
Under review as submission to TMLR

SMGRL: Scalable Multi-resolution Graph Representation
Learning

Anonymous authors
Paper under double-blind review

Abstract

Graph convolutional networks (GCNs) allow us to learn topologically-aware node embeddings,
which can be useful for classification or link prediction. However, they are unable to capture
interactions between nodes that are not direct neighbors without adding additional layers—
which in turn leads to over-smoothing and increased time and space complexity. Further,
the complex dependencies between nodes make mini-batching challenging, limiting their
applicability to large graphs. We propose a Scalable Multi-resolution Graph Representation
Learning (SMGRL) framework that enables us to learn multi-resolution node embeddings
efficiently. Our framework is model-agnostic and can be applied to any existing GCN model.
We dramatically reduce training costs by training only on a reduced-dimension coarsening of
the original graph, then exploit self-similarity to apply the resulting algorithm at multiple
resolutions. The resulting multi-resolution embeddings can be aggregated to yield high-
quality node embeddings that capture interactions occurring at multiple lengthscales (i.e.,
between pairs of nodes with a variety of minimum path lengths). Our experiments show that
this leads to improved classification accuracy, without incurring high computational costs.

1 Introduction

When working with graph-structured data, we often wish to learn latent vector representations for nodes
within the graph—often referred to as node embeddings. These representations, which typically aim to
capture the topological structure of the graph, can be used for tasks such as node classification and link
prediction, or can be combined to obtain a representation of the entire graph. Message passing algorithms,
where a node’s embedding is updated based on its neighbors’ embeddings, are a natural way to capture
topological structure. Graph convolutional networks (GCNs, Kipf & Welling, 2017; Hamilton et al., 2017;
Veličković et al., 2018) learn the form of these updates using neural networks.1 Since GCNs learn an algorithm
to obtain embeddings (rather than directly learn a mapping from nodes to embeddings), we can apply the
resulting algorithm to new or modified graphs, allowing GCNs to operate in an inductive fashion. This
gives them a clear advantage over transductive algorithms such as node2vec (Grover & Leskovec, 2016) or
DeepWalk (Perozzi et al., 2014), which learn a one-to-one mapping from node to embedding, often based on
random walks over the graph, and cannot generalize to nodes not appearing in the training graph.

GCNs have achieved impressive performance on many graph-based classification, prediction, and simulation
tasks (Klicpera et al., 2019; Brockschmidt, 2020; Bianchi et al., 2021). However, there are limits to
their representational power. A single-layer GCN aggregates information only from a node’s immediate
neighborhood, ignoring interactions operating at longer lengthscales.2 This can be addressed by adding more
layers—a K-layer GCN incorporates information from a node’s K-hop neighborhood. For small values of K,
this can improve representational power; however as the reach of the message passing algorithm expands,

1The original GCN (Kipf & Welling, 2017) was so-named because it deploys a message-passing algorithm that approximates
spectral convolution on the graph; in this work, we use the term more broadly to cover algorithms that learn a message-passing
algorithm on a graph.

2By the lengthscale of an interaction between two nodes, we refer to the minimum path distance between those two nodes. In
the case of a single-layer GCN, all interactions are at a lengthscale of 1.

1



Under review as submission to TMLR

Figure 1: A schematic of SMGRL. a) We coarsen our original graph to obtain a hierarchy G0, . . . ,GL. b) We
train our GCN on the coarsest graph, GL. c) We use the trained GCN to obtain embeddings at each layer of
the hierarchy. d) We combine the per-layer embeddings to get an overall representation for each node.

the inferred representations become increasingly homogeneous—a phenomenon known as oversmoothing (Li
et al., 2016; Oono & Suzuki, 2019; Cai & Wang, 2020)—leading to a decrease in performance.

In addition, the computational and memory requirements of GCNs scale poorly when compared with standard
feedforward neural networks. The number of messages—and hence the computational cost—scales with the
number of edges, which can grow quadratically in the numbere of nodes. Memory requirements are inflated
due to the connectivity pattern of the graph: the representation of a node relies on all the nodes in its
K-hop neighborhood. This means that, when minibatching, we must store in memory not just the set of
nodes selected for the minibatch, but also their K-hop neighborhood (or an appropriately informative subset
thereof).

One way to reduce the computational and memory requirements is to train the GCN on a smaller graph that
is “similar” to the original graph. Loukas (2019) showed that a class of coarsening algorithms can be used
to construct graphs that have similar spectral properties to the original graph. Huang et al. (2021) show
that training a GCN on this coarsened graph can be seen as an approximation to training on the full graph,
and that we can use the resulting algorithm on the original graph to obtain node embeddings. Moreover,
theoretical and empirical results suggest that this procedure effectively acts as a regularizer, leading to
improved generalization performance over the baseline GCN.

Since the GCN deployed on the coarsened graph is ultimately deployed on the original graph to obtain
node embeddings, the approach of Huang et al. (2021) does not address the question of how to capture
interactions occurring at longer lengthscales without increasing the number of layers in the GCN (increasing
computational cost and risking washing out the impact of local structure due to oversmoothing). Instead,
we construct a hierarchy of graphs G0, . . . ,GL by aggregating nodes at level ℓ into “supernodes” at level
ℓ + 1. The intuition here is that one-hop neighborhoods in the coarser-resolution graphs at the top of the
hierarchy capture longer lengthscale behavior such as interactions between communities and cliques, while
one-hop neighborhoods in the finer-resolution graphs at the bottom of the hierarchy capture local interactions.
Rather than learn embeddings separately for each level of the hierarchy, we infer level-specific embeddings
using a single GCN trained on the coarsest level. The resulting embeddings—each capturing information
at a different lengthscale—can be combined into a single, multi-resolution embedding for each node. This
approach, which we summarize in Figure 1, is reminiscent of hierarchical methods that learn representations
at multiple levels of a hierarchy (Chen et al., 2018; Akyildiz et al., 2020; Liang et al., 2021; Zhong et al., 2022;
Guo et al., 2021; Jiang et al., 2020). However, unlike such methods, we do not incur high computational
costs associated with training or refining at each level of the hierarchy.

We find that the resulting algorithm—whose computational and memory requirements are almost identical to
those of the coarsened GCN approach of Huang et al. (2021)—typically outperforms both a GCN trained

2



Under review as submission to TMLR

on the original graph, and the coarsened GCN algorithm, which only considers a single resolution. It also
outperforms several existing hierarchical GCN algorithms, while having a much lower computational cost.

Our framework, which we denote Scalable, Multi-resolution Graph Representation Learning (SMGRL),
consists of three components: a hierarchical graph coarsening algorithm (step a in Figure 1); a GCN learned
on a coarsened graph (step b) and deployed at all levels of the hierarchy (step c); and a final aggregation step
(step d). Each of these components is highly customizable. In particular, we explore three choices of GCN,
and in the appendix explore the impact of different aggregation schemes.

2 Background

2.1 Graph convolutional networks

Representing nodes vi ∈ V within a graph G = (V, E) in terms of embeddings hi ∈ Rd allows us to distill
important information about the graph topology in an easily digestible package. GCNs allow us to learn such
embeddings in an inductive manner: rather than directly learn a mapping from V to Rd, GCNs learn how to
learn such embeddings. Concretely, they parametrize a message-passing algorithm that allows us to update
node embeddings by passing messages along the graph’s edges, and aggregating the messages arriving at each
node.

Consider a node classification task where each node vi has feature xi and label yi. Our goal is to find node
embeddings hi, and a corresponding classification function gθ, that minimize some loss

∑|V|
i=1 L(gθ(hi), yi).

We do so by learning a message passing update rule of the form

hi ← Update (xi, Aggregate {xj : vj ∈ Ne(vi;G)}) , (1)

where Ne(vi;G) indicates the neighborhood of vi in G. Multiple layers of the form in (1) can be stacked so
that the embedding is based on a multi-hop neighborhood.

When Update(m) takes the form σ(Wm) and Aggregate is an appropriately normalized summation, this
can be seen as an approximation to graph convolution Kipf & Welling (2017). In this paper, we use the
term graph convolutional network more broadly to refer to any message passing algorithm of the form of
(1), allowing for more expressive aggregation methods (e.g., Xu et al., 2018; Veličković et al., 2018). We
also include methods that use alternative definitions of neighborhoods Hamilton et al. (2017); Klicpera et al.
(2019). By contrast, we use the terminology “graph neural network” to also include non-message-passing
node and graph representation algorithms such as node2vec (Grover & Leskovec, 2016).

