
DROID-SLAM: Deep Visual SLAM for Monocular,
Stereo, and RGB-D Cameras

Zachary Teed Jia Deng
Princeton University

{zteed,jiadeng}@princeton.edu

Abstract

We introduce DROID-SLAM, a new deep learning based SLAM system. DROID-
SLAM consists of recurrent iterative updates of camera pose and pixelwise depth
through a Dense Bundle Adjustment layer. DROID-SLAM is accurate, achieving
large improvements over prior work, and robust, suffering from substantially fewer
catastrophic failures. Despite training on monocular video, it can leverage stereo
or RGB-D video to achieve improved performance at test time. The URL to our
open source code is https://github.com/princeton-vl/DROID-SLAM.

1 Introduction

Simultaneous Localization and Mapping (SLAM) aims to (1) build a map of the environment and
(2) localize the agent within the environment. It is a special form of Structure-from-Motion (SfM)
focused on accurate tracking of long-term trajectories. It is a critical capability for robotics, especially
autonomous vehicles. In this work, we address visual SLAM, where sensor recordings come in the
form of images captured from a monocular, stereo, or RGB-D camera.

The SLAM problem has been approached from a number of different angles. Early work was built
using probabilistic and filtering based approaches [12, 30], and alternating optimization of the map
and camera poses [34, 16]. More recently, modern SLAM systems have leveraged least-squares
optimization. A key element for accuracy has been full Bundle Adjustment (BA), which jointly
optimizes the camera poses and the 3D map in a single optimization problem. One advantage of the
optimization-based formulation is that a SLAM system can be easily modified to leverage different
sensors. For example, ORB-SLAM3 [5] supports monocular, stereo, RGB-D, and IMU sensors, and
modern systems can support a variety of camera models [5, 27, 42, 6]. Despite significant progress,
current SLAM systems lack the robustness demanded for many real-world applications. Failures
come in many forms, such as lost feature tracks, divergence in the optimization algorithm, and
accumulation of drift.

Deep learning has been proposed as a solution to many of these failure cases. Previous work
has investigated replacing hand-crafted with learned features[13, 7, 29, 26, 35], using neural 3D
representations[46, 1, 9, 45, 44, 25, 22], and combining learned energy terms with classical op-
timization backends[58, 57]. Other work has tried to learn SLAM or VO systems end-to-end
[59, 47, 53, 52, 46]. While these systems are sometimes more robust, they fall far short of the
accuracy of their classical counterparts on common benchmarks.

In this work we introduce DROID-SLAM, a new SLAM system based on deep learning. It has
state-of-the-art performance, outperforming existing SLAM systems, classical or learning-based, on
challenging benchmarks with very large margins. In particular, it has the following advantages:

• High Accuracy: We achieve large improvements over prior work across multiple datasets
and modalities. On the TartanAir SLAM competition [54], we reduce error by 62% over the
best prior result on the monocular track and 60% on the stereo track. We rank 1st on the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/princeton-vl/DROID-SLAM

DROID-SLAM

Monocular, Stereo or RGB-D Video

Figure 1: DROID-SLAM can operate on monocular, stereo, and RGB-D video. It builds a dense 3D
map of the environment while simultaneously localizing the camera within the map.

ETH-3D RGB-D SLAM leaderboard [41], outperforming the second place by 35% under
the AUC metric which considers both error and rate of catastrophic failure. On EuRoC [2],
with monocular input, we reduce error by 82% among methods with zero failures, and by
43% over ORB-SLAM3 considering only the 10 out of 11 sequences it succeeds on. With
stereo input, we reduce error by 71% over ORB-SLAM3. On TUM-RGBD [43], we reduce
error by 83% among the methods with zero failures.

• High Robustness: We have substantially fewer catastrophic failures than prior systems. On
ETH-3D, we successfully track 30 of the 32 RGB-D datasets, while the next best successfully
tracks only 19/32. On TartanAir, EuRoC, and TUM-RGBD, we have zero failures.

• Strong Generalization: Our system, trained only with monocular input, can directly use
stereo or RGB-D input to get improved accuracy without any retraining. All of our results
across 4 datasets and 3 modalities are achieved by a single model, trained once with only
monocular input entirely on the synthetic TartanAir dataset.

The strong performance and generalization of DROID-SLAM is made possible by its “Differentiable
Recurrent Optimization-Inspired Design” (DROID), which is an end-to-end differentiable architecture
that combines the strengths of both classical approaches and deep networks. Specifically, it consists
of recurrent iterative updates, building upon RAFT [48] for optical flow but introducing two key
innovations.

First, unlike RAFT, which iteratively updates optical flow, we iteratively update camera poses and
depth. Whereas RAFT operates on two frames, our updates are applied to an arbitrary number of
frames, enabling joint global refinement of all camera poses and depth maps, essential for minimizing
drift for long trajectories and loop closures.

