ENERGY-BASED TRANSFORMERS ARE SCALABLE
LEARNERS AND THINKERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference-time computation, analogous to human System 2 Thinking, has recently
become popular for improving model performance. However, most existing ap-
proaches suffer from several limitations: they are modality-specific (e.g., working
only in text), problem-specific (e.g., verifiable domains like math and coding), or
require additional supervision/training on top of unsupervised pretraining (e.g.,
verifiers or verifiable rewards). In this paper, we ask the question “Is it possi-
ble to generalize these System 2 Thinking approaches, and develop models that
learn to think solely from unsupervised learning?” We find the answer is yes,
by learning to explicitly verify the compatibility between inputs and candidate-
predictions, and then re-framing prediction problems as optimization with respect
to this verifier. Specifically, we train Energy-Based Transformers (EBTs)—a new
class of Energy-Based Models (EBMs)—to assign an energy value to every input
and candidate-prediction, enabling predictions through energy minimization until
convergence. To support this approach, we introduce several key techniques for
stable and parallelizable training, which enable the emergence of strong System 2
Thinking capabilities and scalable EBMs. Across discrete and continuous modal-
ities, we find EBTs outperform the Transformer++ approach, scaling up to 35%
faster during pretraining, and improving inference-time performance by up to 29%.
EBTs also surpass Diffusion Transformers on image denoising while requiring
99% fewer forward passes. Moreover, System 2 Thinking with EBTs yields larger
performance gains on data that is farther out-of-distribution, and EBTs achieve
better results than existing models on most downstream tasks despite achieving
the same or worse pretraining performance, enabling EBTs to generalize better
than existing approaches. Consequently, EBTs are a flexible and promising new
approach for scaling both the learning and thinking capabilities of models.

1 INTRODUCTION

In psychology, human thinking is often classified into two different types: System 1 (thinking fast)
and System 2 (thinking slow) Evans (2011); Frankish (2010); Kahneman (2011); Kahneman et al.
(2002). System 1 thinking is characterized by quick, intuitive and automatic responses, relying
on previous experience to solve simple or familiar problems. Alternatively, System 2 Thinking is
slow and deliberate, requiring effort to solve complex problems that go beyond automatic pattern
recognition, such as in mathematics or out-of-distribution situations Goel et al. (2000); Neys (2006).
Current models perform well on tasks suitable for System 1 thinking Li et al. (2025¢), but continue to
struggle with tasks that demand System 2 capabilities Mirzadeh et al. (2024); Yan et al. (2025).

As aresult, System 2 Thinking has become a growing research focus, driving the development of
foundation models such as O1 Jaech et al. (2024), R1 Guo et al. (2025), and Claude Anthropic (2025).
These “reasoning models” excel on math and coding benchmarks by increasing the time models
spend thinking. However, publicly available information from the open-source R1 model Guo et al.
(2025), suggests that the Reinforcement Learning (RL) approach for training these models only works
in domains where rule-based rewards can easily verify answers, such as math and coding. This limits
applicability, and often harms performance on tasks such as writing OpenAl (2024); Su et al. (2025).
Moreover, recent evidence indicates this approach may not foster new reasoning patterns, restricting
performance on tasks requiring exploration Yue et al. (2025). For a discussion on Related Works, see
Section E.

X X4 — RNN X1 X1
"x2 ' ' X2 2
g X— RNN Xe Xt+1 xe Xesr
) i — —
F = d N RI:IN Diffusion E;;Zgg
orwar
Transformer 5 RII]N L sonis Transformer
! ! }
£t+1 ‘ft+1 NOise(ft‘Fl) Energy(£t+1)
(a) AR Transformer (b) RNN (c) DiT (d) EBT

Existing Autoregressive Approaches

Figure 1: Autoregressive Architecture Comparison. (a) Autoregressive (AR) Transformer is the most common,
with (b) RNNs becoming more popular recently Gu & Dao (2023); Peng et al. (2023). (c) Diffusion Transformers
(DiTs) Li et al. (2025b); Peebles & Xie (2023) are similar to EBT, being able to dynamically allocate computation
during inference. However, diffusion models are not trained as explicit verifiers, unlike EBTs.

As one of the primary goals of Al is to figure out how we can create systems that learn to think on
their own on any problem type, these approaches ultimately bring about the following core research
question: “Can we rely entirely on unsupervised learning to develop System 2 Thinking?” Such a
capability could enable generalization of current System 2 Thinking approaches to many problems,
many modalities, and avoid the reliance on human, reward, or model supervision.

We argue and our empirical results suggest that the answer to this question is yes, but that there are
several limitations in existing models that prevent this general Thinking from emerging. Particularly,
when comparing the qualities of human System 2 Thinking with current modeling approaches
(Figure 1, Table 1), we observe several key differences, outlined below as two key Facets of System 2
Thinking:

Facet 1: Dynamic Allocation of Com-
putation. Humans naturally allocate Table 1: Architectures and Cognitive Facets. For each pre-

varying amounts of effort to different
tasks depending on difficulty, which is
widely supported by psychology and neu-
roscience Ditterich (2006); Kahneman
(2011); Rougier et al. (2005). For ex-
ample, a decision regarding whether to

diction, Feed-Forward (FF) Transformers and RNNs gener-
ally' have a finite amount of computation. DiTs (Diffusion
Transformers) can increase inference computation by denois-
ing longer, but lack explicit prediction verification. In contrast,
EBMs support dynamic computation through flexible iteration,
and give an energy scalar for prediction verification.

change careers generally takes more time 5 .op Dynamic Compute Prediction
than deciding what to eat. : Allocation (Facet 1) Verification (Facet 2)
Facet 2: Verification of Predictions. In L. 1ans. X X
.. . . RNNs X X
addition to allocating computation, hu- 5.~ X

man thinking also benefits from the abil- pp1
ity to verify predictions Alkouri (2016);
Loesche et al. (2018), which can guide decisions about when to stop thinking or to select the most
accurate predictions. This also supports more dynamic inference time behavior, such as early stopping
when a prediction is known to be correct, or allocating more compute when a problem is difficult.

