similar-with-High-Rewards Retrieval). Given the query state squery, Ω
high

squery

for ICQL is defined as k many transitions with the smallest l2-distance between the retrieved state si
and squery and the highest transition reward ri, i.e.,

Ω
high

squery
≜
{
(si, ai, ri, s

′
i, a

′
i) ∈ Ω

ks

squery

∣∣∣(si, ai, ri, s′i, a′i) ∈ arg top-k {ri}
}
, (19)

where Ω
ks

squery
is defined in Equation (4).

For the retrieval methods defined in Definitions 3.2, D.1, and D.2, we can relate them to
Equation (1) by simply letting d1 ≜ min

(si,ai,ri,s′i,a
′
i)∈Ω

k
squery

{
∥si − squery∥2

}
and d2 ≜

min
(si,ai,ri,s′i,a

′
i)∈Ω

top
squery

{
∥si − squery∥2

}
. Therefore, we can conclude that Ω

k

squery ⊆ Ωd1
squery

and Ω
high

squery
⊆ Ωd2

squery
, which implies that both state-similar retrieval and state-similar-with-high-

reward retrieval can be bounded by some local neighborhood corresponding to the query state
squery.

E DESIGNS OF LINEAR TRANSFORMERS FOR BOTH SPARSE-REWARD AND
DENSE-REWARD RL TASKS

In this section, we will explain how our ICQL is constructed and how it can be extended to sparse-
reward tasks. Due to the initialization wsquery(Ω

dk
squery) = 0 for all squery and Equation (6), we will

observe that after one iteration update of the weight,

wnew
squery

(Ωdk
squery

)

=wsquery(Ω
dk
squery

) + α
(
r + γwsquery(Ω

dk
squery)

Tϕ(s′, a′)− wsquery(Ω
dk
squery)

Tϕ(s, a)
)
ϕ(s, a)

=αrϕ(s, a)

(20)

It leads to wnew
squery

(Ωdk
squery

) ≡ 0 when the tasks have sparse rewards, i.e., all the transition rewards r
are equal to zero. It will lead to no weight update for ICQL. Hence, we propose a novel adapative
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SARSA update rule for all the tasks augmented by Returns-to-go (RTGs), which is defined as

wnew
squery

(Ωdk
squery

) = wsquery
(Ωdk

squery
)

+ α
[
r + γ

( wsquery
(Ωdk

squery)
Tϕ(s′, a′)(

wsquery
(Ωdk

squery)
Tϕ(s′, a′) + RTGs′

) · wsquery(Ω
dk
squery)

Tϕ(s′, a′)

+
RTGs′(

wsquery
(Ωdk

squery)
Tϕ(s′, a′) + RTGs′

) · RTGs′

)

−
( wsquery

(Ωdk
squery

)Tϕ(s, a)(
w(squery)Tϕ(s, a) + RTGs

) · wsquery(Ω
dk
squery)

Tϕ(s, a)

+
RTGs(

wsquery
(Ωdk

squery)
Tϕ(s, a) + RTGs

) · RTGs

)]
ϕ(s, a)

≈wsquery
(Ωdk

squery
) + α

[
r + γ

(
β · wsquery(Ω

dk
squery)

Tϕ(s′, a′) + (1− β) · RTGs′

)
−
(
β · wsquery

(Ωdk
squery

)Tϕ(s, a) + (1− β) · RTGs

)]
ϕ(s, a)

=wsquery
(Ωdk

squery
) + α

[(
r + γ(1− β) · RTGs′ − (1− β)RTGs

)
+ γβ · wsquery

(Ωdk
squery

)Tϕ(s′, a′)− β · wsquery(Ω
dk
squery)

Tϕ(s, a)
]
ϕ(s, a),

(21)

where β ∈ [0, 1] is a task-dependent hyperparameter. We use the convex combination between
Q̂(s′, a′|Ωdk

squery
) and RTGs′ to estimate each Q

Ω
dk
squery

(s′, a′). To satisfy the construction in Equa-
tion (21), we will show our new design of input matrix, weight matrices for our ICQL. Given
any query state squery and N total many retrieved transitions in Ω

random

squery . Using as shorthand
ϕi ≜ ϕ(si, ai) and ϕ′

i ≜ ϕ(s′i, a
′
i), the new input prompt matrix is define as

Z0 =

 ϕ0 · · · ϕN−1 ϕquery

γβϕ′
0 · · · γβϕ′

N−1 0
r′0 · · · r′N−1 0

 , (22)

where r′i ≜ ri + γ(1 − β) · RTGs′i
− (1 − β)RTGsi for all i = 0, · · · , N − 1, and ϕquery ≜

ϕ(squery, aquery) for any aquery ∈ A. And for ℓ = 0, 1, · · · , L− 1, each linear transformer layer ℓ
has weight matrices Pℓ and Gℓ defined as

Pℓ ≜

[
02d×2d 02d×1

01×2d 1

]
, Gℓ ≜

−CT
ℓ CT

ℓ 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0

 , (23)

where all the matrices {Cℓ}L−1
ℓ=0 are trainable parameters.

Remark E.1. For Equation (22), when we set β = 1, Z0 will recover the input prompt matrix for
dense-reward tasks, which is defined as

Z0 =

[
ϕ0 · · · ϕN−1 ϕquery

γϕ′
0 · · · γϕ′

N−1 0
r0 · · · rN−1 0

]
(24)

and the weight matrices Pℓ and Gℓ keep the same.