Second, each update of camera poses and depth maps in DROID-SLAM is produced by a differentiable
Dense Bundle Adjustment (DBA) layer, which computes a Gauss-Newton update to camera poses
and dense per-pixel depth so as to maximize their compatibility with the current estimate of optical
flow. This DBA layer leverages geometric constraints, improves accuracy and robustness, and enables
a monocular system to handle stereo or RGB-D input without retraining.

The design of DROID-SLAM is novel. The closest prior deep architectures are DeepV2D [47]
and BA-Net [46], both of which were focused on depth estimation and reported limited SLAM
results. DeepV2D alternates between updating depth and updating camera poses, instead of bundle
adjustment. BA-Net has a bundle adjustment layer, but their layer is substantially different: it is not
“dense” in that it optimizes over a small number of coefficients used to linearly combine a depth
basis (a set of pre-predicted depth maps), whereas we optimize over per-pixel depth directly, without
being handicapped by a depth basis. In addition, BA-Net optimizes photometric reprojection error (in
feature space), whereas we optimize geometric error, leveraging state-of-the-art flow estimation.

We perform extensive evaluation across four different datasets and three different sensor modalities,
demonstrating state-of-the-art performance in all cases. We also include ablation studies that shed
light on important design decisions and hyperparameters.

2 Related Work

Modern SLAM systems treat localization and mapping as a joint optimization problem [4].

2

Visual SLAM focuses on observations in the form of monocular, stereo, or RGB-D images. These
approaches are commonly categorized as either being direct or indirect [15]. Indirect approaches [31,
32, 5, 37] first process the image into an intermediate representation by detecting points of interest
and attaching feature descriptors. Features are then matched between images. Indirect approaches
optimize camera pose and a 3D point cloud by minimizing reprojection error–the distance between a
projected 3D point and its location in the image.

Direct approaches model the image formation process and define an objective function over photomet-
ric error [16, 15, 60]. One advantage of direct approaches is that they can model more information
about the image, such as lines and intensity variations[15] which are not used by indirect approaches.
However, photometric errors typically lead to more difficult optimization problems, and direct ap-
proaches are less robust to geometric distortion such as rolling shutter artifacts. This approach
requires more sophisticated optimization techniques, such as coarse-to-fine image pyramids to avoid
local minimum.

Our method does not clearly fit into either of the categories. Like the direct approach, we do not
require preprocessing steps to detect and match features between the images. We instead use the full
image, allowing us to leverage a wider range of information than indirect methods with typically only
use corners and edges. However, we minimize reprojection error similar to indirect methods. This
is an easier optimization problem and avoids the need for more complicated representations such
as image pyramids. In this sense, our approach borrows the best of both approaches: the smoother
objective function of indirect approaches with the greater modeling capacity of indirect approaches.

Deep Learning has more recently been applied to the SLAM problem. Many works have focused
on training systems for particular subproblems, such as feature detection [13, 7, 29, 26, 35], feature
matching and outlier rejection [38, 36], and localization [51, 39]. SuperGlue [38] was designed to
perform feature matching and verification and make 2-view pose estimate much more robust. Our
network also draws inspiration from Dusmanu et al[14], which builds a neural network into the SfM
pipeline to improve keypoint localization accuracy.

Other works have focused on training SLAM systems end-to-end [59, 46, 8, 50, 24, 47, 53]. These
methods are not full SLAM systems, but instead focus on small scale reconstruction on the order
of two [8, 50, 53] up to a dozen frames [59, 46, 47]. They lack many of the core capabilities
of modern SLAM systems such as loop closure and global bundle adjustment which inhibit their
ability to perform large scale reconstruction as demonstrated in our experiments. ∇SLAM[23]
implements several existing SLAM algorithms as differentiable computation graphs, allowing for
errors in the reconstruction to be backpropagated back to sensor measurements. While this approach
is differentiable, it has no trainable parameters, meaning the performance of the system is limited by
the accuracy of the classical algorithm they emulate.

DeepFactors[9] is the most complete deep SLAM system, building on the earlier CodeSLAM[1]. It
performs joint optimization of the pose and depth variables, and is capable of short and long-range
loop closure. Similar to BA-Net[46], DeepFactors optimizes the parameters of a learned depth basis
during inference. In contrast, we do not rely on a learned basis, but instead optimize pixelwise depth.
This allows our network to better generalize to new datasets since our depth representation is not tied
to the training dataset.

3 Approach

We take a video as input with two objectives: estimate the trajectory of the camera and build a 3D
map of the environment. We first describe the monocular setting; in Sec. 3.4 we describe how to
generalize the system to stereo and RGB-D video.

Representation: Our network operates on an ordered collection of images, {It}Nt=0. For each image
t, we maintain two state variables: camera pose Gt ∈ SE(3) and inverse depth dt ∈ RH×W+ . The
set of poses, {Gt}Nt=0, and set of inverse depths {dt}Nt=0 are unknown state variables, which get
iteratively updated during inference as new frames are processed. For the reminder of the paper, when
we refer to depths, note that we are using the inverse depth parameterization.

