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Abstract

In many real-world scenarios, data to train machine learning models becomes1

available over time. Unfortunately, these models struggle to continually learn new2

concepts without forgetting what has been learnt in the past. This phenomenon3

is known as catastrophic forgetting and it is difficult to prevent due to practical4

constraints. For instance, the amount of data that can be stored or the computational5

resources that can be used might be limited. Moreover, applications increasingly6

rely on large pre-trained neural networks, such as pre-trained Transformers, since7

compute or data might not be available in sufficiently large quantities to practi-8

tioners to train from scratch. In this paper, we devise a method to incrementally9

train a model on a sequence of tasks using pre-trained Transformers and extend-10

ing them with Adapters. Different than the existing approaches, our method is11

able to scale to a large number of tasks without significant overhead and allows12

sharing information across tasks. On both image and text classification tasks, we13

empirically demonstrate that our method maintains a good predictive performance14

without retraining the model or increasing the number of model parameters over15

time. The resulting model is also significantly faster at inference time compared to16

Adapter-based state-of-the-art methods.17

1 Introduction18

Transformers [57], e.g. BERT [12], have shown their effectiveness in various natural language19

processing (NLP) tasks such as classification [25], Natural Language Inference [41, 39], and Question20

Answering [16]. Inspired by this achievement, some pioneering works have recently been introduced21

on adapting Transformers architectures to Computer Vision (CV). Vision Transformers [13, 55]22

showed that a pure Transformer applied directly to a sequence of image patches can perform well23

on image classification tasks. Besides, some recent studies [67, 4, 30] showed that Transformers24

generalize to new domains given only a few samples. Transformers show a great ability to learn25

complex concepts but when confronted with a sequence of different tasks they tend to “overwrite” the26

previously learnt concepts. In general, deep networks suffer heavily from this phenomenon, called27

catastrophic forgetting (CF) [35], impeding continual or lifelong learning. In the last few years, a28

growing body of works attempted to tackle CF in continual learning (CL) [14, 19, 27, 46, 63, 65] but29

most are not able to meet the scale or accuracy requirements of real-world applications. Moreover,30

adapting large-scale pre-trained Transformer models to downstream tasks via fine-tuning is the31

method of choice in NLP applications, posing the need for methods that can directly work with32

pre-trained models instead of requiring the training of a new model from scratch [15].33

In this work, we tackle both text and image classification problem in a setting where the number of34

tags or classes associated to the input data grows over time. In fact, the ability to continually extend35

the set of tags or classes used to categorize content is a major problem in many applications. For36

example, newspapers can tag news according to topics of interest such as “sport”, “politics”, “food”37
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by using a pre-trained language model and refining it using a few hundred pre-tagged articles. New38

tags may appear over time, for example “COVID-19” was a completely unknown news category in39

2019 but appeared frequently since. In these cases, retraining models from scratch is often impractical40

and can lead to inconsistencies in the labeling when compared to the one provided by the previous41

model. In particular, we focus on incrementally extending classifiers based on pre-trained Transformer42

models given their ubiquity in NLP and the growing interest in CV.43

To address the issue of incremental fine-tuning of pre-trained Transformers in the sequential learn-44

ing setting without CF, we propose Adaptive Distillation of Adapters (ADA). ADA leverages45

Adapters [20], a specialized neural network module, to adapt part of the weights in the neural46

network and a distillation mechanism to consolidate the information previously learnt in a fixed47

amount of network parameters with limited amount of forgetting. This method allows the user48

to control the memory consumption, while retaining state-of-the-art performance when running49

the algorithm on sequences of tens of tasks. This tight memory control is important in industrial50

applications. The alternative, a model growing in size with the number of tasks, would require a51

change in hardware to adapt to the growing memory requirements of the deployed model. This would52

be problematic since a practitioner will incur into higher risk of system instability and be forced to53

make conservative hardware choices.54

The main contribution of our work is ADA, an algorithm that can achieve high predictive perfor-55

