

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IN-CONTEXT COMPOSITIONAL Q-LEARNING FOR OF- FLINE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurately estimating the Q-function is a central challenge in offline reinforcement learning. However, existing approaches often rely on a single global Q-function, which struggles to capture the compositional nature of tasks involving diverse sub-tasks. We propose In-context Compositional Q-Learning (ICQL), the first offline RL framework that formulates Q-learning as a contextual inference problem, using linear Transformers to adaptively infer local Q-functions from retrieved transitions without explicit subtask labels. Theoretically, we show that under two assumptions—linear approximability of the local Q-function and accurate weight inference from retrieved context—ICQL achieves bounded Q-function approximation error, and supports near-optimal policy extraction. Empirically, ICQL substantially improves performance in offline settings: improving performance in kitchen tasks by up to 16.4%, and in Gym and Adroit tasks by up to 8.6% and 6.3%. These results highlight the underexplored potential of in-context learning for robust and compositional value estimation, positioning ICQL as a principled and effective framework for offline RL.

1 INTRODUCTION

Offline reinforcement learning (Offline RL) aims to learn effective policies from fixed datasets without further interaction with the environment (Fujimoto et al., 2019; Lange et al., 2012). This setting is particularly important in real-world domains such as robotics (Kalashnikov et al., 2018), logistics (Wang et al., 2021), and operations research (Hubbs et al., 2020; Mazyavkina et al., 2021), where environment access is limited, data collection is expensive or risky, and historical data is often the only available resource. The central challenge of this modeling paradigm is the potential distributional shift: when the learned policy queries state-action pairs outside the dataset support, value function extrapolation can lead to severe overestimation and degenerate performance. (Fu et al., 2020; Kumar et al., 2020)

Contemporary methods primarily employ policy constraints (Chen et al., 2021b) or value regularization (Kumar et al., 2020; Kostrikov et al., 2021) to address this challenge. However, policy constraints are largely limited by the behavior policy that are used to collect offline data, and exhibit a trade-off between generalization and safe constraint adherence. While recent value regularization methods aim to provide conservative references for softer penalty on out-of-distribution actions, the optimality of the learned value function is not guaranteed due to limited and potentially biased static dataset.

We observe that, for each RL control task, the state space can be inherently divided into multiple sub-tasks. Although ideally a action-value function can be expressive enough to perfectly capture state-action value, the knowledge may not be fully transferrable among sub-tasks. For example, in Mujoco Locomotion tasks, knowledge about how to walk faster may not be helpful for solving how to recover from an unexpected non-nominal states. A visualization of this situation can be found in Figure 1, which shows the distribution of states after dimensionality reduction, colored by their actual future return in the offline dataset. **Moreover, although states in the dataset can be grouped into coherent clusters, where each typically corresponding to a specific subtask, two clusters that appear geometrically may nevertheless correspond to semantically different behaviors and exhibit distinct long-horizon returns.** Under the condition of insufficient offline data and inability of exploration, this property are not naturally captured by an offline value learning algorithm that fits a single global value function.

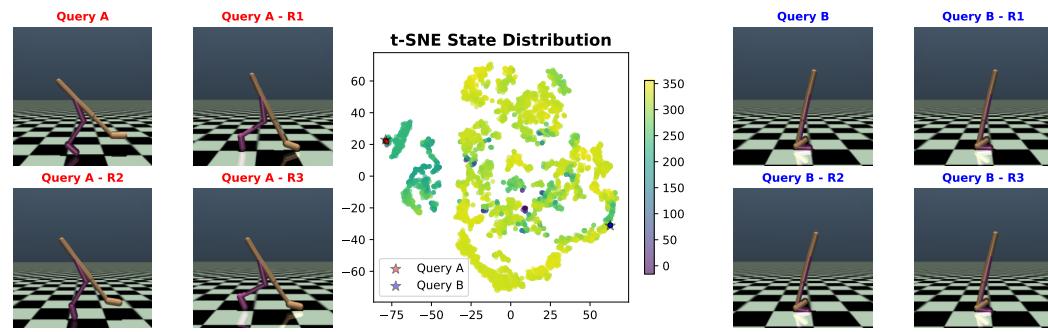


Figure 1: Center: dimension-reduced state distribution and corresponding value estimation by an SAC critic on Walker2d-Medium-Expert dataset. Left and right grids are two groups of similar states.

To address these challenges, we propose to cast value learning in offline reinforcement learning as a contextual inference problem, enabling local Q-function approximation via in-context learning. Specifically, we introduce In-context Compositional Q-Learning (ICQL), a general framework for offline RL that leverages the in-context learning capabilities of linear Transformers to infer local Q-functions from small, retrieved transition sets. Rather than fitting global approximators of value function, ICQL leverages the compositional nature and local structure of the task to learn the family of value functions, enabling flexible adaptation of value estimation locally within context windows. Our key contributions are summarized as follows:

- We introduce the first offline RL framework ICQL that **formulates Q-learning as a contextual inference problem**, leveraging in-context learning with linear Transformers to adaptively infer local Q-functions without requiring explicit subtask labels or structure.
- We provide a theoretical analysis showing that **ICQL achieves bounded approximation error** under two assumptions: linear approximability of the local Q-function and accurate weight inference from retrieved context, and prove the greedy policy with respect to it is guaranteed to be **near-optimal**.
- **ICQL improves the performance in offline settings through in-context local approximation**, and we demonstrate the effectiveness of our approach ICQL under both offline Q-learning and offline actor-critic frameworks. On the Gym and Adroit tasks, ICQL yields score improvements by **8.6%** and **6.3%**. Notably, on the Kitchen tasks, ICQL achieves a **16.4%** performance improvement over the second best baseline. We also show that ICQL does produce better value estimation. These results highlight the underexplored potential of linear attention in enabling robust and compositional value estimation for offline RL.
- We conduct extensive ablation studies to isolate the contributions of in-context learning and localized value inference. In addition, we investigate the impact of different retrieval strategies—including similarity metrics and context selection criteria—on overall performance and stability.

2 RELATED WORK

Offline Reinforcement Learning. Offline RL aims to learn effective policies from static datasets without further environment interaction. Several recent approaches address distributional shift and overestimation in this setting by modifying Q-learning objectives or introducing conservative regularization. Notable examples include CQL (Kumar et al., 2020), IQNL (Kostrikov et al., 2022) and TD3+BC (Fujimoto & Gu, 2021). CQL introduces a conservative penalty on Q-values for out-of-distribution actions to prevent value overestimation in offline settings. TD3+BC combines TD3 with behavior cloning loss to bias policy updates toward the dataset actions while retaining Q-learning. And IQNL removes explicit policy optimization and learns value-weighted regression targets to implicitly extract high-value actions from offline data. These methods rely on global Q-function approximators trained across the entire state-action space, often leading to poor generalization

108 in compositional environments. In contrast, our approach decomposes value learning into local
 109 estimation problems, using in-context inference to adapt Q-functions to local transition dynamics
 110 without requiring additional supervision.

111 **In-context Learning in RL.** Recent work has applied Transformers to offline RL, using sequence
 112 modeling to learn return-conditioned policies (Zhao et al., 2025). For example, Decision Transformer
 113 (Chen et al., 2021a) and Gato (Reed et al., 2022) treat trajectories as sequences, while replay-based
 114 in-context RL (Chen et al., 2021a; Reed et al., 2022) uses Transformers for behavior cloning and
 115 reward learning. These approaches leverage the ability of pre-trained Transformers to adapt via
 116 prompt conditioning or in-context learning. In-context learning has shown both strong theoretical
 117 foundation (von Oswald et al., 2023; Shen et al., 2024; Wang et al., 2025b) and empirical performance
 118 across tasks (Hollmann et al., 2023; Micheli et al., 2023) and is increasingly studied in supervised
 119 settings (Laskin et al., 2023; Lee et al., 2023; Mukherjee et al., 2024). (Laskin et al., 2023) proposes
 120 Algorithm Distillation (AD) to mimic the data collection policy, but it is constrained by the quality of
 121 the original algorithm. DPT (Lee et al., 2023) improves regret in contextual bandits via in-context
 122 learning, but assumes access to optimal actions, which is often unrealistic in offline RL. PreDeToR
 123 (Mukherjee et al., 2024) adds reward prediction to decision transformers, yet still focuses on action
 124 generation. While these approaches focus on directly generating actions or policies from trajectories,
 125 they do not explicitly target value estimation, which are out of our research scope. Hence, we will not
 126 include these methods as our baselines. While recent works have explored Transformers in offline RL
 127 primarily for trajectory modeling or return-conditioned generation (Chen et al., 2021a; Laskin et al.,
 128 2023; Mukherjee et al., 2024), we instead focus on using linear attention as a tool for in-context
 129 value learning. Our results suggest that linear attention, when applied for local Q-function estimation,
 130 offers strong performance and generalization benefits. To our knowledge, this is the first work to
 demonstrate such potential of linear attention for compositional value-based offline RL.

3 METHODOLOGY

3.1 LOCAL Q-FUNCTIONS

In this section, we define the local Q-functions for offline RL based on the local neighborhood
 corresponding to each state. We define \mathcal{D} as the dataset collecting all the offline transitions.

Definition 3.1. (Local Q-function Approximation) Given a transition $(s, a, r, s', a') \in \mathcal{D}$, there exist
 $d, \bar{d} > 0$ such that any nearby transition $(\bar{s}, \bar{a}, \bar{r}, \bar{s}', \bar{a}') \in \mathcal{D}$ is defined as

$$(\bar{s}, \bar{a}, \bar{r}, \bar{s}', \bar{a}') \in \left\{ (s_i, a_i, r_i, s'_i, a'_i) \in \mathcal{D} \mid \|s_i - s\|_2^2 \leq d^2 \text{ and } \|s'_i - s_i\|_2^2 \leq \bar{d}^2 \right\} \triangleq \Omega_s^{(d, \bar{d})}. \quad (1)$$

For any transition $(\bar{s}, \bar{a}, \bar{r}, \bar{s}', \bar{a}') \in \Omega_s^{(d, \bar{d})}$, there exists an optimal uniform local weight vector w_s^*
 such that the local Q-function approximation is defined as

$$\hat{Q}_{\Omega_s^{(d, \bar{d})}}(\bar{s}, \bar{a}) \triangleq w_s^{*T} \phi(\bar{s}, \bar{a}), \quad \forall (\bar{s}, \bar{a}, \bar{r}, \bar{s}', \bar{a}') \in \Omega_s^{(d, \bar{d})}, \quad (2)$$

where the function $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ is the feature function of the state-action pair (\bar{s}, \bar{a}) . The best
 approximation of local Q-function $Q_{\Omega_s^{(d, \bar{d})}}(\bar{s}, \bar{a})$ is $\hat{Q}_{\Omega_s^{(d, \bar{d})}}(\bar{s}, \bar{a})$, i.e., there exists some $\varepsilon_{\text{approx}}^s > 0$
 such that

$$\left| Q_{\Omega_s^{(d, \bar{d})}}(\bar{s}, \bar{a}) - w_s^{*T} \phi(\bar{s}, \bar{a}) \right| \leq \varepsilon_{\text{approx}}^s, \quad \forall (\bar{s}, \bar{a}, \bar{r}, \bar{s}', \bar{a}') \in \Omega_s^{(d, \bar{d})}. \quad (3)$$

In the rest of this paper, we will ignore \bar{d} in the notation of $\Omega_s^{(d, \bar{d})}$ in Equation (1), since the condition
 $\|\bar{s}' - \bar{s}\|_2^2 \leq \bar{d}^2$ for some $\bar{d} > 0$ can be easily held in real continuous problems. We will use Ω_s^d to
 represent $\Omega_s^{(d, \bar{d})}$ instead. The local Q-function defined in Equation (2) is a local formalization for
 the general linear Q-function approximation, which has been widely used in previous research (Yin
 et al., 2022; Du et al., 2019; Poupart et al., 2002; Parr et al., 2008). We assume that for each local
 domain Ω_s^d , the local Q-function should have its own state-dependent local structure. This has been
 examined both theoretically and practically to give a better Q-function approximation and show great
 performances in complex tasks (see more details about related work in Section C). **In practice, the
 radius d is not directly tunable: it depends on the underlying density and geometry of the dataset and
 is unknown to the algorithm.** Therefore, we adopt a retrieval mechanism with size parameter k to
 practically controls locality.

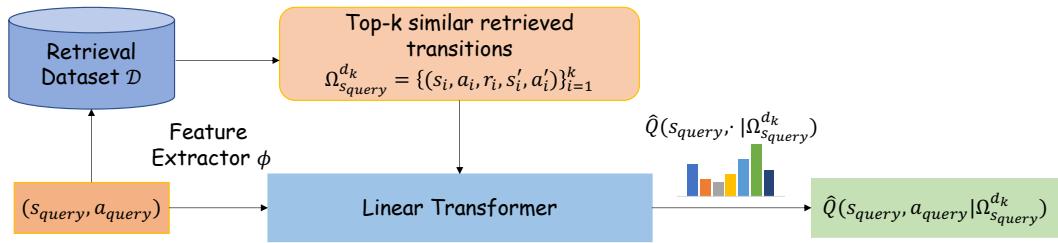


Figure 2: An overview of In-Context Compositional Q-Learning (ICQL). Given a query state-action pair $(s_{\text{query}}, a_{\text{query}})$, the model embeds it via our feature extractor ϕ , retrieves top- k similar transitions from a static offline dataset \mathcal{D} , and forms a local context set. A local linear Q-function approximation $\hat{Q}(s, a | \Omega_{s_{\text{query}}}^{d_k}) = w_s(\Omega_{s_{\text{query}}}^{d_k})^\top \phi(s, a)$ defined in Definition 3.1 is then fitted using the retrieved context $\Omega_{s_{\text{query}}}^{d_k}$ defined in Section 3.2, and used to update the actor. This enables compositional reasoning over local subtasks without requiring explicit subtask labels.

3.2 RETRIEVAL METHODS

In this section, we will introduce the approach to retrieve the transitions from the offline dataset \mathcal{D} . We mainly focus on state-similar retrieval, random retrieval and state-similar-with-high-reward retrieval. Each retrieval approach captures different coverage number of the local neighborhood $\Omega_{s_{\text{query}}}^{d_k}$ corresponding to the query state s_{query} . Both state-similar retrieval and state-similar-with-high-reward retrieval are supposed to capture more accurate and thorough local information from the local neighborhood Ω_s^d , and the main difference is that the state-similar retrieval is able to capture more diversity in the action space while the state-similar-with-high-rewards retrieval can ideally retrieve high-quality transitions. We will give the definition for state-similar retrieval in this section. Refer Section D to see more details and the definitions for the other two retrieval methods.

