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Abstract

We study the gradient flow for a relaxed approximation to the Kullback-Leibler
(KL) divergence between a moving source and a fixed target distribution. This
approximation, termed the KALE (KL Approximate Lower bound Estimator),
solves a regularized version of the Fenchel dual problem defining the KL over
a restricted class of functions. When using a Reproducing Kernel Hilbert Space
(RKHS) to define the function class, we show that the KALE continuously inter-
polates between the KL and the Maximum Mean Discrepancy (MMD). Like the
MMD and other Integral Probability Metrics, the KALE remains well-defined for
mutually singular distributions. Nonetheless, the KALE inherits from the limiting
KL a greater sensitivity to mismatch in the support of the distributions, compared
with the MMD. These two properties make the KALE gradient flow particularly
well suited when the target distribution is supported on a low-dimensional manifold.
Under an assumption of sufficient smoothness of the trajectories, we show the
global convergence of the KALE flow. We propose a particle implementation of
the flow given initial samples from the source and the target distribution, which we
use to empirically confirm the KALE’s properties.

1 Introduction

We consider the problem of transporting probability mass from a source distribution [P to a target
distribution QQ using a Wasserstein gradient flow in probability space. When the density of the target
is well-defined and available, the Wasserstein gradient flow of the Kullback-Leibler (KL) divergence
provides a simple way to transport mass towards the target through the Fokker-Planck equation
as established in the seminal work of [31]. Its time discretization yields a practical algorithm, the
Unadjusted Langevin Algorithm (ULA), which comes with strong convergence guarantees [22, 19]. A
more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [36], also leverages
the analytic expression of the density and constructs a gradient flow of the KL, albeit using a metric
different from the Wasserstein metric.

The KL divergence is of particular interest due to its information theoretical interpretation [56] and its
use in Bayesian Inference [13]. The KL defines a strong notion of convergence between probability
distributions, and as such is often widely used for learning generative models, through Maximum
Likelihood Estimation [20]. Using the KL as a loss requires knowledge of the density of the target,
however; moreover, this loss is well-defined only when the distributions share the same support.
Consequently, we cannot use the KL in settings where the probability distributions are mutually
singular, or when they are only accessible through samples. In particular, the Wasserstein gradient
flow of the KL in these settings is ill-defined.
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Recent works have considered the gradient flow of Integral Probability Metrics (IPM) [46] instead of
the KL, in settings where only samples (and not the density) of the target are known. This includes the
Maximum Mean Discrepancy (MMD) [4] and the Kernelized Sobolev Discrepancy (KSD) [45, 44].
One motivation for considering these particle flows is their connection with the training of Generative
Adversarial Networks (GANs) [28] using IPMs such as the Wasserstein distance [7, 29, 27], the
MMD [24, 34, 33, 9, 10, 5] or the Sobolev discrepancy [43]. As discussed in [45, Section 3.3], these
flows define update equations that are similar to those of a generator in a GAN. Thus, studying the
convergence flows can provide helpful insight into conditions for GAN convergence, and ultimately,
improvements to GAN training algorithms. A second motivation lies in the connection between the
training dynamics of infinitely wide 2-layer neural networks and the Wasserstein gradient flow of
particular functionals [52]. Thus, analyzing the asymptotic behavior of such flows [40, 58, 18] can
ultimately provide convergence guarantees for the training dynamics of neural networks. Establishing
such results remains challenging for some classes of [PMs, however, such as the MMD [4].