To achieve the two facets described, we propose viewing thinking as optimization with respect to
a learned verifier, which evaluates the compatibility (unnormalized probability) between an input
and candidate prediction (Figure 2). Specifically, we train Energy-Based Models (EBMs) to learn an
energy (unnormalized probability) landscape over all possible input-prediction pairs, where lower
energy indicates higher compatibility (Facet 2). Thinking then corresponds to starting from an initial
random prediction and refining it through optimization along the energy landscape until convergence
(visualized in Figure 3). This naturally enables dynamic compute allocation (Facet 1) in the form of
more challenging problems utilizing additional optimization steps.

Recent works attempt to enable dynamic computation per prediction Geiping et al. (2025); Hao et al. (2024),
but these approaches are generally not modality agnostic and have not been widely adopted.

>We refer to this dynamic computation at the granularity of each prediction, meaning current LLMs built
with AR transformers/RNNs cannot dynamically allocate compute per token. See Section G for more info.

Text Pretraining Objective: Predict Next Token ' Video Pretraining Objective: Predict Next Frame

Context Context
The
dog Energy Based
caught Transformer — Energy Energy Based
the Transformer — Energy
Linear
Predictions Across Steps T Projector Predictions Across Steps
Step Step 1 Step 2 Step 3 Step 0 Step 1 Step 2 Step 3 Step 4
A AN 1\
A s) e M| S
gigigleigiE|epE|eEE
g g g g
"_G_e__l____\ _____ 2NN N e A 2 A A
N N N N/ N

N A e/ e
Thinking Process: Minimize Energy of Predicted

i
I

! Thinking Process: Minimize Energy of Predicted
! Frame using Gradient Descent Iteratively

Distribution using Gradient Descent Iteratively

Figure 2: EBT for Autoregressive Modeling. Each blue box corresponds to a different prediction at each step
of the thinking process, where the initial prediction starts as random. At each step, a new prediction is fed into
the model, which gives an energy scalar for the prediction’s current compatibility (unnormalized likelihood) with
the context (Facet 2). Then, the gradient of this energy with respect to the prediction is calculated and used to
update the prediction. This gradient descent update is done iteratively to refine the prediction until convergence
of the predicted energy, which allows for dynamic use of computation (Facet 1).

While this thinking perspective is promising, Energy-Based Models (EBMs) have struggled with
scalability Du & Mordatch (2019), with no known foundation EBMs. This stems from issues with
training instability and long training times Arbel et al. (2020); Du & Mordatch (2019). To address
these challenges, we introduce Energy-Based Transformers (EBTs), or Transformers specifically for
EBMs. We further propose practical training improvements, theoretical insights into EBM training
scalability, and novel energy landscape regularization techniques that improve System 2 Thinking.

To assess learning and thinking scalability, we compare EBTs to the Transformer++ (autoregressive)
and DiT (bidirectional) across discrete and continuous modalities. EBTs show up to 35% higher
scaling rates than the Transformer++ across data, batch size, parameters, FLOPs, and depth. At
inference, EBTs outperform existing models on System 2 Thinking—for example, by improving
language model performance by 29% more than the Transformer++, and by outperforming DiTs
in image denoising with 99% fewer forward passes. We observe two key effects: (1) EBTs often
outperform baselines at inference even with worse pretraining performance, demonstrating the
importance of System 2 Thinking; and (2) System 2 Thinking yields greater gains on more out-of-
distribution data, paralleling human thinking. We believe the EBT implementations, along with
novel techniques for EBMs to maximize the learning and thinking scalability, will advance the EBM
approach by addressing key challenges in stable, parallelizable, and efficient training.

2 ENERGY-BASED TRANSFORMERS (EBT) INTUITION

2.1 LEARNING TO VERIFY

Verifying solutions is often substantially more tractable than generating them, a distinction well-
known in complexity theory Cook (2023); Goldwasser et al. (2019); Godel (1956). For example, in
solving a maze, verifying the correctness of a given path is significantly easier than discovering such
a path. This asymmetry has been recognized and utilized for several decades, notably in the field of
cryptography Goldwasser et al. (2019); Lavin et al. (2024); Rivest et al. (1978). EBMs are built on
this principle that verification is easier than generation: rather than learning to generate directly, as
in most existing approaches, EBMs learn to generate by optimizing predictions with respect to the
learned energy function (shown in Figure 3).

Recent works have attempted to leverage verifiers Ma et al. (2025); Team (2023); Yao et al. (2023),
but these approaches decouple the verifier and generator, resulting in adversarial dynamics Ma et al.
(2025) and challenges in scalability Yao et al. (2023). For example, researchers combining tree search
and LLMs required thousands or even millions of samples to achieve optimal performance Team
(2023). In contrast, EBMs combine the verifier and generator into a single model, where the
generator is defined implicitly by the gradient of the verifier Du & Mordatch (2019). We show that
this coupling addresses scalability and adversarial issues (Figures 7b and B.4a).

An additional advantage of verifiers is generalization. Because verification is usually easier than
generation Swamy et al. (2025), prediction verification on Out-Of-Distribution (OOD) data is often

Context
The dog caught the

High Energy 1

Predictions (Low Compatibility)

Step 0
AP A~

Step 1
ANt

Step 2
N .

A

. \ Low Energy |
N, Converged '\ (High Compatibility)
8 g : E Continue Thinking Process until Energy Convergence
3

Figure 3: Thinking Process Visualization. An example energy landscape and its optimization through gradient
descent, interpreted as thinking. Here, the model predicts a distribution over text tokens, progressively shifting
from an initial random distribution to the target distribution. At each step, the EBM assigns an energy scalar
indicating how compatible the current prediction is with the context, visualized as the landscape’s height
(Facet 2). This scalar’s convergence allows the model to determine whether the prediction is adequate or if
further thinking is necessary (Facet 1). Adapted from Li et al. (2018).

easier than explicit prediction generation for OOD data Du et al. (2022). This characteristic often
results in better generalization of verifiers than explicit generators Du et al. (2022). This may explain
why EBMs often generalize better than existing models Du et al. (2022; 2024), which we further
support in our experiments (Figure 7a and Table 4).