mance on both text and images classification in different continual learning scenarios. ADA also56

provides lower inference time and uses an order of magnitude fewer parameters than state of the art57

methods such AdaptersFusion. Additionally, we implemented Adapters for vision Transformers and58

empirically demonstrated their effectiveness.59

Related Work. Adapters [20] were proposed for fine-tuning of pre-trained language models and60

were studied for the multi-task setting. AdapterFusion [39] provides state-of-the-art performance61

by composing the pre-trained Adapters and it can simply be repurposed for preventing CF in CL62

by learning one Adapter for every new task. While it has been shown that the number of additional63

model parameters per Adapter is significantly smaller than the number of parameters used in the64

pre-trained model [20] (e.g., 3.6% of the parameters of the pre-trained model), since both Adapters65

and AdapterFusion require to store all the model parameters, the memory consumption increases66

rapidly with the number of tasks. In the case of a model being trained on 30 tasks, we would have to67

add more parameters than the number of pre-trained Transformer parameters (details in Section 4),68

making the method unsuitable for CL.69

Recent work studied catastrophic forgetting [53, 10, 25, 33] and incremental learning [64] for NLP70

and CV [30, 15]. Pasanuru et al. [38] focus on the few-shot setting where only a few data points71

are available for each task. Ke et al. [26] proposed an architecture to achieve both CF prevention72

and knowledge transfer. This method has some similarity to AdapterBERT [20] since they insert a73

CL plug-in module in two locations in BERT. A CL-plugin is a capsule network [50] that uses one74

separate capsule [18] (2-layer fully connected network) for each task, and like Adapters, memory75

increases linearly over the time. In addition, this algorithm requires to learn task masks to address76

knowledge transfer, which is costly to compute. Among those recent works, only a few [30, 15] have77

applied the Transformers architecture to CL on image datasets. In [30], for each new taskthe model78

is copied and fixed to be used as the teacher model in the distillation phase. The student model is79

trained on both new task samples together with the knowledge distillation loss that uses samples from80

old tasks which is stored in the rehearsal memory. In [15], the authors aim to learn a unified model81

that will classify an increasingly growing number of classes by building upon a new architecture.82

However, they need to train a new Transformer, where the process is very costly and contrast with83

our goal of using public pre-trained models. To the best of our knowledge there is no method able to84

leverage public pre-trained Transformers while keeping the number of model parameters constant85

while retaining state-of-the-art predictive performance.86

2 Problem setup and Preliminaries87

Problem Setup. Given a sequence of classification tasks {T1, . . . , TN} where each task Ti contains88

a different set of data sample (text or image)-label training pairs (xi
1:t, y

i
1:t) and contains c new89

classes namely Yi = {Y 1
i , . . . , Y

c
i } with t examples for each new class. The goal of the learner is to90

learn a set of parameters ⇥̃ such that 1
N

P
i2{1,...,N} loss(Ti; ⇥̃) is minimized. The task identifier is91
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provided to the learner with every new batch of data. Moreover, in our specific case, ⇥̃ is composed92

of a set of parameters ⇥ provided by a pre-trained model and, depending on the algorithm, some93

additional parameters which need to be learned for each specific task. In its simplest case, this94

additional set of model parameters can just be a head model, but some algorithms use significantly95

more elaborate functions. In the case of the tagging application described in Section 1, each task96

represents a tag and the learner creates a new binary classifier for each tag.97

For the training of task Ti, the learner can only access the newly added examples and label names98

in this task. To evaluate the learner, the test data consists of examples across all the previous tasks,99

where the potential label space for the test example is Y 1:c
1 [ Y

1:c
2 [ · · · [ Y

1:c
N . All methods that we100

define in the following sections receive as input a pre-trained model f⇥(.), e.g., BERT [12], able to101

extract high quality representations from the input data.102

Adapters. Adapters were proposed by [20] as an alternative to fine-tuning in NLP. Adapters share103

a large set of parameters ⇥ across all tasks and introduce a small number of task-specific parameters104