In this paper, we construct the gradient flow of a relaxed approximation of the KL, termed the KALE
(KL Approximate Lower bound Estimator). Unlike the KL, the KALE is well-defined given any
source and target, regardless of their relative absolute continuity. The KALE is obtained by solving a
regularized version of the Fenchel dual problem defining the KL, defined over a restricted function
class [48, 6], and can be estimated solely from samples from the data. The version of the KALE we
consider in this work benefits from two important features that are crucial for defining and analyzing
a relaxed gradient flow of the KL. (1) We define the function class to be a Reproducing Kernel Hilbert
Space (RKHS). This makes the optimization problem defining the KALE convex and allows for
practical algorithms computing it. (2) We consider a regularized version of the problem defining the
KALE, thus providing a simpler expression for the gradient flow by virtue of the envelope theorem
[42]. In Section 2, we review the KALE, and show that it is a divergence that metrizes the weak
convergence of probability measures, while interpolating between the KL and the MMD depending
on the amount of regularization. We then construct in Section 3 the Wasserstein Gradient Flow of
the KALE, and we show global convergence of the KALE flow provided that the trajectories are
sufficiently regular. In Section 4, we introduce the KALE particle descent algorithm as well as a
practical way to implement it. In Section 5, we present the results obtained by running the KALE
particle descent algorithm on a set of problems with different geometrical properties. We show
empirically that the sensitivity to support mismatch of the KALE inherited from the KL leads to
well-behaved trajectories compared to the MMD flow, making the KALE flow a desirable alternative
when a KL flow cannot be defined.

Related work. The Fenchel dual formulation of the KL, and more generally f-divergences, has a
rich history in Machine Learning: [48] relied on this dual formulation to estimate the KL between
two probability distributions when their density ratios belong to an approximating class. They derived
a plug-in estimator for the KL which comes with convergence guarantees. In the context of GANSs,
[49] used the Fenchel dual representation of f-divergences, of which the KL is a particular instance,
as a GAN critic. Later, [41] used Fenchel duality to estimate the KL in the context of Variational
Inference (VI) when the variational distribution is chosen to be an implicit model, thus allowing
more flexible models at the expense of tractability of a KL term appearing in the expression of the
ELBO. In both the GAN and VI settings, the function class defining the f-divergence was restricted
to neural networks. Recently, [6] showed that controlling the smoothness of such a function class
results in a divergence, the KL Approximate Lower bound Estimator (KALE), that metrizes the weak
convergence of distributions [21], unlike the KL which defines a stronger topology [62]. The KALE
is therefore well-suited for learning Implicit Generative Models which are only accessible through
sampling, as advocated in [8]. When neural network classes are used, however, the method has no
optimization guarantees, as the dual problem becomes non-convex due to the choice of the function
class. This is unlike our setting [and that of 48], since our dual problem is strongly convex and comes
with guarantees. [12] presented a general framework incorporating both f-divergences and Integral
Probability Metrics, but rely on another variational formulation than the Fenchel dual one. In parallel
to work related to f-divergences, [30, 16, 53, 1] have investigated the task of sampling in the case
where the source and the target have disjoint supports. Again, unlike our setting, these works assume
that the log-density of the target distribution is known.



2 Interpolating between KL and MMD using KALE

In this section, we introduce the KALE, a relaxed approximation of the KL divergence. Although we
will use the KALE to define a relaxed KL gradient flow, we show in this section that the KALE is
an object of independent interest outside the gradient flow setting: indeed, it is a valid probability
divergence that metrizes the weak convergence of probability distributions, and interpolates between
the KL and the Maximum Mean Discrepancy.

Mathematical details and notation We start by introducing some notation. We denote by P(R?)
the set of probability measures defined on R¢ endowed with its Borelian -algebra, and by P2 (R%) C
P(R?) the set of elements of P(R?) with finite second moment. Weak convergence of a sequence of
probability measures (P, ),,>o towards P is written P,, — P. A positive definite kernel on the set R¢
will be denoted & : R% x RY — R, with RKHS A, and we will use k,, to refer to the RKHS function
y — k(x, %) obtained by fixing the first argument of k. The Dirac delta measure for x € R? will
be written ... We denote by C>°(R? x (0, +00)) the set of infinitely differentiable functions with
compact support on R? x (0, +00), and by C(R?) the set of continuous bounded functions from
R? to R. Sets of N points in R? will be indexed using a superscript {x(i)}ij\il, while a sequence of
points in R? will use a subscript: (Tn),ey- If random, elements of such sets X () or iterates of such
sequences X, will be capitalized. If not, they will be kept in lower-case. For the sake of notational
lightness, the choice of the norm used for a specific object (vectors, functions, operators) will be
specified with a subscript (e.g. |2 || for the RKHS norm) only if the said choice is not obvious from
the context. This remark also holds when referring to the null element of a vector space (04, Oga, ...).