GCNs have proved a powerful tool for learning node embeddings. However, they do have a number of
limitations. Firstly, GCNs typically have high time and space complexity. Training a GCN involves updating
each node’s embedding based on it’s neighborhood once for each layer, meaning that the computational
complexity of training a K-layer GCN scales as O (K|E|). If our training graph is dense, |E| ∼ O

(
|V|2

)
.

Further, dependency between nodes makes minibatching challenging: if a GCN has K layers, then updating
the embedding of a single node requires knowledge of the K-hop neighborhood of that node. This leads
to increased memory requirements when minibatching, since we must augment a size-m minibatch with its
K-hop neighborhood. In dense graphs, this can easily envelop a high proportion of the full graph.

Secondly, in a single-layer GCN the embedding of a node depends only on the node features of its immediate
neighborhood. This limits our ability to learn relationships occurring at longer lengthscales, for example
dependencies on nodes more than a single edge away. To get around this, we can stack multiple layers,
increasing the sphere of influence. However, adding more layers leads to over-smoothing—all embeddings
become increasingly similar—which in turn leads to degradation in prediction performance (Li et al., 2016;
Oono & Suzuki, 2019; Cai & Wang, 2020).

2.2 Graph coarsening and hierarchical embeddings

In many cases, graphs can be thought of as the realization of a latent hierarchical structure. For example,
in a road network, we can think of a top-level graph connecting cities via major thoroughways, and a

3



Under review as submission to TMLR

lower-level graph that also includes local roads. In a social network, we can think of individuals belonging
to communities (such as schools, workplaces or hobbies), and consider the degree of connectivity between
communities as well as the pattern of connectivity within communities. Such hierarchical representations
allow us to look at the graph at different resolutions, or lengthscales: the original graph allows us to inspect
local interactions (occurring on the lengthscale of one degree of separation between individuals), while the
coarser representations allow us to consider interactions occuring at longer lengthscales (i.e., lengthscales
corresponding to much higher average degrees of separation between individuals).

In general, an explicit hierarchy is not provided; however we can use various graph coarsening, node clustering
or community detection algorithms to infer a hierarchy (e.g., Karypis & Kumar, 1998; Blondel et al., 2008;
Loukas, 2019; Cai et al., 2021). Coarsening a graph involves constructing a sequence of graphs G0, . . . ,GL,
such that G0 := G and nodes in Gℓ have a single parent in Gℓ+1. We refer to the original graph G0 as the
bottom layer of the hierarchy, and GL as the top layer.

By learning embeddings at multiple layers in the hierarchy, we can capture variation at multiple levels of
resolution. For example, we might jointly train GCNs at multiple levels in a hierarchy (Jiang et al., 2020;
Guo et al., 2021), or learn a single GCN that spans all levels (Zhong et al., 2022). Such approaches have been
found to increase expressive power over GCNs learned on the original graph. In addition, hierarchies have
been successfully exploited to learn informative representations of entire graphs. For example, hierarchical
pooling methods have been used to combine representations from multiple levels in a hierarchy, resulting in a
multi-resolution graph embedding (Ying et al., 2018; Huang et al., 2019; Bandyopadhyay et al., 2020; Xin
et al., 2021; Liu et al., 2021).

A related family of approaches use a hierarchical representation to refine embeddings (typically learned in a
transductive manner). For example, we might learn embeddings at the coarsest layer GL, and then sequentially
refine them to get embeddings at finer levels (Chen et al., 2018; Akyildiz et al., 2020; Liang et al., 2021). Or,
we might start by learning embeddings on the original graph G0, coarsen these embeddings by propagating
them up the hierarchy, and then refine them by propagating down the hierarchy (Hu et al., 2019; Li et al.,
2020). While these approaches do not explicitly use multi-level representations in the final embedding, the
refinement process biases the representations towards including information from the coarsened graphs.

An alternative use of graph coarsening is to reduce the computational cost of training a GCN. If our coarsened
graph GL is structurally similar to the original graph G0, we can train our GCN on GL and then deploy it
directly on G0. Coarsening algorithms that aim to maintain spectral properties of the original graph are an
appropriate choice here (Loukas & Vandergheynst, 2018; Loukas, 2019; Bravo Hermsdorff & Gunderson, 2019;
Cai et al., 2021). These representations are well-matched to the task of learning GCNs, which (for certain
choices of Update and Aggregate in Equation 1) can be viewed as generalizations of approximate spectral
convolution over the graph (Kipf & Welling, 2017). Indeed, Huang et al. (2021) show that a GCN trained
on a spectrally coarsened graph can be seen as an approximation to a GCN trained on the full graph. In
addition to reducing computation and memory requirements, training a GCN on a spectrally coarsened graph
often leads to improved generalization, likely due to the approximation mechanism acting as a regularizer.

3 The proposed framework: SMGRL

Often, the label of a node in a graph is related not only to the labels of its immediate neighbors and the
structure of its immediate neighborhood (relationships we describe as occurring at short lengthscales), but
also to the labels of nodes further away in the graph and larger-scale structural properties of the graph
(relationships we describe as occurring at short lengthscales. Hierarchical node embeddings, such as those
discussed in Section 2.2, allow us to aggregate information at multiple resolutions, incorporating relationships
occurring at multiple lengthscales. To avoid this, we exploit the fact that graph coarsening algorithms such as
those proposed by Loukas (2019) are explicitly designed to preserve spectral properties of the original graph.
This suggests that a message passing algorithm learned at one level of granularity might be appropriate at
multiple levels. This intuition is made concrete by the coarsened GCN framework of Huang et al. (2021),
who train on the coarsest level of a spectrally-coarsened hierarchy, and use the resulting algorithm on the
original graph.

4



Under review as submission to TMLR

We go further: we deploy a GCN learned on the coarsest graph at all levels of the hierarchy. This leads
to a minimal increase in computational cost over Huang et al. (2021), but a potentially significant increase
in representational power. If a GCN trained on level L is a good approximation to one trained on level 0,
then it should also be a good approximation at levels 0 < ℓ < L. The embeddings obtained at levels ℓ > 0
will capture variation at longer length scales, without needing to add layers to our GCN. In particular, if
the hierarchy obtained via the spectral coarsening algorithm aligns with intuitive notions of interconnected
communities within the graph, embeddings at coarser resolutions will capture interactions between such
communities.

This approach is reminiscent of the hierarchical GCNs described in Section 2.2, which combine embeddings
at multiple resolutions. However, by reusing a GCN learned at the coarsest level, our computational costs are
significantly lower than approaches that learn GCNs at all levels. Further, since all embeddings are obtained
using a common aggregation rule, they can be linearly combined to obtain a single embedding for each node.

The computational cost of SMGRL scales similarly to that of the coarsened GCN algorithm of Huang et al.
(2021); we provide a complexity analysis in Appendix B. The hierarchical coarsening can be pre-computed on
CPU; further, since the algorithm is deterministic, we only need compute it once if we are using multiple
random seeds or exploring multiple hyperparameter settings for our GCN.

Our framework consists of four steps: a) deploying a hierarchical coarsening algorithm; b) training a GCN on
the coarsest graph; c) deploying this GCN on all levels of the hierarchy; and d) aggregating the resulting
embeddings. This procedure is visualized in Figure 1.We provide details of each step below, and summarize
the framework in Algorithm 1. SMGRL makes a number of assumptions on the structure of G: We assume
Gℓ is undirected and without edge labels, both requirements of our coarsening algorithm. Further, while not
explicitly required by the algorithm, we do not suggest the use of SMGRL on highly heterophilic graphs since
the coarsening algorithm does not take into account node labels; we discuss this further in Section A.

a) Construct a coarsened representation We begin by constructing hierarchically coarsened represen-
tations G0, . . . ,GL of our graph (where Gℓ = (Vℓ, Eℓ) and G0 := G), alongside associated coarsened features Xℓ

and labels Yℓ. Our goal is to obtain a hierarchy such that a GCN trained on one graph is appropriate for all
graphs in the hierarchy. A natural choice is to use a graph coarsening method that (approximately) preserves
spectral properties of the original graph.