�i. Current work on Adapters focuses on training them for each task separately. For each of the N105

tasks, the model is initialized with parameters of a pre-trained model ⇥. In addition, a set of new and106

randomly initialized Adapter parameters �i are introduced for tasks i 2 {1, . . . , N}. The parameters107

⇥ are fixed and only the parameters �i are trained. This makes it possible to train Adapters for all N108

tasks, and store the corresponding knowledge in designated parts of the model. The objective for109

each task i 2 {1, . . . , N} is of the form: �i  argmin� Li(Di;⇥,�).110

AdapterFusion [39], has been proposed to mitigate the lack of knowledge sharing across tasks. It111

works in two phases: i) in the knowledge extraction stage, adapters, which encapsulate the task-112

specific information, are learnt for each of the N tasks; while ii) in the knowledge composition stage,113

the set of N Adapters are combined by using additional parameters  . The additional parameters114

 i for task i are defined as:  i  argmin Li(Di;⇥,�1, . . . ,�i, ). While this provides good115

predictive performance, in the CL setting, new tasks are added sequentially and storing a large set of116

Adapters �1, . . . ,�N is practically infeasible.117

3 Adaptive Distillation of Adapters (ADA)118

To address the issues we mentioned in the previous sections, we propose Adaptive Distillation of119

Adapters (ADA). ADA keeps a fixed amount of Adapters in memory and takes transferability of120

representations into account to effectively consolidate newly created Adapters with previously created121

ones. ADA works in two steps: i) it trains a new Adapter and classification head, which we refer as122

the new model, using the training dataset of the new task; ii) it consolidates an old model with the123

new model.124

To better control the memory usage, ADA has a fix budget for the number of Adapters K that are125

stored in a pool of old models. In the consolidation phase, the algorithm selects one of the models in126

the pool using scores that quantify the information contained in the representations they provide. In127

the following sections, we explain the components of ADA and how they work.128

3.1 Distillation of Adapters129

For each new task Tn, the Adapter parameters �n are added to the model, while the pre-trained130

model parameters ⇥ are kept frozen and are never changed. Only the task-specific model parameters131

�n and the head model parameters hn are trained for the current task. The model fn(x;⇥,�n, hn),132

with parameters ⇥, �n and hn is called the new model. The head model parameters are fixed after133

training the new model and they are not updated during model consolidation. When a prediction for134

a task Ti is required, the corresponding Adapter ��(i) and head model hi is called. � is a mapping135

from the task id to the corresponding Adapter in the pool or to the newly trained Adapter. We abuse136

notation defining f as the function returning the output on all tasks:137

f(x;⇥,�, h) =
⇥
f(x;⇥,��(1), h1), . . . , f(x;⇥,��(n�1), hn�1), f(x;⇥,��(n), hn)

⇤
(1)

For the consolidation step, an Adapter from the pool is selected as explained in Section 3.2 and138

new collection of Adapters �0 is created where the old Adapter is replaced with a randomly ini-139

tialized one called �c. Similarly, a copy of � is created to map the old tasks associated to the140
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selected Adapter and the new task n to �c. The consolidation then has the following objective141

min�c
1
|U|

P|U|
i=1(f(xi;⇥,�, h)� f(xi;⇥,�0

, h))2. After �c has been trained, � is swapped with142

�0. This is an high-level view of the mechanism, our implementation is optimized to avoid copying143

models when not necessary.144

This schema follows from the double distillation loss [69] to train a new Adapter that is used with145

the pre-trained model to classify both old and new tasks. Alternative solutions for distillation are146

discussed in Appendix A.1 but this solution was the best performing one in our experiments.147

While several different data sources can be used to populate the buffer, such as using auxiliary external148

data [69] or generating synthetic data [9], in this work we populate the buffer using covariates from149

previous tasks selected with Reservoir Sampling [58]. This simple mechanism may not be the most150

effective, but it will guarantee that no advantage is given to ADA in the experimental comparison.151