Definition 3.2 (State-Similar Retrieval). Given the query state s_{query} , ICQL retrieves k many transitions based on the smallest l_2 -distance between the retrieved state s_i and s_{query} , i.e.,

$$\Omega_{s_{\text{query}}}^k \triangleq \left\{ (s_i, a_i, r_i, s'_i, a'_i) \in \mathcal{D} \mid s_i \in \arg \text{top-}k \left\{ -\|s_{\text{query}} - s_i\|_2^2 \right\} \right\}. \quad (4)$$

Let us set $d_k^{s_{\text{query}}} \triangleq \max_{(s_i, a_i, r_i, s'_i, a'_i) \in \Omega_{s_{\text{query}}}^k} \{\|s_{\text{query}} - s_i\|^2\}$, then we can conclude that $\overline{\Omega}_{s_{\text{query}}}^k = \Omega_{s_{\text{query}}}^{d_k^{s_{\text{query}}}}$. $d_k^{s_{\text{query}}}$ should be dependent on the query state s_{query} , but to make it easier for readers to follow, we will use d_k to represent $d_k^{s_{\text{query}}}$. Since our main ICQL utilizes the fixed state-similar retrieval method, we will use $\Omega_{s_{\text{query}}}^{d_k}$ to denote the retrieved context fed into the context of ICQL for notation consistency. In the next section, we will show how we use the transitions from $\Omega_{s_{\text{query}}}^{d_k}$ to learn the best local Q-function approximation $\hat{Q}_{\Omega_{s_{\text{query}}}^{d_k}}(s, a)$ for all $(s, a, r, s', a') \in \Omega_{s_{\text{query}}}^{d_k}$ through in-context learning.

3.3 IN-CONTEXT COMPOSITIONAL Q-LEARNING

Now, we are ready to show how we can learn compositional Q-functions through contextual inference. First, we will define the context-dependent weight function to estimate the optimal local weight vector w_s^* defined in Definition 3.1 corresponding to each state s .

Definition 3.3 (Context-dependent Weights). The local weight function $w_s : \mathcal{P}(\Omega) \rightarrow \mathbb{R}^d$ is a context-dependent weight function inferred through in-context learning or retrieval-based adaptation, where $\mathcal{P}(\Omega) = \{A \mid A \subseteq \Omega\}$ is the power set of Ω and Ω contains all the possible transitions for some certain task.

We want to clarify that the offline dataset $\mathcal{D} \subseteq \Omega$. Based on Definition 3.3, there should exist some $\Omega_s^* \subseteq \Omega$ which leads to $w_s(\Omega_s^*) = w_s^*$. And it is not necessary that $\Omega_s^* \subseteq \mathcal{D}$. We can use different retrieval methods to cover Ω_s^* as much as possible to achieve a better weight approximation. Then for any query state s_{query} and action a_{query} , suppose $\Omega_{s_{\text{query}}}^{d_k}$ is the set collecting the k many retrieved

216 transitions by the state-similarity distance d_{\min} from \mathcal{D} defined in Section 3.2 and we feed $\Omega_{s_{\text{query}}}^d$
 217 into the prompt matrix, we can learn a context-dependent Q-function approximation denoted as
 218

$$219 \quad \hat{Q}(s, a | \Omega_{s_{\text{query}}}^{d_k}) = w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) \quad (5)$$

220 to approximate $\hat{Q}_{\Omega_{s_{\text{query}}}^{d_k}}(s, a)$ defined in Equation (2). Next, we will explain how we can learn the lo-
 221 cal weight vector $w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})$ by in-context TD learning. The network updates $w(s_{\text{query}} | \Omega_{s_{\text{query}}}^{d_k})$
 222 iteratively as for each retrieved transition $(s, a, r, s', a') \in \Omega_{s_{\text{query}}}^{d_k}$:
 223

$$224 \quad \begin{aligned} & w_{s_{\text{query}}}^{\text{new}}(\Omega_{s_{\text{query}}}^{d_k}) \\ &= w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) + \alpha \left(r + \gamma \hat{Q}(s', a' | \Omega_{s_{\text{query}}}^{d_k}) - \hat{Q}(s, a | \Omega_{s_{\text{query}}}^{d_k}) \right) \nabla_w \hat{Q}(s, a | \Omega_{s_{\text{query}}}^{d_k}) \\ &= w(s_{\text{query}}) + \alpha \left(r + \gamma w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') - w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) \right) \phi(s, a), \end{aligned} \quad (6)$$

225 where α is the learning rate, the first equality is due to SARSA (Sutton & Barto, 2018) and the second
 226 equality is due to Equation (5). Please refer Section E to see more details about the construction of
 227 our linear transformers and the theorem to prove our proposed ICQL can implement in-context TD
 228 learning.

229 For training ICQL , we follow IQL (Kostrikov et al., 2021) to performs value iteration via expectile
 230 regression and policy extraction via advantaged-weighted regression. To be more specific, the critic
 231 loss is calculated with our local Q-function approximation:
 232

$$233 \quad \mathcal{L}_{\text{critic}} = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\rho_{\tau} \left(\hat{Q}(s, a | \Omega_s^{d_k}) - y \right) \right], \quad (7)$$

234 where $y = r + \gamma V(s' | \Omega_{s'}^{d_k})$, $V(s' | \Omega_{s'}^{d_k}) = \mathbb{E}_{a' \sim \pi} \left[\hat{Q}(s', a' | \Omega_{s'}^{d_k}) \right]$, V is also a context dependent
 235 value estimator and $\rho_{\tau}(\cdot)$ denotes the expectile regression error. The policy is optimized via advantage-
 236 weighted regression, given the advantage based on local value estimation depending on current state
 237 and its retrieved similar states:
 238

$$239 \quad \mathcal{L}_{\text{policy}} = \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{a \sim \pi} \left[\exp \left(\beta \cdot (\hat{Q}(s, a | \Omega_s^{d_k}) - V(s | \Omega_s^{d_k})) \right) \log \pi(a | s) \right] \right]. \quad (8)$$

240 After training, the extracted policy can be evaluated on its own without extra retrieval process or
 241 contextual inference.

242 3.4 THEORETICAL ANALYSIS ON ICQL

243 In this section, we analyze the theoretical properties of our algorithm ICQL . ICQL captures the
 244 compositional and local structures of complex decision-making tasks by enabling the Q-function to
 245 vary flexibly across different state regions. However, the performance of such local approximators
 246 depends critically on two factors:
 247

- 248 (i) the expressiveness of the feature representation $\phi(s, a)$,
- 249 (ii) the accuracy of the learned weight function $w_s(\Omega_s^{d_k})$ in approximating the optimal local
 250 weight w_s^* corresponding to the state s and the retrieved offline transition set $\Omega_s^{d_k}$.

251 To show that the performance of the greedy policy with respect to our ICQL is guaranteed to
 252 be near-optimal, we first need to derive point-wise and expected bounds on the local Q-function
 253 approximation error, highlighting how both approximation and weight estimation errors contribute
 254 to the total error. Building on these results, we further characterize how the approximation error
 255 propagates to policy sub-optimality through the performance difference lemma. These analyses
 256 provide theoretical justification for the importance of accurate local value estimation in achieving
 257 strong policy performance in offline RL settings. We will only show some necessary assumptions
 258 and the main theorem of near-optimal policy by ICQL in this section. Refer Section F to see more
 259 detailed and comprehensive proofs.

260 **Assumption 3.1.** Let $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ be a fixed feature map. We assume that for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,
 261 the feature norm is bounded as $\|\phi(s, a)\| \leq B_{\phi}$.

270 **Algorithm 1** In-context Q-Learning (ICQL)

271 1: **Input:** Offline dataset \mathcal{D} , the number of retrieved transitions k , feature dimension d .
272 2: **Initialize:** Linear transformer TF_θ^Q with parameters θ , feature extractor ϕ .
273 3: Sample trajectory $\{(s_i, a_i, r_i)\}_{i=0}^{T-1} \sim \mathcal{D}$.
274 4: For each query state s_i , retrieve k sample states s_i^0, \dots, s_i^{k-1} based on state-similar retrieval method defined
275 in Definition 3.2 and extract each of the corresponding transitions $\{(s_i^j, a_i^j, r_i^j, s_i'^j, a_i'^j)\}_{j=0}^{k-1}$.
276 5: //In-context Q value estimation.
277 6: **for** $t = 0, \dots, T - 1$ **do**
278 7: Construct the input prompt matrix Z_t by Equation (24).
279 8: $\hat{Q}_t \leftarrow TF_\theta^Q(Z_t)[2d + 1, k + 1]$ by Equation (16).
280 9: **end for**
281 10: Update the parameters θ, ϕ based on Equation (7) and Equation (8).

282
283 *Remark 3.2.* Assumption 3.1 is commonly used in previous research (Wang & Zou, 2020; Bhandari
284 et al., 2018; Shen et al., 2020). In our experiments, we use tanh activation function at the last layer of
285 our feature extractor ϕ , which means each component of the feature vector $\phi(s, a)$ is bounded by the
286 positive constant 1. Hence, we can conclude that $\|\phi(s, a)\| \leq d$, where d is the feature dimension.
287 This remark validates our Assumption 3.1.

288 **Assumption 3.3** (Set Coverage). For each query state $s_{\text{query}} \in \mathcal{S}$, let $\Omega_{s_{\text{query}}}^*$ denote the ideal local
289 transition set defined in Section 3.3. Suppose the retrieved set $\Omega_{s_{\text{query}}}^{d_k}$ satisfies
290

$$\kappa_{s_{\text{query}}} \triangleq \frac{|\Omega_{s_{\text{query}}}^{d_k} \cap \Omega_{s_{\text{query}}}^*|}{|\Omega_{s_{\text{query}}}^*|} \geq \sigma, \quad (9)$$

291 for some coverage ratio $\sigma \in (0, 1]$. Equivalently, at least $m = \sigma |\Omega_{s_{\text{query}}}^*|$ transitions from $\Omega_{s_{\text{query}}}^*$ are
292 contained in $\Omega_{s_{\text{query}}}^{d_k}$.
293

294 *Remark 3.4.* We use Assumption 3.3 to claim how many transitions from $\Omega_{s_{\text{query}}}^*$ can be covered by
295 our retrieved set $\Omega_{s_{\text{query}}}^{d_k}$. This type of coverage condition is standard in nonparametric regression
296 (Györfi et al., 2002; Devroye et al., 1996; Cover & Hart, 1967; Kpotufe, 2011) and has also been
297 widely adopted in the analysis of offline RL through concentrability or coverage coefficients (Munos,
298 2003; 2007; Antos et al., 2008; Chen et al., 2019; Xie et al., 2021). The distance d_k and which
299 retrieval method is used should affect the value κ_s . We show the ablation study on the number of
300 transitions retrieved and the retrieval method in Section 4.3.

301 We now show our main theorem that the performance of the greedy policy with respect to the learned
302 local Q-function approximation $\hat{Q}(s, a | \Omega_{s_{\text{query}}}^{d_k})$ is guaranteed to be near-optimal.

303 **Theorem 3.5** (Policy Performance Gap). *Suppose Assumptions 3.1 and 3.3 hold, and the learned
304 policy π is greedy with respect to $\hat{Q}(s, a | \Omega_s^{d_k})$. Then, with probability at least $1 - \delta$, the performance
305 gap is bounded as*

$$306 J(\pi^*) - J(\pi) \leq \frac{2}{1 - \gamma} \mathbb{E}_{s \sim d^\pi} \left[\varepsilon_{\text{approx}}^s (1 + B_\phi) + C B_\phi \sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}} \right], \quad (10)$$

307 where $C > 0$ depends on B_ϕ, B_r and the conditioning of the local Gram matrix.

308 *Proof.* See more details in Section F.1. □

309 **4 EXPERIMENTS**310 **4.1 ENVIRONMENTS AND DATASETS**

311 We evaluate our method on a diverse set of continuous control benchmarks from the D4RL suite (Fu
312 et al., 2020), which includes three types of offline reinforcement learning environments:

313 **Mujoco tasks** (e.g., HalfCheetah-Medium) are standard locomotion environments based on
314 MuJoCo (Todorov et al., 2012), featuring smooth dynamics and dense rewards. These tasks are
315 commonly used to assess sample efficiency and stability.

Adroit tasks (e.g., Pen-Human) involve high-dimensional dexterous manipulation using a 24-DoF robotic hand. The action spaces are complex and the datasets are collected from human demonstration or behavior imitation, making them challenging due to limited action coverage.

Kitchen tasks (e.g., Kitchen-Complete) are long-horizon goal-conditioned tasks that require solving compositional subtasks (e.g., turning on lights, opening cabinets). These tasks emphasize multi-stage behavior and compositional reasoning.

4.2 MAIN RESULTS

We compare our method against five widely adopted offline RL algorithms: BC, DT (Chen et al., 2021b), TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020) and IQQL (Kostrikov et al., 2022). These baselines represent two complementary paradigms: the first three represent policy constraints, and the last two represents value regularization. The experiment results are shown in Table 1.

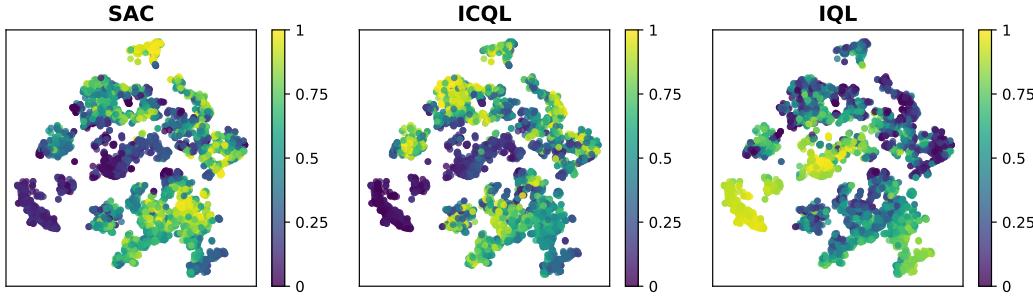
Table 1: Performance comparison across Mujoco, Adroit, and Kitchen tasks. Average and standard deviation of scores are reported over 5 random seeds.