2.1 The KL Approximate Lower bound Estimator (KALE)

The central equation to derive the KALE is the (Fenchel) dual formulation of the KL [3, Lemma
9.4.4]:
KL(P| Q)= sup {1+/hdIP’—/eth}. (1)
heCP(R4)
KALE is obtained from Eq. (1) by restricting the variational set to an RKHS A with reproducing
kernel k, and by adding a penalty to the objective that controls the RKHS norm of the test function
h. This regularization ensures that the KALE is well-defined for a broader class of probabilities

compared to the KL, even when PP and Q are mutually singular. Its complete definition is stated
below:

Definition 1 (KALE). Let A > 0, and H be an RKHS with kernel k. The Kullback-Leibler Approxi-
mate Lower bound Estimator (KALE) is given by:

KALE(P || Q) =(1+)\)%1€a71({1+/hd]?—/eth—thHi}. )

The (1+ A) scaling will prevent a degenerate decay to 0 in the large A regime (see Proposition 1). The
definition we consider here also differs from the one in [6], which first finds the optimal function h*
solving Eq. (2), and then defines KALE by evaluating the KL objective in Eq. (1), thereby discarding
the regularization term when evaluating the divergence.

Mathematical Assumptions To prove the theoretical results stated in this work, we will make the
following basic assumptions on the kernel &:

Assumption 1 (Boundedness). There exists K > 0 such that k(z,z) < K, for all z € R%.
Assumption 2 (Smoothness). The kernel is 2-times differentiable in the sense of [60, Definition
4.35]: foralli,j € {1,...,d} 0;0i+qk and 0;0;0;1q0j1qk exist. Moreover, we have: |V1km|\2 a

Zle 10:ks1? < K14 and || H 1k ||? = szzl 10:0;k4|? < Kaa, where d indicates an expected
scaling with dimension.

Assumption 1 guarantees the integrability of the objects intervening in KALE, and implies bound-
edness of the RKHS functions. Assumption 2 guarantees first and second order smoothness of
the RKHS functions, a property invoked to control the KALE flow trajectories. Indeed, both the



differential and the hessian of any f € H can now be bounded in operator norm: using the Cauchy-
Schwarz inequality and the kernel reproducing derivative property [60, Corollary 4.36], we have:
|0:f ()] < [|Oike|| || f]| and [0;0; f ()| < [[0:0jke| || f[|. implying [V f(z)[| < v'Kiallf], and
1H (f(2))llop < H(f(2)llp < vV Eoall f]-

KALE is a probability divergence We first show that KALE is a probability divergence, and
presents topological properties compatible with its use in generative models, such as GANs and
Adversarial VAEs: weak continuity, and metrizing the weak convergence of probability distributions.
We recall that a functional D(- || -) is a probability divergence if both D(P || Q) > 0 and D(P ||
Q) =0 <= P=Q,forany P,Q € P(R?).

Theorem 1 (Topological properties of KALE). Let P,Q € P(R?). Let (P,,),,, be a sequence of
probability measures. Then, under Assumption 1: -

(i) KALE is weakly continuous: P,, =~ P = 1i_>m KALE(P, || Q) = KALE(P || Q)
n o0

(ii) If k is universal [57], then for any A\ > 0, KALE is a probability divergence. Moreover, KALE
metrizes the weak topology between probability measures with finite first order moments.

Central to the proof of all points in this theorem is a link between KALE and the MMD witness
function fp g, which we report in the next lemma. We recall that given an RKHS # associated to a
kernel &, and two probability distributions [P and @Q, the MMD is defined as the RKHS norm of the
difference of mean embeddings of P and Q:

MMD(® || Q) = [|feal  (feo = / kodP(z) — / kedQ(z) 2 p — prg). 3)

Lemma 1. Let P, Q € P(Rd), and K : H —— R be the objective maximized by KALE, e.g.