Next, we will prove how we can the weight update defined in Equation (6) by our design. First, we
introduce the following lemma, which is motivated by the work of (Wang et al., 2025b) on MRPs.
Lemma E.2. Consider the input Z0 and matrix weights P0 and Q0, where

Z0 =

v
(0)
0 · · · v

(N−1)
0 v

(N)
0

ξ
(0)
0 · · · ξ

(N−1)
0 ξ

(N)
0

y
(0)
0 · · · y

(N−1)
0 y

(N)
0

 , P0
.
=

[
02d×2d 02d×1

01×2d 1

]
, G0

.
=

−CT
0 CT

0 0d×1

0d×d 0d×d 0d×1

01×d 01×d 0

 ,

(25)
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and v(i), ξ(i) ∈ Rd, y(i) ∈ R. According to Z1 ≜ LinAttn(Z0;P0, G0) = P0Z0M(ZT
0 G0Z0) and

let y(N)
1 be the bottom right element of the next layer’s output, i.e., y(N)

1 ≜ Z1[2d + 1, N + 1], it
holds that y(N)

1 = −⟨ϕN , w1⟩, where

w1 = w0 +
1

N
C0

N−1∑
j=0

(y
(i)
0 + wT

0 ξ
(i)
0 − wT

0 v
(i)
0 )v

(i)
0 . (26)

Using the above lemma, we are ready to prove Theorem E.3.

Theorem E.3. Consider the L-layer linear transformer following Equation (16) and all matrices
{Pℓ, Gℓ}Lℓ=0, mask matrix M , the input prompt matrix Z0 are defined in Equations (17), (23),
and (24), respectively. Then Zℓ[2d+ 1, n+ 1], the bottom right element of the ℓ-th layer’s output,
holds that Zℓ[2d+ 1, n+ 1] = −⟨ϕquery, w

ℓ
squery(Ω

dk
squery)⟩, where {wℓ

squery(Ω
dk
squery)} is defined as

w0
squery

(Ωdk
squery

) = 0 and for ℓ ≥ 0

wℓ+1
squery

(Ωdk
squery

)

=wℓ
squery

(Ωdk
squery

) +
1

N
Cℓ

N−1∑
j=0

(rj + γwℓ
squery(Ω

dk
squery)

T
ϕ′
j − wℓ

squery(Ω
dk
squery)

T
ϕj)ϕj .

(27)

Proof. Let v(i)0 = ϕi = ϕ(si, ai), ξ
(i)
0 = γϕ′

i = ϕ(s′i, a
′
i), y

(i)
0 = ri for i ∈ {0, · · · , N − 1} and

v
(N)
0 = ϕquery = ϕ(squery, aquery), ξ

(N)
0 = 0d×1, y(N)

0 = 0, we get

w1
squery

(Ωdk
squery

) = w0
squery

(Ωdk
squery

)+
1

N
C0

N−1∑
j=0

(ri+γw0
squery(Ω

dk
squery)

T
ϕ′
i−w0

squery(Ω
dk
squery)

T
ϕi)ϕi,

which is the update rule for pre-conditioned SARSA. We also have

y
(N)
1 = −⟨w1

squery(Ω
dk
squery), ϕquery⟩.

By induction on the number of layer ℓ, it completes our proof.

F PROOFS

In this section, we first derive pointwise and expected bounds on the Q-function approximation
error, highlighting how both approximation and weight estimation errors contribute to the total error.
Building on these results, we further characterize how the approximation error propagates to policy
suboptimality through the performance difference lemma. These analyses provide theoretical justifi-
cation for the importance of accurate local value estimation in achieving strong policy performance,
particularly in offline RL settings.

Theorem F.1 (Weight Error under Coverage). Suppose Assumption 3.3 holds, and that the feature
vectors are bounded as ∥ϕ(s, a)∥ ≤ Bϕ and rewards as |r| ≤ Br. Let w∗

s be the optimal local weight
vector defined in Definition 3.1, and let ws(Ω

dk
s ) be the weight estimated from the retrieved set. Then

with probability at least 1− δ, the following holds:

∥∥ws(Ω
dk
s )− w∗

s

∥∥ ≤ C

(√
d+ log(1/δ)

σ |Ωdk
s |

+ εsapprox

)
, (28)

where C > 0 is a constant depending on Bϕ, Br and the conditioning of the local Gram matrix, and
εsapprox is the local approximation error defined in Definition 3.1.

Proof. Fix a query state s and its ideal local transition set Ω∗
s . By Definition 3.1, there exists a weight

vector w∗
s such that

Q
Ω

dk
s
(s, a) = w∗

s
⊤ϕ(s, a) + εs(s, a), |εs(s, a)| ≤ εsapprox (29)
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for all (s, a, r, s′, a′) ∈ Ωdk
s . By Assumption 3.3, the retrieved set Ωdk

s overlaps with the ideal set on
at least m = σ|Ωdk

s | transitions. Denote this intersection as Dσ
s = Ωdk

s ∩ Ω∗
s . Thus the estimation

of w∗
s from Ωdk

s is guaranteed to include at least m valid local transitions. Let X ∈ Rm×d be the
feature matrix of Dα

s , with columns ϕ(s̄, ā), and y ∈ Rm be the corresponding targets. Then

y = w∗
s
⊤X + ξ, (30)

where ξ collects the local approximation error, with ∥ξ∥∞ ≤ εsapprox. The estimator from the
retrieved set is

ws(Ω
dk
s ) = argmin

w

1

|Ωdk
s |

∑
(si,ai)∈Ω

dk
s

(
yi − w⊤ϕ(si, ai))