Loukas (2019) proposes such a method, that constructs coarsening matrices Pℓ such that Lℓ = P ∓
ℓ Lℓ−1P +

ℓ ,
where Lℓ is the Laplacian of Gℓ, and + and ∓ indicate the pseudoinverse and transposed pseudoinverse,
respectively. Each row of the coarsening matrix selects a set of nodes in Gℓ−1 to be collapsed into a single
node in Gℓ. These sets are chosen greedily from a set of candidate sets C, in order to minimize a spectral
distance between the coarsened graph Gℓ and the previous level Gℓ−1,

cost(C) = Π⊥
C Aℓ−1

|C| − 1 , (2)

where Π⊥
C = I − P +

C PC and Aℓ−1 is the target Laplacian for Gℓ−1. A number of choices are available to select
the candidate sets; unless otherwise stated we follow the “variation neighborhoods” method, where candidate
sets are given by a node and its immediate neighbors. See Algorithm 2 in the Appendix for further details.

While the above approach offers guarantees on the spectral similarity of the coarsened graph to the original
graph, in practice we find that performance is similar using alternative graph coarsening algorithms. We
explore the use of alternative coarsening algorithms in Appendix A.

Once we have obtained our coarsening matrix Pℓ and corresponding coarsened graph Gℓ, we can use Pℓ to
propagate features and labels up the hierarchy. For node features (which are assumed fully observed), we
have Xℓ = PℓXℓ−1, following Loukas (2019). Since labels are not fully observed, we propagate labels as the
weighted average of the observed children in Gℓ−1, i.e. yi,ℓ = pi,ℓYℓ−1

pi,ℓMℓ−1
, where pi,ℓ is the ith row of Pℓ and

Mℓ−1 is a binary array indicating the missingness pattern in Yℓ−1

5



Under review as submission to TMLR

b) Train a GCN on GL We use the coarsest graph GL, and the corresponding aggregated features XL and
labels YL, to learn a message passing algorithm fϕ and a classification function gθ, as described in Section 2.1.
We note that any GCN can be used here.

c) Use the trained GCN to obtain embeddings at each level of the hierarchy Once training is
complete, discard the classification function gθ and use fϕ to learn embeddings Hℓ ∈ R|Vℓ×d| at each level ℓ
in the hierarchy. We use our sequence of projection matrices Pℓ to lift these embeddings to H ′

ℓ ∈ R|V|×d as
H ′

ℓ = P +
1 · · ·P

+
ℓ+1Hℓ, where P +

ℓ [i, j] = 1 iff Pℓ[i, j] > 0. This differs from Huang et al. (2021), who only learn
embeddings for the original graph G.

d) Aggregate the embeddings and learn a new classification function Each node vi ∈ V is now
associated with a sequence h′

0,i, . . . , h′
L,i of embeddings. We can aggregate these embeddings to obtain a

final representation h̃i = combine(h′
0,i, . . . , h′

L,i) for each node vi, and learn a new classification function
gθ̃ based on this new embedding. A number of choices can be made here. A lightweight option is to either
concatenate the embeddings, or take a simple mean. Alternatively, if computational resources allow, we can
learn a weighted average alongside the classification function, i.e. h̃i =

∑L
ℓ=0 wT

ℓ h′
ℓ,i. Unless otherwise stated,

we use this weighted average approach; we explore alternatives in Appendix E.

3.1 Applicability of SMGRL

Like the graph coarsening algorithms used in this work, we assume that our graphs are undirected and do not
include edge labels. Further, the nature of the graph coarsening algorithms used suggest that our method is
primarily appropriate for homophilic graphs. The coarsening algorithms used on this paper look only at the
topology of the graph; they do not take into consideration node labels. This is not a problem in homophilic
graphs, where neighbors tend to have similar labels, meaning the nodes in each coarsened graphs are likely
to correspond to a set of original nodes with the same label. However, in heterophilic graphs, nodes in a
coarsened graph are likely to combine nodes with different labels in the original graph. As a result, the labels
of the coarsened graphs will become increasingly non-discriminative, limiting our ability to learn.

In general, we find that SMGRL is well-suited to graphs with clear clustering structure, which can be exploited
by our choice of coarsening algorithm. We discuss this further in Appendix A, where we explore the coarsened
graphs obtained on various datasets.

Algorithm 1 SMGRL
input Graph G = (V, E), features X, labels Y , hierarchical coarsening algorithm coarse (e.g., Algorithm 2),

embedding aggregation method combine, GCN fϕ, classification function gθ.
output Node embeddings h̃i, trained GCN fϕ, trained classification function gθ̃

1: {Gℓ, Pℓ} = coarse(G)
2: for ℓ = 1, . . . , L do

:Xℓ = PℓXℓ−1 for i = 1, . . . , |Vi| do
3:4:5: yi,ℓ = pi,ℓYℓ−1

pi,ℓMℓ−1
, where Mℓ−1 is the missingness pattern for Yℓ−1

6: end for
7: end for
8: Learn parameters ϕ and θ to minimize

∑|VL|
i=1 L (gθ (fϕ(xL,i, {xL,j : vL,j ∈ Ne(vi)}))

9: for ℓ = 0, . . . , L do
10: Obtain embeddings hℓ,i by applying fϕ to Gℓ.
11: end for
12: Propogate embeddings such that H ′

ℓ = P +
1 · · ·P

+
ℓ+1Hℓ

13: Learn parameters θ̃ (and if appropriate, parameters of combine(·)) to minimize∑
i=1,...,|V0| L

(
gθ̃(agg(h′

0,i, . . . , h′
L,i), yi

)
14: H̃i ← combine(H ′

0, . . . , H ′
L)

6



Under review as submission to TMLR

(a) Stochastic blockmodel with 60 nodes (split
into clusters of size 10, 20, 30) with edge prob-
ability matrix 0.03 + 0.77I.

(b) Circular ladder graph with 50 nodes.

(c) Newman-Watts-Strogatz with 100 nodes, initial clique size
of 5, and edge addition probability of 0.1.

(d) Karate club social network.

(e) Les Misérables co-occurence graph. (f) Erdős-Rényi social network, with n =
100, p = 0.2.

Figure 2: Graph hierarchies obtained on various graphs, using a coarsening ratio of 0.95. Top row: Original
graph G0, with node colors corresponding to the parent node in Gn. Bottom row: Coarsened graph Gn.
Colors and shapes are consistent within columns of each subfigure: For example, the red circular nodes in the
top row of column G1 correspond to the red circular node in the bottom row of column G1. Colors are not
consistent between columns.

7



Under review as submission to TMLR

4 Relationship to other hierarchical node embedding methods

SMGRL uses a hierarchical representation of a graph to learn multi-level embeddings, by first training a
GCN on the coarsest level of the hierarchy, and then deploying that GCN at all levels. This approach falls
under the general family of hierarchical node embeddings, as described in Section 2.2, and shares similarities
with several other hierarchical or coarsening-based approaches. In this section, we discuss the most similar
methods in detail, and highlight how SMGRL differs from these approaches.

SMGRL makes use of the spectral coarsening algorithm of Loukas (2019). This algorithm was also used by
Huang et al. (2021), who train a GCN on the coarsened graph and deploy it on the original graph. Unlike
SMGRL, this approach does not incorporate hierarchical information: the coarsened graph is only used
to reduce the computational complexity of training, and the node embeddings obtained on the coarsened
graph are discarded. As we see in Section 5, this reduces the expressivity of the representations by ignoring
multi-scale relationships.

While Huang et al. (2021) only uses a hierarchical coarsening for computational reasons, other node embedding
approaches do incorporate multi-level representations, either by explicitly aggregating representations learned
at multiple resolutions or by sequentially refining representations across multiple levels of the hierarchy, as
described in Section 2.2. A key advantage of SMGRL is the low computational cost of training: we train a
single GCN on a single graph, and then deploy it at multiple levels. This is in contrast to methods such
as GOSH (Akyildiz et al., 2020), MILE (Liang et al., 2021) or HARP (Chen et al., 2018), which iteratively
refine embeddings as we descend the hierarchy, or methods that jointly learn separate GCNs across the entire
hierarchy (Guo et al., 2021; Jiang et al., 2020).

Of the alternative hierarchical node embeddings, MILE is perhaps most similar to SMGRL. Like SMGRL, it
begins by learning a hierarchical coarsening, and learning embeddings on the coarsened graphs. However, these
embeddings are learned using a transductive method such as node2vec, meaning the trained model cannot
be reused at different levels of the hierarchy. Instead, they learn a GCN to refine the embeddings at each
level of the hierarchy: nodes are initialized by projecting the previous level’s final embeddings, and updated
using a GCN. This GCN is shared among all levels, as in SMGRL; however, unlike our approach, MILE
does not choose a coarsening designed to encourage the GCN to be generally applicable. Finally, MILE only
uses the refined embeddings corresponding to the original graphs, discarding the intermediate embeddings;
conversely, we combine embeddings from each level of resolution, making sure we retain information from
coarser granularities.