2.2 LEARNING TO UNDERSTAND

This verifier-centric perspective also relates to a deeper limitation in generative models, referred to
as “The Generative Al Paradox West et al. (2023).” Although current generative models achieve
strong generative capabilities, they frequently lack basic discrimination skills, such as the ability to
assess the plausibility or coherence of their own predictions Stojnic et al. (2023); West et al. (2023),
impeding their ability to engage in reasoning, planning, and decision-making Kambhampati et al.
(2024); Yan et al. (2025). In contrast, EBMs offer a potential solution to this challenge: as EBMs
generate by learning a verifier (which is similar to a discriminator), they develop strong discrimination
skills Wang et al. (2023). Experimental results further support this observation (Table 4).

3 ENERGY-BASED TRANSFORMERS (EBT) APPROACH

3.1 ENERGY-BASED MODELS (EBM) BACKGROUND

Energy-Based Models (EBMs) assign a scalar energy value to each configuration of input variables,
enabling them to model the compatibility and interactions between variables, such as between a
context and candidate-prediction. For probabilistic EBMs, this defines a probability distribution

using a Boltzmann distribution pg(z) = % where Z(0) = [e ¢ dz is the intractable
partition function involving an integral over all possible values of x. To avoid the intractability of the
partition function, it is common to work with unnormalized EBMs, which dispense of the partition
function in favor of representing relative unnormalized probabilities. This formulation shifts the
focus from addressing the partition function, to simply assigning low energy to the true data manifold
and high energy elsewhere Dawid & LeCun (2024); Du & Mordatch (2019), offering benefits such
as scalability to spaces where the true data manifold is thin and therefore a probabilistic EBMs
would have an infinite score Dawid & LeCun (2024). In supervised or predictive self-supervised
learning (e.g., classification, autoregressive modeling, masked modeling), unnormalized EBMs can

be formulated as: pg(x, §) e~ Po(®.9) where the goal of the EBM is to learn to predict ¢ given z.°
3.2 SCALABLE EBM LEARNING

While EBMs offer a flexible modeling framework, training them scalably remains an open research
problem. Two primary training approaches exist—contrastive and regularized methods LeCun (2022).
Contrastive methods increase the energy of negative samples while decreasing the energy of positive
samples. Due to the curse of dimensionality Dawid & LeCun (2024), where the volume of spaces

3In self-supervised learning, z is some unmasked portion of the original z and 4 is the masked portion.

N AR W N =

Algorithm 1: Training Algorithm 2: Inference with Verification

Inputs: Context x, Target y, EBM Ey(x, §) Inputs: Context z, EBM Ey(z, 9)
Hparams: Steps M, Step Size «, Loss J(+) Hparams: Steps M, Step Size o, Samples N
Sample go ~ N (0, I); 1 forj=1,...,Ndo
fori=0,...,M —1do 2 Sample go,; ~ N (0, 1);

‘ g}Hleg)ifaV@iEg(x,gji); 3 fori:O,...,M—ldo
L J (G, y); 4 | it < Pig — Vg, Eo(x, i)
return L, update Ey; s return §* = argmin; Eg(x, g)M,j);

grows exponentially with their dimension, contrastive methods struggle to scale because they must
increase the energy of an exponentially higher number of negative samples.

An alternative is to frame EBM learning as an optimization problem Du et al. (2022); Wang et al.
(2023), which avoids the curse of dimensionality by implicitly regularizing the energy landscape,
enabling scalable learning. In this approach, EBMs are trained to optimize an initial prediction to
the ground truth solution through gradient descent, as shown in Figure 3. This pushes the energy
landscape to be convex surrounding the ground truth solution, thereby regularizing the energy
landscape to only have low energy on the true data manifold.

Training EBMs to perform optimization can be formalized as follows. We begin with an EBM FEjy, an
initial prediction g, an input (context) for the model z, and seek to predict y. We aim to find the
minimum energy (most compatible) § given an x, which we search for using gradient descent:

Jit1 = 9i — aVy, Eg(x,9:),)]
where « is the step size (formalized in Algorithm 1).

3.3 ScALABLE EBM THINKING

While this training approach is scalable, achieving smooth and convex energy landscapes remains
challenging on real-world problems. Because y is high-dimensional, the energy landscape spans
a high-dimensional space, and must remain well-shaped throughout. To address this, we found
three key energy landscape regularization techniques to be essential for learning smoother and more
convex energy landscapes, enabling strong thinking capabilities to be learned during training.

First, we found a replay buffer helps simulate longer optimization trajectories, enabling energy
landscapes to be well defined near their minimum. Second, a variant of Langevin Dynamics Du &
Mordatch (2019), was found to be helpful for encouraging exploration of the energy landscape:

Jiv1 = 9i — Vg, By (x,9:) +mi, 1 ~N(0,0), 2)

where o is the magnitude of the noise n. Without this noise term, exploration is often limited to paths
leading directly to the energy minimum, leaving other regions poorly defined. Third, varying the
paths taken towards predicting solutions, by randomizing the gradient descent step size o and number
of optimization steps, significantly improved generalization. Together, these techniques improved the
System 2 Thinking capabilities of models, as confirmed by ablation experiments in Table 2.

With these techniques established, we explored two main Thinking approaches. First, corresponding
to dynamic computation allocation (Facet 1), we conduct experiments that involve changing the
number of steps taken for optimization of a single prediction. Second, corresponding to the ability
to verify predictions (Facet 2), we generate N predictions from an EBM and choose the minimum
energy prediction (BoN or Self-Verification, which is formalized in Algorithm 2).

3.4 ENERGY-BASED TRANSFORMERS (EBTS) ARCHITECTURE

Transformers excel across domains due to their parallelizability, stability, and scalability Borsos et al.
(2023); Oquab et al. (2023); Radford et al. (2019); Vaswani et al. (2017). In contrast, Energy-Based
Models (EBMs) struggle with these aspects Du & Mordatch (2019); Du et al. (2020); Li et al. (2023),
making Transformers a natural fit for scaling EBMs. Consequently, we introduce Energy-Based
Transformers (EBTs), Transformer implementations designed for EBMs. We developed two variants:
a GPT-style Radford et al. (2018) causal decoder-only EBT, for autoregressive modeling, and a
bidirectional EBT with full sequence attention Devlin et al. (2019); more details are in Section C.3.

