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Abstract: Most robot manipulation focuses on changing the kinematic state
of objects: picking, placing, opening, or rotating them. However, a wide
range of real-world manipulation tasks involve a different class of object state
change—such as mashing, spreading, or slicing—where the object’s physical
and visual state evolve progressively without necessarily changing its position.
We present SPARTA, the first unified framework for the family of object state
change manipulation tasks. Our key insight is that these tasks share a com-
mon structural pattern: they involve spatially-progressing, object-centric changes
that can be represented as regions transitioning from an actionable to a trans-
formed state. Building on this insight, SPARTA integrates spatially progress-
ing object change segmentation maps, a visual skill to perceive actionable vs.
transformed regions for specific object state change tasks, to generate a) struc-
tured policy observations that strip away appearance variability, and b) dense re-
wards that capture incremental progress over time. These are leveraged in two
SPARTA policy variants: reinforcement learning for fine-grained control without
demonstrations or simulation; and greedy control for fast, lightweight deploy-
ment. We validate SPARTA on a real robot for three challenging tasks across 10
diverse real-world objects, achieving significant improvements in training time
and accuracy over sparse rewards and visual goal-conditioned baselines. Our
results highlight progress-aware visual representations as a versatile foundation
for the broader family of object state manipulation tasks. More information at
https://vision.cs.utexas.edu/projects/sparta-robot
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1 Introduction
The dominant paradigm in robotic manipulation focuses on rigid body motion tasks—such as pick-
ing and placing [1], opening and closing [2, 3], pushing [4], or rotating objects [5]. These tasks are
foundational but primarily involve changing an object’s kinematic state, with progress easily tracked
via pose changes. In contrast, many real-world scenarios require a different class of manipulations:
object state changes (OSC) 1 [6, 7, 10], where an object’s physical state and appearance evolve
without necessarily altering its pose (Fig. 1, top). Everyday examples include mashing a banana,
spreading jam, or slicing a cucumber. Such tasks demand sustained interaction that progressively
alters shape, texture, and color—making them mechanically and visually complex. Despite their
ubiquity in daily life—from cooking (e.g., grating, peeling, shredding) to chores (e.g., painting,
wiping, ironing)—OSC tasks remain largely underexplored in robotics.

What makes OSC manipulation challenging? Unlike motion-centric tasks, OSC demands contin-
uous reasoning about which parts of a deformable object have already transformed, which have
not, and how to act next. Two key obstacles arise. First, at the representation level, raw RGB ob-
servations conflate appearance with state, obscuring progress signals and hindering generalization.

1We adopt the term “object state change” (OSC) from the vision literature [6–8]: an OSC is a transformation
that yields a visually distinct post-condition (e.g., chopped apple) following an action (e.g., chopping), often
with irreversible changes to morphology, texture, or appearance. Not to be confused with Operational Space
Control [9].
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Second, at the learning level, rewards are difficult to define: sparse success signals give little explo-
ration guidance [11], while goal-conditioned rewards [12] often depend on scene embeddings that
miss fine-grained, incremental progress central to OSC. As a result, current approaches are sample-
inefficient and poorly suited to tasks where state changes evolve dynamically within the object.
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Figure 1: Top: While most robotic manipulation fo-
cuses on rigid-body motion, many real-world tasks in-
volve object state changes such as mashing, spreading,
or slicing, where objects are progressively transformed.
Bottom: SPARTA leverages spatially-progressing af-
fordance maps of actionable vs. transformed regions,
successfully demonstrating how to guide real robot ma-
nipulation for this family of tasks.

To address these challenges, we propose
SPARTA (Spatial Progress-Aware Robotic ob-
ject TransformAtion)—a system that intro-
duces structured, progress-aware visual affor-
dances for OSC manipulation (Fig. 1, bottom).
SPARTA builds on recent vision advances in
detecting OSC (SPOC [8]), which segment an
object into actionable and transformed regions.
For example, in mashing a potato, unmashed
chunks are actionable while mashed portions
are transformed. SPARTA exploits SPOC af-
fordance2 maps in two ways: (1) as structured
visual inputs that filter appearance while pre-
serving progress cues, enabling generalization;
and (2) as dense, spatially grounded rewards
that capture incremental progress. By explic-
itly encoding “what has changed” and “what
remains,” SPARTA enables robots to reason
about state progression rather than object kine-
matics alone.