5 Experiments

SMGLR is designed to improve upon existing GCN-based node representation-learning algorithms by learning
and aggregating multi-resolution embeddings, without incurring excessive computational costs. In this
section, we provide empirical evidence that our hierarchical representation increases expressivity (Sections 5.2
and 5.3). We show that training a single GCN and applying it at multiple resolution yields comparable
performance to training layer-specific GCNs, while reducing computational cost and facilitating simple
aggregation schemes. Indeed, we show that SMGLR outperforms several recent alternative hierarchical
embedding methods (Section 5.5). We also show that SMGLR can be used in an inductive setting (Sec 5.6)
and explore a distributed variant for settings where inference on the full graph is not feasible (Section 5.7).

5.1 Datasets and implementation details

We consider seven multi-label classification datasets, summarized in Table 1. The first five datasets are those
used by Huang et al. (2021), our closest comparison method. The last two datasets are much larger graphs
from the Open Graph Benchmark dataset (Hu et al., 2020). To assess classification performance on these
datasets, we look at the macro F1 score on test-set labels; considering alternative metrics such as accuracy
showed similar trends. For a subset of experiments, we include accuracy results in the appendix. Unless
otherwise stated, we use the default train/validation/test split associated with each dataset for evaluating
the macro F1 score.

8



Under review as submission to TMLR

Table 1: Dataset overview

Name Nodes Edges Classes Features
Cora 2,708 10,556 7 1,433

CiteSeer 3,327 9,104 6 3,703
PubMed 19,717 88,648 3 500
DBLP 17,716 105,734 4 1,639

Coauthor Physics 34,493 495,924 5 8,415
ogbn-arxiv 169,343 1,166,243 40 128

ogbn-products 2,449,029 61,859,140 47 100

We apply SMGRL to three popular GCNs: GraphSAGE Hamilton et al. (2017), a GCN that uses skip
connections to construct a generalized neighborhood aggregation scheme; APPNP (Klicpera et al., 2019),
a GCN that uses an aggregation scheme inspired by personalized PageRank; and self-supervised graph
attention networks (SuperGAT, Kim & Oh, 2021), a GCN that incorporates attention-based aggregation
and uses self-supervised learning in training. These three methods are designed to show that SMGRL is
applicable across a wide range of GCNs, incorporating different notions of neighborhood and different message
aggregation schemes. We use existing Pytorch implementations of GraphSAGE, APPNP and SuperGAT3.
To obtain class predictions from embeddings, we use a single-layer perceptron neural network.

We construct our hierarchy using the variation neighborhoods coarsening method (Loukas, 2019), using the
original author’s implementation4. This approach automatically determines the appropriate hierarchical
depth, based on the desired reduction ratio. Unless otherwise stated, we learn per-dimension weights for each
embedding to aggregate the multi-resolution embeddings. These weights are learned jointly with our final
classification algorithm. In Appendix E, we explore some alternative aggregation schemes.

For both GraphSAGE and APPNP, we use additive aggregation of messages; in SuperGAT, an attention
mechanism is used for message aggregation. For APPNP, we use parameters k = 3 and α = 0.5; for
all other methods including HARP and MILE, we use the default parameters suggested by the authors.
For all three GCNs, we optimize using RMSProp with default hyperparameters. We explored alternative
choices of optimzer and hyperparameters and found the outcomes did not change significantly. We carry
out early stopping if validation loss does not improve in twenty epochs, and evaluate using the checkpoint
with the best validation loss. For Cora, CiteSeer, PubMed, DBLP and Coauthor Physics, results are
averaged over 200 runs with random seeds. For the larger OGBN-arXiv and OGBN-Products datasets,
results are averaged over three runs with random seeds. Code to reproduce our experiments is available at
https://anonymous.4open.science/r/SMGRL.

5.2 Incorporating representations at multiple resolutions leads to better embeddings

A single-layer GCN is only able to capture information about its immediate neighbors, which limits our ability
to capture interactions occuring at longer lengthscales. This is also true in the coarsened GCN approach of
Huang et al. (2021); while a coarsened graph is used to train a GCN, the final embeddings are only obtained
based on the full graph, so if we use a single-layer GCN we can only aggregate information from a direct
neighborhood.

A key motivation behind SMGRL is that incorporating embeddings learned at multiple scales will lead to
more informative representations and better performance on downstream tasks. Recall that our argument
for improved embeddings relies on the idea that different layers of the hierarchy will capture relationships
occurring at different lengthscales. We begin by showing that edges in the coarsened graphs do indeed
correspond to different lengthscales. Table 2 shows the average minimum path length in the original graph G0
between pairs of nodes whose parents are neighbors in the coarsened graph G1, using a 2-layer hierarchy with
coarsening ratio of 0.4. This gives the average lengthscale of interactions when we apply a single-layer GCN to

3https://pytorch-geometric.readthedocs.io
4https://github.com/loukasa/graph-coarsening

9

https://anonymous.4open.science/r/SMGRL
https://pytorch-geometric.readthedocs.io
https://github.com/loukasa/graph-coarsening


Under review as submission to TMLR

GraphSAGE APPNP SuperGAT

Cora

CiteSeer

PubMed

DBLP

Coauthor
Physics

OGBN-
Products

OGBN-
Arxiv

Figure 3: Test-set macro F1 score for SMLRG embeddings obtained at different levels of the hierarchy, using
three single-layer GCN architectures (GraphSAGE, APPNP, SuperGAT), a reduction ratio of 0.4 (resulting in
a two-layer hierarchy), and various embedding dimensions. Note, the results for Level 0 embeddings directly
correspond to the method of Huang et al. (2021).

10



Under review as submission to TMLR

Table 2: Average shortest path length between pairs of nodes in G0 whose parents are neighbors in the
coarsened graph G1. This corresponds to the average lengthscale of interactions captured using a GCN on G1.

Cora Cuteseer Pubmed Coauthor Physics DBLP
2.259 2.480 2.893 2.717 2.518

G1 (note that a single-layer GCN on G1 operates on a lengthscale of 1). We see that the average lengthscale of
interactions on the coarsened graph using a single-layer GCN is between 2 and 3— the embeddings obtained
using G1 are indeed able to capture relationships with a longer lengthscale than embeddings ontained using
G0.

To explore the benefits of learning embeddings using different lengthscales, we begin by looking at the
embeddings associated with each level in the hierarchy. Figure 3 shows test set macro F1 score across four
datasets, using a reduction ratio of 0.4, and with a variety of embedding dimensions (analogous accuracy
results are shown in Figure 10 in Appendix C). Each column corresponds to one of the three base GCN
algorithms, and each row to a dataset. Within each figure, the dashed lines correspond to embeddings
associated with the coarsened graph (level 1) and the original graph (level 0). Recall that both of these
embeddings are obtained using the base GCN trained on the coarsened (level 1) graph. The level 0 embedding
is therefore equivalent to the graph coarsened approach of Huang et al. (2021). The solid black line corresponds
to the SMGRL embedding obtained using a weighted average of the level 0 and level 1 embeddings. In
addition, the solid orange line corresponds to embeddings obtained using the base GCN trained on the full
graph. In Appendix C, we show comparable results holding embeddings dimension fixed and adjusting the
reduction ratio (Figure 9).

We see several interesting patterns here. First, we note that learning either GraphSAGE or APPNP on the
coarsened graph and then deploying it on the full graph (level 0) typically outperforms the corresponding
baseline GCN. This supports the findings of Huang et al. (2021), who hypothesize that the coarsened graph
acts as a regularizer, due to limiting the space of possible convolution operators. Performance is more mixed
in the case of SuperGAT: while the level 0 embeddings outperform the full SuperGAT implementation for
CiteSeer, OGBN-Products and OGBN-Arxiv, the full SuperGAT performs as well as or better than the level
0 embeddings on the other datasets. This may be because the attention-based aggregation scheme used in
SuperGAT is quite distinct from the formulation in Kipf & Welling (2017) (which corresponds to approximate
spectral convolution), suggesting that the algorithm might no longer be approximating spectral convolution.
If this is the case, then there is less of a clear motivation to train on a spectrally coarsened graph.