K(h) =1+ [ hdP — [ e"dQ — 3 |hl|%. Then, under Assumption 1, K is Fréchet differentiable.
Moreover, the following relationship holds:

VK(0) = feg

Intuitively, noting that C(0) = 0, Lemma 1 ensures that KALE presents “equivalent” regularity and
discriminative properties to those of MMD (a divergence which is itself, under the assumptions of
this theorem, weakly continuous and that metrizes the weak convergence of probability distributions).
The proof of the second point of Theorem 1 is inspired by [6], which in turn derives from [66, 37],
and is adapted to account for the extra norm penalty term in the version of the KALE in this paper.

Interpolating between the MMD and the KL using the KALE The KALE includes a positive
regularization parameter ), inducing two asymptotic regimes: A — 0 and A — oc. In these regimes,
the KALE asymptotically recovers on the one hand the KL divergence, and on the other hand the
MMD.

Proposition 1 (Asymptotic properties of KALE). Let P, Q € P(R?). Then, under Assumption 1, the
following result holds:

1
lim KALE(P|| Q) = ~MMD*(P || Q). )
A——+oo 2
Suppose additionally that log % € H. Then,
lim KALE(P || Q) = KL(P || Q). )
—0

Proposition 1 shows that the MMD can be seen as solving a degenerate version of the KL objective.
Eq. (5) is natural given the original definition of the KALE, and highlights the continuity of the
KALE objective w.r.t the regularization parameter A\. Both the MMD and the KL exhibit limitations
when used for defining gradient flows, however: as discussed in [4, 25, 14], the MMD induces a “flat”
geometry, making its use in generative models tricky [5]. On the other hand, the KL comes with
stronger convergence guarantees [3], but its use in sampling algorithms is limited to cases where the
target distribution has a density, discarding cases satisfying the widely known manifold hypothesis
[47, 14, 17], stating that typical high dimensional data used in machine learning are distributed on a
lower-dimensional manifold. For this reason, we argue that the true interest of the KALE does not lie
in its interpolation properties, but rather in the geometry it generates at intermediate values of \.



The KALE’s dual objective Interestingly, the KALE itself admits a dual formulation, with a
strong connection to the original KL expression:

{KALE (] Q) o mingso { S (Flog ] 1)+ 1)dQ + 3 [|f f@)kedQle) — pelly} o

J £ (@)k.dQ(z) —

The solution f* of Eq. (6) can be seen as an entropically-regularized density ratio estimate on the
support of Q (additional details on the KALE dual objective are given in the appendix). Eq. (6) also
yields an elegant estimation procedure, as discussed below.

Computing KALE(P || Q) in practice As for other IPMs, computing KALE(IP || Q) for arbitrary
P and Q is intractable, and is therefore approximated using a discretization procedure. A common
procedure is to assume access to samples {Y D} and {X@}N  from PP and Q and to solve
the empirical equlvalent of Eq. (6) (e. g Eq (6), but where P and Q are replaced by their plug-in

estimators PN = N § o1 Oy and QV = N § ;=1 Ox ). This empirical equivalent is written
1 2
0 0] M)y — f(x@ 7H _ "
min N;:lf(X ) log(f(X™)) = F(X™) + 1+ NE f(X ), — g D

which is a strongly convex /N-dimensional problem, and can be solved using standard euclidean
optimization methods. By adapting arguments of [6], it can be shown that the discrepancy between
the KALE’s empirical and population value, [KALE(PV || QV) — KALE(P || Q)] (often called
“sample complexity”), is at most O(LN) This rate is identical that of Sinkhorn divergences [26],

another family of entropically-regularized divergences.

3 KALE Gradient Flow

Having introduced KALE as a relaxed approximation of the KL, we now construct the KALE gradient
flow, and assert its well-posedness. We provide conditions for global convergence of the flow, and
discuss its relationship with the MMD flow and the KL flow. All proofs are given in the appendix.

3.1 Wasserstein Gradient Flow of the KALE

Wasserstein Gradient Flows of divergence functionals F(IP || Q) aim at transporting mass from an
initial probability distribution P towards a target distribution QQ by following a path IP; in probability
space. The path is required to dissipate energy, meaning that ¢ — F(P; || Q) is a decreasing
function of time. Additionally, it is constrained to satisfy a continuity equation that allows only
local movements of mass without jumping from a location to another. This equation involves a time
dependent vector field V; which serves as a force that drives the movement of mass at any time ¢:

P, + div(P,V;) = 0. ®)

Eq. (8) holds in the sense of distributions, meaning that for any test function ¢ € C°(R% x (0, +00)),
we have:

/Bta,o(x,t)d]}”tdt+ / (Vao(z,t), Vi)ga dPrdt = 0.