3.2 Adapter Selection for Distillation152

In the previous section, we assumed the Adapter to be consolidated as given but ADA keeps a pool of153

Adapters and the selection of the Adapter to be distilled is an important part of the algorithm. In fact,154

our empirical observations show that a random selection of the Adapter provides poor performance155

(see Section 4.3). The intuition behind our selection mechanism is the following: since a specialized156

head for every task is created, we can assume that when the features provided by the associated157

Adapter are highly informative, the updates (i.e., the gradients applied) will be small. At the same158

time, training a new head with every Adapter in the pool in order to observe which one is the most159

effective would increase the amount of computation required and significantly impact the usability of160

the method. The problem of computing the information carried by a representation in an efficient161

manner has been already studied in the transfer learning community [3, 56, 54].162

While, the aim of that research is completely different and, to the best of our knowledge, there is no163

clear relation between transferability and forgetting, the mathematical foundation of this work are164

closely related to our intuition. In fact, scores like TransRate [22] employ the mutual information165

between the features provided by a pre-trained model and the target labels for the task at hand. When166

the mutual information is high, the transferability is high. More specifically, the knowledge transfer167

from a source task Ts to a target task Tt is measured as:168

TrRTs!Tt(f(⇥,��(s))) = H(Z)�H(Z|Y ), (2)

where Y are the labels of target examples and Z = f(X;⇥,��(s)) are features of them extracted by169

the pre-trained model and the Adapter associated to the source task.170

TransRate is not the only score designed to quantify transferability between a pre-trained model and171

a new task: Log Expected Empirical Prediction (LEEP) [36] is a well-known alternative. Also in172

this case, the score was designed with a different application in mind, but it leverages the conditional173

distribution of the target label given the source label to quantify the how informative the information174

provided by the source model is. Specifically, LEEP is a three steps method. At Step 1, it computes175

dummy label distributions of the inputs f(X;⇥,��(t), ht) in the target data set D. At Step 2, it176

computes the empirical conditional distribution P̂ (y|z) of target label y given the source label z. At177

Step 3, it computes LEEP using f(X;⇥,��(s), hs) and P̂ (y|z):178

L(f(⇥,��(s), hs),D) =
1
m

mX

i=1

log

 
X

z2Z

P̂ (y|z)f(X;⇥,��(s), hs)z

!
, (3)

where z is a dummy label randomly drawn from f(X;⇥,��(s), hs) and y is randomly drawn179

from P̂ (y|z). We selected TransRate and LEEP for their simplicity and their ability to provide a180

quantification without training but practitioners can replace these scores with different ones as they181

see fit.182

3.3 Algorithm183

ADA is detailed in Algorithm 1. The graphical workflow of the algorithm is shown in Appendix 6.184

For every new task, the algorithm trains a new adapter and head model (called �n and hn). If185

the adapters pool did not reach the maximum size yet (controlled by K), it just adds it to the186

pool. If the pool reached the maximum size, the algorithm is forced to select one of the adapters187
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already in the pool and distill it together with the newly trained one. In order to select which188

adapter to distill, ADA uses the transferability scores (e.g., LEEP or TransRate). Once the adapter189

in the pool with the highest transferability score (called fj⇤) is identified, it consolidates that190

adapter and the newly trained one into a new adapter and replaces the old one present in the191

pool. In order to be able to make effective predictions, the algorithm also keeps a mapping �192

of which adapter in the pool must be used in combination with each of the task-specific heads.193

194

4 Experiments195

Algorithm 1 Adaptive Distillation of Adapters (ADA)
Require: ⇥: pre-trained model, K: adapters pool size