EBT Scales 35.98% Faster Than Transformer++ EBT Scales 28.46% Faster Than Transformer++ EBT Scales 5.29% Faster Than Transformer++
°

ol Transformer-+ ss| ¢ Transformert+ | 2 | S Transformer++
= \ e EBT = e EBT 2 60 NN < e EBT
% \ % \ 2 N
= 250 \ = ~
£60 \ = \ z
] S N =
= & =) \) S 3
g \‘\ £45 \ = ~
£=1 £=1 o AN
H g g
% T k- 5
= 40 3 e
e R NP - I Sy £50 \\
40 o———g T | E N
2 4 6 33 10 20 30 40 50 60 4 5 6 7 8 9 16
Number of Tokens (Billions) Batch Size in Tokens (Thousands) Depth in Transformer Blocks (log scale)
(a) Scaling for data. (b) Scaling for batch size. (c) Scaling for depth.

Figure 4: Language Learning Scalability—Data, Batch Size, and Depth. A comparison between the scaling
of the Transformer++ recipe Touvron et al. (2023) and EBTs across data, batch size, and depth during pretraining.
On all axes, EBTs out-scale the Transformer++ recipe significantly, indicating improved data efficiency. The
improved depth scaling offers promise for reasoning, where depth is crucial Ye et al. (2024). These results
suggest that EBTs could outperform Transformer++ models at foundation model data scale.

Table 2: System 2 Thinking Ablations. All energy landscape regularization techniques described in Section 3.3
and their impact on System 2 Thinking performance, measured by percent perplexity improvement. Thinking
Longer denotes more optimization steps and Self-Verification denotes optimizing many predictions and choosing
the best. Removing regularization, such as Langevin Dynamics, results in less energy landscape exploration,
which improves single path performance (thinking longer) at the expense of self-verification performance.

Model Thinking Longer T Thinking Longer and Self- Verification 1
No Random Step Size -1.47 0.19
No Random Num. Steps 0.00 9.65
No Langevin Dynamics 17.2 17.0
No Replay Buffer 14.8 17.8
Full System 2 Configuration 7.19 18.7

4 EXPERIMENTATION AND RESULTS

We experiment with EBTs across both Autoregressive (AR) Radford et al. (2019) as well as bidirec-
tional models Devlin et al. (2019) in discrete and continuous spaces.* In discrete spaces, we focus
on the language modeling objective. In continuous spaces, we focus on vision tasks of next frame
prediction (Section B.1) and image denoising. All models are pretrained from scratch, as EBT’s
architecture is incompatible with existing foundation models, and therefore cannot be fine-tuned.
First, we examine learning scalability, investigating how quickly models can fit the pretraining data,
which is standard in pretraining Gu & Dao (2023); Hoffmann et al. (2022); Kaplan et al. (2020);
Touvron et al. (2023). Second, we study thinking scalability, or how model performance changes as
we scale the System 2 Thinking of models (Definition C.1), measured with the Number of Function
Evaluations (NFEs) Chen et al. (2018); Ma et al. (2025) (forward passes).

4.1 AUTOREGRESSIVE LANGUAGE MODELING EXPERIMENTS

In this section, we detail and discuss the results for all NLP experiments using Autoregressive (AR)
Language Models trained to predict the next discrete token in a text sequence Radford et al. (2019).
All language models are pretrained on the RedPajamaV2 text corpus Computer (2023); Weber et al.
(2024) 100B sample from HuggingFace using the GPT-NeoX tokenizer Black et al. (2022b) (as
in Gu & Dao (2023)). Following existing pretraining work, we compare AR EBT with the standard
Transformer++ recipe Gu & Dao (2023); Sun et al. (2024); Touvron et al. (2023).

For downstream evaluation, we used four key datasets in addition to the pretraining dataset, spanning
reasoning, question answering, and syntax understanding. Ordered roughly by increasing perplexity
difficulty, these include GSMS8K Cobbe et al. (2021), SQuAD Rajpurkar et al. (2016), BigBench
Elementary Math QA Srivastava et al. (2022), and BigBench Dyck Languages Srivastava et al.
(2022). We focus on reasoning benchmarks due to their close alignment with System 2 Thinking.

We conduct scaling experiments for six different axes—including data, batch size, depth, parameters,
FLOPs,’ and embedding dimension. The results for the data, batch size, and depth scaling are shown

“Here, autoregressive and bidirectional refer to the procedure for generation. It’s worth noting that autore-
gressive models are compatible with bidirectional attention, as in Li et al. (2025b).
The FLOP calculation is nuanced and depends on specific hyperparameters, please refer to Section D.5.

EBT Scales 2.91% Faster Than Transformer++ EBT Scales 2.92% Faster Than Transformer-++ EBT Scales 0.02% Faster Than Transformer++
e e e

Transformer++
® EBT

TN
S S

Transformer++
® EBT

Transformer++
® EBT

o o
S 3

~ N ‘

IS
S

60

N
S

Y
10”7 10" 10" 10" 200 300
Training FLOPs (log scale) Embedding Dimension (log scale)

)
S

0

)
S
w

/
Validation Perplexity (log scale)

Validation Perplexity (log scale)
g
o
Validation Perplexity (log scale)
w
=)

10 100
Non-Embedding Parameters (M, log scale)
(a) Scaling for number of Parameters. (b) Scaling for number of FLOPs. (c) Scaling for the embed. dimension.

Figure 5: Language Learning Scalability—Parameters, FLOPs, and Width. Pretraining scaling comparisons
between the Transformer++ recipe Touvron et al. (2023) and EBTs across model size (parameters), compute
(FLOPs), and width (embedding dimension). EBTs have a slightly higher scaling rate than the Transformer++ in
FLOP and parameter scaling, suggesting that EBTs offer high promise as a pretraining approach.

in Figure 4; and the results for parameters, FLOPs, and embedding dimension are visualized in
Figure 5. Across all axes, EBTs consistently have a higher scaling rate than the Transformer++ recipe,
suggesting the pretraining performance of EBTs could be better than the Transformer++ recipe at the
scale of foundation models.