We adopt a frame-graph (V, E) to represent co-visibility between frames. An edge (i, j) ∈ E means
image Ii and Ij have overlapping fields of view which shared points. The frame graph is built
dynamically during training and inference. After each pose or depth update, we can recompute

3

ConvGRU

DBA

ConvGRU

DBA

Figure 2: Illustration of the update operator. The operator acts on edges in the frame graph, predicting
flow revisions which are mapped to depth and pose update through the (DBA) layer.

visibility to update the frame graph. If the camera returns to a previously mapped region, we add
long range connections in the graph to perform loop closure.

3.1 Feature Extraction and Correlation

Features are extracted from each new image added to they system. Key components of this stage are
borrowed from RAFT[48].

Feature Extraction Each of the input images are processed by a feature extraction network. The
network consists of 6 residual blocks and 3 downsampling layers, producing dense feature maps at
1/8 the input image resolution. Like RAFT[48], we use two separate networks: a feature network
and a context network. The feature network is used to build the set of correlation volumes, while the
context features are injected into the network during each application of the update operator.

Correlation Pyramid For each edge in the frame graph, (i, j) ∈ E , we compute a 4D correlation
volume by taking the dot product between all-pairs of feature vectors in gθ(Ii) and gθ(Ij)

Ciju1v1u2v2 = 〈gθ(Ii)u1v1 , gθ(Ij)u2v2〉 (1)

We then perform average pooling of the last two dimension of the correlation volume following
RAFT[48] to form a 4-level correlation pyramid.

Correlation Lookup We define a lookup operator which indexes the correlation volume using a
grid with radius r, Lr : RH×W×H×W × RH×W×2 7→ RH×W×(r+1)2 .

The lookup operator takes an H ×W grid of coordinates as input and values are retrieved from the
correlation volume using bilinear interpolation. The operator is applied to each correlation volume in
the pyramid and the final feature vector is computed by concatenating the results at each level.

3.2 Update Operator

The core component of our SLAM system is a learned update operator show in Fig. 2. The update
operator is a 3× 3 convolutional GRU with hidden state h. Each application of the operator updates
the hidden state, and additionally produces a pose update, ∆ξ(k), and depth update, ∆d(k). The pose
and depth updates are applied to the current depth and pose estimates through retraction on the SE3
manifold and vector addition respectively

G(k+1) = Exp(∆ξ(k)) ◦G(k), d(k+1) = ∆d(k) + d(k). (2)

Iterative applications of the update operator produce a sequence of poses and depths, with the expec-
tation of converging to a fixed point {G(k)} → G∗, {d(k)} → d∗, reflecting the true reconstruction.

Correspondence At the start of each iteration we use the current estimates of poses and depths to
estimate correspondence. Given a grid of pixel coordinates, pi ∈ RH×W×2 in frame i, we compute
the dense correspondence field pij

pij = Πc(Gij ◦Π−1
c (pi,di)), pij ∈ RH×W×2 Gij = Gj ◦G−1

i . (3)

4

for each edge (i, j) ∈ E in the frame graph. Here Πc is the camera model mapping a set of 3D
points onto the image and Π−1

c is the inverse projection function mapping inverse depth map d and
coordinate grid pi to a 3D point cloud (we provide formulas and Jacobians in the appendix). pij
represents the coordinates of pixels pi mapped into frame j using the estimated pose and depth.

Inputs We use the correspondence field to index the correlation volumes. For each edge (i, j) ∈ E
we use pij to perform lookup from the correlation volume Cij to retrieve correlation features.
Additionally, we use the correspondence field to derive optical flow induced by camera motion as the
difference pij − pj . Furthermore, the residual from the previous BA solution is concatenated with
the flow field allowing the network to use feedback from the previous iteration.

The correlation features provide information about visual similarity in the neighbourhood of pij
allowing the network to learn to align visually similar image regions. However, correspondence is
sometimes ambiguous. The flow provides an complementary source of information allowing the
network to exploit smoothness in the motion fields to gain robustness.

Update The correlation features and flow features are each mapped through two convolutional layers
before being injected into the GRU. Additionally, we inject context features, as extracted by the
context network, into the GRU through element-wise addition.

The ConvGRU is a local operation with a small receptive field. We extract global context by averaging
the hidden state across the spatial dimensions of the image and use this feature vector as additional
input to the GRU. Global context is important in SLAM because incorrect correspondences, caused
by large moving objects for example, can degrade the accuracy of the system. It is important for the
network to recognize and reject erroneous correspondence.

The GRU produces an updated hidden state h(k+1). Instead of predicting updates to the depth or
pose directly, we instead predict updates in the space of dense flow fields. We map the hidden
state through two additional convoluation layers to produce two outputs: (1) a revision flow field
rij ∈ RH×W×2 and (2) associated confidence map wij ∈ RH×W×2

+ . The revision rij is a correction
term predicted by the network to correct errors in the dense correspondence field. We denote the
corrected correspondence as p∗ij = rij + pij

We then pool the hidden state over all features which share the same source view i and predict a
pixel-wise damping factor λ. We use the softplus operator to ensure that the damping term is positive.
Additionally, we use the pooled features to predict a 8x8 mask which can be used to upsample the
inverse depth estimate.