Freeze ⇥ and create � = Map()
for n 1 to N do

A task Tn is received
Initialize �n

Process Tn, train new model fn(x;⇥,�n, hn)
Sample from Tn and add to distillation data Ddistill

if n  K then

Store fn in the pool
else

j⇤  argmaxj2{1,...,K} TranScore(Tn, fj)
Add (n, j⇤) to �
Consolidate model:

fj⇤ = Distill(fj⇤ , fn,Ddistill)
end if

Serve predictions for any task i  n using f�(i)
end for

Distill(fi, fj ,Ddistill):
Get soft targets ŷi from old model fi with Ddistill

Get soft targets ŷj from new model fj with Ddistill

Initialize �c

Compute distillation loss and train model f(x;⇥,�c)
return f

In this section, we empirically validate our196

adapter distillation approach on text and im-197

age classification tasks and show that ADA198

achieves similar performance to Adapter-199

Fusion while consuming significantly less200

memory. We dedicate Section 4.3 to abla-201

tion studies providing further insights into202

the mechanisms implemented in ADA and203

their contribution.204

Datasets and experimental setup. We use205

three text datasets for multi-label text clas-206

sification: Arxiv Papers [66] (paper classi-207

fication), Reuters (RCV1-V2) [29] (news208

classification), Wiki-30K [71] (Wikipedia209

article classification) and two dataset for im-210

age classification: CIFAR100 [28] and Mini-211

ImageNet [49]. Details about the datasets212

are given in Appendix A.3.213

For the multi-label text classification exper-214

iments, we first sample a sequence of labels215

from the label space. Then, we create a216

balanced binary classification task for each217

label by sampling the same amount of pos-218

itive data points from the label considered219

and negative data points from the labels preceding the current one in the sequence. After splitting the220

data in training and test set, we provide the algorithm with the training set and subsequently measure221

its performance on the test set. The algorithm never observes any data point in the test set and, more222

generally, every data point in the dataset is used only once. For Arxiv Papers and Reuters datasets,223

we created 20 tasks and for Wiki-30K 60. We fixed the number of training samples per task to 100.224

The test set consists of 40 data points on Reuters and of 100 data points on Arxiv and Wiki-30K.225

For image classification, we design two scenarios. In the first scenario, each new task is a balanced226

binary classification problem. Each class can be selected to be the positive class only once. In the227

second scenario each task is a balanced multi-class classification problem with 5 classes. In both228

cases we provide the learner with 50 data points per class both at training and test time: in the first229

scenario each task will have a training set of 250 data points and in the second case of 100 data points.230

The total number of tasks is fixed to 20 for both scenarios.231

The distillation memory size is fixed to 1000 for Wiki-30K which has a larger number of tasks, and232

to 500 for the others. We use Average Accuracy, Backward Transfer (BWT) and Forward Transfer233

(FWT) as evaluation metrics defined in [34]. All the results in this section are averaged over 5 runs.234

Baselines. We compare ADA the following baselines. 1) Fine-tuning head model (B1): We freeze235

the pre-trained representation and only fine-tune the output layer of each classification task. The236

output layer is multiple-head binary classifier that we also use for the other methods. 2) Fine tuning237

the full model (B2): We fine-tune both the pre-trained representation and the output layer for each238

classification task. 3) Adapters [20]: We train and keep separate Adapters for each classification task239

as well as the head models. 4) AdapterFusion [39]: It is a two stage learning algorithm that leverages240

knowledge from multiple tasks by combining the representations from several task Adapters in order241
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to improve the performance on the target task. This follows exactly the solution depicted in Section 2.242

5) Experience Replay (ER) [48]: ER is a commonly used baseline in Continual Learning that stores243

a subset of data for each task and then “replays” the old data together with the new one to avoid244

forgetting old concepts. [11] propose to use such a memory module for sparse experience replay245

and local adaptation in the language domain. This method stores all training examples, in order to246

achieve optimal performance. To make this method comparable with adapter-based methods, we247

freeze pre-trained representation, add a single adapter parameters � and train the adapter by replaying248

examples from old tasks while training using data from the new task. In order to keep baselines249

comparable we assign to ER the same amount of memory is used for the distillation buffer in ADA.250

In addition to these baselines, we use one special case of ADA with K=1 as a baseline to demonstrate251

the advantage of effective consolidation of Adapters.