Mujoco Tasks	BC	DT	TD3+BC	CQL	IQL	ICQL(Ours)	Gain(%)
Walker2d-Medium-Expert-v2	107.5	70.7	109.2	98.7	109.8	113.3\pm2.0	3.1%
Walker2d-Medium-v2	75.3	70.2	77.0	79.2	71.5	80.3\pm5.2	1.4%
Walker2d-Medium-Replay-v2	26.0	54.8	41.5	77.2	61.0	81.9\pm5.4	6.1%
Hopper-Medium-Expert-v2	52.5	57.5	78.2	105.4	98.5	108.8\pm4.5	3.2%
Hopper-Medium-v2	52.9	57.1	53.5	58.0	63.3	62.6 \pm 7.9	-1.5%
Hopper-Medium-Replay-v2	18.1	65.8	59.4	95.0	82.4	96.4\pm4.9	1.5%
HalfCheetah-Medium-Expert-v2	55.2	70.8	62.8	62.4	83.4	89.1\pm4.2	6.8%
HalfCheetah-Medium-v2	42.6	42.8	43.1	44.4	42.5	45.9\pm0.3	3.5%
HalfCheetah-Medium-Replay-v2	36.6	39.5	41.8	45.5	38.9	44.7 \pm 0.1	-1.8%
Average	51.9	58.8	62.9	74.0	72.4	80.3	8.6%
Adroit Tasks	BC	DT	TD3+BC	CQL	IQL	ICQL	Gain(%)
Pen-Human-v1	63.9	79.5	64.6	37.5	89.5	85.6 \pm 5.6	-4.3%
Pen-Cloned-v1	37.0	74.0	76.8	39.2	4.9	89.4\pm4.8	5.4%
Hammer-Human-v1	1.2	1.7	1.5	4.4	7.2	3.7 \pm 3.2	-49.4%
Hammer-Cloned-v1	0.6	3.7	1.8	2.1	0.5	4.5\pm5.5	23.4%
Door-Human-v1	2.0	5.5	0.2	9.9	9.8	17.1\pm5.5	73.1%
Door-Cloned-v1	0.0	3.2	-0.1	0.1	7.6	11.7\pm4.4	53.6%
Average	17.45	27.9	24.2	15.5	33.2	35.3	6.3%
Kitchen Tasks	BC	DT	TD3+BC	CQL	IQL	ICQL	Gain(%)
Kitchen-Complete-v0	65.0	52.5	57.5	43.8	59.2	79.3\pm2.1	22.0%
Kitchen-Mixed-v0	51.5	60.0	53.5	51.0	53.3	59.5\pm6.0	-0.8%
Kitchen-Partial-v0	38.0	55.0	46.7	49.8	45.8	61.5\pm5.8	11.8%
Average	51.5	55.8	52.6	48.2	52.8	66.8	16.4%

Results demonstrate that, on Mujoco tasks, ICQL outperforms second best baseline CQL by 8.6% on average. On Adroit tasks, ICQL improves IQL by 6.3%. Notably, on Kitchen task, ICQL achieves a **16.4% improvement** over DT on Kitchen tasks, highlighting the importance of compositional value estimation in environments with complex, multi-stage structure. However on Hammer-Human dataset, ICQL is inferior to two baseline methods, which may relate to the dataset quality issue. In Hammer-Human, the size of the dataset is smaller and the distance between query states and retrieved similar states are larger than those of Hammer-Cloned, making it harder for in-context learning. Overall, these results validate the general applicability of ICQL across both value-learning and actor-critic paradigms.

For investigating whether ICQL can produce more accurate value estimation than baseline methods, we conduct analysis on the learned Q function by comparing the Q prediction among ICQL, IQL and online RL method SAC. We plot their Q estimations of the same set of offline dataset entries, and leverage t-SNE for showing their respective Q-estimate distribution over the same state space. Figure 3 shows the results on Walker2d-Medium dataset, where ICQL shares an approximately 69%

378 similarity with SAC on Q estimation, while IQL can only achieve a similarity score about 0.29. This
 379 indicates that the superior performance of ICQL on IQL comes from a better Q estimation, ensured
 380 by local Q function estimation, over the noisy dataset.
 381

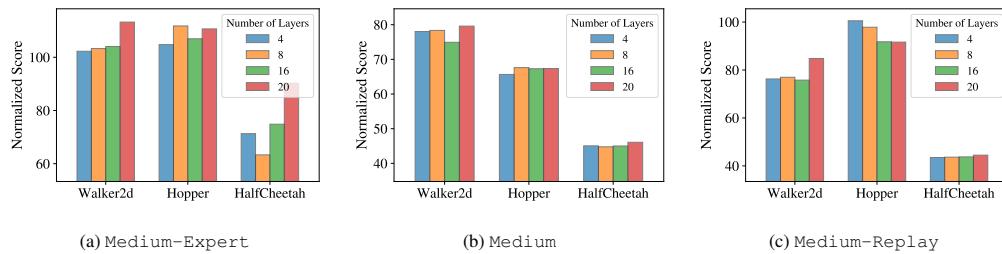


393 Figure 3: Q-value distribution on states after t-SNE dimension reduction, of Walker2d-Medium
 394 dataset. The partitioned value patterns support our hypothesis that Q-functions are inherently
 395 compositional, motivating localized value modeling.
 396
 397

398 4.3 ABLATION STUDIES

400 4.3.1 NUMBER OF IN-CONTEXT LEARNING LAYERS

402 In this experiment, we investigate the effect of in-context learning steps, which is controlled by
 403 the number of layers in the in-context critic network. The number of layers are selected from
 404 $\{4, 8, 16, 20\}$. The experiments are conducted on Mujoco tasks and on the ICQL. Figure 4 displays the
 405 experiment outcomes and Table 7 provides further numerical results. From Figure 4, the normalized
 406 scores generally get higher as the number of layers get larger in most of the tasks, indicating that a
 407 larger number of layers may lead to more sufficient in-context value-learning. While the phenomenon
 408 is not obvious in Hopper tasks, one possible reason is the significant distribution shift in Hopper
 409 environment due to the high variance of transitions dynamics.
 410



411 Figure 4: Normalized scores of different number of in-context learning layers on Mujoco tasks. Each
 412 color represents different number of layers, and the y-axis represents the normalized score.
 413
 414

424 4.3.2 INFLUENCE OF CONTEXT LENGTH

426 In this experiment, we investigate the effect of context lengths in ICQL. The context lengths are
 427 selected from $\{10, 20, 30, 40\}$. As shown in Figure 5, a context length of 20 yields the generally best
 428 performance for in-context TD-learning in Gym tasks, where too long or too short context lengths
 429 lead to sub-optimal results. These results provide evidence that the “locality” of context is crucial for
 430 in-context learning performance. While the context lengths get longer, the distance between query
 431 state and context transitions also gets larger, which may break the “local” definition and bring noise
 into the in-context learning process. Detailed numerical results are shown in Table 7.
 432

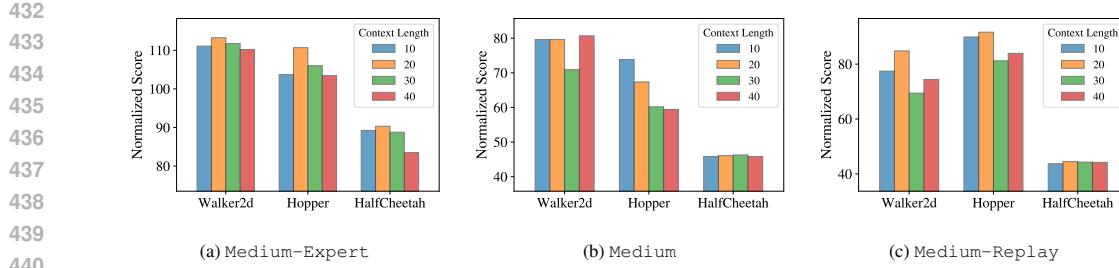


Figure 5: Normalized scores of context lengths on Mujoco tasks. Each color represents different context lengths, and the y-axis represents the normalized score.

4.3.3 CONTEXT RETRIEVAL STRATEGIES

In this experiment, we investigate the impact of retrieval quality, by applying different context retrieval strategies on ICQL . Besides the standard **State-Similar Retrieval**, we compare two extra retrieval strategies: (1) **Random Retrieval**, which selects transitions uniformly at random from the offline dataset; and (2) **State-Similar-with-High-Rewards Retrieval**, which further filters the similar-state candidates by selecting those with higher rewards. The definitions of these three retrieval methods are defined in Sections 3.2 and D.

Our results show that the **Random Retrieval** performs poorly and leads to unstable training across environments, highlighting the importance of context relevance. The **State-Similar Retrieval** yields overall strong and consistent performance, demonstrating the benefit of local state-based context construction. Interestingly, in certain tasks with lower data quality, such as `walker2d-medium` and `door-human`, the **State-Similar-with-High-Rewards Retrieval** outperforms others. This suggests that incorporating reward information during retrieval can help identify more informative transitions, leading to better Q-function estimation in noisy or suboptimal datasets.

Table 2: Ablation study on retrieval strategies used in ICQL . We compare three variants: **Random Retrieval**, **State-Similar Retrieval**, and **State-Similar-with-High-Rewards Retrieval**.

Dataset	Random	State-Similar	State-Similar-with-High-Rewards
Walker2d-Medium-v2	78.14	79.59	83.86
Walker2d-Medium-Replay-v2	67.45	84.81	75.12
Hopper-Medium-v2	74.14	67.36	59.93
Hopper-Medium-Replay-v2	81.04	91.63	90.82
HalfCheetah-Medium-v2	45.53	46.08	46.38
HalfCheetah-Medium-Replay-v2	43.35	44.48	43.15
Pen-Human-v1	75.10	84.37	84.82
Hammer-Human-v1	1.42	2.05	4.39
Door-Human-v1	11.99	12.89	15.59
Kitchen-Complete-v0	70.00	80.00	71.25
Kitchen-Mixed-v0	53.75	62.50	60.00
Kitchen-Partial-v0	47.5	62.50	50.00

5 CONCLUSION AND FUTURE WORK

We introduced ICQL , a novel offline RL framework that casts value estimation as an in-context inference problem using linear attention. By retrieving local transitions and fitting context-dependent local Q-functions, ICQL enables compositional reasoning without requiring subtask supervision. We provide theoretical guarantees to derive a near-optimal policy based on ICQL via greedy action extraction. Experiments show that ICQL achieves strong performance gains and provides closer value estimation to online reinforcement algorithms. These results highlight the potential of in-context learning as a powerful inductive bias for offline reinforcement learning. **While the methodology of ICQL is agnostic to the distance metric, the quality of retrieval stands as a practical concern for**

486 complex, high-dimensional state space. An important and promising direction for future work is
 487 incorporating ICQL with more sophisticated retrieval methods, such as pre-trained state encoders or
 488 value-aware learnable retriever.
 489

490 **REFERENCES**
 491

492 Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
 493 McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
 494 Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
 495 Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems
 496 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
 497 Long Beach, CA, USA*, pp. 5048–5058, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html>.

498

499 András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
 500 residual minimization based fitted policy iteration and a single sample path. *Machine Learning*,
 501 71:89–129, 2008.

502

503 Rushiv Arora. Hierarchical universal value function approximators, 2024. URL <https://arxiv.org/abs/2410.08997>.

504

505 Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Satinder Singh and
 506 Shaul Markovitch (eds.), *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
 507 February 4-9, 2017, San Francisco, California, USA*, pp. 1726–1734. AAAI Press, 2017. doi:
 508 10.1609/AAAI.V31I1.10916. URL <https://doi.org/10.1609/aaai.v31i1.10916>.

509

510 Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Ja-
 511 yaraman, and Sergey Levine. Smirl: Surprise minimizing reinforcement learning in unstable
 512 environments. In *9th International Conference on Learning Representations, ICLR 2021, Virtual
 513 Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=cPZOyoDloxl>.

514

515 Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
 516 learning with linear function approximation. In *Conference on learning theory*, pp. 1691–1692.
 517 PMLR, 2018.

518

519 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
 520 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 521 modeling. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
 522 Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual
 523 Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
 524 virtual*, pp. 15084–15097, 2021a. URL <https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html>.

525

526 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
 527 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 528 modeling, 2021b.

529

530 Xi Chen, Nan Jiang, and Alekh Agarwal. Information-theoretic considerations in batch reinforcement
 531 learning. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pp.
 532 1049–1058, 2019.

533

Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. *IEEE Transactions on
 534 Information Theory*, 13(1):21–27, 1967.

535

Luc Devroye, László Györfi, and Gábor Lugosi. *A Probabilistic Theory of Pattern Recognition*.
 536 Springer, 1996.

537

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function de-
 538 composition. *J. Artif. Intell. Res.*, 13:227–303, 2000. doi: 10.1613/JAIR.639. URL <https://doi.org/10.1613/jair.639>.

540 Simon Shaolei Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation
 541 sufficient for sample efficient reinforcement learning? *ArXiv*, abs/1910.03016, 2019. URL
 542 <https://api.semanticscholar.org/CorpusID:203902511>.
 543

544 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
 545 need: Learning skills without a reward function. In *7th International Conference on Learning
 546 Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL
 547 <https://openreview.net/forum?id=SJx63jRqFm>.
 548

549 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 550 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.
 550

551 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
 552 Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
 553 Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on
 554 Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
 555 20132–20145, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html>.
 556

557 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
 558 exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th
 559 International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning
 560 Research*, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/fujimoto19a.html>.
 561

562 László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A Distribution-Free Theory of
 563 Nonparametric Regression*. Springer, 2002.
 564

565 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 566 that solves small tabular classification problems in a second. In *The Eleventh International Confer-
 567 ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,
 568 2023. URL https://openreview.net/forum?id=cp5PvcI6w8_.
 569

570 Christian D. Hubbs, Hector D. Perez, Owais Sarwar, Nikolaos V. Sahinidis, Ignacio E. Grossmann,
 571 and John M. Wassick. Or-gym: A reinforcement learning library for operations research problems,
 572 2020. URL <https://arxiv.org/abs/2008.06319>.
 573

574 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza,
 575 Noah Jones, Shixiang Gu, and Rosalind W. Picard. Way off-policy batch deep reinforcement
 576 learning of implicit human preferences in dialog. *CoRR*, abs/1907.00456, 2019. URL <http://arxiv.org/abs/1907.00456>.
 577

578 Sham M. Kakade, Michael Kearns, and John Langford. Exploration in metric state spaces. In *Inter-
 579 national Conference on Machine Learning*, 2003. URL <https://api.semanticscholar.org/CorpusID:3713729>.
 580

582 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
 583 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scal-
 584 able deep reinforcement learning for vision-based robotic manipulation. *ArXiv*, abs/1806.10293,
 585 2018. URL <https://api.semanticscholar.org/CorpusID:49470584>.
 586

587 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 588 q-learning, 2021. URL <https://arxiv.org/abs/2110.06169>.
 588

589 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 590 q-learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.
 591

593 Samory Kpotufe. k-nn regression adapts to local intrinsic dimension. In *Advances in Neural
 594 Information Processing Systems (NeurIPS)*, volume 24, pp. 729–737, 2011.

594 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via bootstrapping error reduction. In H. Wallach,
 595 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 596 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

600 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 601 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

603 Sascha Lange, Thomas Gabel, and Martin Riedmiller. *Batch Reinforcement Learning*, pp. 45–73.
 604 Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-27645-3. doi: 10.1007/
 605 978-3-642-27645-3_2. URL https://doi.org/10.1007/978-3-642-27645-3_2.

607 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 608 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu
 609 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 610 distillation. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
 611 *Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=hy0a5MMPUV>.

613 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
 614 Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 615 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 616 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 617 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/8644b61a9bc87bf7844750a015feb600-Abstract-Conference.html.

620 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 621 review, and perspectives on open problems. *CoRR*, abs/2005.01643, 2020. URL <https://arxiv.org/abs/2005.01643>.

624 Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. *arXiv
 625 preprint arXiv:2507.07969*, 2025.

627 Yixiu Mao, Qi Wang, Yun Qu, Yuhang Jiang, and Xiangyang Ji. Doubly mild generalization for offline
 628 reinforcement learning. *Advances in Neural Information Processing Systems*, 37:51436–51473,
 629 2024.