Dense Bundle Adjustment Layer (DBA) The Dense Bundle Adjustment Layer (DBA) maps the set
of flow revisions into a set of pose and pixelwise depth updates. We define the cost function over the
entire frame graph

E(G′,d′) =
∑

(i,j)∈E

∥∥p∗ij −Πc(G
′
ij ◦Π−1

c (pi,d
′
i))
∥∥2

Σij
Σij = diagwij . (4)

where ‖·‖Σ is the Mahalanobis distance which weights the error terms based on the confidence
weights wij . Eqn. 4 states that we want an updated pose G′ and depth d′ such that reprojected points
match the revised correspondence p∗ij as predicted by the update operator.

We use local parameterization to linearize Eqn. 4 and use the Gauss-Newton algorithm solve for
updates (∆ξ, ∆d). Since each term in Eqn. 4 only includes a single depth variable, the Hessian
matrix has block diagonal structure. Separating pose and depth variables, the system can be solved
efficiently using the Schur complement with the pixelwise damping factor λ added to the depth block[

B E
ET C

] [
∆ξ
∆d

]
=

[
v
w

]
∆ξ = [B−EC−1ET]−1(v −EC−1w)
∆d = C−1(w −ET∆ξ)

(5)

where C is diagonal and can be cheaply inverted C−1 = 1/C. The DBA layer is implemented as
part of the computation graph and backpropogation is performed through the layer during training.

3.3 Training

Our SLAM system is implemented in PyTorch and we use the LieTorch extension [49] to perform
backprogation in the tangent space of all group elements.

5

Removing gauge freedom In the monocular setting, the network is only able to recover the trajectory
of the camera up to a similarity transform. One solution is to define a loss which is invariant to
similarity transforms. However, the gauge-freedom still exists during training which poorly impacts
the conditioning of the linear system and the stability of the gradients. We solve this problem by
fixing the first two poses to the ground-truth poses of each training sequence. Fixing the first pose
removes the 6-dof gauge freedom. Fixing the second pose resolves the scale freedom.

Constructing training video Each training example consists of a 7-frame video sequence. In order
to ensure stable training and good downstream performance, we want to sample videos which are not
too easy nor too difficult.

The training set is composed of a collection of videos. For each video i of length Ni, we precompute
an Ni ×Ni distance matrix storing the average optical flow magnitude between each pair of frames.
However, not all frames are covisible; and frames pairs with less than 50% overlap are assigned
a distance of infinity. During training, we dynamically generate videos by sampling paths in the
distance matrix, such that the average flow between adjacent video frames is between 8px and 96px.

Supervision We supervise our network using a combination of pose loss and flow loss. The flow
loss is applied to pairs of adjacent frames. We compute the optical flow induced by the predicted
depth and poses and the flow induced by the ground truth depth and poses. The loss is taken to be the
average l2 distance between the two flow fields.

Given a set of ground truth poses {T}Ni and predicted poses {G}Ni , the pose loss is taken to be the
distance between the ground truth and predicted poses, Lpose =

∑
i ||LogSE3(T−1

i ·Gi)||2. We
apply the losses to the output of every iteration with exponentially increasing weight using γ = 0.9.

3.4 SLAM System

During inference, we compose the network into a full SLAM system. The SLAM system takes a video
stream as input, and performs reconstruction and localization in real-time. Our system contains two
threads which run asynchronously. The frontend thread takes in new frames, extracts features, selects
keyframes, and performs local bundle adjustment. The backend thread simultaneously performs
global bundle adjustment over the entire history of keyframes. We provide an overview of the system
here, and provide more information in the appendix.

Initialization Initialization is simple with DROID-SLAM. We simply collect frames until we have
a set of 12. As we accumulate frames, we only keep the previous frame if optical flow is greater
than 16px (estimated by applying one update iteration). Once 12 frames have been accumulated, we
initialize a frame graph by creating an edges between keyframes which are within 3 timesteps apart,
then run 10 iterations of the update operator.

Frontend The frontend operates directly on the incoming video stream. It maintains a collection of
keyframes and a frame graph storing edges between covisible kefyrames. Keyframe poses and depths
are actively being optimized. Features are first extracted from the incoming frames. The new frame is
then added to the frame graph adding edges with its 3 closest neighbors as measured by mean optical
flow. The pose is initialized using a linear motion model. We then apply several iterations of the
update operator to update keyframe poses and depths. We fix the first two poses to remove gauge
freedom but treat all depths as free variables.

After the new frame is tracked, we select a keyframe for removal. We compute distance between
pairs of frames by computing the average optical flow magnitude and remove redundant frames. If no
frame is a good candidate for removal, we remove the oldest keyframe.