Our formulation supports two policy vari-
ants. SPARTA-L uses SPOC-derived re-
wards to train RL agents directly in the
real world—without demonstrations or simula-
tion—achieving highly sample-efficient learn-
ing. In contrast, SPARTA-G provides a
non-parametric alternative, greedily acting on
nearby actionable regions in the SPOC map.
This unified framework thus accommodates
both: (1) reinforcement learning, for robust, adaptive control under noise and uncertainty; and (2)
greedy control, for fast, lightweight deployment without training. Together, these variants highlight
the versatility of SPARTA’s progress-aware affordances: a single representation can drive both
heuristic controllers and data-driven RL agents, depending on task complexity.

In our experiments, we show that with just 1.5–3 hours of online RL training directly in the real
world and no human demonstrations, SPARTA learns policies that reliably induce object state
change. We evaluate across three representative OSC tasks—spreading, mashing, and slicing—on
10 diverse real-world objects, demonstrating both robustness and generality. By contrast, base-
line methods fail to learn meaningful behavior, highlighting that dense, interpretable affordances
for object state change are key to enabling sample-efficient, generalizable real-world robot learn-
ing—charting a path beyond rigid-body manipulation.

2 Robotic Object State Change
Our goal is to enable robots to perform object state change (OSC) tasks, where an object’s morphol-
ogy, texture, or appearance evolve over time. Unlike traditional manipulation of rigid bodies (e.g.,
pick-and-place, pushing), OSC requires reasoning about transformations within the object. The chal-
lenge is not merely altering pose, but deciding where and how to act on deformable regions to drive
continuous, often irreversible changes. This reframes the problem: the robot must perceive gradual

2Here “affordance” refers to regions requiring robot interaction, distinct from conventional grasp points.
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transformations, localize actionable regions, and sequence fine-grained actions that accumulate into
a globally transformed outcome.
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Figure 2: Overview of SPARTA. At each episode
step, our policy takes the current and past SPOC [8]
visual-affordance (segmentation) maps as inputs, along
with the robot arm’s proprioception data and pre-
dicts a displacement action for the arm’s end-effector.
SPARTA supports two robot policy variants: (a)
SPARTA-L (Learning): a reinforcement learning agent
trained using a dense reward that measures the progres-
sive change of object regions from actionable (red) to
transformed (green); (b) SPARTA-G (Greedy): selects
among 8 discrete directions based on the local density
of actionable pixels, producing a fast, greedy policy
guided by visual progress.

Problem Formulation. We formulate OSC
task as a Partially Observable Markov Deci-
sion Process (POMDP) (S,A, T ,Ω, r, ρ0, γ),
where S are the true environment states, A are
robot actions, Ω are the observations, T (st+1 |
st, at) governs state evolution, r(st, at) pro-
vides feedback, ρ0 is the distribution over ini-
tial states, and γ is the discount factor. The
goal is to learn a policy π(at | ω≤t) that max-
imizes expected discounted return: J(π) =

Eπ

[∑T−1
t=0 γtr(st, at)

]
. Partial observability

arises as the object’s true state (e.g., which re-
gion of a banana is mashed) is hidden—only vi-
sual observations and proprioception are avail-
able. Unlike motion-centric tasks where object
pose suffices, OSC requires observation spaces
that approximate these evolving, spatially lo-
calized states.

Observation Space. The robot operates on a
tabletop with a single object placed. Each ob-
servation ωt ∈ Ω has visual and propriocep-
tive components, Ω = O × P : an RGB frame
ot ∈ O from a fixed camera and propriocep-
tive input pt ∈ P encoding end-effector posi-
tion. Raw RGB frames, though visually rich,
conflate object appearance with state dynamics,
making it hard to learn sample-efficient, gen-
eralizable policies from limited data. What is
needed are structured visual abstractions that discard appearance detail while preserving cues of
state evolution—bringing observations closer to the task-relevant state.