630 Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
 631 for combinatorial optimization: A survey. *Computers & Operations Research*, 134:105400,
 632 2021. ISSN 0305-0548. doi: <https://doi.org/10.1016/j.cor.2021.105400>. URL <https://www.sciencedirect.com/science/article/pii/S0305054821001660>.

635 Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world
 636 models. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
 637 *Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=vhFu1Acb0xb>.

639 Subhojoyoti Mukherjee, Josiah P. Hanna, Qiaomin Xie, and Robert D. Nowak. Pretraining decision
 640 transformers with reward prediction for in-context multi-task structured bandit learning. *CoRR*,
 641 abs/2406.05064, 2024. doi: 10.48550/ARXIV.2406.05064. URL <https://doi.org/10.48550/arXiv.2406.05064>.

644 Rémi Munos. Error bounds for approximate policy iteration. In *Proceedings of the 20th International
 645 Conference on Machine Learning (ICML)*, pp. 560–567, 2003.

646 Rémi Munos. Performance bounds in l_p -norm for approximate value iteration. *SIAM Journal on
 647 Control and Optimization*, 46(2):541–561, 2007.

648 Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
 649 reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
 650 Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neu-
 651 ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
 652 cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 653 3307–3317, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html>.

655 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *arXiv preprint arXiv:2502.02538*,
 656 2025.

658 Ronald E. Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L. Littman.
 659 An analysis of linear models, linear value-function approximation, and feature selection for
 660 reinforcement learning. In *International Conference on Machine Learning*, 2008. URL <https://api.semanticscholar.org/CorpusID:11483966>.

662 Pascal Poupart, Craig Boutilier, Relu Patrascu, and Dale Schuurmans. Piecewise linear value
 663 function approximation for factored mdps. In *AAAI/IAAI*, 2002. URL <https://api.semanticscholar.org/CorpusID:8801238>.

666 Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
 667 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
 668 Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
 669 Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. *Trans. Mach. Learn. Res.*,
 670 2022, 2022. URL <https://openreview.net/forum?id=1ikK0kHjvj>.

671 Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
 672 In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on
 673 Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 1312–1320,
 674 Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/schaul15.html>.

676 Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
 677 Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl. *arXiv
 678 preprint arXiv:2410.07071*, 2024.

680 Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Asynchronous advantage actor critic:
 681 Non-asymptotic analysis and linear speedup. 2020.

682 Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn in-
 683 context by gradient descent? In *Forty-first International Conference on Machine Learning, ICML
 684 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=WsawczEqO6>.

687 Richard S Sutton and Andrew G Barto. *Reinforcement Learning: An Introduction*. MIT press, 2nd
 688 edition, 2018.

693 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
 694 minimalist approach to offline reinforcement learning. *Advances in Neural Information Processing
 695 Systems*, 36:11592–11620, 2023.

698 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 700 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 701 IEEE, 2012.

704 Johannes von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 705 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 706 descent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 707 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023,
 708 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning
 709 Research*, pp. 35151–35174. PMLR, 2023. URL <https://proceedings.mlr.press/v202/von-oswald23a.html>.

702 Jinyu Wang, Jingjing Fu, Rui Wang, Lei Song, and Jiang Bian. Pike-rag: specialized knowledge and
 703 rationale augmented generation, 2025a. URL <https://arxiv.org/abs/2501.11551>.

704
 705 Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers can learn temporal
 706 difference methods for in-context reinforcement learning. In *The Thirteenth International Conference
 707 on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025b. URL
 708 <https://openreview.net/forum?id=Pj06mxCXP1>.

709 Tianshi Wang, Qikai Yang, Ruijie Wang, Dachun Sun, Jinyang Li, Yizhuo Chen, Yigong Hu, Chaoqi
 710 Yang, Tomoyoshi Kimura, Denizhan Kara, and Tarek F. Abdelzaher. Fine-grained control of
 711 generative data augmentation in iot sensing. In *Neural Information Processing Systems*, 2024.
 712 URL <https://api.semanticscholar.org/CorpusID:276184922>.

713 Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei Zhang, Weimin Li,
 714 Xiongjun Pi, Jujie He, Chao Gao, Haitao Long, and Quan Yuan. Scc: an efficient deep rein-
 715 force learning agent mastering the game of starcraft ii. In Marina Meila and Tong Zhang
 716 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 717 *Proceedings of Machine Learning Research*, pp. 10905–10915. PMLR, 18–24 Jul 2021. URL
 718 <https://proceedings.mlr.press/v139/wang21v.html>.

719 Yue Wang and Shaofeng Zou. Finite-sample analysis of greedy-gq with linear function approximation
 720 under markovian noise. In *Conference on Uncertainty in Artificial Intelligence*, pp. 11–20. PMLR,
 721 2020.

722 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 723 *CoRR*, abs/1911.11361, 2019. URL <http://arxiv.org/abs/1911.11361>.

724 Tengyang Xie, Yuzhe Ma, Zhuoran Yang, and Zhaoran Wang. Bellman-consistent pessimism for
 725 offline reinforcement learning. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 726 volume 34, pp. 6683–6694, 2021.

727 Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient local
 728 planning with linear function approximation. In Sanjoy Dasgupta and Nika Haghtalab (eds.),
 729 *Proceedings of The 33rd International Conference on Algorithmic Learning Theory*, volume 167
 730 of *Proceedings of Machine Learning Research*, pp. 1165–1192. PMLR, 29 Mar–01 Apr 2022.
 731 URL <https://proceedings.mlr.press/v167/yin22a.html>.

732 Wenhao Zhao, Qiushui Xu, Linjie Xu, Lei Song, Jinyu Wang, Chunlai Zhou, and Jiang Bian.
 733 Unveiling markov heads in pretrained language models for offline reinforcement learning, 2025.
 734 URL <https://arxiv.org/abs/2409.06985>.

735 LLM USAGE STATEMENT

736 LLMs were used to aid the writing and polishing of the manuscript.

737 APPENDIX

738 A MORE EXPLANATIONS ABOUT COMPOSITIONAL Q-FUNCTIONS

739 We observed similar results when replacing return-to-go with reward or Q-values estimated by an
 740 online reinforcement learning-trained action-value function, which further strengthens our motivation.
 741 Taking Figure 1(c) as an example, which exhibits the most pronounced state clustering structure. We
 742 visualize randomly sampled states within neighboring regions. Dividing the space into four quadrants,
 743 we observe that: (a) States in the first quadrant are primarily associated with moving the kettle on
 744 the stove, (b) The second quadrant corresponds mainly to interacting with the light switch, (c) The
 745 third quadrant mostly involves manipulating the cabinet, and (d) the fourth quadrant includes states
 746 related to operating the microwave. These observations validate the motivation that similar states may
 747 share the same subtask to finish that it might be beneficial utilizing nearby context for Q-function
 748 estimation. Our experiments also show that ICQL has largely boosted performance on Kitchen tasks.

756 **B PRELIMINARY**
757758 **B.1 REINFORCEMENT LEARNING**
759

760 We consider an infinite-horizon Markov Decision Process (MDP) defined by the tuple
761 $(\mathcal{S}, \mathcal{A}, p_0, p_{\text{MDP}}, \mathcal{R}, \gamma)$, where \mathcal{S} and \mathcal{A} denote finite state and action spaces, respectively. The
762 reward function is $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, and the transition dynamics are governed by $p_{\text{MDP}}(s'|s, a)$,
763 which denotes the probability of transitioning to state s' from state s after taking action a . The initial
764 state distribution is $p_0 : \mathcal{S} \rightarrow [0, 1]$, and $\gamma \in [0, 1]$ is the discount factor.

765 At each timestep t , the agent observes state s_t , selects an action $a_t \sim \pi(\cdot|s_t)$ according to a stochastic
766 policy $\pi : \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$, receives a reward $r_t = \mathcal{R}(s_t, a_t)$, and transitions to the next state
767 $s_{t+1} \sim p_{\text{MDP}}(\cdot|s_t, a_t)$. This interaction generates trajectories of the form $(s_0, a_0, r_0, s_1, a_1, r_1, \dots)$.

768 Given a policy π , the associated Q-function and value function quantify the expected cumulative
769 discounted rewards starting from state-action pair (s_t, a_t) and state s_t , respectively:
770

$$771 \quad Q^\pi(s_t, a_t) \triangleq \mathbb{E}_{a_{t+1}, a_{t+2}, \dots \sim \pi} \left[\sum_{i=0}^{\infty} \gamma^i \mathcal{R}(s_{t+i+1}, a_{t+i+1}) | s_t, a_t \right], \quad (11a)$$

$$774 \quad V^\pi(s_t) \triangleq \mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [Q^\pi(s_t, a_t)]. \quad (11b)$$

776 The Q-function satisfies the *Bellman Expectation Equation*:
777

$$778 \quad Q^\pi(s, a) = \mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim p_{\text{MDP}}(\cdot|s, a)} [V^\pi(s')]. \quad (12)$$

779 Similarly, the value function satisfies:
780

$$781 \quad V^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} [Q^\pi(s, a)]. \quad (13)$$

783 The goal of reinforcement learning is to learn a policy $\pi_\theta(a|s)$ that maximizes the expected cumulative
784 discounted rewards. The optimal value functions satisfy the *Bellman Optimality Equations*:
785

$$786 \quad Q^*(s, a) = \mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim p_{\text{MDP}}(\cdot|s, a)} \left[\max_{a'} Q^*(s', a') \right], \quad (14a)$$

$$788 \quad V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a). \quad (14b)$$

790 In the offline setting, rather than interacting with the environment, the agent is provided with a fixed
791 dataset $\mathcal{D} = \{(s, a, r, s')\}$, collected by a behavior policy π_β . Offline RL algorithms aim to learn an
792 effective policy entirely from this static dataset \mathcal{D} , without any further environment interaction. A
793 key challenge in offline RL is the *distributional shift* (Kumar et al., 2019; Jaques et al., 2019; Levine
794 et al., 2020; Wu et al., 2019) between the learned policy π and the behavior policy π_β , which often
795 leads to overestimation and poor generalization when estimating Q-values for out-of-distribution
796 state-action pairs.
797

798 **B.2 IN-CONTEXT LEARNING WITH LINEAR ATTENTIONS**
799

800 Recently, there has been significant interest in understanding the theoretical capabilities of in-context
801 learning with linear attention mechanisms (Wang et al., 2025b), particularly in the context of random
802 instances of linear regression and simple classification tasks. We will formally introduce these
803 problem settings in this section. Throughout this paper, all vectors are treated as column vectors. We
804 denote the identity matrix in \mathbb{R}^n by I_n , and the $m \times n$ all-zero matrix by $0_{m \times n}$. For any matrix Z ,
805 we use Z^\top to denote its transpose, and use both $\langle x, y \rangle$ and $x^\top y$ interchangeably to denote the inner
806 product.
807

808 We define a prompt matrix $Z \in \mathbb{R}^{(d+1) \times (n+1)}$ as follows:
809

$$810 \quad Z \triangleq \begin{bmatrix} z^{(0)} & z^{(1)} & \dots & z^{(n-1)} & z^{(n)} \end{bmatrix} = \begin{bmatrix} x^{(0)} & x^{(1)} & \dots & x^{(n-1)} & x^{(n)} \\ y^{(0)} & y^{(1)} & \dots & y^{(n-1)} & 0 \end{bmatrix}, \quad (15)$$

810 where $\{x^{(i)}, y^{(i)}\}_{i=0}^{n-1}$ are context examples, $x^{(n)}$ is the query input with its corresponding response
 811 value $y^{(n)}$ masked as zero, and each $x^{(i)} \in \mathbb{R}^d$ and $y^{(i)} \in \mathbb{R}$ for all $i = 0, \dots, n$. Following (von
 812 Oswald et al., 2023), we define linear self-attention over the same prompt as
 813

$$814 \text{LinAttn}(Z; P, G) \triangleq P Z M (Z^\top G Z), \quad (16)$$

815 where $P, G \in \mathbb{R}^{(d+1) \times (d+1)}$ are learnable parameter matrices, and $M \in \mathbb{R}^{(n+1) \times (n+1)}$ is a fixed
 816 mask matrix defined as
 817

$$818 M \triangleq \begin{bmatrix} I_n & 0_{n \times 1} \\ 0_{1 \times n} & 0 \end{bmatrix}. \quad (17)$$

820 The goal of training linear transformers in this setting is to recover the unknown response variable
 821 corresponding to $x^{(n)}$, which is represented as zero in the prompt matrix Z . By appropriately
 822 constructing the parameter matrices P and G , the linear attention model in Equation (16) can
 823 successfully perform in-context learning for linear regression and simple classification tasks. However,
 824 the ability of such models to perform in-context learning for offline reinforcement learning remains
 825 poorly understood. And these analyses are purely theoretical and have not been empirically validated
 826 on practical tasks. Transformers can perform in-context supervised learning by mimicking gradient
 827 descent updates (von Oswald et al., 2023), and in-context reinforcement learning through TD-like
 828 methods via appropriately constructed linear attention mechanisms (Wang et al., 2025b). However,
 829 (Wang et al., 2025b) considers only the simplified setting of Markov Reward Processes (MRPs), where
 830 transitions and rewards depend solely on the current state, i.e., $s_{t+1} \sim p(\cdot | s_t)$ and $r_{t+1} = r(s_t)$,
 831 with time-dependent context representations. More precisely, their formulation assumes that each
 832 trajectory consists solely of temporally continuous steps. These restrictive assumptions do not hold
 833 in real-world decision-making problems, and their empirical results are limited to synthetic MRPs,
 834 which is hard to predict its performance on real-life RL tasks. To bridge this gap, we extend the
 835 analysis from MRPs to the more general MDP setting by estimating the state-action value function
 836 $Q(s, a)$ directly and removing the time dependency from the context representations.

837 C OTHER RELATED WORK

839 **Goal-conditioned and Hierarchical RL.** Goal-conditioned methods such as UVFA (Schaul et al.,
 840 2015) and HER (Andrychowicz et al., 2017) condition policies or value functions on explicit goal
 841 inputs to facilitate generalization across tasks. Extensions to compositional settings further decompose
 842 Q-functions into subgoal components (Arora, 2024). However, these approaches assume access
 843 to goal specifications or subtask labels, which are typically unavailable in offline settings. ICQL
 844 addresses this limitation by learning Q-functions conditioned on retrieved transition contexts, elimi-
 845 nating the need for task supervision and enhancing sample efficiency. Hierarchical reinforcement
 846 learning decomposes tasks into subgoals or options, enabling temporal abstraction and subpolicy
 847 reuse. Classical methods such as MAXQ (Dietterich, 2000), Option-Critic (Bacon et al., 2017),
 848 and HIRO (Nachum et al., 2018) explicitly model subtask boundaries and learn separate value func-
 849 tions for each. While effective when task structure is known or discoverable, these methods often
 850 rely on subgoal specification or auxiliary termination conditions. In contrast, ICQL operates without
 851 predefined subtask structure and efficiently leverages offline data to rapidly converge to a provable
 852 accurate local value function approximation. Unsupervised RL methods such as DIAYN (Eysenbach
 853 et al., 2019) and SMiRL (Berseth et al., 2021) aim to discover diverse behaviors or latent subpolicies
 854 without external rewards or supervision. Although these methods can implicitly uncover structure,
 855 they are typically designed for unsupervised exploration or pretraining rather than for accurate value
 856 estimation in offline settings. ICQL instead focuses on precise local Q-function inference conditioned
 857 on retrieved experiences, thereby improving compositional generalization and training stability in the
 858 offline RL regime.