Figure 1: Comparison between baselines and ADA on Arxiv, Reuters and Wiki-30K. On top, we
report the number of tasks processed on the x-axis and we report the average accuracy measured on
the test set of the tasks processed on the y-axis, shaded area shows standard deviation. On bottom,
we report BWT and FWT.

252

Adapter architectures. We use pre-trained models from HuggingFace Transformers [61] as our253

base feature extractors. We ran experiments with BERTbase, DistilBERTbase, RoBERTabase for254

text classification and ViT-B and DeiT-B for image classification. We analyze the cases based on255

all these models, due to the space constraints, we present BERTbase in this section and the rest in256

Appendix A.5. BERTbase model uses 12 layers of Transformers block with a hidden size of 768 and257

number of self-attention heads as 12 and has around 110 M (440 MB) trainable parameters. For the258

Adapter implementation, we use Adapter-Hub [40], but no Adapter implementation was available for259

Vision Transformers. We define our architecture of Adapters for ViT and DeiT in Appendix A.4. An260

Adapter has a simple bottleneck architecture that contains fewer parameters than the attention and261

the feed-forward layers. The Adapter size is the hyper-parameter that is tuned and it can be set to262

{12, 24, 48, 96, 192, 384} for BERTbase model. For all the methods, we use the same configuration263

for the Adapters, setting the size to 48. With this setting, an Adapter contains ⇠ 1.8 M parameters.264

We also train a head model for each task, that has 768 parameters for BERTbase (last hidden size265

of BERTbase⇥output size, which equals to 1 for binary classification). The tables in Appendix A.5266

reports the number of parameters used for baselines and ADA in our experiments.267

Figure 2: Comparison of number of parameters of baselines and ADA on Arxiv, Reuters and
Wiki-30K. The predictive performance reported on the y-axis is measured after processing all tasks.
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4.1 Text Classification268

Predictive performance. Figure 1 shows the comparison of ADA and the baseline methods. It can269

be clearly seen that freezing all pre-trained model parameters, and fine-tuning only the head models270

(B1) led to an inferior performance compared to adapter-based approaches. The main reason is that271

the head models have small amount of parameters to train and fine-tuning only the heads suffers from272

under-fitting. B2 performs good only for first 2-3 tasks, since we keep training the complete model, it273

forgets the previously learned tasks very quickly. As mentioned above, Adapters and AdapterFusion274

add ⇠ 1.8 M parameters for each task and train these parameters with new task data, and these275

parameters are fixed after training. So, they perform well on both new tasks and previous tasks. The276

results on each dataset confirm this. Both ER and ADA K=1, perform closely with Adapters almost277

for half of the tasks. The similar behavior of ER and ADA K=1 demonstrates that the distillation with278

soft labels works well and it is almost as good as training with the true labels. Later the performance279

declines for both methods, because the capacity of the Adapter is exceeded. ADA LEEP and ADA280

TransRate results with K=4 Adapters show that selective consolidation of Adapters significantly281

improves the performance. Their performance is on par with AdapterFusion while the number of282

model parameters is significantly lower. We present BERTbase results in this section while the rest is283

reported in Appendix A.9.284

We also compute FWT and BWT scores for these methods. We didn’t present B1 and Adapters in285

the plots, since both FWT and BWT are zero for them. BWT is zero for AdapterFusion, since the286

fusion parameter is computed with available Adapters, and the Adapters trained later is not used for287

the previous tasks. ADA-LEEP and ADA-TransRate minimizes negative backward transfer, while288

showing a positive forward transfer for all datasets.289

Memory consumption. Figure 2 shows the number of parameters used by each method and290

their predictive performance. These results make clear that ADA is significantly more efficient in291

terms of memory usage. It can achieve predictive performance similar to the one of Adapters and292