Building on the learning results, we investigate EBTs for thinking at inference time. We found that
the thinking capabilities of EBT emerge with a sufficiently large data scale, and therefore, due to
limited resources, we focus on conducting thinking experiments with smaller models trained on
substantial amounts of data. In Table 2 we conduct ablation studies to confirm the benefits of our
energy landscape regularization techniques for System 2 Thinking on Out-of-Distribution Data
from the BigBench Dyck Languages benchmark Srivastava et al. (2022). We find that using all
techniques yields the best System 2 Thinking performance when combining extended thinking and
self-verification. Additionally, the results show that randomizing the step size is critical—removing
it nearly eliminates thinking gains. In contrast, disabling Langevin Dynamics degrades combined
performance but improves results without verification, offering a performance-compute tradeoff.

Having.estgblished t.he importz}nce of these landscape Thinking Helps More on OOD Data
regularization techniques, in Figure 7, we analyze the © EBT With Max Thinking

scalability of thinking with EBTs, where the results £ 22

yield two main insights. First, as shown in Figure 7a, £,

EBTs are able to improve performance by as much 2

as 29% by increasing the amount of forward passes 2 '

(thinking time), whereas the Transformer++ cannot 216

improve performance.® This aligns with our claims z .

that because traditional feed-forward Transformers &

cannot dynamically allocate additional computation 2

for each prediction being made, they are unable to LS 2 I%/ijgnitu;éoshift 334043
improve performance for each token by thinking for gure 6: OOD Thinking Performance. As data
longer. becomes more OOD, thinking with EBTs leads to

Second, as demonstrated in Figure 7b, the thinking ~greater performance improvements—highlighting
how thinking is critical for generalization to OOD

capabilities of EBTs scale, showing that as EBTs are -

trained for longer, their ability to achieve improve- data. Performance is measured on 5 datasets vary-
L . . ing in Out-of-Distribution (OOD) magnitude shift,

ments from verification improves, increasing up t0 yhich is measured as the ratio of downstream per-

12% — 14% from 4% — 8%. This suggests that EBTs plexity to pretraining perplexity. Max Thinking

trained at the same scale as modern foundation mod- combines thinking longer and self-verification.

els, such as the 15T tokens Llama3 Grattafiori et al.

(2024) was trained on (= 1000x the current data

scale), could have more substantial results from self-verifying.

As System 2 Thinking in humans is associated with generalization to novel scenarios, we conduct
experiments directly aimed at measuring the effects of System 2 Thinking on generalization. In
Figure 6, we visualize the performance of EBTs on the datasets described, which have varying levels
of Out-of-Distribution (OOD) shift (measured as the ratio of downstream task perplexity to pretraining

Because we pretrained language models from scratch, and are unable to train models the size of modern
foundation models, we find models did not benefit from inference time techniques such as Chain-of-Thought.

Table 3: Language Model Task Generalization Comparison. Although EBTs have slightly higher pretraining
perplexity, they often achieve lower perplexity on downstream tasks than the Transformer++, indicating better
generalization. Combined with better pretraining scalability (Figure 4), these findings suggest that EBTs could
outperform the Transformer++ at foundation model scale. BB stands for BigBench.

Model Pretrain GSMS8K | SQuAD| BBMathQA | BBDyck|
Transformer++ 31.36 49.6 52.3 79.8 131.5
EBT 33.43 43.3 53.1 72.6 125.3
_ Performance Drop on Out of Distribution Data § " Self-Verification Capabilitics Scale.During Training
g 450 Transformer++ é © BoN-5 Samples ¢
A 95 —®— EBT No Thinking § 12 °
2 —#— EBT Thinking Longer 2 PY "
2 400 —A— EBT Self-Verification 5] [14 L4 e
g > 10 e —@g ©
% E ¢ %% e e °
8 373 E 8 —®e o
g 2
= 35.0 2
'E‘ E 61 ® ° °
a32.5 —_— =
§ " ——4 & 4®
23 6 15 30 X 0 5 10 15 20 25 30
Number of Forward Passes Tokens Trained On (B)
(a) OOD Thinking Performance Comparison. (b) Verification Capabilities as Scale Increases.

Figure 7: EBT Thinking Analysis. (a) Mean performance degradation of the standard Transformer++ recipe Tou-
vron et al. (2023) and the Energy-Based Transformer (EBT) on four Out-of-Distribution (OOD) datasets. Unlike
the Transformer++, EBTs can reduce perplexity at a per-token level with more forward passes over a single
token/sample (Longer Thought) as well as generating many samples and choosing the minimum energy one
(Self-Verification). (b) The performance of EBTs with and without self-verification; as scale increases, the bene-
fits from self-verification increase. These results suggest EBTs generalize OOD better than the Transformer++
because of their System 2 capabilities, and that the thinking capabilities of EBTs improve during training.

perplexity). We observe a strong linear trend: as the data becomes more OOD, thinking leads to
greater performance improvements. Therefore, these findings suggest that the benefits of EBTs’
thinking are not uniform across all data but scale positively with the magnitude of distributional shifts,
highlighting thinking as a critical mechanism for robust generalization beyond training distributions.
These findings align with observations in psychology, where humans rely on deliberate System 2
Thinking to tackle challenging OOD tasks.

Next, we investigate the relation between OOD generalization and pretraining performance. Because
we know that EBTs scale at a faster rate than the Transformer++, as demonstrated in Figures 4 and 5,
it is reasonable to hypothesize that they may also perform better on downstream tasks at scale. To
investigate this, we compare models with identical training setups, where EBTs have slightly worse
pretraining perplexity than Transformer++ models. As shown in Table 3, despite achieving a higher
pretraining perplexity, EBTs achieve lower (better) perplexity on most downstream tasks, suggesting
stronger generalization, particularly to OOD data. Together, with the better learning scalability results,
and knowing that improved pretraining performance usually leads to improved downstream task
performance Chen et al. (2024); Isik et al. (2024), these results suggest that at scale, EBTs could
outperform the Transformer++ during pretraining and inference.