2. (31)

Define the population moments on Ω∗
s as

G = EΩ∗
s
[ϕ⊤ϕ], b = EΩ∗

s
[ϕ⊤y]. (32)

Let Ĝ, b̂ be the corresponding empirical moments on Ωdk
s . Since at least m = σ|Ω∗

s| samples in Ωdk
s

come from the true local set, standard matrix concentration implies that with probability at least 1− δ,

∥Ĝ−G∥ ≤ c1B
2
ϕ

√
d+log(1/δ)

σ|Ωdk
s |

, (33)

∥b̂− b∥ ≤ c2BϕBr

√
d+log(1/δ)

σ|Ωdk
s |

, (34)

for universal constants c1, c2 > 0. The optimal weight satisfies w∗
s
⊤G = b. The empirical solution

satisfies ws(Ω
dk
s )⊤Ĝ = b̂ (up to residuals). Subtracting these systems gives

∥ws(Ω
dk
s )− w∗

s∥ ≤ ∥G−1∥ ·
(
∥b̂− b∥+ ∥Ĝ−G∥∥w∗

s∥
)
+ εsapprox. (35)

Since G is well-conditioned, ∥G−1∥ ≤ 1/µ for some µ > 0. Substituting the concentration results
yields

∥ws(Ω
dk
s )− w∗

s∥ ≤ C

√
d+log(1/δ)

σ|Ωdk
s |

+ εsapprox, (36)

where C > 0 depends on Bϕ, Br, ∥w∗
s∥ and µ. This is exactly the desired bound equation 28.

Theorem F.2 (Pointwise Q-function Error). Suppose Assumption 3.1 and Assumption 3.3 hold. For
any fixed s ∈ S, with probability at least 1 − δ, the pointwise error of the estimated Q-function
satisfies∣∣∣Q̂(s, a|Ωdk

s )−Q
Ω

dk
s
(s, a)

∣∣∣ ≤ εsapprox(1+Bϕ) +CBϕ

√
d+ log(1/δ)

σ |Ωdmin
s |

∀(s, a, r, s′, a′) ∈ Ωdk
s ,

(37)
where C > 0 depends on Bϕ, Br and the conditioning of the local Gram matrix.

Proof. Fix s ∈ S and a ∈ A. By definition,

Q̂(s, a|Ωdk
s ) = ws(Ω

dk
s )⊤ϕ(s, a), Q

Ω
dk
s
(s, a) = w∗

s
⊤ϕ(s, a) + εsapprox. (38)

Thus, ∣∣∣Q̂(s, a|Ωdk
s )−Q

Ω
dk
s
(s, a)

∣∣∣ = ∣∣∣ws(Ω
dk
s )⊤ϕ(s, a)− w∗

s
⊤ϕ(s, a)− εsapprox

∣∣∣ (39)

≤ ∥ws(Ω
dk
s )− w∗

s∥ · ∥ϕ(s, a)∥+ εsapprox (40)

≤ Bϕ · ∥ws(Ω
dk
s )− w∗

s∥+ εsapprox. (41)

By Theorem F.1, with probability at least 1− δ,

∥ws(Ω
dk
s )− w∗

s∥ ≤ C

√
d+log(1/δ)

σ|Ωdmin
s |

+ εsapprox. (42)

Substituting this into the inequality above yields∣∣∣Q̂(s, a|Ωdk
s )−Q

Ω
dk
s
(s, a)

∣∣∣ ≤ CBϕ

√
d+log(1/δ)

σ|Ωdk
s |

+ εsapprox(1 +Bϕ), (43)

which holds for all (s, a, r, s′, a′) ∈ Ωdk
s . This proves equation 37.
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Corollary F.3 (Expected Q-function Error). Suppose Assumptions 3.1 and 3.3 hold. Let µ be a
reference distribution over (s, a) ∈ S × A, and let µS be its marginal over states. Then, with
probability at least 1− δ, the expected Q-function approximation error restricted to the retrieved set
satisfies

E(s,a)∼µ

[∣∣Q̂(s, a|Ωdk
s )−Q

Ω
dk
s
(s, a)

∣∣ ∣∣ (s, a) ∈ Ωdk
s

]
≤ Es∼µS

[
εsapprox(1 +Bϕ) + CBϕ

√
d+ log(1/δ)

σ |Ωdk
s |

]
.

(44)

Proof. From Theorem F.2, for any (s, a, r, s′, a′) ∈ Ωdk
s , we have

∣∣Q̂(s, a|Ωdk
s )−Q

Ω
dk
s
(s, a)

∣∣ ≤ εsapprox(1 +Bϕ) + CBϕ

√
d+log(1/δ)

σ|Ωdk
s |

. (45)

Taking expectation over (s, a) ∼ µ, but restricted to (s, a) ∈ Ωdk
s , and noting that the right-hand side

depends only on s, we obtain

E(s,a)∼µ

[∣∣Q̂(s, a|Ωdk
s )−Q

Ω
dk
s
(s, a)

∣∣ ∣∣ (s, a) ∈ Ωdk
s

]
≤ Es∼µS

[
εsapprox(1 +Bϕ) + CBϕ

√
d+log(1/δ)

σ|Ωdk
s |

]
.

(46)

This proves the result.