859 **Linear Q-function Approximation.** Linear Q -function approximation has been widely used in
 860 previous research (Yin et al., 2022; Du et al., 2019; Poupart et al., 2002; Parr et al., 2008). Metric
 861 MDPs (Kakade et al., 2003), which gives the definition of the Q -function according to the state dis-
 862 tance metric, are a natural complement to more direct parametric assumptions on value functions and
 863 dynamics (Kakade et al., 2003). But none of them considers the local linear Q -function approximation
 864 based on the state distance metric. In our work, we focus on learning the better approximations of
 865 local value functions, while Kakade et al. (2003) formed an accurate approximation of the local

864 environment. We assume that for each local domain Ω_s^d , the local Q -function should have its own
 865 state-dependent local structure. This has been examined both theoretically and practically to give a
 866 better Q -function approximation and show great performances in complex tasks.
 867

868 869 D DETAILED DEFINITIONS OF RETRIEVAL METHODS

870 Retrieval methods show great performance among a lot of domains (Wang et al., 2024; 2025a). In
 871 this section, we will show the definitions for the other two retrieval methods – random retrieval and
 872 state-similar-with-high-rewards retrieval.
 873

874 **Definition D.1** (Random Retrieval). Given the query state s_{query} , randomly retrieved context for
 875 ICQL is defined as
 876

$$877 \bar{\Omega}_{s_{\text{query}}}^{\text{random}} \triangleq \left\{ (s_i, a_i, r_i, s'_i, a'_i) \in \mathcal{D} \mid (s_i, a_i, r_i, s'_i, a'_i) \sim \mathcal{D} \right\}_{i=0}^{k-1}. \quad (18)$$

878 **Definition D.2** (State-Similar-with-High-Rewards Retrieval). Given the query state s_{query} , $\bar{\Omega}_{s_{\text{query}}}^{\text{high}}$
 879 for ICQL is defined as k many transitions with the smallest l_2 -distance between the retrieved state s_i
 880 and s_{query} and the highest transition reward r_i , i.e.,
 881

$$882 \bar{\Omega}_{s_{\text{query}}}^{\text{high}} \triangleq \left\{ (s_i, a_i, r_i, s'_i, a'_i) \in \bar{\Omega}_{s_{\text{query}}}^k \mid (s_i, a_i, r_i, s'_i, a'_i) \in \arg \text{top-}k \{r_i\} \right\}, \quad (19)$$

883 where $\bar{\Omega}_{s_{\text{query}}}^k$ is defined in Equation (4).
 884

885 For the retrieval methods defined in Definitions 3.2, D.1, and D.2, we can relate them to
 886 Equation (1) by simply letting $d_1 \triangleq \min_{(s_i, a_i, r_i, s'_i, a'_i) \in \bar{\Omega}_{s_{\text{query}}}^k} \{ \|s_i - s_{\text{query}}\|_2 \}$ and $d_2 \triangleq$
 887 $\min_{(s_i, a_i, r_i, s'_i, a'_i) \in \bar{\Omega}_{s_{\text{query}}}^{\text{top}}} \{ \|s_i - s_{\text{query}}\|_2 \}$. Therefore, we can conclude that $\bar{\Omega}_{s_{\text{query}}}^k \subseteq \Omega_{s_{\text{query}}}^{d_1}$
 888 and $\bar{\Omega}_{s_{\text{query}}}^{\text{high}} \subseteq \Omega_{s_{\text{query}}}^{d_2}$, which implies that both state-similar retrieval and state-similar-with-high-
 889 reward retrieval can be bounded by some local neighborhood corresponding to the query state
 890 s_{query} .
 891

902 E DESIGNS OF LINEAR TRANSFORMERS FOR BOTH SPARSE-REWARD AND 903 DENSE-REWARD RL TASKS

904 In this section, we will explain how our ICQL is constructed and how it can be extended to sparse-
 905 reward tasks. Due to the initialization $w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) = 0$ for all s_{query} and Equation (6), we will
 906 observe that after one iteration update of the weight,
 907

$$908 \begin{aligned} 909 w_{s_{\text{query}}}^{\text{new}}(\Omega_{s_{\text{query}}}^{d_k}) \\ 910 &= w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) + \alpha \left(r + \gamma w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') - w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) \right) \phi(s, a) \quad (20) \\ 911 &= \alpha r \phi(s, a) \end{aligned}$$

912 It leads to $w_{s_{\text{query}}}^{\text{new}}(\Omega_{s_{\text{query}}}^{d_k}) \equiv 0$ when the tasks have sparse rewards, i.e., all the transition rewards r
 913 are equal to zero. It will lead to no weight update for ICQL . Hence, we propose a novel adapatve
 914

SARSA update rule for all the tasks augmented by Returns-to-go (RTGs), which is defined as

$$\begin{aligned}
w_{s_{\text{query}}}^{\text{new}}(\Omega_{s_{\text{query}}}^{d_k}) &= w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) \\
&+ \alpha \left[r + \gamma \left(\frac{w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a')}{\left(w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') + \text{RTG}_{s'} \right)} \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') \right. \right. \\
&+ \frac{\text{RTG}_{s'}}{\left(w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') + \text{RTG}_{s'} \right)} \cdot \text{RTG}_{s'} \Big) \\
&- \left(\frac{w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a)}{\left(w(s_{\text{query}})^T \phi(s, a) + \text{RTG}_s \right)} \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) \right. \\
&+ \left. \left. \frac{\text{RTG}_s}{\left(w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) + \text{RTG}_s \right)} \cdot \text{RTG}_s \right) \right] \phi(s, a) \\
&\approx w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) + \alpha \left[r + \gamma \left(\beta \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') + (1 - \beta) \cdot \text{RTG}_{s'} \right) \right. \\
&- \left. \left(\beta \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) + (1 - \beta) \cdot \text{RTG}_s \right) \right] \phi(s, a) \\
&= w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k}) + \alpha \left[\left(r + \gamma(1 - \beta) \cdot \text{RTG}_{s'} - (1 - \beta) \text{RTG}_s \right) \right. \\
&+ \left. \gamma \beta \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s', a') - \beta \cdot w_{s_{\text{query}}}(\Omega_{s_{\text{query}}}^{d_k})^T \phi(s, a) \right] \phi(s, a),
\end{aligned} \tag{21}$$

where $\beta \in [0, 1]$ is a task-dependent hyperparameter. We use the convex combination between $\hat{Q}(s', a' | \Omega_{s_{\text{query}}}^{d_k})$ and $\text{RTG}_{s'}$ to estimate each $Q_{\Omega_{s_{\text{query}}}^{d_k}}(s', a')$. To satisfy the construction in Equation (21), we will show our new design of input matrix, weight matrices for our **ICQL**. Given any query state s_{query} and N total many retrieved transitions in $\bar{\Omega}_{s_{\text{query}}}^{\text{random}}$. Using as shorthand $\phi_i \triangleq \phi(s_i, a_i)$ and $\phi'_i \triangleq \phi(s'_i, a'_i)$, the new input prompt matrix is define as

$$Z_0 = \begin{bmatrix} \phi_0 & \cdots & \phi_{N-1} & \phi_{\text{query}} \\ \gamma\beta\phi'_0 & \cdots & \gamma\beta\phi'_{N-1} & 0 \\ r'_0 & \cdots & r'_{N-1} & 0 \end{bmatrix}, \quad (22)$$

where $r'_i \triangleq r_i + \gamma(1 - \beta) \cdot \text{RTG}_{s'_i} - (1 - \beta)\text{RTG}_{s_i}$ for all $i = 0, \dots, N - 1$, and $\phi_{\text{query}} \triangleq \phi(s_{\text{query}}, a_{\text{query}})$ for any $a_{\text{query}} \in \mathcal{A}$. And for $\ell = 0, 1, \dots, L - 1$, each linear transformer layer ℓ has weight matrices P_ℓ and G_ℓ defined as

$$P_\ell \triangleq \begin{bmatrix} 0_{2d \times 2d} & 0_{2d \times 1} \\ 0_{1 \times 2d} & 1 \end{bmatrix}, G_\ell \triangleq \begin{bmatrix} -C_\ell^T & C_\ell^T & 0_{d \times 1} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 \end{bmatrix}, \quad (23)$$

where all the matrices $\{C_i\}^{L-1}$ are trainable parameters

Remark E.1. For Equation (22), when we set $\beta = 1$, Z_0 will recover the input prompt matrix for dense-reward tasks, which is defined as

$$Z_0 = \begin{bmatrix} \phi_0 & \cdots & \phi_{N-1} & \phi_{\text{query}} \\ \gamma\phi'_0 & \cdots & \gamma\phi'_{N-1} & 0 \\ r_0 & \cdots & r_{N-1} & 0 \end{bmatrix} \quad (24)$$

and the weight matrices P_ℓ and G_ℓ keep the same.

Next, we will prove how we can the weight update defined in Equation (6) by our design. First, we introduce the following lemma, which is motivated by the work of (Wang et al., 2025b) on MRPs.

Lemma E.2. Consider the input Z_0 and matrix weights P_0 and Q_0 , where

$$Z_0 = \begin{bmatrix} v_0^{(0)} & \dots & v_0^{(N-1)} & v_0^{(N)} \\ \xi_0^{(0)} & \dots & \xi_0^{(N-1)} & \xi_0^{(N)} \\ y_0^{(0)} & \dots & y_0^{(N-1)} & y_0^{(N)} \end{bmatrix}, P_0 \doteq \begin{bmatrix} 0_{2d \times 2d} & 0_{2d \times 1} \\ 0_{1 \times 2d} & 1 \end{bmatrix}, G_0 \doteq \begin{bmatrix} -C_0^T & C_0^T & 0_{d \times 1} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 \end{bmatrix}, \quad (25)$$

and $v^{(i)}, \xi^{(i)} \in \mathbb{R}^d$, $y^{(i)} \in \mathbb{R}$. According to $Z_1 \triangleq \text{LinAttn}(Z_0; P_0, G_0) = P_0 Z_0 M (Z_0^T G_0 Z_0)$ and let $y_1^{(N)}$ be the bottom right element of the next layer's output, i.e., $y_1^{(N)} \triangleq Z_1[2d+1, N+1]$, it holds that $y_1^{(N)} = -\langle \phi_N, w_1 \rangle$, where

$$w_1 = w_0 + \frac{1}{N} C_0 \sum_{j=0}^{N-1} (y_0^{(i)} + w_0^T \xi_0^{(i)} - w_0^T v_0^{(i)}) v_0^{(i)}. \quad (26)$$

Using the above lemma, we are ready to prove Theorem E.3.

Theorem E.3. Consider the L -layer linear transformer following Equation (16) and all matrices $\{P_\ell, G_\ell\}_{\ell=0}^L$, mask matrix M , the input prompt matrix Z_0 are defined in Equations (17), (23), and (24), respectively. Then $Z_\ell[2d+1, n+1]$, the bottom right element of the ℓ -th layer's output, holds that $Z_\ell[2d+1, n+1] = -\langle \phi_{\text{query}}, w_{s_{\text{query}}}^\ell(\Omega_{s_{\text{query}}}^{d_k}) \rangle$, where $\{w_{s_{\text{query}}}^\ell(\Omega_{s_{\text{query}}}^{d_k})\}$ is defined as $w_{s_{\text{query}}}^0(\Omega_{s_{\text{query}}}^{d_k}) = 0$ and for $\ell \geq 0$

$$\begin{aligned} & w_{s_{\text{query}}}^{\ell+1}(\Omega_{s_{\text{query}}}^{d_k}) \\ &= w_{s_{\text{query}}}^\ell(\Omega_{s_{\text{query}}}^{d_k}) + \frac{1}{N} C_\ell \sum_{j=0}^{N-1} (r_j + \gamma w_{s_{\text{query}}}^\ell(\Omega_{s_{\text{query}}}^{d_k})^T \phi_j' - w_{s_{\text{query}}}^\ell(\Omega_{s_{\text{query}}}^{d_k})^T \phi_j) \phi_j. \end{aligned} \quad (27)$$

Proof. Let $v_0^{(i)} = \phi_i = \phi(s_i, a_i)$, $\xi_0^{(i)} = \gamma \phi_i' = \phi(s_i', a_i')$, $y_0^{(i)} = r_i$ for $i \in \{0, \dots, N-1\}$ and $v_0^{(N)} = \phi_{\text{query}} = \phi(s_{\text{query}}, a_{\text{query}})$, $\xi_0^{(N)} = 0_{d \times 1}$, $y_0^{(N)} = 0$, we get

$$w_{s_{\text{query}}}^1(\Omega_{s_{\text{query}}}^{d_k}) = w_{s_{\text{query}}}^0(\Omega_{s_{\text{query}}}^{d_k}) + \frac{1}{N} C_0 \sum_{j=0}^{N-1} (r_j + \gamma w_{s_{\text{query}}}^0(\Omega_{s_{\text{query}}}^{d_k})^T \phi_j' - w_{s_{\text{query}}}^0(\Omega_{s_{\text{query}}}^{d_k})^T \phi_j) \phi_j,$$

which is the update rule for pre-conditioned SARSA. We also have

$$y_1^{(N)} = -\langle w_{s_{\text{query}}}^1(\Omega_{s_{\text{query}}}^{d_k}), \phi_{\text{query}} \rangle.$$

By induction on the number of layer ℓ , it completes our proof. \square

F PROOFS

In this section, we first derive pointwise and expected bounds on the Q-function approximation error, highlighting how both approximation and weight estimation errors contribute to the total error. Building on these results, we further characterize how the approximation error propagates to policy suboptimality through the performance difference lemma. These analyses provide theoretical justification for the importance of accurate local value estimation in achieving strong policy performance, particularly in offline RL settings.

Theorem F.1 (Weight Error under Coverage). Suppose Assumption 3.3 holds, and that the feature vectors are bounded as $\|\phi(s, a)\| \leq B_\phi$ and rewards as $|r| \leq B_r$. Let w_s^* be the optimal local weight vector defined in Definition 3.1, and let $w_s(\Omega_s^{d_k})$ be the weight estimated from the retrieved set. Then with probability at least $1 - \delta$, the following holds:

$$\|w_s(\Omega_s^{d_k}) - w_s^*\| \leq C \left(\sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}} + \varepsilon_{\text{approx}}^s \right), \quad (28)$$

where $C > 0$ is a constant depending on B_ϕ, B_r and the conditioning of the local Gram matrix, and $\varepsilon_{\text{approx}}^s$ is the local approximation error defined in Definition 3.1.