4.2 BIDIRECTIONAL IMAGE EXPERIMENTS

In addition to investigating autoregressive EBTs, we explore the performance of EBTs trained
bidirectionally. Following Chen et al. (2020); Du et al. (2022), models are trained to denoise images
with a fixed noise level. At inference, we test both the training noise level and a higher OOD
level. The results are in Table 4, where we observe that EBTs perform better than DiTs at both in
and out of distribution image denoising across various metrics. Following Chen et al. (2018), we
plot the performance based on the number of forward passes (NFEs) in Figure B.6. These results
demonstrate that EBTs perform better than DiTs while using 99% less denoising steps, and that the
System 2 Thinking scalability of EBTs is much higher than for DiTs. Lastly, qualitative results for
denoised out-of-distribution images for EBT compared to the DiT baseline are shown in Figure 8,
demonstrating the improved visual quality of denoised images from EBTs.

Table 4: Image Denoising and Classification Comparison. For image denoising, EBTs significantly outperform
DiTs Peebles & Xie (2023) in Peak Signal to Noise Ratio (PSNR), as well as MSE, on both in-distribution and
Out-Of-Distribution (OOD) data, while using 99% less forward passes. This suggests that EBTs generalize
better than DiTs while using less computation. On image classification, EBTs also perform better than DiTs,
yielding around 10x higher accuracy, suggesting that EBTs learn better image representations and therefore
understand images better than DiTs.

In Distribution Noise OOD Noise Image Classification
Model PSNR{1 MSEPixel] PSNR{ MSEPixel] ToplAcc.?T Top5 Acc.t
DiT 26.58 142.98 19.56 718.7 0.31% 1.36%
EBT 27.25 122.55 23.29 305.2 5.32% 13.2%

1step 2 steps 3 steps GT Image

Energy Based
Transformer

Diffusion
Transformer

i ot L. e :
100 steps 200 steps 300 steps GT Image 100 steps 200 steps 300 steps GT Image

Forward Passes
Figure 8: Qualitative OOD Image Denoising. EBTs achieve better denoising quality during inference while
using one step for every 100 denoising steps of a DiT, or 99% less steps. The overall image quality of EBT
denoised images is less blurry than images denoised by DiT.

In an effort to understand whether the representations learned from denoising captured useful visual
features, we perform a linear probe evaluation on ImageNet-1k Russakovsky et al. (2015) of the
models learned from denoising, following common practice in visual representation learning Oquab
et al. (2023). The results are shown in Table 4, where the accuracy of EBTs is around 10x higher
than that of DiTs, demonstrating that EBTs learn better image representations than DiTs.

For more EBT experiments on video modeling, uncertainty estimation, and other topics, please refer
to Section B.

5 LIMITATIONS AND CONCLUSION

Limitations. Despite demonstrating strong preliminary results, EBTs have several limitations.
First, because EBTs generate predictions through an optimization process, they introduce additional
hyperparameters. Second, while EBTs scale well up to 800M parameters, larger models were
unexplored due to resource constraints. Finally, current EBTs lag behind feed-forward Transformers
by a significant margin in FLOP-efficiency. While this reduces the short-term viability of EBTs, we
strongly believe that in the long-term, computational efficiency will not be a constraining factor in
model performance, and that instead generalization to OOD data will be. Under such conditions, we
believe that the strong generalization performance of EBTs will be useful.

Conclusion. We introduced Energy-Based Transformers (EBTs), a new approach that frames System
2 Thinking as an optimization procedure with respect to a learned verifier (an Energy-Based Model),
enabling System 2 Thinking to emerge across many problems and modalities from unsupervised
learning. Across discrete and continuous modalities, our results demonstrate that EBTs scale at
a faster rate than the Transformer++ during pretraining across all measured axes, including data,
batch size, depth, parameters, FLOPs, and width—with an up to 35% higher scaling rate. This
suggests that at foundation model scale, even without System 2 Thinking, EBTs could outperform the
Transformer++. With System 2 Thinking, EBTs improve even further—increasing performance by up
to 29% on text tasks, which we observe increases with data that is more Out-of-Distribution (OOD).
Comparisons to DiTs on image denoising also reveal significantly better thinking scalability: EBTs
match or exceed DiT’s performance with only 1% of the forward passes. EBTs also learn substantially
better representations, achieving approximately 10x higher accuracy than DiTs. Ultimately, the
improved scaling of EBTS to existing approaches during both training and inference positions EBTs
as a promising new approach for future foundation models.

Reproducibility Statement We include the source code for full reproducibility of our results, which
contains a detailed README on how to run and execute the code. We also include comprehensive
experimental details for results in all Figures and Tables in Sections 4 and D. This includes all
necessary hyperparameters, seeding, and model configurations for full reproducibility.

REFERENCES
URL https://huggingface.co/datasets/AbdoTW/COCO_2014. 27

URL https://research.google/blog/data-centric-ml-benchmarking—-announcing—dataperfs—2023-challe
20

URL https://huggingface.co/stabilityai/sd-vae-ft-mse. 20,28

Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. Faithfulness vs. plausibility: On the (un)
reliability of explanations from large language models. arXiv preprint arXiv:2402.04614, 2024. 29

Zaid Alkouri. Using contents and containers to investigate problem solving strategies among toddlers. 2016. 2

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet. Accessed: 2025-02-21. 1, 29

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. arXiv preprint
arXiv:2003.05033, 2020. 3, 35

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott, Marc’ Aurelio Ranzato, and Arthur Szlam. Residual
energy-based models for text. Journal of Machine Learning Research, 22(40):1-41, 2021. 18, 31

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak, and Owain
Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint arXiv:2309.12288,
2023. 18

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint arXiv:1701.02434,
2017. 19

Sumanta Bhattacharyya, Amirmohammad Rooshenas, Subhajit Naskar, Simeng Sun, Mohit Iyyer, and Andrew
McCallum. Energy-based reranking: Improving neural machine translation using energy-based models. arXiv
preprint arXiv:2009.13267, 2020. 18, 31

Christopher M Bishop. Mixture density networks. 1994. 32

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An open-source autoregressive
language model, 2022a. 28

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive language model.
arXiv preprint arXiv:2204.06745, 2022b. 6

Zalan Borsos, Raphaél Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi, Dominik
Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghidour. Audiolm: a language
modeling approach to audio generation, 2023. 5

Adam Casson. Transformer flops. 2023. URL https://adamcasson.com/posts/
transformer—flops. 28