F.1 PROOF OF THEOREM 3.5

Lemma F.4 (Performance Difference Lemma). Let π be a policy, and let dπ denote its discounted
state distribution. Then the performance gap between π and the optimal policy π∗ satisfies

J(π∗)− J(π) =
1

1− γ
Es∼dπ,a∼π

[
Q∗(s, a∗)−Q∗(s, a)

]
, (47)

where a∗ = argmaxa Q
∗(s, a).

Proof. From Equation (47), for any s ∈ S,

Q∗(s, π∗(s))−Q∗(s, π(s)) =
(
Q∗(s, π∗(s))− Q̂(s, π∗(s))

)
+
(
Q̂(s, π∗(s))− Q̂(s, π(s))

)
+
(
Q̂(s, π(s))−Q∗(s, π(s))

)
. (48)

Since π is greedy w.r.t. Q̂, the middle term is non-positive. Thus,

Q∗(s, π∗(s))−Q∗(s, π(s)) ≤ |Q∗(s, π∗(s))− Q̂(s, π∗(s))|+ |Q∗(s, π(s))− Q̂(s, π(s))|
≤ 2δ(s), (49)

where by Theorem F.2,

δ(s) = εsapprox(1 +Bϕ) + CBϕ

√
d+log(1/δ)

σ|Ωdk
s |

. (50)

Taking expectations in Equation (47) and applying Equation (49) yields

J(π∗)− J(π) ≤ 2

1− γ
Es∼dπ

[
δ(s)

]
, (51)

which gives the desired bound equation 10.
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G ICQL VARIANTS FOR TD3+BC

In this section, we illustrate how to extend our method to TD3+BC (Fujimoto & Gu, 2021). TD3+BC
introduces a simple behavior cloning regularization over value-based learning. This algorithms is
easy to integrate with our framework, stable across diverse tasks, and serve as strong baselines in
the literature. Their simplicity and effectiveness make them ideal testbeds for evaluating the impact
of localized Q-function estimation, and together they offer sufficient coverage of common design
choices in offline RL. Other algorithms can be similarly extended, but are omitted here for clarity and
focus.

Our proposed ICQL can be seamlessly integrated into existing offline RL algorithms by replacing the
global Q-function with a local, context-dependent estimator defined in Definition 3.1. We demonstrate
this idea by instantiating ICQL with TD3+BC (see more details in our Algorithm 1).

ICQL-TD3+BC. TD3+BC uses a standard Bellman backup for the critic and augments the actor
with behavior cloning. We again use the locally estimated Q̂(s, a) in both components. The critic
loss is:

LTD3+BC
critic = E(s,a,r,s′)∼D

[(
Q̂(s, a|Ωdk

s )− y
)2]

, (52)

where y = r + γmini=1,2 Q̂
(i)
target(s

′, π(s′)|Ωdk
s ). The actor is trained to maximize the estimated

Q-value while staying close to the dataset policy:

LTD3+BC
actor = −Es∼D

[
Q̂(s, π(s)|Ωdk

s )
]
+ α · E(s,a)∼D

[
∥π(s)− a∥2

]
. (53)

Experiment results can be found at Table 3.

Table 3: Evaluation for TD3+BC based ICQL variant on Mujoco and Adroit tasks. Average normal-
ized scores are reported over 5 random seeds.

Mujoco Tasks TD3-BC ICQL-TD3-BC(ours) Gain(%)

Walker2d-Medium-Expert-v2 109.19 109.27 0.07%
Walker2d-Medium-v2 77.02 72.67 -5.65%

Walker2d-Medium-Replay-v2 41.47 54.96 32.53%
Hopper-Medium-Expert-v2 78.16 87.16 11.51%

Hopper-Medium-v2 53.49 57.93 8.30%
Hopper-Medium-Replay-v2 59.36 65.81 10.87%

HalfCheetah-Medium-Expert-v2 62.78 63.74 1.53%
HalfCheetah-Medium-v2 43.09 42.74 -0.81%

HalfCheetah-Medium-Replay-v2 41.76 45.86 9.82%

Average 62.92 66.68 6.00%

Adroit Tasks TD3-BC ICQL-TD3-BC(ours) Gain(%)

Pen-Human-v1 64.62 68.29 5.68%
Pen-Cloned-v1 76.82 74.71 -2.75%

Hammer-Human-v1 1.52 1.64 7.89%
Hammer-Cloned-v1 1.81 7.25 300.55%

Door-Human-v1 0.15 2.03 1253.33%
Door-Cloned-v1 -0.05 -0.08 -60.00%

Average 24.15 25.64 6.17%

H IMPLEMENTATION DETAILS

In this section, we present the detailed network architecture for our in-context critic and actor. In
addition, we describe the hyperparameter settings in this paper.
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H.1 IN-CONTEXT CRITIC NETWORK

The In-Context Critic is composed of a feature extractor and a linear transformer. The feature extractor
is a 3-layer MLP with 256 hidden units. A Tanh function is applied as the last layer activation, and
ReLU is applied as activation function for other layers, followed by layer normalization. The output
dimension of the feature extractor is 64. A dropout rate of 0.1 is applied during training the feature
extractor. The linear transformer is built as described in Equation (16), where trainable parameters
exist only in G. The definition of G is in Equation (23), where Cl denotes the trainable parameters
in the l-th layer. The shape of Cl is 64× 64. We use gradient normalization to stabilize training by
scaling the gradients to have a maximum L2 norm of 10. The number of linear transformer layers is
set to 20.

H.2 POLICY NETWORK

For ICQL-IQL, the policy network is built as an MLP with 2 hidden layers and the ReLU activation
function. The policy network contains an additional learnable vector representing the logarithmic
standard deviation of actions. A dropout rate of 0.1 is applied during training.