AdapterFusion while requiring significantly less model parameters. On Reuters and Arxiv, it can293

store the parameters of only 5 Adapters (K=4 Adapters in the pool, and one Adapter for new task),294

against the 20 required by AdapterFusion.295

Inference time. When machine learning models are used to power customer-facing web sites, they296

are often required to provide predictions in a few milliseconds to keep the overall latency within297

requirements. Moreover, in this kind of application the model will be trained once and make billions298

of predictions so a reasonable increase in the training time is irrelevant compared to a decrease in299

the inference time. We report the inference time results of ADA and other Adapter based methods300

in Appendix A.6. Results demonstrate that ADA provides a sufficiently fast inference for most301

applications and still offers opportunities to speed it up further, for example by employing smaller302

pre-trained Transformers (e.g. DistilBERT, see Appendix A.5).303

Training time. Distillation of Adapters brings an extra cost for ADA while learning fusion parameters304

brings an extra cost for AdapterFusion. Computing transferability takes constant time which is305

negligible. Distillation costs training an additional Adapter ( 1.6 % of full fine-tuning time of BERT).306

Figure 8d in AppendixA.6 reports the average training time comparison on Wiki-30K that is the307

largest difference with AdapterFusion given larger number of tasks. We can clearly see that the308

difference is small (ADAis 3.37% more, ADA-TransRate is 5.6% more) while the difference between309

the inference time is significant.310

4.2 Image Classification311

For image classification experiments, we add Elastic Weight Consolidation (EWC) [27] as an addi-312

tional baseline since it is widely used in CL literature for image classification. EWC is a regularization-313

based CL method that assumes that some weights of the trained neural network are more important314

for previously learned tasks than others. During training of the neural network on a new task, changes315

to the weights of the network are made less likely the greater their importance.316

Figure 3 shows the comparison of ADA and the baseline methods. The results show the same317

behaviour with text classification. B1 leaded to an inferior performance compared to other approaches.318

B2 performs well only for initial tasks and it forgets the previously learned tasks very quickly. Results319

confirm there is no forgetting for Adapters and AdapterFusion. Although the careful tuning of320

regularization coefficient, EWC cannot handle CF, especially for multi-class classification problem.321
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Figure 3: Comparison between baselines and ADA with ViT model on MiniImageNet and CIFAR100.
Top figures shows the binary, and bottom figures shows the multi-class classification results.

ADA with K=1 shows that distillation alone doesn’t prevent forgetting. In almost all cases, ER322

performs on-par with ADA K=1, providing evidence that a small amount of memory can actually323

improve performance compared to fine-tuning or regularization, but the improvement is limited and324

does not last as the number of tasks increases.325

ADA-LEEP and ADA-TransRate results with K=4 Adapters show that selective consolidation of326

Adapters significantly improves the performance. For binary classification, their performance are on327

par with AdapterFusion while the number of model parameters is significantly lower. For multi-class,328

their performance slightly declines after a certain number of tasks. This is discussed in next section329

and the main reason is that the capacity of the Adapter is exceeded. To validate the interoperability330

of ADA to different models, we run the same experiments on DeiT model and present the results in331

Appendix A.10 due to space constraints.332

4.3 Ablation studies333

Comparison with larger distilled models. In Section 4 we compared ADA with the special case334

of ADA with K=1 to evaluate the improvement provided by our approach over a distillation-only335

solutions. We would like to provide additional observations of the superior performance of ADA by336

comparing its performance with the one of a distilled Adapter using more parameters. Specifically,337

we run an experiment where we compare ADA with K=4 and ADA with K=1 as displayed before but338

in this case the “size” of the Adapter, which is 48 for Size⇥1, is multiplied by 4 for Size⇥4 Adapter339

to have a comparison where the different methods use the same number of model parameters. Since340

K=1 is a special case where a single Adapter is kept in the pool, the transferability metric is irrelevant341

and we can see ADA with K=1 as a method purely based on distillation like DMC [69].342

Figure 4: Impact of LEEP and TransRate when the total number of Adapter parameters is same on
Arxiv and Reuters.