Backend The backend performs global bundle adjustment over the entire history of keyframes.
During each iteration, we rebuild the frame graph using the flow between all pairs of keyframes,
represented as an N ×N distance matrix. We first add edges between temporally adjacent keyframes.
We then sample new edges from the distance matrix in order of increasing flow. With each selected
edge, we suppress neighboring edges within a distance of 2, where distance is defined as the
Chebyshev distance between index pairs ||(i, j)− (k, l)||∞ = max(|i− k|, |j − l|).

We then apply the update operator to the entire frame graph, often consisting of thousands of frames
and edges. Storing the full set of correlation volumes would quickly exceed video memory. Instead,
we use the memory efficient implementation proposed in RAFT [48].

6

Figure 3: DROID-SLAM can generalize to new datasets. In order, we show results from Tanks &
Temples [21], ScanNet [10], Sintel [3], and ETH-3D [41]; all using monocular video.

During training, we implement dense bundle adjustment in PyTorch to leverage the automatic
differentiation engine. At inference time, we use a custom CUDA kernel which takes advantage
of the block-sparse structure of the problem, then perform sparse Cholesky decomposition on the
reduced camera block.

We only perform full bundle adjustment on keyframe images. In order to recover the poses of
non-keyframes, we perform motion-only bundle adjustment by iteratively estimating flow between
each keyframe and its neighboring non-keyframes. During testing, we evaluate on the full camera
trajectory, not just keyframes.

Stereo and RGB-D Our system can be easily modified for stereo and RGB-D video. In the case
of RGB-D, we still treat depth as a variable, since sensor depth can be noisy and have missing
observations, and simply add a term to the optimization objective (Eqn. 4) which penalizes the
squared distance between the measured and predicted depth. For stereo, we use the exact same system
described above, with just double the frames, and fix the relative pose between the left and right
frames in the DBA layer. Cross camera edges in the graph allow us to leverage stereo information.

4 Experiments

We experiment on a diverse set of datasets and sensor modalities. We compare to both deep learning
and established classical SLAM algorithms and put specific emphasis on cross-dataset generalization.
Following prior work, we evaluate the accuracy of the camera trajectory [31, 15, 41], primarily using
Absolute Trajectory Error (ATE) [43]. While some datasets have ground truth point clouds [21], there
is no standard protocol to compare 3D reconstructions directly given by SLAM systems because a
SLAM systems can choose which 3D points to reconstruct. Evaluating dense 3D reconstruction is
typically considered in the domain of Multiview Stereo [19] and outside the scope of this work.

Our network is trained entirely on monocular video from the synthetic TartanAir dataset [54]. We
train our network for 250k steps with a batch size of 4, resolution 384× 512, and 7 frame clips, and
unroll 15 update iterations. Training takes 1 week on 4 RTX-3090 GPUs.

Monocular MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Avg
ORB-SLAM [31] 1.30 0.04 2.37 2.45 X X 21.47 2.73 -
DeepV2D [47] 6.15 2.12 4.54 3.89 2.71 11.55 5.53 3.76 5.03
TartanVO [53] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04 1.92
Ours 0.08 0.05 0.04 0.02 0.01 1.31 0.30 0.07 0.24

Table 1: Results on the TartanAir monocular benchmark.

7

TartanAir [54] (Monocular & Stereo) The TartanAir dataset is a challenging synthetic benchmark
for evaluating SLAM algorithms and was used as part of the ECCV 2020 SLAM competition. We
use the official test split [54], and provide ATE across all “Hard” sequences in Tab. 1.

Tab. 1 demonstrates both the robustness of our method (no catastrophic failures) and accuracy (very
low drift). We retrain DeepV2D [47] on TartanAir as a baseline. On most sequences, we outperform
existing methods by an order-of-magnitude and achieve 8x lower average error than TartanVO [53]
and 20x lower than DeepV2D [47]. We also use the TartanAir dataset to compare with the top
submissions to the ECCV 2020 SLAM competition in Tab. 2. The top two submissions use systems

Mono. Stereo

OV2SLAM [17] 0.510 0.182
VOLDOR [28] + COLMAP [40] 0.440 0.177
SuperGlue [38] + SuperPoint [13] + COLMAP [40] 0.340 0.119

Ours 0.129 0.047

Table 2: Results on the TartanAir test set, compared with the top 3 submission to the ECCV 2020
SLAM competition. The score is computed using normalized relative pose error for all possible
sequences of length {5, 10, 15, ..., 40} meters, see competition page for details.

built on top of COLMAP [40] and run 40x slower than real-time. Our method, on the other hand,
runs 16x faster and achieves an error 62% lower on the monocular benchmark and 60% lower on the
stereo benchmark.

EuRoC [2] (Monocular & Stereo) In the remaining experiments, we are interested in the ability
of our network to generalize to new cameras and environments. The EuRoC dataset consists of
video captured from sensor on-board a micro aerial vehicle (MAV) and is a widely used benchmark
to evaluate SLAM systems. We use the EuRoC dataset to evaluate both monocular and stereo
performance and report results on Tab. 3.