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018. 6, 8

Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, and Le Song. Learning to stop while learning to predict. In
International conference on machine learning, pp. 1520-1530. PMLR, 2020. 8

Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang Wang, Jingfeng Yang, and Heng Ji. Scaling laws for
predicting downstream performance in llms. arXiv preprint arXiv:2410.08527, 2024. 8, 26

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of
Robotics Research, pp. 02783649241273668, 2023. 18

10

https://huggingface.co/datasets/AbdoTW/COCO_2014
https://research.google/blog/data-centric-ml-benchmarking-announcing-dataperfs-2023-challenges/
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://adamcasson.com/posts/transformer-flops
https://adamcasson.com/posts/transformer-flops

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021. 6

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL https:
//github.com/togethercomputer/RedPajama-Data. 6

Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata, and computational
complexity: The works of Stephen A. Cook, pp. 143-152.2023. 3

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-vector prod-
ucts? In ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.i10/2024/blog/
bench-hvp/. https://iclr-blogposts.github.i0/2024/blog/bench-hvp/. 28

Anna Dawid and Yann LeCun. Introduction to latent variable energy-based models: a path toward autonomous
machine intelligence. Journal of Statistical Mechanics: Theory and Experiment, 2024(10):104011, 2024. 4,
29, 32,34

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal transformers.
arXiv preprint arXiv:1807.03819, 2018. 29

Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers for generative
modeling. arXiv preprint arXiv:2412.12095, 2024a. 26

Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan, Yonggang
Qi, and Xinlong Wang. Autoregressive video generation without vector quantization. arXiv preprint
arXiv:2412.14169, 2024b. 20

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. 5, 6

Jochen Ditterich. Evidence for time-variant decision making. European Journal of Neuroscience, 24(12):
3628-3641, 2006. 2

Rodney J Douglas and Kevan AC Martin. Recurrent neuronal circuits in the neocortex. Current biology, 17(13):
R496-R500, 2007. 19

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances in neural
information processing systems, 32,2019. 3,4, 5, 19, 35

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence training of
energy based models. arXiv preprint arXiv:2012.01316, 2020. 5, 35

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Learning iterative reasoning through energy
minimization. In International Conference on Machine Learning, pp. 5570-5582. PMLR, 2022. 4, 5, 8, 27,
29, 30

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Compositional generation
with energy-based diffusion models and memc. In International conference on machine learning, pp.
8489-8510. PMLR, 2023. 30, 32

Yilun Du, Jiayuan Mao, and Joshua B Tenenbaum. Learning iterative reasoning through energy diffusion. arXiv
preprint arXiv:2406.11179, 2024. 4, 24, 30, 31

Jonathan St BT Evans. Dual-process theories of reasoning: Contemporary issues and developmental applications.
Developmental review, 31(2-3):86-102, 2011. 1

William A Falcon. Pytorch lightning. GitHub, 3, 2019. 26

Keith Frankish. Dual-process and dual-system theories of reasoning. Philosophy Compass, 5(10):914-926,
2010. 1

Angela D Friederici and Jurgen Weissenborn. Mapping sentence form onto meaning: The syntax—semantic
interface. Brain research, 1146:50-58, 2007. 32

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, Bhavya

Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A
recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025. 2, 22, 29, 34

11

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256.
JMLR Workshop and Conference Proceedings, 2010. 36

Vinod Goel, Christian Buchel, Chris Frith, and Raymond J Dolan. Dissociation of mechanisms underlying
syllogistic reasoning. Neuroimage, 12(5):504-514, 2000. 1

Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge complexity of interactive proof-systems.

In Providing sound foundations for cryptography: On the work of shafi goldwasser and silvio micali, pp.
203-225.2019. 3

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna
Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something something"
video database for learning and evaluating visual common sense. In Proceedings of the IEEE international
conference on computer vision, pp. 5842-5850, 2017. 20

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783,2024. 7, 21, 22

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752,2023. 2, 6, 19, 26, 27, 29

Yuchao Gu, Weijia Mao, and Mike Zheng Shou. Long-context autoregressive video modeling with next-frame
prediction. arXiv preprint arXiv:2503.19325, 2025. 20

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025. 1, 29, 30

Kurt Godel. Letter to john von neumann, 1956. URL https://ecommons.cornell.edu/server/
api/core/bitstreams/46aef9c4-288b-457d-ab3e-bb6cbladb88e/content. Accessed:
2025-04-28. 3

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training
large language models to reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024. 2, 29

Alvin Heng, Harold Soh, et al. Out-of-distribution detection with a single unconditional diffusion model.
Advances in Neural Information Processing Systems, 37:43952-43974, 2024. 32

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020. 30

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556, 2022. 6

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau, Mohammed
Zaki, and Dmitry Krotov. Energy transformer. Advances in Neural Information Processing Systems, 36, 2024.
31

John J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554-2558, 1982. 34

Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning Ding, Zebin
Ou, Guoyang Zeng, et al. Predicting emergent abilities with infinite resolution evaluation. arXiv preprint
arXiv:2310.03262, 2023. 26

Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark
for open-world compositional text-to-image generation. Advances in Neural Information Processing Systems,
36:78723-78747, 2023. 32

Tobias Hoppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion models for video
prediction and infilling, 2022. 30

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and Sanmi Koyejo.

Scaling laws for downstream task performance of large language models. In ICLR 2024 Workshop on
Mathematical and Empirical Understanding of Foundation Models, 2024. 8

12

https://ecommons.cornell.edu/server/api/core/bitstreams/46aef9c4-288b-457d-ab3e-bb6cb1a4b88e/content
https://ecommons.cornell.edu/server/api/core/bitstreams/46aef9c4-288b-457d-ab3e-bb6cb1a4b88e/content

Md Mofijul Islam, Alexi Gladstone, Riashat Islam, and Tariq Igbal. Eqa-mx: Embodied question answering
using multimodal expression. In The Twelfth International Conference on Learning Representations, 2023.
20

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed EIl-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint arXiv:2412.16720,
2024. 1, 22,29, 30

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022. 18

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011. 1, 2, 23

Daniel Kahneman, Shane Frederick, et al. Representativeness revisited: Attribute substitution in intuitive
judgment. Heuristics and biases: The psychology of intuitive judgment, 49(49-81):74, 2002. 1