Proof. Fix a query state s and its ideal local transition set Ω_s^* . By Definition 3.1, there exists a weight vector w_s^* such that

$$Q_{\Omega_s^{d_k}}(s, a) = w_s^{*\top} \phi(s, a) + \varepsilon_s(s, a), \quad |\varepsilon_s(s, a)| \leq \varepsilon_{\text{approx}}^s \quad (29)$$

for all $(s, a, r, s', a') \in \Omega_s^{d_k}$. By Assumption 3.3, the retrieved set $\Omega_s^{d_k}$ overlaps with the ideal set on at least $m = \sigma|\Omega_s^{d_k}|$ transitions. Denote this intersection as $\mathcal{D}_s^\sigma = \Omega_s^{d_k} \cap \Omega_s^*$. Thus the estimation of w_s^* from $\Omega_s^{d_k}$ is guaranteed to include at least m valid local transitions. Let $X \in \mathbb{R}^{m \times d}$ be the feature matrix of \mathcal{D}_s^σ , with columns $\phi(\bar{s}, \bar{a})$, and $y \in \mathbb{R}^m$ be the corresponding targets. Then

$$y = w_s^{*\top} X + \xi, \quad (30)$$

where ξ collects the local approximation error, with $\|\xi\|_\infty \leq \varepsilon_{\text{approx}}^s$. The estimator from the retrieved set is

$$w_s(\Omega_s^{d_k}) = \arg \min_w \frac{1}{|\Omega_s^{d_k}|} \sum_{(s_i, a_i) \in \Omega_s^{d_k}} (y_i - w^\top \phi(s_i, a_i))^2. \quad (31)$$

Define the population moments on Ω_s^* as

$$G = \mathbb{E}_{\Omega_s^*}[\phi^\top \phi], \quad b = \mathbb{E}_{\Omega_s^*}[\phi^\top y]. \quad (32)$$

Let \hat{G}, \hat{b} be the corresponding empirical moments on $\Omega_s^{d_k}$. Since at least $m = \sigma|\Omega_s^*|$ samples in $\Omega_s^{d_k}$ come from the true local set, standard matrix concentration implies that with probability at least $1 - \delta$,

$$\|\hat{G} - G\| \leq c_1 B_\phi^2 \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_k}|}}, \quad (33)$$

$$\|\hat{b} - b\| \leq c_2 B_\phi B_r \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_k}|}}, \quad (34)$$

for universal constants $c_1, c_2 > 0$. The optimal weight satisfies $w_s^{*\top} G = b$. The empirical solution satisfies $w_s(\Omega_s^{d_k})^\top \hat{G} = \hat{b}$ (up to residuals). Subtracting these systems gives

$$\|w_s(\Omega_s^{d_k}) - w_s^*\| \leq \|G^{-1}\| \cdot (\|\hat{b} - b\| + \|\hat{G} - G\| \|w_s^*\|) + \varepsilon_{\text{approx}}^s. \quad (35)$$

Since G is well-conditioned, $\|G^{-1}\| \leq 1/\mu$ for some $\mu > 0$. Substituting the concentration results yields

$$\|w_s(\Omega_s^{d_k}) - w_s^*\| \leq C \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_k}|}} + \varepsilon_{\text{approx}}^s, \quad (36)$$

where $C > 0$ depends on $B_\phi, B_r, \|w_s^*\|$ and μ . This is exactly the desired bound equation 28. \square

Theorem F.2 (Pointwise Q-function Error). *Suppose Assumption 3.1 and Assumption 3.3 hold. For any fixed $s \in \mathcal{S}$, with probability at least $1 - \delta$, the pointwise error of the estimated Q-function satisfies*

$$\left| \hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a) \right| \leq \varepsilon_{\text{approx}}^s (1 + B_\phi) + C B_\phi \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_{\min}}|}} \quad \forall (s, a, r, s', a') \in \Omega_s^{d_k}, \quad (37)$$

where $C > 0$ depends on B_ϕ, B_r and the conditioning of the local Gram matrix.

Proof. Fix $s \in \mathcal{S}$ and $a \in \mathcal{A}$. By definition,

$$\hat{Q}(s, a | \Omega_s^{d_k}) = w_s(\Omega_s^{d_k})^\top \phi(s, a), \quad Q_{\Omega_s^{d_k}}(s, a) = w_s^{*\top} \phi(s, a) + \varepsilon_{\text{approx}}^s. \quad (38)$$

Thus,

$$\left| \hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a) \right| = \left| w_s(\Omega_s^{d_k})^\top \phi(s, a) - w_s^{*\top} \phi(s, a) - \varepsilon_{\text{approx}}^s \right| \quad (39)$$

$$\leq \|w_s(\Omega_s^{d_k}) - w_s^*\| \cdot \|\phi(s, a)\| + \varepsilon_{\text{approx}}^s \quad (40)$$

$$\leq B_\phi \cdot \|w_s(\Omega_s^{d_k}) - w_s^*\| + \varepsilon_{\text{approx}}^s. \quad (41)$$

By Theorem F.1, with probability at least $1 - \delta$,

$$\|w_s(\Omega_s^{d_k}) - w_s^*\| \leq C \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_{\min}}|}} + \varepsilon_{\text{approx}}^s. \quad (42)$$

Substituting this into the inequality above yields

$$\left| \hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a) \right| \leq C B_\phi \sqrt{\frac{d + \log(1/\delta)}{\sigma|\Omega_s^{d_k}|}} + \varepsilon_{\text{approx}}^s (1 + B_\phi), \quad (43)$$

which holds for all $(s, a, r, s', a') \in \Omega_s^{d_k}$. This proves equation 37. \square

1080
Corollary F.3 (Expected Q-function Error). *Suppose Assumptions 3.1 and 3.3 hold. Let μ be a
 1081 reference distribution over $(s, a) \in \mathcal{S} \times \mathcal{A}$, and let $\mu_{\mathcal{S}}$ be its marginal over states. Then, with
 1082 probability at least $1 - \delta$, the expected Q-function approximation error restricted to the retrieved set
 1083 satisfies*

$$\begin{aligned} & \mathbb{E}_{(s,a) \sim \mu} \left[|\hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a)| \mid (s, a) \in \Omega_s^{d_k} \right] \\ & \leq \mathbb{E}_{s \sim \mu_{\mathcal{S}}} \left[\varepsilon_{\text{approx}}^s (1 + B_{\phi}) + C B_{\phi} \sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}} \right]. \end{aligned} \quad (44)$$

1090 *Proof.* From Theorem F.2, for any $(s, a, r, s', a') \in \Omega_s^{d_k}$, we have
 1091

$$|\hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a)| \leq \varepsilon_{\text{approx}}^s (1 + B_{\phi}) + C B_{\phi} \sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}}. \quad (45)$$

1095 Taking expectation over $(s, a) \sim \mu$, but restricted to $(s, a) \in \Omega_s^{d_k}$, and noting that the right-hand side
 1096 depends only on s , we obtain

$$\begin{aligned} & \mathbb{E}_{(s,a) \sim \mu} \left[|\hat{Q}(s, a | \Omega_s^{d_k}) - Q_{\Omega_s^{d_k}}(s, a)| \mid (s, a) \in \Omega_s^{d_k} \right] \\ & \leq \mathbb{E}_{s \sim \mu_{\mathcal{S}}} \left[\varepsilon_{\text{approx}}^s (1 + B_{\phi}) + C B_{\phi} \sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}} \right]. \end{aligned} \quad (46)$$

1102 This proves the result. \square

1104 F.1 PROOF OF THEOREM 3.5

1107 **Lemma F.4** (Performance Difference Lemma). *Let π be a policy, and let d^{π} denote its discounted
 1108 state distribution. Then the performance gap between π and the optimal policy π^* satisfies*

$$J(\pi^*) - J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi} \left[Q^*(s, a^*) - Q^*(s, a) \right], \quad (47)$$

1112 where $a^* = \arg \max_a Q^*(s, a)$.

1115 *Proof.* From Equation (47), for any $s \in \mathcal{S}$,

$$\begin{aligned} Q^*(s, \pi^*(s)) - Q^*(s, \pi(s)) &= (Q^*(s, \pi^*(s)) - \hat{Q}(s, \pi^*(s))) + (\hat{Q}(s, \pi^*(s)) - \hat{Q}(s, \pi(s))) \\ &\quad + (\hat{Q}(s, \pi(s)) - Q^*(s, \pi(s))). \end{aligned} \quad (48)$$

1119 Since π is greedy w.r.t. \hat{Q} , the middle term is non-positive. Thus,

$$\begin{aligned} Q^*(s, \pi^*(s)) - Q^*(s, \pi(s)) &\leq |Q^*(s, \pi^*(s)) - \hat{Q}(s, \pi^*(s))| + |Q^*(s, \pi(s)) - \hat{Q}(s, \pi(s))| \\ &\leq 2\delta(s), \end{aligned} \quad (49)$$

1124 where by Theorem F.2,

$$\delta(s) = \varepsilon_{\text{approx}}^s (1 + B_{\phi}) + C B_{\phi} \sqrt{\frac{d + \log(1/\delta)}{\sigma |\Omega_s^{d_k}|}}. \quad (50)$$

1129 Taking expectations in Equation (47) and applying Equation (49) yields
 1130

$$J(\pi^*) - J(\pi) \leq \frac{2}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}} [\delta(s)], \quad (51)$$

1133 which gives the desired bound equation 10. \square

1134 **G ICQL VARIANTS FOR TD3+BC**
1135

1136 In this section, we illustrate how to extend our method to TD3+BC (Fujimoto & Gu, 2021). TD3+BC
 1137 introduces a simple behavior cloning regularization over value-based learning. This algorithms is
 1138 easy to integrate with our framework, stable across diverse tasks, and serve as strong baselines in
 1139 the literature. Their simplicity and effectiveness make them ideal testbeds for evaluating the impact
 1140 of localized Q-function estimation, and together they offer sufficient coverage of common design
 1141 choices in offline RL. Other algorithms can be similarly extended, but are omitted here for clarity and
 1142 focus.

1143 Our proposed ICQL can be seamlessly integrated into existing offline RL algorithms by replacing the
 1144 global Q-function with a local, context-dependent estimator defined in Definition 3.1. We demonstrate
 1145 this idea by instantiating ICQL with TD3+BC (see more details in our Algorithm 1).
 1146

1147 **ICQL-TD3+BC.** TD3+BC uses a standard Bellman backup for the critic and augments the actor
 1148 with behavior cloning. We again use the locally estimated $\hat{Q}(s, a)$ in both components. The critic
 1149 loss is:
 1150

$$\mathcal{L}_{\text{critic}}^{\text{TD3+BC}} = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\left(\hat{Q}(s, a | \Omega_s^{d_k}) - y \right)^2 \right], \quad (52)$$

1151 where $y = r + \gamma \min_{i=1,2} \hat{Q}_{\text{target}}^{(i)}(s', \pi(s') | \Omega_s^{d_k})$. The actor is trained to maximize the estimated
 1152 Q-value while staying close to the dataset policy:
 1153

$$\mathcal{L}_{\text{actor}}^{\text{TD3+BC}} = -\mathbb{E}_{s \sim \mathcal{D}} \left[\hat{Q}(s, \pi(s) | \Omega_s^{d_k}) \right] + \alpha \cdot \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\|\pi(s) - a\|^2 \right]. \quad (53)$$

1154 Experiment results can be found at Table 3.
 1155

1156 Table 3: Evaluation for TD3+BC based ICQL variant on Mujoco and Adroit tasks. Average normalized
 1157 scores are reported over 5 random seeds.
 1158

Mujoco Tasks	TD3-BC	ICQL-TD3-BC(ours)	Gain(%)
Walker2d-Medium-Expert-v2	109.19	109.27	0.07%
Walker2d-Medium-v2	77.02	72.67	-5.65%
Walker2d-Medium-Replay-v2	41.47	54.96	32.53%
Hopper-Medium-Expert-v2	78.16	87.16	11.51%
Hopper-Medium-v2	53.49	57.93	8.30%
Hopper-Medium-Replay-v2	59.36	65.81	10.87%
HalfCheetah-Medium-Expert-v2	62.78	63.74	1.53%
HalfCheetah-Medium-v2	43.09	42.74	-0.81%
HalfCheetah-Medium-Replay-v2	41.76	45.86	9.82%
Average	62.92	66.68	6.00%
Adroit Tasks	TD3-BC	ICQL-TD3-BC(ours)	Gain(%)
Pen-Human-v1	64.62	68.29	5.68%
Pen-Cloned-v1	76.82	74.71	-2.75%
Hammer-Human-v1	1.52	1.64	7.89%
Hammer-Cloned-v1	1.81	7.25	300.55%
Door-Human-v1	0.15	2.03	1253.33%
Door-Cloned-v1	-0.05	-0.08	-60.00%
Average	24.15	25.64	6.17%

1184 **H IMPLEMENTATION DETAILS**
1185

1186 In this section, we present the detailed network architecture for our in-context critic and actor. In
 1187 addition, we describe the hyperparameter settings in this paper.
 1188

1188
1189

H.1 IN-CONTEXT CRITIC NETWORK

1190
1191
1192
1193
1194
1195
1196
1197
1198

The In-Context Critic is composed of a feature extractor and a linear transformer. The feature extractor is a 3-layer MLP with 256 hidden units. A Tanh function is applied as the last layer activation, and ReLU is applied as activation function for other layers, followed by layer normalization. The output dimension of the feature extractor is 64. A dropout rate of 0.1 is applied during training the feature extractor. The linear transformer is built as described in Equation (16), where trainable parameters exist only in G . The definition of G is in Equation (23), where C_l denotes the trainable parameters in the l -th layer. The shape of C_l is 64×64 . We use gradient normalization to stabilize training by scaling the gradients to have a maximum L2 norm of 10. The number of linear transformer layers is set to 20.

1199

1200
1201

H.2 POLICY NETWORK

1202
1203
1204

For ICQL-IQL, the policy network is built as an MLP with 2 hidden layers and the ReLU activation function. The policy network contains an additional learnable vector representing the logarithmic standard deviation of actions. A dropout rate of 0.1 is applied during training.

1205
1206

For ICQL-TD3+BC, the policy network is built as a 3-layer MLP with the ReLU activation function.

1207

1208
1209

H.3 HYPER-PARAMETER SETTINGS

1210
1211
1212

For ICQL-IQL, we follow the original IQL paper and set different hyperparameter expectile τ and temperature β for different offline datasets. We searched among $\{0.5, 0.7, 0.9\}$ for expectile and $\{1, 2, 3\}$ for temperature. The detailed list is in Table 4.

1213
1214
1215

Table 4: Expectile and temperature settings for ICQL experiments.