Action Space. Classical manipulation often plans global object motions, whereas OSC tasks re-
quire actions at specific intra-object locations to drive local transformations (e.g., pressing unmashed
potato chunks or brushing uncoated bread). We therefore constrain the action space to a 2D manifold
aligned with the object surface, allowing policies to reason directly about where to act. The policy
outputs continuous ∆x,∆y displacements, sampled from a Gaussian around the predicted mean.
At the resulting (x, y), a task-specific primitive is executed—sweeping for spreading, pressing for
mashing, or slicing strokes. This structured action space captures the spatially progressive nature of
OSC while reducing complexity, enabling sample-efficient policies that generalize across objects.

3 SPARTA: Robot Policies for OSCs via Visual Spatial Progress

Integrating SPOC Visual Affordances for Robotics. To provide structured visual abstractions
for OSC manipulation, we adapt the Spatially Progressing Object State Change (SPOC) task [8],
which segments objects into actionable and transformed regions (e.g., plain vs. coated bread).
Given RGB frames o1, . . . , oT , SPOC produces binary masks o′t = o′actt , o′trft that serve as the
robot’s sole visual input, stripping away appearance variability and supplying interpretable, object-
centric progress maps (Fig. 2). For real-time robot learning, we generate SPOC masks online using
SAM [13] + GPT-4o [14] with DeAOT [15] propagation for real-time control (details in Appendix
Sec. C). Crucially, SPOC affordances capture what transformations look like from large-scale human
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vision data without assuming embodiment, while binary actionable/transformed masks replace raw
RGB, enabling generalization across novel objects and materials.

SPARTA exploits SPOC affordances through two variants: SPARTA-L, which uses SPOC rewards
for real-world online RL, and SPARTA-G, which greedily selects actions from SPOC maps. A
shared MDP formulation with SPOC-based states and rewards enables both adaptive learning and
reactive planning within a unified framework.

SPARTA-L: Reinforcement Learning with SPOC rewards. OSC tasks require sequential
decision-making, as each action transforms only a local region and the robot must decide where
to act next. RL is well-suited for this setting, but sparse success signals hinder exploration while
dense feedback is rarely available [11]. To address this, SPARTA-L introduces a dense, spatially
grounded reward that combines a sparse terminal success term Rsucc

t , an entropy bonus Rentropy
t ,

and a novel SPOC-based progress reward Rspoct =
At+1trf−Atrf

t

Aact
t

capturing newly transformed
area between timesteps (see Fig. 2a). This formulation rewards incremental, non-redundant progress
in actionable regions, yielding an object-centric, task-agnostic signal derived directly from vision.
Crucially, it enables real-time, demonstration-free training: policies are optimized with SERL [16]
using SAC [17] and RLPD regularization [18], but unlike SERL, no demonstrations are needed.
SPOC-derived rewards alone are sufficient for stable, sample-efficient real-world learning (Sec. 4).

SPARTA-G: Greedy Policy with SPOC Maps. While RL provides robustness under noisy per-
ception, some OSC tasks can be solved with simpler controllers. For example, with large, symmetric
tools (e.g., a masher), each action covers a broad area, so a greedy strategy that steers toward un-
transformed regions suffices, unlike tasks with thin, directional tools (e.g., spreading) where RL
excels. To capture this easier regime, we introduce SPARTA-G, a non-parametric greedy controller
that uses SPOC maps to guide actions. At each step, the agent samples eight candidate motions
in the xy-plane and selects the direction leading to the highest density of actionable pixels around
the predicted endpoint, effectively driving the tool toward regions most likely to yield progress (see
Fig. 2b). Though training-free, SPARTA-G still fits within the MDP framework as a deterministic
mapping from SPOC states to actions, making it lightweight and fast to deploy for coarse transfor-
mations, while SPARTA-L remains superior for fine-grained control.

4 Experimental Evaluation

Manipulation tasks & objects. We evaluate three cooking-related OSC tasks—spreading, mash-
ing, and slicing—each involving irreversible structural and appearance changes that challenge per-
ception, affordance reasoning, and reward design. Experiments span 10 diverse objects with varied
shapes, textures, and colors (Table 4), testing both visual robustness and policy generalization.