For ICQL-TD3+BC, the policy network is built as a 3-layer MLP with the ReLU activation function.

H.3 HYPER-PARAMETER SETTINGS

For ICQL-IQL, we follow the original IQL paper and set different hyperparameter expectile τ and
temperature β for different offline datasets. We searched among {0.5, 0.7, 0.9} for expectile and
{1, 2, 3} for temperature. The detailed list is in Table 4.

Table 4: Expectile and temperature settings for ICQL experiments.

Tasks Expectile Temperature Tasks Expectile Temperature
Walker2d-Medium-Expert-v2 0.7 1 Pen-Human-v1 0.7 2

Walker2d-Medium-v2 0.7 1 Pen-Cloned-v1 0.9 2
Walker2d-Medium-Replay-v2 0.7 1 Hammer-Human-v1 0.5 1

Hopper-Medium-Expert-v2 0.7 1 Hammer-Cloned-v1 0.9 2
Hopper-Medium-v2 0.5 1 Door-Human-v1 0.5 1

Hopper-Medium-Replay-v2 0.7 2 Door-Cloned-v1 0.7 2
HalfCheetah-Medium-Expert-v2 0.5 2 Kitchen-Complete-v0 0.9 1

HalfCheetah-Medium-v2 0.5 1 Kitchen-Mixed-v0 0.5 1
HalfCheetah-Medium-Replay-v2 0.7 1 Kitchen-Partial-v0 0.9 2

For ICQL-TD3+BC, we follow the settings of the original paper, using the same hyperparameter
α = 2.5 for all datasets.

Other common hyperparameters are listed in Table 5.

Table 5: Common hyperparameters for ICQL main experiments.

Hyperparameter Value

Hidden dimension 256
Batch size 256

Training steps 1,000,000
Evaluation episodes 10

Discount factor 0.99
Policy learning rate 3.0e-4
Critic learning rate 3.0e-4

Context length 20
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H.4 RETRIEVAL STRATEGIES

In Section 4.3, we have compared the performance of ICQL while using different strategies for
retrieving context for approximating the localized Q function. The description of retrieval strategies
in Section 4.3 are as follows:

• State-Similar Retrieval: Given current state s, search for 20 similar states si from the offline
dataset using cosine similarity, and retrieve their corresponding transitions {si, ai, ri, s′i, a′i}.

• Random Retrieval: Given current state s, randomly select 20 transitions {si, ai, ri, s′i, a′i}
as context.

• State-Similar-with-High-Rewards: Given current state s, search for 60 similar states si
from the offline dataset using cosine similarity, retrieve their corresponding transitions
{si, ai, ri, s′i, a′i}. Then sort by the rewards ri in these retrieved transitions, and select 20
transitions with the highest rewards as context.

H.5 ANALYSIS ON IN-CONTEXT CRITICS

In this section, we conduct further analysis into the functionality of our in-context Q estimator. By
construction, the forward pass of our in-context Q estimator is equivalent to the step-wise optimization
of TD-error. We analyze the outputs and the parameter distributions of each intermediate layer to
validate its effectiveness. We randomly select 10 different states and their corresponding action in
the offline dataset of Walker2d-Medium-Expert-v2, retrieve 20 relevant transitions by best cosine
state similarity, and estimate the Qs for these state-action pairs. We store outputs of all intermediate
layers and the visualization results are shown in Figure 6. From Figure 6 we can discover that the Q
estimates show converging trend as the layer get deeper, validating the iterative refinement process.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Layer

0

50
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tim
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Figure 6: Q-estimates of each intermediate layers.

I ADDITIONAL EXPERIMENT RESULTS

I.1 EXTENDED BASELINES

In this section, we extend our comparisons with the more methods (RA-DT Schmied et al. (2024),
ReBRAC Tarasov et al. (2023), DMG Mao et al. (2024), FQL Park et al. (2025), QC Li et al. (2025)),
following their official implementations. ICQL demonstrates competitive or superior performance
across most tasks. Results are shown in Table 6.

I.2 NUMERICAL RESULTS FOR ABLATION STUDIES ON THE NUMBER OF LAYERS AND
CONTEXT LENGTHS

In this section, we provide numerical results in correspondence to Section 4.3.1 and Section 4.3.2.
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Table 6: Performance comparison across Mujoco, Adroit, and Kitchen tasks. Average and standard
deviation of scores are reported over 5 random seeds.

Task BC TD3BC CQL IQL DT RADT ReBRAC DMG FQL QC ICQL

Walker2d-ME 107.5 109.2 98.7 109.8 70.7 107.8 109.2 109.5 101.0 102.8 113.3
Walker2d-M 75.3 77.0 79.2 71.5 70.2 68.9 82.8 85.0 72.4 34.1 80.3

Walker2d-MR 26.0 41.5 77.2 61.0 54.8 67.2 39.4 81.9 60.9 46.6 81.9
Hopper-ME 52.5 78.2 105.4 98.5 57.5 109.4 98.7 109.8 60.1 44.0 113.3
Hopper-M 52.9 53.5 58.0 63.3 57.1 62.4 60.6 92.3 55.6 64.6 62.6

Hopper-MR 18.1 59.4 95.0 82.4 65.8 81.6 87.4 100.1 55.0 18.6 96.4
HalfCheetah-ME 55.2 62.8 62.4 83.4 70.8 90.9 84.6 93.6 92.9 94.2 89.1
HalfCheetah-M 42.6 43.1 44.4 42.5 42.8 42.0 44.6 47.9 43.9 48.2 45.9