Interestingly, in almost all cases where the level-0 embeddings outperform the full GCN, we find that using
just the top-level embeddings—i.e., assigning to each node in G the embeddings obtained for its ancestor in
the coarsened graph—actually performs better than the embeddings obtained using the same algorithm on
the original graph. We hypothesize that this is because the lengthscale associated with the coarser graph
may be better aligned with the natural variation in labels.

While the individual embeddings obtain good performance, we find that the full SMGRL embedding (that
combines the embeddings from multiple layers using learned weights) tends to lead to better predictive
performance than any single layer (although again, performance is more mixed for SuperGAT). In other
words: a multi-resolution approach yields improved performance over a model deployed on the original graph,
whether that model is trained on the original graph or a coarsened representation (as in Huang et al. (2021).
This is not surprising: we are able to aggregate information across multiple lengthscales. In principle, if a
given level of the hierarchy does not contain relevant information, we can learn to downweight embeddings
from that level in the final aggregation (although a learned aggregation is not guaranteed to outperform any
single layer on the test set; for example in the SuperGAT experiments we see several examples where a single
layer outperforms the aggregation).

In Appendix C, we repeat this analysis using two-layer GraphSAGE, APPNP and SuperGAT. In general,
we see better performance with an additional layer (albeit at higher computational cost), due to the ability
to capture relationships occurring at longer lengthscales (a two-layer model can capture interactions at

11



Under review as submission to TMLR

lengthscales of both one and two edges). As a result, SMGRL is no longer the clear winner in terms of
performance, with the unmodified GCNs performing better in many (but not all) cases. However, the faster
SMLRG method remains competitive with the full model, and as before, performs better than single-layer
embeddings including the approach of Huang et al. (2021).

To summarize: SMGRL provides a lower cost alternative to full GCN training and inference. When the
full GCN model is able to capture variation at all appropriate lengthscales, SMGRL provides comparable
performance. When the full GCN lacks this ability, SMGRL outperforms the full GCN. Moreover, SMGRL
in this scenario SMGRL outperforms the coarsening approach of Huang et al. (2021), for approximately the
same computational cost.

5.3 SMGRL can capture variation occurring at longer lengthscales

Above, we hypothesized that, when used with a single-layer GCN, SMGRL embeddings are able to perform
better than embeddings obtained on the original graph because they are able to capture variation at multiple
degrees of resolution. Rather than just propagating information between neighboring nodes, they are also
able to share information between related cliques and communities. This means each embedding is able to
capture information over a larger total neighborhood: it receives messages not just from it’s K-hop neighbors
in the original graphs, but also from the K-hop neighbors of its ancestors in the coarsened graph. As we saw
in Table 2, this leads to the ability to influence nodes that are further away in the graph.

To demonstrate the impact of this additional information, we consider a synthetic chain dataset proposed by
Gu et al. (2020) to explore ability to capture relationships occurring at longer lengthscales. Each dataset
contains 600 chain graphs of length L, with labels equally split across two classes. Within each chain, all
nodes share the same label. All 100d features are non-informative, with the exception of the last node in
each chain, whose first two dimensions encode the true label. This means that most nodes do not have any
informative nodes in their immediate neighborhood. As we increase the chain length L, we therefore increase
the importance of longer lengthscales, by increasing the average distance to an informative node feature.

(a) One-layer GraphSAGE. (b) Two-layer GraphSAGE.

Figure 4: Accuracy on a synthetic chain dataset, with various chain lengths and reduction ratios.

Figure 4a shows how accuracy varies with chain length L, applying SMGRL with a single-layer GraphSAGE
architecture and varying reduction ratios.5 For each dataset, we use 20 nodes for training, 100 nodes for
validation, and 100 nodes for test. For a chain length of 2, single-layer GraphSAGE is able to achieve 100%
accuracy, since all nodes include an informative node in their one-hop neighborhood. As we increase the
chain length, the average performance of GraphSAGE decreases, as increasingly many nodes lack information
in their one-hop neighborhood. However, SMGRL is able to capture longer-ranging dependencies. With a
reduction ratio of 0.5, all length-4 chains are compressed to a length-2 chain in the coarsest graph, and in

5GraphSAGE on the full graph corresponds to a reduction ratio of 0.

12



Under review as submission to TMLR

this representation all nodes contain relevant information in their one-hop neighborhood. As we increase the
reduction ratio further, the top-level nodes are increasingly likely to include relevant information in their
one-hop neighborhood, leading to increased accuracy. We see a similar pattern in Figure 4b, where the
underlying architecture is a two-layer GraphSAGE. Here, the baseline algorithm can propagate information
from the two-hop neighborhood, and therefore obtains better accuracies than the one-layer counterpart. The
general pattern seen in the one-layer case is repeated, however: as the average relevant lengthscale increases
beyond 2, we see improved performance.

Table 3: Macro F1 score on Cora datase, with a reduction ratio of 0.4 and various embedding dimensions
and aggregation methods. Top: using a single one-layer GraphSAGE model learned on the coarsest level.
Bottom: using a separate one-layer GraphSAGE model learned at each level. Stated dimensions correspond
to per-level embeddings; concatenated embeddings are twice this. We consider three aggregation methods,
plus the embeddings obtained on the original graph (equivalent to the coarsened GCN model of Huang et al.
(2021)). For each embedding type, we bold the better of the two results across the two models. Note that the
stated embedding dimension is that of the per-level embeddings; the concatenated embeddings are twice this
length.

Aggregation Embedding dimension
method 1 2 4 8 16 32 64 128

Single GCN Simple mean 0.184 0.392 0.621 0.731 0.755 0.761 0.765 0.761
trained on Weighted mean 0.181 0.404 0.633 0.736 0.757 0.762 0.769 0.768
coarsest level Concatenation 0.22 0.398 0.615 0.728 0.755 0.759 0.757 0.749

Separate
GCN/level

Simple mean 0.18 0.372 0.574 0.695 0.741 0.754 0.756 0.747
Weighted mean 0.201 0.419 0.628 0.73 0.758 0.763 0.765 0.765
Concatenation 0.352 0.569 0.692 0.742 0.754 0.755 0.743 0.741

5.4 Learning a single GCN does not sacrifice embedding quality

Clearly, incorporating information obtained at multiple levels of granularity can improve performance over a
single level of granularity—whether that level is the original graph, or a single coarsened layer. However,
under SMGRL, only one level in the hierarchy has embeddings obtained using a GCN trained on that
level. A reasonable question might be whether training one GCN per layer, and combining the resulting
embedding, does better than our approach. In Table 3 we do exactly that: on the Cora dataset, we compare
the SMGRL framework with a single GCN learned at the top level, with a variant that learns a separate GCN
for each level. When using our standard weighting aggregation scheme, or using concatenated embeddings,
we perform comparably to this variant, for a significantly lower training cost. When using a simple mean
aggregation, we uniformly outperform the separate GCNs. This is because using a single GCN means that
the embeddings at the two levels are inherently compatible—they aggregate information in the same manner,
so each dimension carries similar information. Conversely, two independently trained GCNs will not lead to
compatible embeddings, leading to greater loss of information when taking a simple mean.

5.5 SMGRL outperforms alternative hierarchical methods

In Figure 5, we compare test set macro F1 scores against two popular hierarchical graph embedding methods,
HARP (Chen et al., 2018) and MILE (Liang et al., 2021), implemented using the authors’ original code67

with default settings and the same classification architecture as SMGRL (Figure 11 in Appendix D shows
analogous accuracy results). HARP generates embeddings on a coarsened graph using node2vec, and refines
them as we descent the hierarchy. MILE generates embeddings on a coarsened graph using NetMF (Qiu
et al., 2018), and uses a (globally shared) GCN to refine. Since these approaches incorporate both an initial
embedding and a refinement, they have higher runtimes than SMGRL. Despite this, we see that SMGRL
outperforms both approaches for most settings.

6https://github.com/jiongqian/MILE
7https://github.com/GTmac/HARP

13

https://github.com/jiongqian/MILE
https://github.com/GTmac/HARP


Under review as submission to TMLR

(a) Cora (b) CiteSeer (c) PubMed

(d) DBLP (e) Coauthor Physics (f) OGBN-Products

(g) OGBN-Arxiv

Figure 5: Macro F1 score on four different graphs, with varying embedding dimensions, for various hierarchical
embedding methods. SMGRL uses GraphSAGE with a single-layer architecture, with a reduction ratio of 0.4.