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

D
ee

p/
H

yb
. DeepFactors [9] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040

DeepV2D [47]† 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
DeepV2D (Tartan Air)† 1.614 1.492 1.635 1.775 1.013 0.717 0.695 1.483 0.839 1.052 0.591 1.173
TartanVO1 [53]† 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
D3VO + DSO [57]† - - 0.08 - 0.09 - - 0.11 - 0.05 0.19 -

C
la

ss
ic

al

ORB-SLAM [31] 0.071 0.067 0.071 0.082 0.060 0.015 0.020 X 0.021 0.018 X -
DSO [15]† 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
SVO [18]† 0.100 0.120 0.410 0.430 0.300 0.070 0.210 X 0.110 0.110 1.080 -
DSM [60] 0.039 0.036 0.055 0.057 0.067 0.095 0.059 0.076 0.056 0.057 0.784 0.126
ORB-SLAM3 [5] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 X -

Ours (odometry only)† 0.163 0.121 0.242 0.399 0.270 0.103 0.165 0.158 0.102 0.115 0.204 0.186
Ours 0.013 0.014 0.022 0.043 0.043 0.037 0.012 0.020 0.017 0.013 0.014 0.022

Table 3: Monocular SLAM on the EuRoC datasets, ATE[m]. † denotes visual odometry methods.

In the monocular setting, we achieve an average ATE of 2.2cm, reducing error by 82% among
methods with zero failures, and by 43% over ORB-SLAM3 when only comparing sequences where
ORB-SLAM3 is successful.

We compare to several deep learning approaches. We compare to DeepV2D trained on the TartanAir
dataset and the publicly available version trained on NYUv2 [33] and ScanNet[10]. DeepFactors [9]
was trained on ScanNet. We find that recent deep learning approaches [9, 47, 53] perform poorly
on the EuRoC dataset compared to classical SLAM systems. This is due to poor generalization
and dataset biases which lead to large amounts of drift; our method does not suffer from these
issues. D3VO [57] is able to achieve both good robustness and accuracy by combining a neural
network frontend with DSO as a backend, using 6 of the 11 sequences for evaluation and performing
unsupervised training on the remaining ones, which contain the same scenes used for evaluation.

TUM-RGBD [43] The RGBD dataset consists of indoor scenes captured with handheld camera.
This is a notoriously difficult dataset for monocular methods due to rolling shutter artifacts, motion
blur, and heavy rotation. We benchmark prior work on the entirety of the freiburg1 set in Tab. 4.

Classical SLAM algorithms such as ORB-SLAM tend to fail on most of the sequences. While deep
learning methods are more robust, they obtain low accuracy on most of the evaluated sequences. Our

8

360 desk desk2 floor plant room rpy teddy xyz avg
ORB-SLAM2 [32] X 0.071 X 0.023 X X X X 0.010 -
ORB-SLAM3 [5] X 0.017 0.210 X 0.034 X X X 0.009 -

DeepTAM1 [59] 0.111 0.053 0.103 0.206 0.064 0.239 0.093 0.144 0.036 0.116
TartanVO2 [53] 0.178 0.125 0.122 0.349 0.297 0.333 0.049 0.339 0.062 0.206
DeepV2D [47] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepV2D (TartanAir) 0.182 0.652 0.633 0.579 0.582 0.776 0.053 0.602 0.150 0.468
DeepFactors [9] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

Ours 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038

Table 4: ATE on the TUM-RGBD benchmark. All methods are provided mono. video, 1except
DeepTAM which uses RGB-D and 2TartanVO which uses ground truth to scale relative pose.

method is both robust and accurate. It successfully tracks all 9 sequences while achieving 83% lower
ATE than DeepFactors [9] and which succeeds on all videos and 90% lower ATE than DeepV2D [47].

Method AUC (train) AUC (test)

BundleFusion [11] 84.10 33.84
ElasticFusion [56] 89.06 34.02
RFusion [55] 17.37 51.94
DVO-SLAM [20] 193.89 71.83
ORB-SLAM2 [32] 156.10 104.28
BAD-SLAM [41] 280.05 153.47

Ours 340.42 207.79
0 1 2 3 4 5 6 7 8

ATE [cm]

0

5

10

15

20

25

30

su

cc
es

sf
ul

 d
at

as
et

s

ETH-3D SLAM Benchmark

Ours
BAD SLAM
ORB-SLAM2
DVO-SLAM
BundleFusion

Figure 4: Generalization results on the RGB-D ETH3D-SLAM benchmark. (Left) Our method,
which is trained only on the synthetic TartanAir dataset, ranks 1st on both the train and test splits.
(Right) Plot of the number successful trajectories as a function of ATE. Our method successfully
tracks 30/32 of the datasets where image data is available.

ETH3D-SLAM [41] (RGB-D) Finally, we evaluate the RGB-D performance on the ETH3D-SLAM
benchmark. In this setup, the network is also provided measurements from an RGB-D camera.
We take our network trained on TartanAir and add an addition term in the optimization objective
penalizing the distance between the predicted inv. depth and inv. depth measured by the sensor.
Without any finetuning, our method ranks 1st on both the train and test splits. Several of the datasets
are "dark" meaning no image data is available; on these datasets we do not submit any predictions.
On the test set, we successfully track 30/32 RGB-D, improving over the next best of 19/32.