Tasks	Expectile	Temperature	Tasks	Expectile	Temperature
Walker2d-Medium-Expert-v2	0.7	1	Pen-Human-v1	0.7	2
Walker2d-Medium-v2	0.7	1	Pen-Cloned-v1	0.9	2
Walker2d-Medium-Replay-v2	0.7	1	Hammer-Human-v1	0.5	1
Hopper-Medium-Expert-v2	0.7	1	Hammer-Cloned-v1	0.9	2
Hopper-Medium-v2	0.5	1	Door-Human-v1	0.5	1
Hopper-Medium-Replay-v2	0.7	2	Door-Cloned-v1	0.7	2
HalfCheetah-Medium-Expert-v2	0.5	2	Kitchen-Complete-v0	0.9	1
HalfCheetah-Medium-v2	0.5	1	Kitchen-Mixed-v0	0.5	1
HalfCheetah-Medium-Replay-v2	0.7	1	Kitchen-Partial-v0	0.9	2

1225

For ICQL-TD3+BC, we follow the settings of the original paper, using the same hyperparameter $\alpha = 2.5$ for all datasets.

1228
1229

Other common hyperparameters are listed in Table 5.

1230
1231

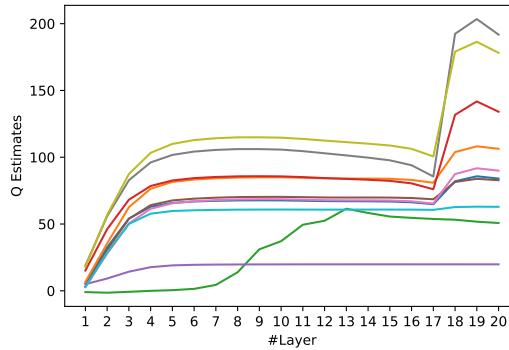
Table 5: Common hyperparameters for ICQL main experiments.

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Hyperparameter	Value
Hidden dimension	256
Batch size	256
Training steps	1,000,000
Evaluation episodes	10
Discount factor	0.99
Policy learning rate	3.0e-4
Critic learning rate	3.0e-4
Context length	20

1242 H.4 RETRIEVAL STRATEGIES
12431244 In Section 4.3, we have compared the performance of ICQL while using different strategies for
1245 retrieving context for approximating the localized Q function. The description of retrieval strategies
1246 in Section 4.3 are as follows:
12471248

- **State-Similar Retrieval:** Given current state s , search for 20 similar states s_i from the offline
1249 dataset using cosine similarity, and retrieve their corresponding transitions $\{s_i, a_i, r_i, s'_i, a'_i\}$.
- **Random Retrieval:** Given current state s , randomly select 20 transitions $\{s_i, a_i, r_i, s'_i, a'_i\}$
1250 as context.
1251
- **State-Similar-with-High-Rewards:** Given current state s , search for 60 similar states s_i
1252 from the offline dataset using cosine similarity, retrieve their corresponding transitions
1253 $\{s_i, a_i, r_i, s'_i, a'_i\}$. Then sort by the rewards r_i in these retrieved transitions, and select 20
1254 transitions with the highest rewards as context.
1255

1256 H.5 ANALYSIS ON IN-CONTEXT CRITICS
12571258 In this section, we conduct further analysis into the functionality of our in-context Q estimator. By
1259 construction, the forward pass of our in-context Q estimator is equivalent to the step-wise optimization
1260 of TD-error. We analyze the outputs and the parameter distributions of each intermediate layer to
1261 validate its effectiveness. We randomly select 10 different states and their corresponding action in
1262 the offline dataset of Walker2d-Medium-Expert-v2, retrieve 20 relevant transitions by best cosine
1263 state similarity, and estimate the Qs for these state-action pairs. We store outputs of all intermediate
1264 layers and the visualization results are shown in Figure 6. From Figure 6 we can discover that the Q
1265 estimates show converging trend as the layer get deeper, validating the iterative refinement process.
12661280 Figure 6: Q-estimates of each intermediate layers.
1281
12821283 I ADDITIONAL EXPERIMENT RESULTS
12841285 I.1 EXTENDED BASELINES
12861287 In this section, we extend our comparisons with the more methods (RA-DT Schmied et al. (2024),
1288 ReBRAC Tarasov et al. (2023), DMG Mao et al. (2024), FQL Park et al. (2025), QC Li et al. (2025)),
1289 following their official implementations. ICQL demonstrates competitive or superior performance
1290 across most tasks. Results are shown in Table 6.
12911292 I.2 NUMERICAL RESULTS FOR ABLATION STUDIES ON THE NUMBER OF LAYERS AND
1293 CONTEXT LENGTHS
1294

1295 In this section, we provide numerical results in correspondence to Section 4.3.1 and Section 4.3.2.

1296

1297

1298

1299

1300

1301

Table 6: Performance comparison across Mujoco, Adroit, and Kitchen tasks. Average and standard deviation of scores are reported over 5 random seeds.

1303

Task	BC	TD3BC	CQL	IQL	DT	RADT	ReBRAC	DMG	FQL	QC	ICQL
Walker2d-ME	107.5	109.2	98.7	109.8	70.7	107.8	109.2	109.5	101.0	102.8	113.3
Walker2d-M	75.3	77.0	79.2	71.5	70.2	68.9	82.8	85.0	72.4	34.1	80.3
Walker2d-MR	26.0	41.5	77.2	61.0	54.8	67.2	39.4	81.9	60.9	46.6	81.9
Hopper-ME	52.5	78.2	105.4	98.5	57.5	109.4	98.7	109.8	60.1	44.0	113.3
Hopper-M	52.9	53.5	58.0	63.3	57.1	62.4	60.6	92.3	55.6	64.6	62.6
Hopper-MR	18.1	59.4	95.0	82.4	65.8	81.6	87.4	100.1	55.0	18.6	96.4
HalfCheetah-ME	55.2	62.8	62.4	83.4	70.8	90.9	84.6	93.6	92.9	94.2	89.1
HalfCheetah-M	42.6	43.1	44.4	42.5	42.8	42.0	44.6	47.9	43.9	48.2	45.9
HalfCheetah-MR	36.6	41.8	45.5	38.9	39.5	38.9	36.9	44.6	40.0	40.5	44.7
Pen-Human	63.9	64.6	37.5	89.5	79.5	17.8	91.5	66.2	61.2	55.7	85.6
Pen-Cloned	37.0	76.8	39.2	84.9	74.0	32.4	68.9	67.5	23.5	54.8	89.4
Hammer-Human	1.2	1.5	4.4	7.2	1.7	0.7	1.1	18.4	1.1	1.2	3.7
Hammer-Cloned	0.6	1.8	2.1	0.5	3.7	1.3	0.2	13.4	1.7	2.2	4.5
Door-Human	2.0	0.2	9.9	9.8	5.5	13.2	-0.1	0.1	0.2	0.7	17.1
Door-Cloned	0.0	-0.1	0.1	7.6	3.2	2.4	9.0	3.7	0.1	4.4	11.7
Kitchen-Complete	65.0	57.5	43.8	59.2	52.5	32.5	60.0	22.5	16.3	27.5	79.3
Kitchen-Mixed	51.5	53.5	51.0	53.3	60.0	54.1	47.5	30.0	45.0	60.0	59.5
Kitchen-Partial	38.0	46.7	49.8	45.8	55.0	53.8	62.5	37.5	15.8	52.5	61.5
Overall Average	47.3	47.7	58.5	63.2	56.2	57.2	60.0	62.0	50.5	47.7	69.7

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

Table 7: Normalized scores for Gym tasks with different lengths of contexts and different number of layers in ICQL-IQL.

1333

Gym Tasks	Context Length				Number of Layers			
	10	20	30	40	4	8	16	20
Walker2d-Medium-Expert-v2	111.07	113.23	111.71	110.18	102.27	103.28	104.06	113.23
Walker2d-Medium-v2	79.59	79.59	70.9	80.68	78.04	78.35	74.93	79.59
Walker2d-Medium-Replay-v2	77.46	84.81	69.43	74.38	76.27	76.97	75.78	84.81
Hopper-Medium-Expert-v2	103.68	110.67	105.99	103.42	104.76	111.78	106.96	110.67
Hopper-Medium-v2	73.82	67.36	60.18	59.43	65.65	67.62	67.3	67.36
Hopper-Medium-Replay-v2	89.89	91.63	81.21	83.92	100.53	97.84	91.77	91.63
HalfCheetah-Medium-Expert-v2	89.23	90.3	88.76	83.48	71.29	63.31	74.84	90.3
HalfCheetah-Medium-v2	45.85	46.08	46.28	45.82	45.05	44.77	45.01	46.08
HalfCheetah-Medium-Replay-v2	43.7	44.48	44.29	44.19	43.5	43.64	43.75	44.48
Average	79.37	80.91	75.42	76.17	76.37	76.40	76.04	80.91

1345

1346

1347

1348

1349

1350 I.3 COMPARISON ON DIFFERENT IN-CONTEXT MODELING CHOICES
13511352 We performed additional experiments replacing the linear transformer with other architectures, which
1353 is either a small MLP or a standard transformer. The results are shown in Table 8. The results
1354 demonstrate that the linear in-context mechanism is not only theoretically convenient for but also
1355 empirically essential for learning local Q function.
13561357 Table 8: Performance comparison across different local modeling choices: linear attention, linear
1358 MLP, and standard self-attention.
1359

Task	Linear Transformer	Linear MLP	Standard Transformer
Walker2d-Medium-Expert	113.3	109.5	108.8
Walker2d-Medium	80.3	76.7	77.4
Walker2d-Medium-Replay	81.9	60.2	42.9
Hopper-Medium-Expert	113.3	109.9	70.3
Hopper-Medium	62.6	55.7	61.9
Hopper-Medium-Replay	96.4	89.9	42.1
HalfCheetah-Medium-Expert	89.1	83.0	72.5
HalfCheetah-Medium	45.9	43.3	42.0
HalfCheetah-Medium-Replay	44.7	39.2	36.1
Pen-Human	85.6	66.6	72.7
Pen-Clone	89.4	80.7	83.8
Hammer-Human	3.7	6.1	4.2
Hammer-Clone	4.5	7.9	1.8
Door-Human	17.1	6.9	8.9
Door-Cloned	11.7	3.5	3.4
Kitchen-Complete	79.3	70.0	78.3
Kitchen-Mixed	59.5	57.5	55.8
Kitchen-Partial	61.5	48.3	55.8

1379 I.4 COMPUTATION OVERHEAD ANALYSIS
13801381 I.4.1 COMPARISON ON TRAINING TIME, INFERENCE TIME, GFLOPS AND MEMORY
1382 CONSUMPTION
13831384 In this section, we compare training time, inference time, GFLOPs and memory consumption across
1385 all baseline methods. The analysis is conducted on Walker2d-Medium-Expert dataset, and the
1386 results are summarized in Table 9. This analysis shows that while ICQL incurs moderate additional
1387 compute cost relative to most advanced baselines, and it remains more efficient than sequential
1388 models (DT/RADT) while achieving substantially stronger performance.
13891390 Table 9: Computation cost comparison across offline RL algorithms, including per-step train-
1391 ing/inference time, FLOPs, and peak memory consumption.
1392

Algorithm	Train Time (ms)	Infer Time (ms)	Training GFLOPs	Peak Memory (MB)
TD3BC	7.23	0.26	0.17	30
IQL	10.52	0.61	0.22	26
CQL	47.57	0.61	2.64	79
DT	68.42	2.89	151.40	1383
RA-DT	121.02	3.13	1103.79	1424
ReBRAC	13.91	0.26	0.18	38
DMG	32.33	0.42	0.55	27
FQL	19.63	0.37	4.53	126
QC	21.60	0.25	4.65	244
ICQL	70.73	0.51	1.03	375

1404 I.4.2 ANALYSIS ON GFLOPS AND MEMORY CONSUMPTION SCALING OF ICQL
1405

1406 We further report training GFLOPs and memory consumption for varying context lengths in
1407 $\{10, 20, 30, 40\}$ and varying number of linear transformer layers, in Table 10 and Table 11. The
1408 training time needed scales with both context length and number of layers. Using a context length
1409 of 20 and 20 linear transformer layers remains comparable efficient while providing competitive
1410 performance.

1411 Table 10: Training FLOPs (in GFLOPs) for different numbers of layers and context lengths K .
1412

# Layers	K=10	K=20	K=30	K=40
10	0.25	0.51	0.81	1.14
20	0.50	1.03	1.62	2.28
30	0.75	1.54	2.43	3.42
40	1.00	2.06	3.24	4.56

1420 Table 11: Peak memory consumption (in MB) for different numbers of layers and context lengths K .
1421

# Layers	K=10	K=20	K=30	K=40
10	171.28	306.56	445.57	590.39
20	209.71	375.38	549.51	738.00
30	248.39	443.29	655.26	879.30
40	288.94	511.58	758.94	1023.75

1429 I.4.3 DETAILED COMPARISON ON RETRIEVAL AND TRAINING TIME OF ICQL ACROSS ALL
1430 DATASETS
1431

1432 To mitigate repeated computation, we pre-compute all retrieval indices once before training, since: 1)
1433 The offline dataset is fixed. 2) The retrieval rule is deterministic. 3) Pre-computation does not affect
1434 the learning dynamics or outcomes. This turns per-step retrieval cost into an amortized constant-time
1435 lookup during training. ICQL follows a standard actor-critic-like training paradigm where the critic
1436 uses retrieved context to estimate local Q-values and the policy learns from these Q-values. At
1437 evaluation time, only the policy is used, which is consistent with standard actor-critic practice. We
1438 report the real-time retrieval time, the lookup time with cached indices, and the training/inference
1439 speed for all datasets. The results are averaged across all datasets used in our experiments. As shown
1440 in Table 12, cached retrieval adds only 0.03 ms per step, which is negligible relative to the overall
1441 training time. The breakdown analysis of retrieval time and training/inference time analysis are
1442 provided in Table 13 and Table 14.

1443 Table 12: Average ICQL runtime of retrieval, training with different context lengths, and inference,
1444 across all datasets.

	Time (ms)
Retrieval with Cached Index	0.03
Train with K=10	46.94
Train with K=20	72.15
Train with K=30	113.86
Train with K=40	171.95
Inference	0.54

1458

1459

1460

1461 Table 13: Detailed retrieval time (ms) analysis across tasks and context lengths. Cached index
1462 retrieval eliminates repeated nearest-neighbor searches and greatly reduces overhead.

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

Task	Dataset Size	K=10	K=20	K=30	K=40	Cached
Walker2d-Medium-Expert	1998318	6.38	6.52	6.90	7.70	0.04
Walker2d-Medium	999322	3.98	3.96	4.37	5.16	0.03
Walker2d-Medium-Replay	301698	1.92	2.18	2.64	3.90	0.03
Hopper-Medium-Expert	1998966	6.04	6.11	6.39	7.31	0.03
Hopper-Medium	999998	3.85	3.71	4.05	4.77	0.03
Hopper-Medium-Replay	401598	2.10	2.16	2.56	3.11	0.03
HalfCheetah-Medium-Expert	1998000	6.27	6.41	6.75	7.37	0.03
HalfCheetah-Medium	999000	3.96	3.90	4.24	5.17	0.04
HalfCheetah-Medium-Replay	201798	1.58	1.61	1.81	2.53	0.03
Pen-Human	4975	0.89	0.81	0.99	1.15	0.03
Pen-Cloned	496264	2.91	3.05	3.52	6.67	0.03
Hammer-Human	11285	0.88	0.89	1.05	1.17	0.03
Hammer-Cloned	996394	4.56	4.54	4.93	5.82	0.03
Door-Human	6704	0.88	0.88	1.07	1.17	0.03
Door-Cloned	995642	4.39	4.53	4.92	5.94	0.03
Kitchen-Complete	3679	0.89	0.82	0.95	1.12	0.03
Kitchen-Partial	136937	1.36	1.41	1.60	1.91	0.03
Kitchen-Mixed	136937	1.49	1.38	1.63	2.11	0.03

1483

1484

1485

1486

1487

1488 Table 14: Training and inference time (ms) for different context lengths across tasks. Training time
1489 grows approximately linearly with the context length, while inference time remains nearly constant.