The results reported in Figure 4 show that ADA can make a better use of the model parameters343

compared to a distillation-only method and that the intelligent selection of which Adapters to distill344

together makes once again a big difference. It is also interesting to observe that the usage of additional345

model parameters brings a clear advantage but the mixed comparison between the ADA K=4 with346

random Adapter selection and ADA K=1 with four times larger Adapters leaves some questions open347
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regarding how far distillation can get in this setting. Another finding is that TransRate outperforms348

LEEP in most cases. It is also demonstrated in the original paper [22] that TransRate has a strong349

correlation to the transfer learning performance and it outperforms LEEP and other metrics employed.350

Impact of the Adapters pool size. In our experiments we used a fixed number of Adapters in the351

pool size, but more Adapters can be added to ADA’s pool as more tasks are processed. This may352

actually be the preferred usage in some applications. We already know that having an Adapter per353

task provides good performance and using multiple of them at the same time like in AdapterFusion354

provides a benefit, but we would like to verify the sensitivity to this parameter. The results reported

Figure 5: LEEP and TransRate performances when K = {1, 2, 4, 8} on Reuters.
355

in Figure 5 show a rapidly decreasing added value when the number of Adapters grows, a behavior356

which aligns well with our practical requirements of keeping the number of model parameters under357

control when the number of tasks increases. See additional experiments in Appendix A.11.358

5 Conclusion359

In this paper we presented ADA, a new method that allows neural text and image classifiers to360

learn new classes based on pre-trained Transformers while maintaining strict control of the memory361

usage and reaching state-of-the-art predictive performance. The method has shown to be effective362

in different domains and allows users to leverage publicly available pre-trained Transformers for363

continual classification tasks. We empirically demonstrated that Adapters can give good results364

when used in combination with vision Transformers on CV tasks. We evaluated ADA on different365

classification tasks and demonstrated that the predictive performance is competitive with state-of-366

the-art methods which use up to an order of magnitude parameters. Moreover, ADA displayed lower367

latency at inference time and improved data efficiency for some specific settings (see Appendix A.8).368

Transformers are very popular, but they are not the only models being widely used in practice. We369

consider this the main weakness of our approach and we would like to further expand our activity370

to perform CL on other widely used pre-trained models such as ResNet. Addressing multi-modal371

classification using text and images together will be the other focus of our future research.372
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Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist559
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1. For all authors...562
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(b) Did you describe the limitations of your work? [Yes] Our work is tied to the usage of Transform-565

ers, we remind it in the conclusions.566

(c) Did you discuss any potential negative societal impacts of your work? [N/A]567

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]568

2. If you are including theoretical results...569

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We don’t have theoretical570

results.571

(b) Did you include complete proofs of all theoretical results? [N/A] We don’t have theorems.572

3. If you ran experiments...573

(a) Did you include the code, data, and instructions needed to reproduce the main experimental574

results (either in the supplemental material or as a URL)? [TODO]We will provide the code if575

the paper is accepted.576

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?577

[Yes] See Section 4 and Appendix A.2.578

(c) Did you report error bars (e.g., with respect to the random seed after running experiments579

multiple times)? [Yes] Yes, all figures show the standard deviation (shaded regions).580

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,581

internal cluster, or cloud provider)? [Yes] See Appendix A.2.582

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...583

(a) If your work uses existing assets, did you cite the creators? [Yes] We used AdapterHub, that is584

cited in experiments and appendix sections.585

(b) Did you mention the license of the assets? [Yes] Yes, in Appendix A.3.586

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]587

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-588
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(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-590

tion or offensive content? [N/A]591

5. If you used crowdsourcing or conducted research with human subjects...592

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?593
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(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)595

approvals, if applicable? [N/A]596
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