The Wasserstein gradient flow of a (sufficiently regular) functional F is then obtained by choosing V;
as the gradient of first variation of F, defined as the Gateaux derivative of I’ along the direction x;,

DpF(P;x) 2 lim e (F(P+ex) — F(P)),

where [ dx = 0, and provided that such a limit exists. This choice recovers a particle Euclidean
gradient flow when Py is a finite sum of Dirac distributions, and can thus be seen as a natural extension
of gradient flows to the space of probability distributions [3, 63, 64]. In the next proposition, we show
that the functional P — KALE(P || Q) admits a well-defined gradient flow of this form.



Proposition 2 (KALE Gradient Flow). Let A > 0, and Py, Q € Py (R?). Under Assumptions 1 and
2, the Cauchy problem

Bt]P’t - le(Pt(l + )\)Vh:) = 07 Pt:O = ]P)(], (9)

where h} is the unique solution of
hi = argmax< 1+ / hdP; — / ehdQ — A I (10)
! heH i 2 '

admits a unique solution (IP¢)¢>0, which is the Wasserstein Gradient Flow of the KALE.

The proof, given in Appendix D, requires studying the regularity properties of KALE in the metric
space Po (Rd) endowed with the Wasserstein-2 Distance [64], using the framework developed in [3].

3.2 Convergence properties of the KALE flow

Proposition 2 hints at a connection between the KALE flow and the MMD flow, which solves:
BtIP’t — div (PtV}‘pr) = O7 ]Pt:() = P() (11)

The MMD flow and the KALE flow thus differ in the choice of witness function characterizing their
velocity field. A convergence analysis of the MMD flow was proposed for a wide range of kernels in
[4] using inequalities of Lojasiewicz type; in particular, the MMD flow is guaranteed to converge
provided that the quantity P; — Q remains bounded in the negative Sobolev distance ||[Py — Q|| ;-1 g,
[50]. We recall that the negative weighted negative Sobolev distance [4] between p and v is define:
as:

= vl = s | [ fatu=v)
£l g ey <1

which is obtained by duality with the weighted Sobolev semi-norm || f|| ;) = ([ [V f |2dP)= . Note
the important role of the latter quantity in the energy dissipation formula of the KALE gradient flow:
dKALE(P, || Q)

e = [ AR IV P = AP T (12)

In the next proposition, we extend the condition ensuring the global convergence of the MMD flow
[4] to the KALE flow:

Proposition 3. Under Assumptions I and 2, if [Py — Q|| g—1(p,) < C for some C > 0, then:

C
< .
~ CKALE(P || Q)+t

KALE(P, || Q)

Proposition 3 ensures a convergence rate in O(1/t) provided that ||P; — Q|| -1, remains bounded.

This convergence rate is slower than the linear rate of the KL along its gradient flow [38] and could
be an effect of RKHS smoothing.

4 KALE Particle Descent

‘We now derive a practical algorithm that computes the solution of a KALE gradient flow, given
an initial source-target pair Py and Q. Because of the continuous-time dynamics, and the possibly
continuous nature of Py and Q, solutions of Eq. (9) are intractable to compute and manipulate. To
address this issue, we first introduce the KALE Particle Descent Algorithm that returns a sequence
(PN),,>0 of discrete probability measures able to approximate the forward Euler discretization of
P, with arbitrary precision. Additionally, we show that the KALE particle descent algorithm can
be regularized using noise injection [4], which guarantees global convergence of the flow under a
suitable noise schedule. All proofs are given in the appendix.