HalfCheetah-MR 36.6 41.8 45.5 38.9 39.5 38.9 36.9 44.6 40.0 40.5 44.7
Pen-Human 63.9 64.6 37.5 89.5 79.5 17.8 91.5 66.2 61.2 55.7 85.6
Pen-Cloned 37.0 76.8 39.2 84.9 74.0 32.4 68.9 67.5 23.5 54.8 89.4

Hammer-Human 1.2 1.5 4.4 7.2 1.7 0.7 1.1 18.4 1.1 1.2 3.7
Hammer-Cloned 0.6 1.8 2.1 0.5 3.7 1.3 0.2 13.4 1.7 2.2 4.5

Door-Human 2.0 0.2 9.9 9.8 5.5 13.2 -0.1 0.1 0.2 0.7 17.1
Door-Cloned 0.0 -0.1 0.1 7.6 3.2 2.4 9.0 3.7 0.1 4.4 11.7

Kitchen-Complete 65.0 57.5 43.8 59.2 52.5 32.5 60.0 22.5 16.3 27.5 79.3
Kitchen-Mixed 51.5 53.5 51.0 53.3 60.0 54.1 47.5 30.0 45.0 60.0 59.5
Kitchen-Partial 38.0 46.7 49.8 45.8 55.0 53.8 62.5 37.5 15.8 52.5 61.5

Overall Average 47.3 47.7 58.5 63.2 56.2 57.2 60.0 62.0 50.5 47.7 69.7

Table 7: Normalized scores for Gym tasks with different lengths of contexts and different number of
layers in ICQL-IQL.

Context Length Number of Layers

Gym Tasks 10 20 30 40 4 8 16 20

Walker2d-Medium-Expert-v2 111.07 113.23 111.71 110.18 102.27 103.28 104.06 113.23
Walker2d-Medium-v2 79.59 79.59 70.9 80.68 78.04 78.35 74.93 79.59

Walker2d-Medium-Replay-v2 77.46 84.81 69.43 74.38 76.27 76.97 75.78 84.81
Hopper-Medium-Expert-v2 103.68 110.67 105.99 103.42 104.76 111.78 106.96 110.67

Hopper-Medium-v2 73.82 67.36 60.18 59.43 65.65 67.62 67.3 67.36
Hopper-Medium-Replay-v2 89.89 91.63 81.21 83.92 100.53 97.84 91.77 91.63

HalfCheetah-Medium-Expert-v2 89.23 90.3 88.76 83.48 71.29 63.31 74.84 90.3
HalfCheetah-Medium-v2 45.85 46.08 46.28 45.82 45.05 44.77 45.01 46.08

HalfCheetah-Medium-Replay-v2 43.7 44.48 44.29 44.19 43.5 43.64 43.75 44.48

Average 79.37 80.91 75.42 76.17 76.37 76.40 76.04 80.91
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I.3 COMPARISON ON DIFFERENT IN-CONTEXT MODELING CHOICES

We performed additional experiments replacing the linear transformer with other architectures, which
is either a small MLP or a standard transformer. The results are shown in Table 8. The results
demonstrate that the linear in-context mechanism is not only theoretically convenient for but also
empirically essential for learning local Q function.

Table 8: Performance comparison across different local modeling choices: linear attention, linear
MLP, and standard self-attention.

Task Linear Transformer Linear MLP Standard Transformer

Walker2d-Medium-Expert 113.3 109.5 108.8
Walker2d-Medium 80.3 76.7 77.4

Walker2d-Medium-Replay 81.9 60.2 42.9
Hopper-Medium-Expert 113.3 109.9 70.3

Hopper-Medium 62.6 55.7 61.9
Hopper-Medium-Replay 96.4 89.9 42.1

HalfCheetah-Medium-Expert 89.1 83.0 72.5
HalfCheetah-Medium 45.9 43.3 42.0

HalfCheetah-Medium-Replay 44.7 39.2 36.1
Pen-Human 85.6 66.6 72.7
Pen-Clone 89.4 80.7 83.8

Hammer-Human 3.7 6.1 4.2
Hammer-Clone 4.5 7.9 1.8
Door-Human 17.1 6.9 8.9
Door-Cloned 11.7 3.5 3.4

Kitchen-Complete 79.3 70.0 78.3
Kitchen-Mixed 59.5 57.5 55.8
Kitchen-Partial 61.5 48.3 55.8

I.4 COMPUTATION OVERHEAD ANALYSIS

I.4.1 COMPARISON ON TRAINING TIME, INFERENCE TIME, GFLOPS AND MEMORY
CONSUMPTION

In this section, we compare training time, inference time, GFLOPs and memory consumption across
all baseline methods. The analysis is conducted on Walker2d-Medium-Expert dataset, and the
results are summarized in Table 9. This analysis shows that while ICQL incurs moderate additional
compute cost relative to most advanced baselines, and it remains more efficient than sequential
models (DT/RADT) while achieving substantially stronger performance.

Table 9: Computation cost comparison across offline RL algorithms, including per-step train-
ing/inference time, FLOPs, and peak memory consumption.