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Task	K=10	K=20	K=30	K=40	Inference
Walker2d-Medium-Expert	48.90	70.73	111.75	170.71	0.51
Walker2d-Medium	46.63	71.77	113.82	170.85	0.50
Walker2d-Medium-Replay	48.68	74.75	115.43	171.97	0.52
Hopper-Medium-Expert	48.31	70.71	114.56	173.52	0.51
Hopper-Medium	46.39	71.60	113.35	171.63	0.57
Hopper-Medium-Replay	46.08	72.32	112.89	170.58	0.56
HalfCheetah-Medium-Expert	48.33	73.27	115.90	171.46	0.58
HalfCheetah-Medium	47.69	74.45	113.85	171.75	0.51
HalfCheetah-Medium-Replay	47.30	71.81	114.32	172.86	0.57
Pen-Human	45.65	72.41	114.23	171.73	0.56
Pen-Cloned	44.50	69.59	112.02	170.31	0.51
Hammer-Human	46.88	73.78	113.93	171.66	0.52
Hammer-Cloned	47.31	72.55	114.13	171.94	0.57
Door-Human	46.16	71.34	113.11	171.44	0.57
Door-Cloned	45.37	71.20	112.11	170.61	0.58
Kitchen-Complete	47.45	73.65	116.36	175.98	0.54
Kitchen-Partial	48.11	72.35	116.50	175.42	0.52
Kitchen-Mixed	45.25	70.47	111.17	170.59	0.52

I.5 FAILURE ANALYSIS ON HAMMER DATASET

In this section, we provide a failure analysis on Hammer-Human dataset. We found that Hammer-Human exhibits two properties that make it particularly challenging for ICQL:

- 1) Small dataset size and sparse coverage. Hammer-Human contains only 24 trajectories (~11k transitions), vastly fewer than Hammer-Cloned (~996k transitions). This leads to large distances between the query state and its retrieved neighbors that violate locality assumptions, and poor state-space coverage that make retrieval more likely to pull in semantically irrelevant transitions.
- 2) Low-quality transitions and noisy rewards. Most Hammer-Human trajectories have very low returns. So for each query state, the retrieved neighbors tend to have weak reward signals, making it more difficult to fit effective local Q-function.

We provide dataset statistics comparisons in Table 15, and comparison of distributions of mean distance between query states and retrieved states in Figure 7, both of which confirm our observations.

Table 15: Dataset statistics for Hammer-Human and Hammer-Cloned.

Dataset	Hammer-Human	Hammer-Cloned
Number of trajectories	24	3605
Number of transitions	11285	996394
Mean Trajectory Length (Min–Max)	455.2 (347–623)	276.4 (199–623)
Mean Trajectory Return (Min–Max)	2817.5 (-109–16022)	779.8 (-407–16022)

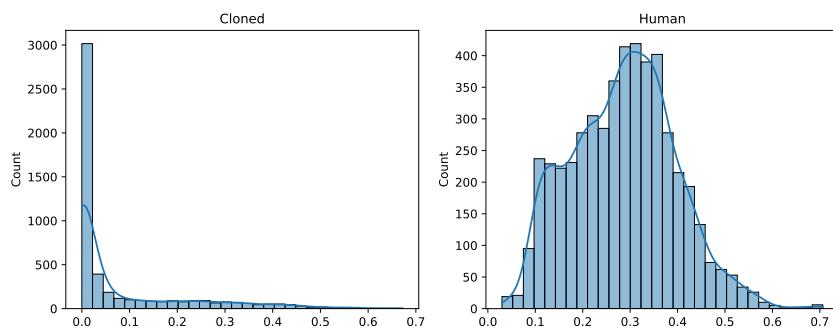


Figure 7: Distribution of mean distance between query states and retrieved states on Hammer dataset.

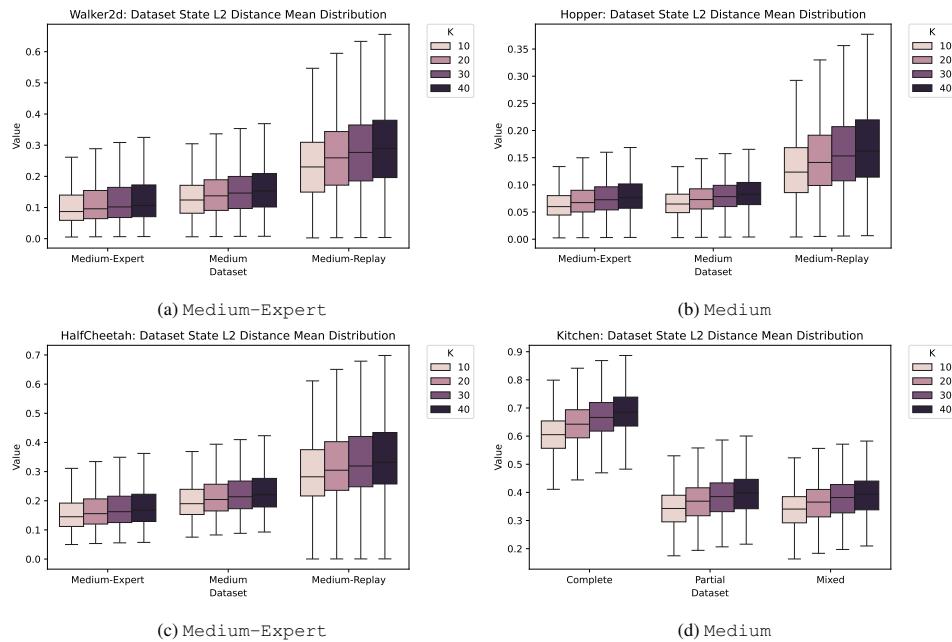
Although Hammer-Cloned contains mostly low-return behavior, the large dataset size provides much denser coverage. **ICQL** can retrieve states that are substantially closer to the query state, enabling more reliable local linear approximation and producing slightly higher scores.

Moreover, we would like to note that for both Hammer-Human and Hammer-Cloned, the extremely low proportion of high-reward transitions makes it inherently difficult to retrieve any local neighborhood that provides strong positive supervision. As a result, even if the Q-network successfully fits a local linear approximation, it rarely observes transitions that reliably correspond to high-return behavior. Consequently, the learned Q-values cannot meaningfully distinguish truly rewarding actions, leading to uniformly low evaluation scores across both datasets.

1566 I.6 ANALYSIS ON THE RELATIONSHIP AMONG THEORETICAL d AND K
1567

1568 In the theory, a local set $\Omega_{s_{query}}^d$ is defined as all transitions whose states fall within a radius- d
1569 neighborhood around s . This radius determines the intrinsic ‘‘locality scale’’ at which the Q-function
1570 is assumed to be approximately linear. However, in practice, the radius d is not directly tunable: it
1571 depends on the underlying density and geometry of the dataset and is unknown to the algorithm.

1572 Instead, ICQL controls locality through the retrieval size k . Retrieving the top- k nearest neighbors
1573 is equivalent to selecting a data-adaptive radius, where $d_k = \max_{(s_i, \cdot) \in \text{top-}k} \|s_i - s\|_2^2$ and $\bar{d}_k =$
1574 $\max_{(s_i, \cdot) \in \text{top-}k} \|s'_i - s'\|_2^2$, so that the practical neighborhood is exactly the theoretical local set
1575 with radius (d_k, \bar{d}_k) . The distribution of mean distance between query states and retrieved states of
1576 different k is visualized in Figure 8.
1577

1599 Figure 8: Distribution of mean distance between query states and retrieved states of different k .
1600

1601 Thus, k determines the effective radius implicitly and monotonically: larger k expands the radius
1602 (d_k, \bar{d}_k) and increases the size and heterogeneity of $\Omega_s^{d_k}$, while smaller k leads to tighter neighbor-
1603 hoods with more consistent local value structure.
1604

1620
1621

I.7 ADDITIONAL VISUALIZATION ON LEARNED Q-VALUE COMPARISON

1622
1623
1624
1625
1626
1627
1628

We extend the visualization analysis of learned Q-values of `ICQL` and `IQL` by comparing with Q-value learned with online RL method `SAC` on Walker2d-Medium-Expert, Walker2d-Medium and Walker2d-Medium-Replay datasets. We scale all Q estimates into the $[0,1]$ range before visualization. We also include additional scatter plots comparing each method's estimated Q-values against the `SAC` oracle. The visualization are shown in Figure 9 and Figure 10. These plots clearly show that the correlation patterns between `ICQL` and `SAC` is better than that between `IQL` and `SAC`, indicating `ICQL` can produce more accurate value estimation than `IQL`.

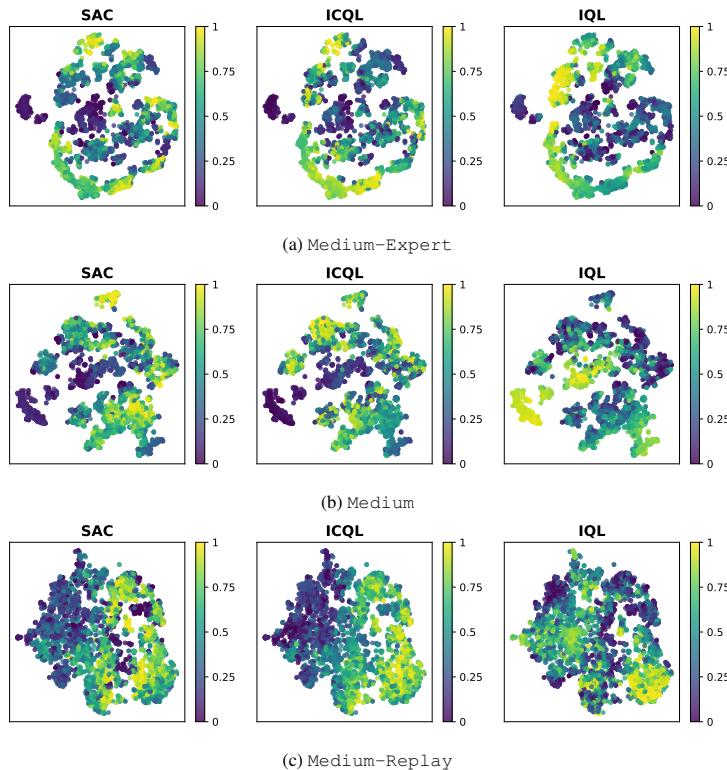
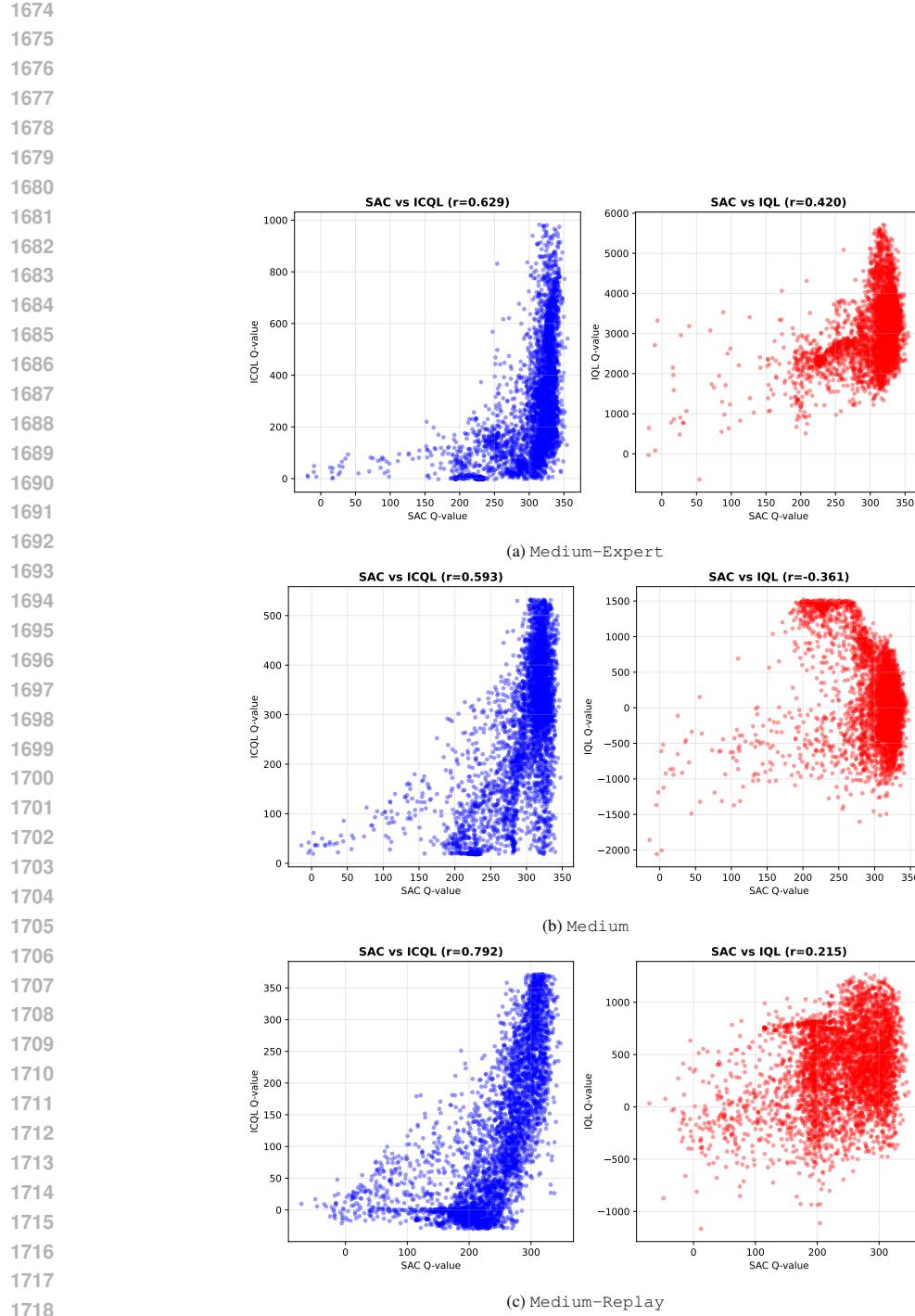
1629
1630
1631
1632
1633
1634
16351636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

Figure 9: Q-value of Walker2d-Medium-Expert, Walker2d-Medium, and Walker2d-Medium-Replay dataset on t-SNE mapped state distribution.

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673



1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727