4.1 The KALE Particle Descent Algorithm

Time-discretized KALE Gradient Flow As a first step towards deriving the KALE particle
descent algorithm, let us first consider a time-discretized version of the KALE gradient flow (Eq. (9)
and Eq. (10)), obtained by applying a forward-Euler scheme to Eq. (9) with step size v. This
time-discretized equation is given by

Pot1 =T —y(1 4+ XN)Vh) Py, Py =Po. (13)

The function %} is a discrete time analogue of Eq. (10), in that it is solution to the following
optimization problem:

X2
hr = 1 hdP, — [ "dQ — Z |7 . 14
O arggg%{ +/L /( Q 2HLH} (14)

The solution P,, of Eq. (13) is a sensible approximation of P;: indeed, it can be shown under
suitable smoothness assumptions [54, 4] that the piecewise-constant trajectory (t — P, ift €
[ny, (n + 1)7)) obtained from the time-discretized gradient flow of a functional F will recover the
true gradient flow solution P; of F as v — 0.

Approximation using finitely many samples: the KALE particle descent algorithm Despite
its discrete-time nature, the sequence (Pn)nz() may still be intractable to compute: for generic Py and
@, Eq. (14) will contain intractable expectations and have an infinite dimensional search space. To
address this issue, we propose the KALE particle descent algorithm; thls algorithm approximates the
true time-discrete iterates P, given N samples { X (D}~ | and {YO( R v, of Q and Py, by computing
the probabilities IP’N solvmg the time- dlscrete KALE gradlent flow arlsmg from the empirical source-

target pair QN =% Zi:l X @ and IP’(])V =% Zi:l YO( . As opposed to P,,, it is possible to exactly
compute PYV: indeed, the recursion equation Eq. (13) implies that PY remains discrete for all n
More precisely, we have ]P’ﬁy = ﬁ 27]\11 Y,Sl), where

Y9 = YO (1 + NVhL (YD), (15)
and ﬁ* is defined as
. . . A
hr = hdPY — [ "dQN — Z|n)3 Y. 16
n argglgg{/ n /e Q" =5 1Al (16)

As in the sample-based setting of Eq. (7), 1@5 and @N are discrete, meaning that Eq. (16) reduces to

an N- dimensional convex problem, and i}, can be tractably computed. The alternate execution of
Eq. (15) and Eq. (16) for a finite number of time steps defines the KALE Particle Descent Algorithm,
that we lay out in Algorithm 1.

Consistency of the KALE Particle Descent Algorithm Note that the source of error in the KALE

particle descent algorithm lies in the use of an approximate witness function ﬁfL instead of the true, but
intractable, A} . Indeed, one can show, using the theory of McKean-Vlasov representative processes
[39], that the n-th iterates of the sequence defined by:

70 =YD — (14 NV, Y ~ Py, 1<i< N (17)
are distributed according to the n'" iterate IP,, of the true dlscrete tlme KALE gradient flow solution

defined in Eq. (13). As such, the discrete probability PN = v ZZ 1 Y< i may be considered as

an unbiased space-discretization of Eq. (13). In the next proposition, we show that the iterates ]P’N
returned by the KALE particle descent algorithm can approximate the unbiased P with arbltrarlly
low error.

Proposition 4 (Consistency of the KALE particle descent). Let {Y @ ~ Py. Let (IF’N Jn>0 be
the sequence of discrete probabilities arising from Eq. (17) with initial condzllons {Y( ie1, and

let (PN )n>0 be the sequence arising from Eq. (15) with the same initial conditions {Y( )} Y. Let
Nmax > 0. Then, under Assumptions 1 and 2, for all n < nyax, the following bound holds:

EW(PY,PY) < ( T Bmax 1)

ﬂih

B



with A = \[2KK1a(1 + %) x - KK}”KM B= (1+/\)(4\/7K){(1d+\/>K2d)’ and K, K14, Koq are
the constants defined in Assumptions I and 2.

Proposition 4 shows that given a finite time horizon ny,,x, and given sufficiently many samples of
Py and Q, one can approximate an exact discrete KALE flow between n = 0 and n = ny.x with
arbitrary precision. The proof of Proposition 4 (given in Appendix F) relies on the regularity of the
KALE witness function x — h (), but also on the regularity of the mapping PY — h* (using
the 2-Wasserstein distance as the metric on Ps(R?).