Algorithm Train Time (ms) Infer Time (ms) Training GFLOPs Peak Memory (MB)

TD3BC 7.23 0.26 0.17 30
IQL 10.52 0.61 0.22 26
CQL 47.57 0.61 2.64 79
DT 68.42 2.89 151.40 1383

RA-DT 121.02 3.13 1103.79 1424
ReBRAC 13.91 0.26 0.18 38

DMG 32.33 0.42 0.55 27
FQL 19.63 0.37 4.53 126
QC 21.60 0.25 4.65 244

ICQL 70.73 0.51 1.03 375
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I.4.2 ANALYSIS ON GFLOPS AND MEMORY CONSUMPTION SCALING OF ICQL

We further report training GFLOPs and memory consumption for varying context lengths in
{10, 20, 30, 40} and varing number of linear transformer layers, in Table 10 and Table 11. The
training time needed scales with both context length and number of layers. Using a context length
of 20 and 20 linear transformer layers remains comparable efficient while providing competitive
performance.

Table 10: Training FLOPs (in GFLOPs) for different numbers of layers and context lengths K.

# Layers K=10 K=20 K=30 K=40

10 0.25 0.51 0.81 1.14
20 0.50 1.03 1.62 2.28
30 0.75 1.54 2.43 3.42
40 1.00 2.06 3.24 4.56

Table 11: Peak memory consumption (in MB) for different numbers of layers and context lengths K.

# Layers K=10 K=20 K=30 K=40

10 171.28 306.56 445.57 590.39
20 209.71 375.38 549.51 738.00
30 248.39 443.29 655.26 879.30
40 288.94 511.58 758.94 1023.75

I.4.3 DETAILED COMPARISON ON RETRIEVAL AND TRAINING TIME OF ICQL ACROSS ALL
DATASETS

To mitigate repeated computation, we pre-compute all retrieval indices once before training, since: 1)
The offline dataset is fixed. 2) The retrieval rule is deterministic. 3) Pre-computation does not affect
the learning dynamics or outcomes. This turns per-step retrieval cost into an amortized constant-time
lookup during training. ICQL follows a standard actor–critic-like training paradigm where the critic
uses retrieved context to estimate local Q-values and the policy learns from these Q-values. At
evaluation time, only the policy is used, which is consistent with standard actor-critic practice. We
report the real-time retrieval time, the lookup time with cached indices, and the training/inference
speed for all datasets. The results are averaged across all datasets used in our experiments. As shown
in Table 12, cached retrieval adds only 0.03 ms per step, which is negligible relative to the overall
training time. The breakdown analysis of retrieval time and training/inference time analysis are
provided in Table 13 and Table 14.

Table 12: Average ICQL runtime of retrieval, training with different context lengths, and inference,
across all datasets.

Time (ms)

Retrieval with Cached Index 0.03
Train with K=10 46.94
Train with K=20 72.15
Train with K=30 113.86
Train with K=40 171.95
Inference 0.54
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Table 13: Detailed retrieval time (ms) analysis across tasks and context lengths. Cached index
retrieval eliminates repeated nearest-neighbor searches and greatly reduces overhead.

Task Dataset Size K=10 K=20 K=30 K=40 Cached

Walker2d-Medium-Expert 1998318 6.38 6.52 6.90 7.70 0.04
Walker2d-Medium 999322 3.98 3.96 4.37 5.16 0.03

Walker2d-Medium-Replay 301698 1.92 2.18 2.64 3.90 0.03

Hopper-Medium-Expert 1998966 6.04 6.11 6.39 7.31 0.03
Hopper-Medium 999998 3.85 3.71 4.05 4.77 0.03

Hopper-Medium-Replay 401598 2.10 2.16 2.56 3.11 0.03

HalfCheetah-Medium-Expert 1998000 6.27 6.41 6.75 7.37 0.03
HalfCheetah-Medium 999000 3.96 3.90 4.24 5.17 0.04

HalfCheetah-Medium-Replay 201798 1.58 1.61 1.81 2.53 0.03

Pen-Human 4975 0.89 0.81 0.99 1.15 0.03
Pen-Cloned 496264 2.91 3.05 3.52 6.67 0.03

Hammer-Human 11285 0.88 0.89 1.05 1.17 0.03
Hammer-Cloned 996394 4.56 4.54 4.93 5.82 0.03

Door-Human 6704 0.88 0.88 1.07 1.17 0.03
Door-Cloned 995642 4.39 4.53 4.92 5.94 0.03

Kitchen-Complete 3679 0.89 0.82 0.95 1.12 0.03
Kitchen-Partial 136937 1.36 1.41 1.60 1.91 0.03
Kitchen-Mixed 136937 1.49 1.38 1.63 2.11 0.03

Table 14: Training and inference time (ms) for different context lengths across tasks. Training time
grows approximately linearly with the context length, while inference time remains nearly constant.

Task K=10 K=20 K=30 K=40 Inference

Walker2d-Medium-Expert 48.90 70.73 111.75 170.71 0.51
Walker2d-Medium 46.63 71.77 113.82 170.85 0.50

Walker2d-Medium-Replay 48.68 74.75 115.43 171.97 0.52

Hopper-Medium-Expert 48.31 70.71 114.56 173.52 0.51
Hopper-Medium 46.39 71.60 113.35 171.63 0.57

Hopper-Medium-Replay 46.08 72.32 112.89 170.58 0.56

HalfCheetah-Medium-Expert 48.33 73.27 115.90 171.46 0.58
HalfCheetah-Medium 47.69 74.45 113.85 171.75 0.51

HalfCheetah-Medium-Replay 47.30 71.81 114.32 172.86 0.57

Pen-Human 45.65 72.41 114.23 171.73 0.56
Pen-Cloned 44.50 69.59 112.02 170.31 0.51