Timing and Memory Our system can run in real-time with 2 3090 GPUs. Tracking and local BA is
run on the first GPU, while global BA and loop closure is run on the second. On EuRoC, we average
20fps (camera hz) by downsampling to 320× 512 resolution and skipping every other frame. Results
in Tab. 3 were obtained in this setting. On TUM-RGBD, we average 30fps by downsampling to
240× 320 and skipping every other frame, again the reported results where obtained in this setting.
On TartanAir, due to much faster camera motion, we are unable to run in real-time, averaging 8fps.
However, this is still a 16x speedup over the top 2 submissions to the TartanAir SLAM challenge,
which rely on COLMAP [40].

The SLAM frontend can be run on GPUs with 8GB of memory. The backend, which requires storing
feature maps from the full set of images, is more memory intensive. All results on TUM-RGBD can
be produced on a single 1080Ti graphics card. Results on EuRoC, TartanAir and ETH-3D (where
video can be up to 5000 frames) requires a GPU with 24GB memory. While memory and resource
requirements are currently the biggest limitation of our system, we believe these can be drastically
reduced by culling redundant computation and more efficient representations.

5 Conclusion

We introduce DROID-SLAM, an end-to-end neural architecture for visual SLAM. DROID-SLAM
is accurate, robust, and versatile and can be used on monocular, stereo, and RGB-D video. It
outperforms prior work by large margins on challenging benchmarks.

Acknowledgements This work is partially supported by the National Science Foundation under
Award IIS-1942981.

9

References
[1] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison. Codeslam—learning a compact,

optimisable representation for dense visual slam. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2560–2568, 2018.

[2] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart. The
euroc micro aerial vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163,
2016.

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow
evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer Vision (ECCV), Part IV,
LNCS 7577, pages 611–625. Springer-Verlag, Oct. 2012.

[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard. Past,
present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332, 2016.

[5] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós. Orb-slam3: An accurate
open-source library for visual, visual-inertial and multi-map slam. arXiv preprint arXiv:2007.11898, 2020.

[6] D. Caruso, J. Engel, and D. Cremers. Large-scale direct slam for omnidirectional cameras. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 141–148. IEEE,
2015.

[7] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Universal correspondence network. arXiv preprint
arXiv:1606.03558, 2016.

[8] R. Clark, M. Bloesch, J. Czarnowski, S. Leutenegger, and A. J. Davison. Ls-net: Learning to solve
nonlinear least squares for monocular stereo. arXiv preprint arXiv:1809.02966, 2018.

[9] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters, 5(2):721–728, 2020.

[10] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet: Richly-annotated 3d
reconstructions of indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5828–5839, 2017.

[11] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundlefusion: Real-time globally consistent
3d reconstruction using on-the-fly surface reintegration. ACM Transactions on Graphics (ToG), 36(4):1,
2017.

[12] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single camera slam. IEEE
transactions on pattern analysis and machine intelligence, 29(6):1052–1067, 2007.

[13] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest point detection and
description. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pages 224–236, 2018.

[14] M. Dusmanu, J. L. Schonberger, and M. Pollefeys. Multi-view optimization of local feature geometry. In
Proceedings of the 2020 European Conference on Computer Vision, 2020.

[15] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE transactions on pattern analysis and
machine intelligence, 40(3):611–625, 2017.

[16] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam. In European conference
on computer vision, pages 834–849. Springer, 2014.

[17] M. Ferrera, A. Eudes, J. Moras, M. Sanfourche, and G. Le Besnerais. Ov2 slam: A fully online and
versatile visual slam for real-time applications. IEEE Robotics and Automation Letters, 6(2):1399–1406,
2021.

[18] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. Svo: Semidirect visual odometry
for monocular and multicamera systems. IEEE Transactions on Robotics, 33(2):249–265, 2016.

[19] Y. Furukawa and C. Hernández. Multi-view stereo: A tutorial. Foundations and Trends® in Computer
Graphics and Vision, 9(1-2):1–148, 2015.

[20] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2100–2106. IEEE, 2013.

[21] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

[22] J. Kopf, X. Rong, and J.-B. Huang. Robust consistent video depth estimation. arXiv preprint
arXiv:2012.05901, 2020.

[23] J. Krishna Murthy, S. Saryazdi, G. Iyer, and L. Paull. gradslam: Dense slam meets automatic differentiation.
arXiv, 2020.

[24] C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz. Neural rgb (r) d sensing: Depth and uncertainty
from a video camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10986–10995, 2019.

[25] X. Luo, J.-B. Huang, R. Szeliski, K. Matzen, and J. Kopf. Consistent video depth estimation. ACM
Transactions on Graphics (TOG), 39(4):71–1, 2020.