In Appendix D.1, we look at how SMGRL compares with a hierarchical pooling approach, which learns a
hierarchy of GCNs coupled via a learned pooling mechanism (Ying et al., 2018). This approach was developed
for graph classification; however as we describe in Appendix D.1 it can be adapted to the node classification
setting. We find that on small graphs, SMGRL obtains comparable results to the pooling approach, but
at a much lower computational cost. This suggests that SMGRL is able to extract relevant hierarchical
information in a lightweight manner.

5.6 SMGRL can be used in an inductive manner

A key advantage of GCNs over other node embedding methods is that they are inductive. Rather than learn
a direct mapping from node to embedding, GCNs learn message passing algorithms that can be applied to
arbitrary graphs. Indeed, we directly make use of this when we apply an algorithm trained at one level of the
hierarchy, to get embeddings at other levels.

We consider a mixed inductive/transductive setting, where a randomly selected subset of test set nodes are
not included in the training graph. We refer to the held-out test set nodes as our inductive test set, and the
test set nodes present at training time as our transductive test set. At inference time, we reincorporate the

14



Under review as submission to TMLR

held-out nodes at each level in our hierarchy. At the bottom level, we simply reintroduce the nodes and any
missing edges. At higher levels, we assign the new nodes to the partitions with which they have the highest
number of edges. In Figure 6, we show macro F1 on Cora scores for a reduction ratio of 0.4, 8-dimensional
embeddings, and a variety of held-out percentages. Error bars show one standard deviation under different
random held-out sets. While we do perform better on the transductive test set than the inductive test set,
the difference is small relative to the variation across partitions, indicating that SMGRL continues to perform
well when a moderate number of new nodes are added to the graph.

Figure 6: Inductive learning on Cora using SMLRG-GraphSAGE, with a varying percentage of test set nodes
held out during training. Macro F1 plotted for overall test set, and for the inductive and transductive subsets.

5.7 Distributing inference for large graphs

SMGRL dramatically reduces training time of a GCN, since training is carried out over a smaller graph.
However, inferring the final embeddings occurs on the full graph (plus any additional, smaller layers in the
hierarchy). While, unlike training, inference only requires a single pass through the graph, this inference
cost—and the associated memory requirements—may be infeasible if our graph is large.

In such settings, we propose partitioning the graph at each level of the hierarchy, based on their parents
in the graph, to approximate the full graph with a sequence of independent subgraphs. We can then infer
the embeddings on each subgraph in parallel, making use of distributed resources if available. This leads
to lower computational complexity and memory requirements, but will tend to reduce the quality of the
embeddings, since we are ignoring many edges in the original graph. In Figure 7, we compare the macro
F1 score of embeddings obtained using the disjoint subgraphs at lower levels, and the embeddings obtained
using the full graph, on the Cora dataset. We see that, while there is a drop in performance due to using the
disjoint subsets, it is small and may be a worthwhile trade-off in practice.

6 Discussion

In this work we introduce SMGRL, an extremely lightweight framework for learning multi-resolution node em-
beddings. SMGRL is highly customizable and can be applied on top of any GCN. Moreover, its computational
cost is approximately equivalent to that of the recently proposed, coarsening-based scalable GCN framework
of Huang et al. (2021), while introducing increased expressive power due to incorporating information at
multiple lengthscales. Our experiments on real-world datasets show impressive empirical performance. A

15



Under review as submission to TMLR

Figure 7: Cora macro F1 score, using full SMGRL-GraphSAGE, and a variant where inference is carried out
on a partitioned graph.

future direction might be to incorporate pre-existing partitioning information, such as partitioning users of a
social network by employer or country.

As discussed in Section A, SMGRL is primarily applicable on homophilic graphs, since the coarsening
algorithms used ignore node labels and so combine nodes based only on structural similarity. While beyond
the scope of this paper, the development of graph coarsening algorithms appropriate for heterophilic graphs is
an interesting avenue for future research. In addition, we have focused on the task of node classification; we
note that GCNs can also be used for graph classification and a number of hierarchical pooling algorithms have
been proposed in this setting (e.g., Ying et al., 2018; Xin et al., 2021; Huang et al., 2019; Bandyopadhyay
et al., 2020; Liu et al., 2021). We leave exploration of graph classification for future work.

References
Taha Atahan Akyildiz, Amro Alabsi Aljundi, and Kamer Kaya. GOSH: Embedding big graphs on small

hardware. In International Conference on Parallel Processing-ICPP, 2020.

Sambaran Bandyopadhyay, Manasvi Aggarwal, and M Narasimha Murty. Self-supervised hierarchical graph
neural network for graph representation. In IEEE International Conference on Big Data, 2020.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks with
convolutional ARMA filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time and space complexity of graph convolutional networks.
Accessed on: July 11, 2023.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008,
2008.

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph sparsifica-
tion and coarsening. In Advances in Neural Information Processing Systems, 2019.

Marc Brockschmidt. GNN-film: Graph neural networks with feature-wise linear modulation. In International
Conference on Machine Learning, 2020.

16



Under review as submission to TMLR

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In International
Conference on Learning Representations, 2021.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. HARP: Hierarchical representation learning for
networks. In AAAI Conference on Artificial Intelligence, 2018.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Knowledge Discovery
and Data Mining, 2016.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph neural
networks. In Advances in Neural Information Processing Systems, 2020.

Kan Guo, Yongli Hu, Yanfeng Sun, Sean Qian, Junbin Gao, and Baocai Yin. Hierarchical graph convolution
networks for traffic forecasting. In AAAI Conference on Artificial Intelligence, 2021.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in Science Conference, 2008.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social networks, 5(2):109–137, 1983.

Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. Hierarchical graph convolutional networks
for semi-supervised node classification. In International Joint Conference on Artificial Intelligence, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in Neural
Information Processing Systems, 2020.

Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li. Attpool: Towards hierarchical feature
representation in graph convolutional networks via attention mechanism. In International Conference on
Computer Vision, 2019.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural networks
via graph coarsening. In Knowledge Discovery and Data Mining, 2021.

Victor Hugo. Les misérables. C. Lassalle, 1863.

Hao Jiang, Peng Cao, , MingYi Xu, Jinzhu Yang, and Osmar Zaiane. Hi-GCN: A hierarchical graph convolution
network for graph embedding learning of brain network and brain disorders prediction. Computers in
Biology and Medicine, 127:104096, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. In International Conference on Learning Representations, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph neural networks meet
personalized PageRank. In International Conference on Learning Representations, 2019.

17



Under review as submission to TMLR

Donald Ervin Knuth. The Stanford GraphBase: a platform for combinatorial computing, volume 1. AcM
Press New York, 1993.

Kangjie Li, Yixiong Feng, Yicong Gao, and Jian Qiu. Hierarchical graph attention networks for semi-supervised
node classification. Applied Intelligence, 50(10):3441–3451, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In
International Conference on Learning Representations, 2016.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. MILE: A multi-level framework for scalable
graph embedding. In International AAAI Conference on Web and Social Media, 2021.

N. Liu, S. Jian, D. Li, Y. Zhang, Z. Lai, and H. Xu. Hierarchical adaptive pooling by capturing high-order
dependency for graph representation learning. IEEE Transactions on Knowledge and Data Engineering, 35
(4):3952–3965, 2021.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning Research,
20(116):1–42, 2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller graphs. In
International Conference on Machine Learning, 2018.

Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with arbitrary degree distributions
and their applications. Physical Review E, 64(2):026118, 2001.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification.
In International Conference on Learning Representations, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Knowledge Discovery and Data Mining, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as matrix
factorization: Unifying deepwalk, LINE, PTE, and node2vec. In International Conference on Web Search
and Data Mining, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

Zhenghua Xin, Guolong Chen, Jie Chen, Shu Zhao, Zongchao Wang, Aidong Fang, Zhenggao Pan, and Lin
Cui. Mgpool: multi-granular graph pooling convolutional networks representation learning. International
Journal of Machine Learning and Cybernetics, 13:783–796, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2018.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in Neural Information Processing
Systems, 2018.

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropo-
logical Research, 33(4):452–473, 1977.

Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Hierarchical message-passing graph neural networks. Data
Mining and Knowledge Discovery, 37:381–408, 2022.