Comparisons. We benchmark against three baselines: (1) RANDOM, uniform exploration within
the action space; (2) SPARSE, using only a binary GPT-4o–queried success reward from the final im-
age (e.g., “Is the bread fully coated?”); and (3) LIV [12], a state-of-the-art goal-conditioned method
that computes rewards from video-trained embeddings prompted with natural language (e.g., “coat
bread with ketchup”). These baselines represent the two dominant strategies in visual RL—sparse
rewards and pretrained goal representations—highlighting their limitations for fine-grained OSC.
We exclude tactile- or simulation-heavy approaches [19, 20] that require specialized setups, and un-
like imitation-based methods, SPARTA needs no demonstrations, making these vision-driven com-
parisons most directly relevant. We evaluate using transformation coverage, the percentage of object
area changed state (from SPOC segmentations corrected with human annotations [21]), which cap-
tures partial progress beyond binary success.

How stable and sample-efficient is the learning process? Dense, stable rewards are crucial
for real-world efficiency [22]. As shown in Fig. 3a, SPARTA-L yields smooth, monotonic re-
ward curves aligned with visual progress, while LIV produces noisy signals that fail to capture
fine-grained transformations. This stability drives steep, monotonic learning curves (Fig. 3b), with
SPARTA-L reaching usable policies (>60% coverage) in just 90 minutes, whereas SPARSE and
LIV stagnate. Moreover, affordance priors provide an implicit curriculum, guiding policies from lo-
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ep=021 ep=021Figure 3: Reward curves for bread-spreading. a) SPARTA yields smooth, progress-aligned rewards, while
LIV remains unstable. b) Dense feedback enables rapid learning, whereas SPARSE and LIV stagnate.

cal patches to full-object strategies. Thus, SPOC-based rewards deliver interpretable feedback that
enables stable, sample-efficient real-world learning.

Spread Slice Mash
Seen Unseen Seen Unseen Seen Unseen

Model

RANDOM 0.24 0.42 0.27 0.29 0.23 0.13 0.15 0.14 0.18 0.14 0.23 0.20
SPARSE 0.14 0.10 0.07 0.11 0.13 0.09 0.08 0.09 0.13 0.08 0.09 0.18
LIV [10] 0.17 0.14 0.12 0.16 0.12 0.10 0.09 0.11 0.13 0.09 0.10 0.08
SPARTA-G 0.44 0.49 0.55 0.66 0.39 0.52 0.48 0.51 0.75 0.69 0.71 0.75
SPARTA-L 0.61 0.55 0.58 0.63 0.42 0.78 0.69 0.72 0.77 0.72 0.62 0.68

Figure 4: SPARTA shows strong training and generalization
results for objects with varying textures, colors and shapes.
Metric is transformation coverage (%). Results averaged over
3 seeds, 5 rollouts per seed (15 evaluations total).

How well does SPARTA perform com-
plex object state changes? As shown
in Fig. 4 (qualitative results in Fig. 5),
both SPARTA variants far outperform
all baselines, highlighting the strength
of spatial affordances for OSC. SPARSE
and LIV [12] fail to capture fine-grained
progress, with RANDOM even surpass-
ing them due to weak reward signals.
Among our methods, SPARTA-G excels
in mashing, where symmetric tools mit-
igate perceptual noise, while SPARTA-
L dominates spreading and slicing, where
precise, noise-robust control is critical. Overall, SPOC affordances provide a versatile visual repre-
sentation, supporting both greedy planning and reinforcement learning depending on task demands.

Random

Sparse

LIV

Spread

SPARTA (ours)
SPARTA-G

SPARTA-L

Mash

Placeholder table and figure 
comparing SPARTA-P with 

object segmentation-based planner

Slice

Figure 5: SPARTA outperforms baselines by trans-
forming actionable regions across diverse objects with
varying colors, shapes, and textures.

What is the utility of state change segmen-
tations over plain object masks? We
compare SPARTA-G to a greedy baseline us-
ing only object masks, initialized with par-
tially transformed states (e.g., half-mashed ba-
nana). The baseline, blind to intra-object
changes, repeatedly revisits transformed re-
gions, while SPARTA-G targets only actionable
areas, achieving 3× higher coverage efficiency.
This shows that reasoning over state change
dynamics—not just object presence—is critical
for spatially progressive manipulation.

start objmask

start sparta-p

Episode Start SPARTAObjMask

Figure 6: Unlike OBJMASK, which wastes actions
on already transformed regions, SPARTA targets only
actionable areas for efficient state progression.
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