Hammer-Human 46.88 73.78 113.93 171.66 0.52
Hammer-Cloned 47.31 72.55 114.13 171.94 0.57

Door-Human 46.16 71.34 113.11 171.44 0.57
Door-Cloned 45.37 71.20 112.11 170.61 0.58

Kitchen-Complete 47.45 73.65 116.36 175.98 0.54
Kitchen-Partial 48.11 72.35 116.50 175.42 0.52
Kitchen-Mixed 45.25 70.47 111.17 170.59 0.52
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I.5 FAILURE ANALYSIS ON HAMMER DATASET

In this section, we provide a failure analysis on Hammer-Human dataset. We found that Hammer-
Human exhibits two properties that make it particularly challenging for ICQL:

1) Small dataset size and sparse coverage. Hammer-Human contains only 24 trajectories (~11k
transitions), vastly fewer than Hammer-Cloned (~996k transitions). This leads to large distances
between the query state and its retrieved neighbors that violate locality assumptions, and poor
state-space coverage that make retrieval more likely to pull in semantically irrelevant transitions.

2) Low-quality transitions and noisy rewards. Most Hammer-Human trajectories have very low
returns. So for each query state, the retrieved neighbors tend to have weak reward signals, making it
more difficult to fit effective local Q-function.

We provide dataset statistics comparisons in Table 15, and comparison of distributions of mean
distance between query states and retrieved states in Figure 7, both of which confirm our observations.

Table 15: Dataset statistics for Hammer-Human and Hammer-Cloned.

Dataset Hammer-Human Hammer-Cloned

Number of trajectories 24 3605
Number of transitions 11285 996394
Mean Trajectory Length (Min–Max) 455.2 (347–623) 276.4 (199–623)
Mean Trajectory Return (Min–Max) 2817.5 (-109–16022) 779.8 (-407–16022)
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Figure 7: Distribution of mean distance between query states and retrieved states on Hammer dataset.

Although Hammer-Cloned contains mostly low-return behavior, the large dataset size provides much
denser coverage. ICQL can retrieve states that are substantially closer to the query state, enabling
more reliable local linear approximation and producing slightly higher scores.

Moreover, we would like to note that for both Hammer-Human and Hammer-Cloned, the extremely
low proportion of high-reward transitions makes it inherently difficult to retrieve any local neigh-
borhood that provides strong positive supervision. As a result, even if the Q-network successfully
fits a local linear approximation, it rarely observes transitions that reliably correspond to high-return
behavior. Consequently, the learned Q-values cannot meaningfully distinguish truly rewarding actions,
leading to uniformly low evaluation scores across both datasets.
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I.6 ANALYSIS ON THE RELATIONSHIP AMONG THEORETICAL d AND K

In the theory, a local set Ωd
squery

is defined as all transitions whose states fall within a radius-d
neighborhood around s. This radius determines the intrinsic “locality scale” at which the Q-function
is assumed to be approximately linear. However, in practice, the radius d is not directly tunable: it
depends on the underlying density and geometry of the dataset and is unknown to the algorithm.

Instead, ICQL controls locality through the retrieval size k. Retrieving the top-k nearest neighbors
is equivalent to selecting a data-adaptive radius, where dk = max(si,·)∈top-k ||si − s||22 and d̄k =

max(si,·)∈top-k ||s′i − s′||22, so that the practical neighborhood is exactly the theoretical local set
with radius (dk, d̄k). The distribution of mean distance between query states and retrieved states of
different k is visualized in Figure 8.

Medium-Expert Medium Medium-Replay
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

Walker2d: Dataset State L2 Distance Mean Distribution
K

10
20
30
40

(a) Medium-Expert

Medium-Expert Medium Medium-Replay
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Va
lu

e

Hopper: Dataset State L2 Distance Mean Distribution
K

10
20
30
40

(b) Medium

Medium-Expert Medium Medium-Replay
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lu

e

HalfCheetah: Dataset State L2 Distance Mean Distribution
K

10
20
30
40

(c) Medium-Expert

Complete Partial Mixed
Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu

e

Kitchen: Dataset State L2 Distance Mean Distribution
K

10
20
30
40

(d) Medium

Figure 8: Distribution of mean distance between query states and retrieved states of different k.

Thus, k determines the effective radius implicitly and monotonically: larger k expands the radius
(dk, d̄k) and increases the size and heterogeneity of Ωdk

s , while smaller k leads to tighter neighbor-
hoods with more consistent local value structure.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I.7 ADDITIONAL VISUALIZATION ON LEARNED Q-VALUE COMPARISON

We extend the visualization analysis of learned Q-values of ICQL and IQL by comparing with
Q-value learned with online RL method SAC on Walker2d-Medium-Expert, Walker2d-Medium and
Walke2d-Medium-Replay datasets. We scale all Q estimates into the [0,1] range before visualization.
We also include additional scatter plots comparing each method’s estimated Q-values against the
SAC oracle. The visualization are shown in Figure 9 and Figure 10. These plots clearly show that
the correlation patterns between ICQL and SAC is better than that between IQL and SAC, indicating
ICQL can produce more accurate value estimation than IQL.
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Figure 9: Q-value of Walker2d-Medium-Expert, Walker2d-Medium, and Walker2d-Medium-Replay
dataset on t-SNE mapped state distribution.
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Figure 10: Q-value correlation of Walker2d-Medium-Expert, Walker2d-Medium, and Walker2d-
Medium-Replay dataset. Red: Correlation between Q-values learned by IQL and SAC. Blue:
Correlation between Q-values learned by ICQL and SAC.
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