18



Under review as submission to TMLR

A Discussion on the coarsening algorithm and applicability of SMGRL

We have chosen to use a coarsening algorithm that retains spectral similarity, since spectrally coarsened
graphs have been proven to be good proxies for training GCNs (Huang et al., 2021). However, we ideally
also want our coarsened graphs to capture meaningful structure within the graph, allowing us to capture
relationships between more distant nodes. This sort of representation is what allows hierarchical GCNs such
as Guo et al. (2021) and Jiang et al. (2020) to learn rich, multi-scale node embeddings.

To assess whether spectral graph coarsening yields an intuitive hierarchy, we applied spectral coarsening to a
number of small, structured graphs: A stochastic blockmodel with 60 nodes (split into clusters of size 10, 20,
30) with edge probability matrix 0.03 + 0.77I (Holland et al., 1983); a circular ladder graph with 50 nodes;
a Newman-Watts-Strogatz graph with 100 nodes (Newman et al., 2001), initial clique size of 5, and edge
addition probability of 0.1; Zachary’s karate club graph (Zachary, 1977); the character co-occurrence graph
from Les Misérables (Knuth, 1993; Hugo, 1863); and an Erdős-Rényi G(n, p) graph with 100 nodes and edge
probability 0.2 (Gilbert, 1959). All graphs were generated using networkx (Hagberg et al., 2008).

In Figure 2 we show the hierarchies obtained on each dataset. The left hand side of each subfigure shows the
original graph (visualized using networkx with a spring layout). Moving towards the right of each subfigure,
we see increasingly coarsened graphs. The bottom row shows the coarsened graph; the top row shows the
mapping between nodes in the original graph, and nodes in the coarsened graph.

We see that the coarsening algorithm tends to group nodes that are close in the graph, and merge clusters
into a single node. For example, in the stochastic block model graph, the coarsest graph contains one node
for each latent community (Figure 2a). In the circular ladder graph, the graph is coarsened into a circle,
with nodes representing contiguous regions of the original graph (Figure 2b). This suggests that the coarser
graphs in the hierarchy do contain relevant information about the graph structure.

This figure also gives us a clue as to what sort of graphs might be well-suited to SMGRL. Figure 2a shows a
stochastic blockmodel, which exhibits three clear clusters and no meaningful structure within clusters. We see
that the coarsened graphs preserve the clustering structure, with G2 providing one node per original cluster.
We see similar behavior in the Karate club social network (Figure 2d) and the Les Misérables co-occurrence
graph (Figure 2e), which also show clear clustering structure. In the circular ladder graph (Figure 2b), we do
not have clusters of nodes, but we do have a clear sense of distance between nodes, indicated by position
along the ladder. Here, the coarsened graphs compress this distance, splitting the nodes based on position
within the circle. We see similar behavior in the Newman-Watts-Strogatz graph (Figure 2c), which features
several “chains” of nodes.

By contrast, the Erdős-Rényi graph (Figure 2f) exhibits neither clustering structure nor chains of nodes. The
lack of structure means there is no “natural” clustering of the graph, and as a result the coarsened graphs
do not capture meaningful information. In addition, some graphs cannot be meaningfully reduced via our
approach. In particular, a star graph (where one central node is connected to all other nodes, but no other
edges are present) cannot be meaningfully condensed.

These observations suggest that SMGRL will work well on graphs which have some clustering structure, or
where there is a significant variation in the distance between two nodes. It will not be appropriate in graphs
with no or little structure, since we should not expect coarsening to capture any meaningful information
about the graph.

In Table 4, we explore the impact of different choices of clustering algorithm. We look at the performance
and total computational time of four coarsening algorithms: The “variation neighborhood” algorithm used in
this paper; plus three alternative algorithms also proposed by Loukas (2019) that minimizes the same cost.
We see that the four algorithms are comparable in terms of both performance and time.

B Computational complexity of SMGRL

We discuss the cost of each step of SMGRL below, noting that the first two steps are identical to the coarsened
GCN framework of Huang et al. (2021)

19



Under review as submission to TMLR

Table 4: Test set F1 score, and total wall time (in seconds), on four datasets, using four clustering algorithms,
using two-layer GraphSAGE with a reduction ratio of 0.5.

Dataset Coarsening method Huang et al SMGRL
F1 Time F1 Time

Cora

Variation Neighborhoods 72.4± 0.3 1.11 74.4± 0.5 1.25
Variation Edges 69.9± 0.7 1.83 74.0± 0.3 1.84

Algebraic JC 74.3± 0.6 1.61 78.8± 0.9 1.89
Affinity GS 71.6± 0.1 1.5 77.2± 0.6 1.67

DBLP

Variation Neighborhoods 83.23± 0.6 5.53 84.07± 0.2 5.93
Variation Edges 83.06± 0.2 5.61 84.68± 0.5 5.87

Algebraic JC 83.47± 0.4 5.95 84.14± 0.2 6.05
Affinity GS 83.32± 0.2 5.85 84.5± 0.5 5.91

Citeseer

Variation Neighborhoods 48.8± 0.8 1.61 50.6± 0.2 1.38
Variation Edges 51.4± 1.3 1.50 54.7± 1.2 1.63

Algebraic JC 51.3± 0.4 1.32 53.3± 0.9 1.61
Affinity GS 50.2± 0.7 1.29 52.7± 1.4 1.58

Pubmed

Variation Neighborhoods 68.7± 1.4 3.19 70.8± 0.5 3.52
Variation Edges 70.4± 0.3 3.60 69.0± 0.2 4.04

Algebraic JC 73.1± 1.2 4.0 72.5± 0.4 4.32
Affinity GS 69.5± 0.9 3.88 70.3± 1.3 3.99

Algorithm 2 The “variation neighborhoods” graph coarsening algorithm (Loukas, 2019)
Input: Combinatorial Laplacian Lℓ−1, threshold σ′, target size n.
For each node vi, construct candidate set Ci = vi ∩Ne(vi)
Nℓ = |Vℓ−1|, marked← ∅, σ2

ℓ ← 0
while |Fℓ| > 0 and Nℓ > n and σ2 ≤ σ′ do
C∗ = arg minC∈Fℓ

cost(C)
s = cost(C∗)
Fℓ ← Fℓ \ C∗

if all vertices of C∗ are not marked, and σ′ ≥
√

σ2
ℓ + (|C∗| − 1)s then

marked← marked ∪ C∗

Pℓ ← Pℓ ∪ C∗

Nℓ ← Nℓ − |C∗|+ 1
σ2

ℓ ← σ2
ℓ + (|C∗| − 1)s

else
C′ ← C∗ \marked
if |C′| > 1 then
F ← F ∪ C′

end if
end if

end while
Construct Pℓ from Pℓ

Lℓ ← P ∓
ℓ Lℓ−1P +

ℓ

Construct GL from Lℓ

Return: Gℓ, Pℓ

20



Under review as submission to TMLR

• Constructing a coarsened graph using the neighborhood-based coarsening algorithm of Loukas (2019)
scales (up to polylog terms) linearly with both the number of edges, and the product of the number
of nodes and the average degree – both of which are upper bounded by |V|2.

• Training a GCN on the coarsest graph has computational complexity O(K|VL|+ K|EL|) (Blakely
et al.), where K is the number of layers in the GCN. Using a coarsening method with reduction
ratio r, the coarsened graph GL has |VL| = (1− r)|V| vertices. The number of edges |EL| in GL is
upper bounded by min

(
|E|, (1− r)2|V|2

)
. If G is dense, then |E| ∼ O(|V|2), suggesting a (1 − r)2

speed-up over the original GCN. If G is sparse then |E| ∼ O(|V|), suggesting a (1− r) speed-up over
the original GCN.

• Since the coarsened graphs are smaller than the original graph, for both SMGRL and the coarsened
algorithm the inference step is dominated by the cost of inference on the original graph, which scales
as O (K|V|+ K|E|). Since our hierarchy allows us to extract information at multiple resolutions by
design, we choose to let the number of layers, K, to be one. In practice the number of iterations
required for convergence of the GCN means that in the graphs considered in this paper, the cost
of inference is smaller than the cost of training. If desired, inference can be approximated by
partitioning the graphs at levels ℓ < L based on their parents in level ℓ + 1, and independently
inferring embeddings on the resulting subgraph. This has the additional advantage of allowing
parallelization across subgraphs. We empirically explore the resulting performance in Section 5.7.