Algorithm 1 KALE Particle Descent Algorithm

Input: {Yo(w}fil ~ Py, {XDIN | ~ Q, max_iter, \, k,
Output (Y, ier /L,
for n = 0 tomax_iter—1 do
f_star < dual_solve(X (), Yim7 LX) Yi(]\w7 k,A) #See Eq.6
h_star < compute_log_ratio(f_star, X1, Y;u), XM YZ-(N), k,\) #Ditto
for j =1to N do _
v (1+ )\)grad(h_star(Yi('”))
Y v —yxv
end for
end for

4.2 Regularization of KALE particle descent using Noise Injection

In practice, guaranteeing the convergence of the KALE gradient flow (and its corresponding KALE
particle descent) by relying on the condition given in Proposition 3 is cumbersome for two reasons:
first, this condition is hard to check, and second, it does not tell us what to do when the condition is
not met. Noise injection [4, 11] is a practical regularization technique originally introduced for the
MMD flow, that trades off some of the “steepest descent” property of gradient flow trajectories with
some additional smoothness (in negative Sobolev norm) in order to improve convergence to the target
trajectory. We recall that the solution of a (discrete time) noise injected gradient flow with velocity
field (1 + A\)V A}, and noise schedule 3,, is defined as the sequence (IP,,),,>0 whose iterates verify:

Ppi1 = ((z,u) — 2 —y(1 + A\)Vhy (z + 6nu))# P, ®9), (18)
where g is a standard unit Gaussian distribution. As we show in the next proposition, under a suitable
noise schedule, noise injection can also be applied to ensure global convergence of the KALE flow.
Proposition 5 (Global Convergence under noise injection dynamics). Let IP,, be defined as Eq. (18).
Let (Br)n>0 be a sequence of noise levels, and define D, p, = Ey~p, u~g ||VI; (2 + Bru) 1* with
g the density of a standard Gaussian distribution. Then, under Assumptions 1 and 2, and for a choice

of By, such that:
8K24/32

2 HKALE(Pn H Q) < Dg, p, (]P)Tb)v
the following holds: KALE(P,1 || Q) — KALE(P, || Q) < —3(1 — 3vWKK24)Dg, p, (Pn).

Moreover, if Y, B; = +0o0, then lim,,_, o KALE(P,, || Q) = 0.

i=1

As in [4], convergence of the regularized KALE flow is guaranteed when the noise schedule satisfies
an inequality for all n, which is hard to check in practice. Nonetheless, we empirically observe that
in all our problems a small, constant noise schedule can help the KALE flow reach a lower KALE
value at convergence.

Let us stress that the noise injection scheme given in Proposition 5 is a population scheme that
includes an intractable convolution. To use noise injection in the KALE particle descent algorithm,
we approximate this convolution using a single sample Uff) for each particle update. Eq. (15)
becomes: ) _ N _ _ _

YO =YD 51+ NV + B,U), UD ~N(0,1). (19)



Implementation The particle descent algorithm can be implemented using automatic differentiation
software such as the pytoxrch library in python. This allows us to easily compute the gradient of the
log-density ratio estimate h, appearing in the particle update rule Eq. (15).

Computing E; can be achieved using methods such as gradient descent, coordinate descent or higher
order optimization methods such as Newton’s method and L-BFGS [35].

5 Experiments

In this section, we empirically study the behavior of the KALE particle descent algorithm in three
settings reflecting different topological properties for the source-target pair: a pair with a target
supported on a hypersurface (zero volume support), a pair with disjoint supports of positive volume,
and a pair of distributions with a positive density supported on R<.

KALE flow for targets defined on hypersurfaces Our first example consists in a target supported
(and uniformly distributed) on a lower-dimensional surface that defines three non-overlapping rings.
The initial source is a Gaussian distribution with a mean in the vicinity of the target Q. This setting is
a perfect candidate to illustrate the failure modes of both the KL and the MMD when used in particle
descent algorithms: on the one hand, the measures Py and QQ are mutually singular, and thus the KL
gradient flow from PPy to QQ does not exist. By contrast, the KALE is well-defined in this case, and
inherits from the KL an increased sensitivity to support discrepancy. For that reason, we hypothesize
that the trajectories of the KALE flow will converge towards a better limit compared to its MMD flow
counterpart. We sample N = 300 points from the target and the initial source distribution and run an
implementation of Algorithm 1 for n = 50000 iterations. The complete set of parameters is given in
the appendix. Results are plotted in Fig. 1. We indeed notice that the KALE flow trajectory remains

T=30 T=99

T=0 T=2
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Figure 1: MMD and KALE flow trajectories for “three rings” target

close to the target support and recovers the target almost perfectly. This illustrates the ability of the
KALE flow to relax the hard support-sharing constraints of the KL flow into soft support closeness
constraints. These soft constraints are not present in the MMD flow, where particles of the source can
remain scattered around the plane.