10

[26] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao, T. Fang, and L. Quan. Geodesc: Learning local
descriptors by integrating geometry constraints. In Proceedings of the European conference on computer
vision (ECCV), pages 168–183, 2018.

[27] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers. Omnidirectional dso: Direct sparse
odometry with fisheye cameras. IEEE Robotics and Automation Letters, 3(4):3693–3700, 2018.

[28] Z. Min, Y. Yang, and E. Dunn. Voldor: Visual odometry from log-logistic dense optical flow residuals. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4898–4909,
2020.

[29] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Working hard to know your neighbor’s margins:
Local descriptor learning loss. arXiv preprint arXiv:1705.10872, 2017.

[30] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter for vision-aided inertial
navigation. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages
3565–3572. IEEE, 2007.

[31] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

[32] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d
cameras. IEEE Transactions on Robotics, 33(5):1255–1262, 2017.

[33] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012.

[34] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and mapping in real-time. In
2011 international conference on computer vision, pages 2320–2327. IEEE, 2011.

[35] Y. Ono, E. Trulls, P. Fua, and K. M. Yi. Lf-net: Learning local features from images. arXiv preprint
arXiv:1805.09662, 2018.

[36] R. Ranftl and V. Koltun. Deep fundamental matrix estimation. In Proceedings of the European conference
on computer vision (ECCV), pages 284–299, 2018.

[37] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source library for real-time metric-
semantic localization and mapping. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 1689–1696. IEEE, 2020.

[38] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning feature matching with
graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020.

[39] P.-E. Sarlin, A. Unagar, M. Larsson, H. Germain, C. Toft, V. Larsson, M. Pollefeys, V. Lepetit, L. Ham-
marstrand, F. Kahl, et al. Back to the feature: Learning robust camera localization from pixels to pose.
arXiv preprint arXiv:2103.09213, 2021.

[40] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4104–4113, 2016.

[41] T. Schops, T. Sattler, and M. Pollefeys. Bad slam: Bundle adjusted direct rgb-d slam. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 134–144, 2019.

[42] D. Schubert, N. Demmel, V. Usenko, J. Stuckler, and D. Cremers. Direct sparse odometry with rolling
shutter. In Proceedings of the European Conference on Computer Vision (ECCV), pages 682–697, 2018.

[43] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d
slam systems. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
573–580. IEEE, 2012.

[44] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison. imap: Implicit mapping and positioning in real-time. arXiv
preprint arXiv:2103.12352, 2021.

[45] E. Sucar, K. Wada, and A. Davison. Nodeslam: Neural object descriptors for multi-view shape reconstruc-
tion. In 2020 International Conference on 3D Vision (3DV), pages 949–958. IEEE, 2020.

[46] C. Tang and P. Tan. Ba-net: Dense bundle adjustment network. arXiv preprint arXiv:1806.04807, 2018.
[47] Z. Teed and J. Deng. Deepv2d: Video to depth with differentiable structure from motion. arXiv preprint

arXiv:1812.04605, 2018.
[48] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European Conference

on Computer Vision, pages 402–419. Springer, 2020.
[49] Z. Teed and J. Deng. Tangent space backpropagation for 3d transformation groups. In Conference on

Computer Vision and Pattern Recognition, 2021.
[50] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox. Demon: Depth and

motion network for learning monocular stereo. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5038–5047, 2017.

[51] L. von Stumberg, P. Wenzel, N. Yang, and D. Cremers. Lm-reloc: Levenberg-marquardt based direct visual
relocalization. arXiv preprint arXiv:2010.06323, 2020.

[52] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual odometry with deep recur-
rent convolutional neural networks. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 2043–2050. IEEE, 2017.

11

[53] W. Wang, Y. Hu, and S. Scherer. Tartanvo: A generalizable learning-based vo. arXiv preprint
arXiv:2011.00359, 2020.

[54] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor, and S. Scherer. Tartanair: A
dataset to push the limits of visual slam. arXiv preprint arXiv:2003.14338, 2020.

[55] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald. Real-time large-scale
dense rgb-d slam with volumetric fusion. The International Journal of Robotics Research, 34(4-5):598–626,
2015.

[56] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davison. Elasticfusion: Dense slam
without a pose graph. Robotics: Science and Systems, 2015.

[57] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers. D3vo: Deep depth, deep pose and deep uncertainty
for monocular visual odometry. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1281–1292, 2020.

[58] N. Yang, R. Wang, J. Stuckler, and D. Cremers. Deep virtual stereo odometry: Leveraging deep depth
prediction for monocular direct sparse odometry. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 817–833, 2018.

[59] H. Zhou, B. Ummenhofer, and T. Brox. Deeptam: Deep tracking and mapping. In Proceedings of the
European conference on computer vision (ECCV), pages 822–838, 2018.

[60] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel. Direct sparse mapping. IEEE Transactions on Robotics,
36(4):1363–1370, 2020.

12

	Introduction
	Related Work
	Approach
	Feature Extraction and Correlation
	Update Operator
	Training
	SLAM System

	Experiments
	Conclusion