• Aggregating the embeddings and learning the final classification algorithm is linear in the number of
labeled vertices |V|, which is typically smaller than |E|.

C Additional experiments comparing SMGRL with single-level embeddings

In Section 5.2, we looked at how using SMGRL improves performance over both the underlying GCN, and the
single-layer coarsening-based approximation of Huang et al. (2021). In Figure 8, we repeat this analysis using
two-layer GraphSAGE, APPNP and SuperGAT. In general, we see better performance with an additional
layer (albeit at a higher computational cost). In particular, the performance of GCNs trained on the full
graph has improved over Figure 3, due to the ability to capture relationships occurring at longer lengthscales.
As a result, SMGRL is no longer the clear winner in terms of performance, with the unmodified GCNs
performing better in many (but not all) cases. However, the faster SMLRG method remains competitive with
the full model, and as before, performs better than single-layer embeddings.

In Section 5.2 and Figure 8, we look at how macro F1 scores vary for a fixed reduction ratio and varying
embedding dimensions. In Figure 9, we show equivalent plots holding the embedding dimension fixed at 8
and with varying reduction ratios. Note that the number of levels of the hierarchy are determined by the
reduction ratio. As before, the level 0 embeddings are equivalent to the approach of Huang et al. (2021).
We see a similar pattern: For all but the highest reduction ratio, the GCN learned on the coarsest graph
performs well at all layers, typically leading to embeddings that perform better than those obtained using
a GCN trained on the original graph (indicated by a reduction ratio of zero). And in almost all cases, an
aggregated embedding which considers all levels of the hierarchy outperforms any single level’s embeddings.

In most of our experiments, we have reported the macro F1 score, since it is more informative than accuracy
when dealing with unbalanced classes. However, we see similar trends when looking at accuracy. To
demonstrate this, in Figure 10, we show the accuracies obtained using SMGRL aggregated embeddings and
per-level embeddings, over various embedding dimensions (i.e., the same scenarios for which we report macro
F1 in Figure 3). As is the case for macro F1 score, we that SMGRL obtains better accuracies than the
baseline GCN and the approach of Huang et al. (2021) (corresponding to Level 0 embeddings) when using
GraphSAGE and APPNP. As before, we do not strictly outperform the comparison methods when using
SuperGAT on PubMed, DBLP and Coauthor Physics; however we achieve comparable accuracies.

21



Under review as submission to TMLR

GraphSAGE APPNP SuperGAT

Cora

CiteSeer

PubMed

DBLP

Coauthor
Physics

OGBN-
Products

OGBN-
Arxiv

Figure 8: Test-set macro F1 score for SMLRG embeddings obtained at different levels of the hierarchy, using
three two-layer GCN architectures (GraphSAGE, APPNP, SuperGAT), a reduction ratio of 0.4 (resulting in
a two-layer hierarchy), and various embedding dimensions. Note, the results for Level 0 embeddings directly
correspond to the method of Huang et al. (2021).

22



Under review as submission to TMLR

GraphSAGE APPNP SuperGAT

Cora

CiteSeer

PubMed

DBLP

Coauthor
Physics

OGBN-
Products

OGBN-
Arxiv

Figure 9: Test-set macro F1 score for SMLRG embeddings obtained at different levels of the hierarchy, using
three single-layer GCN architectures (GraphSAGE, APPNP, SuperGAT), an embedding dimension of 8, and
various reduction ratios. Note that a reduction ratio of zero corresponds to the GCN on the original graph.
Note, the results for Level 0 embeddings directly correspond to the method of Huang et al. (2021).

23



Under review as submission to TMLR

GraphSAGE APPNP SuperGAT

Cora

CiteSeer

PubMed

DBLP

Coauthor
Physics

OGBN-
Products

OGBN-
Arxiv

Figure 10: Test-set accuracies for SMLRG embeddings obtained at different levels of the hierarchy, using
three single-layer GCN architectures (GraphSAGE, APPNP, SuperGAT), a reduction ratio of 0.4 (resulting in
a two-layer hierarchy), and various embedding dimensions. Note, the results for Level 0 embeddings directly
correspond to the method of Huang et al. (2021).

24



Under review as submission to TMLR

Table 5: Test set F1 score and total training time for DiffPool (modified for node classification task, see
Appendix D.1) and SMGRL, on two datasets, with a two-layer hierarchy with reduction ratio of 0.4.

Embedding DiffPool SMGRL
Dimension F1 score Time (s) F1 score Time (s)

Cora 8 0.72 79.04 0.73 1.38
16 0.73 80.01 0.75 1.52

Citeseer 8 0.54 81.02 0.57 1.47
6 0.58 81.46 0.58 1.58

D Additional experiments comparing SMGRL with alternative hierarchical methods

D.1 Comparison with hierarchical pooling methods

As we discussed in Section 2.2, hierarchical pooling methods have been proposed to learn richer graph
embeddings. Such methods construct a hierarchy of increasingly coarsened graphs, and jointly learns GCNs
at each layer of the hierarchy. The layers are coupled, such that the input node features in Gℓ are derived
from the learned embeddings from Gℓ−1 via a pooling operation. This pooling operation is itself learned—for
example using a GCN (Ying et al., 2018) or an attention mechanism (Huang et al., 2019).

While these methods have been developed for learning graph-level embeddings, they exhibit clear similarities
with SMGRL, albeit with higher computational cost (since we are learning multiple GCNs—including one
on the full graph—plus pooling operations in an end-to-end manner, rather than learning a single GCN
on a coarsened graph). Here, we explore whether this end-to-end hierarchical approach leads to improved
performance over SMGLR, in a node classification setting.

To measure this, we modify the DiffPool algorithm (Ying et al., 2018) to accommodate a node classification
task. Rather than simply using the final pooled graph embedding, we combine the per-level node embeddings
in a manner analogous to SMGLR: we lift the coarse embeddings back to the original graph using the learned
coarsening matrix, and combine the per-layer embeddings via a mean operation.

In Table 5, we compare the performance of this modified DiffPool algorithm with SMGRL. We use a single
layer GraphSAGE algorithm as our underlying GCN, and both methods use a two-layer hierarchy with a
reduction ratio of 0.4. Note, due to the increased computational and memory requirements of DiffPool, we
have only considered the smallest graphs for this analysis (DiffPool jointly learns one GCN per layer of the
hierarchy, plus pooling layers, and is not designed as a scalable algorithm). We see that SMGRL performs
comparably with DiffPool in this setting, but for a much lower computational cost.

D.2 Additional comparisons with MILE and HARP

In Section 5.5, we compared SMGRL with MILE and HARP, looking at macro F1 score. In Figure 11,
we repeat this analysis, this time looking at accuracy. As before, we see that SMGRL outperforms both
alternative hierarchical methods for most settings.

E Exploration of alternative final aggregation schemes

As we have seen in the experiments so far, learning post-hoc weights to combine the embeddings works well
in practice. However, this does add additional computational complexity (albeit minimally, as described in
Appendix B), and limits our choice of classifier to one that can be jointly trained with the post-hoc weightings.
In Figure 12, we compare our post-hoc weighting scheme with two alternatives: taking a simple mean, and
directly concatenating the embedding. All experiments use single-layer GraphSAGE, with a reducion ratio
of 0.4 and varying embedding dimensions. Note that embedding dimension here refers to the per-layer
embedding dimension; the concatenated dimension will be multiplied by the number of dimensions in the
hierarchy. We see that in general, the learned weighted mean performs better than the alternative approaches;

25



Under review as submission to TMLR

(a) Cora (b) CiteSeer (c) PubMed

(d) DBLP (e) Coauthor Physics (f) OGBN-Products

(g) OGBN-Arxiv

Figure 11: Accuracy on four different graphs, with varying embedding dimensions, for various hierarchical
embedding methods. SMGRL uses GraphSAGE with a single-layer architecture, with a reduction ratio of 0.4.

however the difference is fairly small. This leads us to suggest using a simple mean if computational resources
are limited.

26



Under review as submission to TMLR

(a) Cora (b) CiteSeer

(c) PubMed (d) DBLP

(e) Coauthor Physics (f) OGBN-Products

(g) OGBN-Arxiv

Figure 12: Macro F1 score on seven different graphs, for three different aggregation schemes, using SMGRL
+ single-layer GraphSAGE. The reduction ratio is fixed at 0.4, and a variety of embedding dimensions are
shown.

27