KALE flow between probabilities with disjoint support In our second example, we consider a
source/target pair that are supported on disjoint subsets each with a finite, positive volume (unlike
the previous example). The support of the source and the target consist respectively of a heart and a
spiral, and the two distributions have a uniform density on their support. Again, because the supports
of the source and the target are disjoint, the KL flow cannot be defined, nor simulated for this pair.
We run a KALE particle descent algorithm, and compare it as before with an MMD flow, as well as
with a “Sinkhorn descent algorithm™ [25]. Results are in Fig. 2.

As we can see, the soft support-sharing constraint informing the KALE flow forces the source to
quickly recover the spiral shape, much before the Sinkhorn and MMD flow trajectories. However,
compared to Sinkhorn, the two KALE-generated spirals have a harder time recovering outliers,
disconnected from the main support of the spiral.

KALE flow for probabilities with densities We consider the setting where the target admits a
positive density on R¢. Hence, unlike in the two previous examples, the KL gradient flow is
well-defined, and can be simulated using the Unadjusted Langevin Algorithm (ULA). Echoing the
interpolation property of the KALE between the MMD and the KL shown in Proposition 1, we
propose to investigate whether this property is preserved in a gradient flow setting. We consider a
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Figure 2: Shape Transfer using the KALE flow

balanced mixture of 4 Gaussians with means located on the 4 corners of the unit square for the target
and a source distribution given by a unit Gaussian in the vicinity of the unit square. We then run KL,
MMD, and KALE flows with different values of A, and compute the Wasserstein distance between
reference particles at iteration n from either the MMD or KL flow and particles obtained from the
KALE flow at the same iteration n. The choice of the Wasserstein distance is natural for Wasserstein
Gradient Flows. As shown in Fig. 3a, for “small” values of A, particles from a KALE flow remain
close to the ULA particles, while for “large” ones they remain close to the MMD particles (Fig. 3b).

distance to KL . distance to MMD KALE
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Figure 3: (a): Evolution of the Wasserstein distance between reference particles from the ULA
algorithm and the KALE particle descent algorithm with various values of \. (b) Left: same as
(a), but taking particles from the MMD flow as reference. (c) Evolution of the KALE along the
trajectories of a KALE descent algorithm with the same mixture of Gaussians as target, using A = 0.1.
Orange: without noise injection. Blue: with noise injection using a constant noise schedule.

Impact of noise injection On all three examples, using a regularized KALE flow with an appropri-
ately tuned f3,, schedule always improves the proximity to the global minimum P, = Q. Its effect is
particularly impactful in the mixture of Gaussians example, where a small, constant noise schedule
By, allows for faster mixing times for IP,,, as opposed to its unregularized counterpart, see Fig. 3c. We
provide further details on the impact of noise injection in the appendix.

6 Discussion and further work

We have constructed the KALE flow, a gradient flow between probability distributions that relaxes the
KL gradient flow for probabilities with disjoint support. Using the KALE Particle Descent Algorithm,
we have shown on several examples that in cases where a KL gradient flow cannot be defined,
trajectories of the KALE flow empirically exhibit better convergence properties when compared to
the MMD flow, a flow that the KALE is also able to interpolate. In cases where the KL flow can be
defined, we notice empirically that the KALE flow can approximate the trajectories of the KL flow,
but using only information from samples of the target. This latter property is in sharp contrast with
KL Gradient Flow discretizations like the Unadjusted Langevin Algorithm: in this regard, we could
use the KALE flow as a sample-based approximation of the KL flow, which is to our knowledge a
novel concept. Future work would analyze when the KALE flow is a consistent estimator of the KL
flow in the large sample limit.
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