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri,
Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning in llm-modulo
frameworks. In Forty-first International Conference on Machine Learning, 2024. 4

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020. 6, 26

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013. 29, 32

Seijin Kobayashi, Simon Schug, Yassir Akram, Florian Redhardt, Johannes von Oswald, Razvan Pascanu,
Guillaume Lajoie, and Jodo Sacramento. When can transformers compositionally generalize in-context?
arXiv preprint arXiv:2407.12275, 2024. 32

Siddique Latif, Aun Zaidi, Heriberto Cuayahuitl, Fahad Shamshad, Moazzam Shoukat, and Junaid Qadir.
Transformers in speech processing: A survey. arXiv preprint arXiv:2303.11607, 2023. 29

Ryan Lavin, Xuekai Liu, Hardhik Mohanty, Logan Norman, Giovanni Zaarour, and Bhaskar Krishnamachari. A
survey on the applications of zero-knowledge proofs. arXiv preprint arXiv:2408.00243,2024. 3

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review, 62,
2022. 4

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based learning.
Predicting structured data, 1(0), 2006. 30

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural
nets. Advances in neural information processing systems, 31, 2018. 4

Margaret Li, Sneha Kudugunta, and Luke Zettlemoyer. (mis) fitting: A survey of scaling laws. arXiv preprint
arXiv:2502.18969, 2025a. 26

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation without
vector quantization. Advances in Neural Information Processing Systems, 37:56424-56445, 2025b. 2, 6

Zengyi Li, Yubei Chen, and Friedrich T Sommer. Learning energy-based models in high-dimensional spaces
with multiscale denoising-score matching. Entropy, 25(10):1367, 2023. 5, 35

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao
Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language
models. arXiv preprint arXiv:2502.17419, 2025c. 1

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023. 29

Tianhe Lin, Jian Xie, Siyu Yuan, and Deqing Yang. Implicit reasoning in transformers is reasoning through
shortcuts. arXiv preprint arXiv:2503.07604, 2025. 29

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision—-ECCV 2014: 13th
European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pp. 740-755.
Springer, 2014. 27

13

Fangfu Liu, Hanyang Wang, Yimo Cai, Kaiyan Zhang, Xiaohang Zhan, and Yueqi Duan. Video-t1: Test-time
scaling for video generation. arXiv preprint arXiv:2503.18942, 2025. 30

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation
with composable diffusion models. In European Conference on Computer Vision, pp. 423—439. Springer,
2022. 30

Frank Loesche, Jeremy Goslin, and Guido Bugmann. Paving the way to eureka—introducing “dira” as an
experimental paradigm to observe the process of creative problem solving. Frontiers in Psychology, 9:1773,
2018. 2

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li,
Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond scaling denoising steps.
arXiv preprint arXiv:2501.09732, 2025. 3, 6, 22, 29, 30, 31

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict if they
can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024. 22

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models. arXiv
preprint arXiv:2410.05229, 2024. 1

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018. 32

Wim De Neys. Dual processing in reasoning: Two systems but one reasoner. Psychological science, 17(5):
428-433, 2006. 1

OpenAl Learning to reason with Ilms, 2024. URL https://openai.com/index/
learning-to-reason-with—-11ms/. Accessed: 2025-02-21. 1

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin ElI-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba,
Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve,
Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning
robust visual features without supervision, 2023. 5, 9, 29

Thomas Parr, Giovanni Pezzulo, and Karl J Friston. Active inference: the free energy principle in mind, brain,
and behavior. MIT Press, 2022. 23

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. 2, 9, 26, 27, 37

Jiahuan Pei, Cheng Wang, and Gyorgy Szarvas. Transformer uncertainty estimation with hierarchical stochastic
attention. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 11147-11155,
2022. 21

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huangi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the transformer era. arXiv

preprint arXiv:2305.13048, 2023. 2, 29

A. Peters, B. McEwen, and Karl J. Friston. Uncertainty and stress: Why it causes diseases and how it is mastered
by the brain. Progress in Neurobiology, 156:164—188, 2017. doi: 10.1016/j.pneurobio.2017.05.004. 32

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by
generative pre-training. 2018. 5

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019. 5, 6, 29

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016. 6

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent video
transformer. arXiv preprint arXiv:2006.10704, 2020. 20

Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120-126, 1978. 3

14

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684—10695, 2022. 20, 28, 30, 33

Nicolas P Rougier, David C Noelle, Todd S Braver, Jonathan D Cohen, and Randall C O’Reilly. Prefrontal cortex
and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences, 102
(20):7338-7343, 2005. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andre;j
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211-252, 2015. 9

Karthik Abinav Sankararaman, Sinong Wang, and Han Fang. Bayesformer: Transformer with uncertainty
estimation. arXiv preprint arXiv:2206.00826, 2022. 32

Issidoros C. Sarinopoulos, D. Grupe, Kristen L. Mackiewicz, J. Herrington, M. Lor, E. E. Steege, and J. Nitschke.
Uncertainty during anticipation modulates neural responses to aversion in human insula and amygdala.
Cerebral cortex, 20 4:929-40, 2010. doi: 10.1093/cercor/bhp155. 32

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with latent
thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025. 29, 30

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language models a mirage?
Advances in Neural Information Processing Systems, 36:55565-55581, 2023. 26

Joan Serra, David Alvarez, Vicen¢ Gémez, Olga Slizovskaia, José F Niifiez, and Jordi Luque. Input complexity
and out-of-distribution detection with likelihood-based generative models. arXiv preprint arXiv:1909.11480,
2019. 32

Noam Shazeer. Glu variants improve transformer, 2020. 36

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and Rajesh
Ranganath. A general framework for inference-time scaling and steering of diffusion models. arXiv preprint
arXiv:2501.06848, 2025. 30

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024. 22

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020. 32

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R
Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022. 6,7

Gala Stojni¢, Kanishk Gandhi, Shannon Yasuda, Brenden M Lake, and Moira R Dillon. Commonsense
psychology in human infants and machines. Cognition, 235:105406, 2023. 4

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 36

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu. Expanding rl
with verifiable rewards across diverse domains. arXiv preprint arXiv:2503.23829, 2025. 1

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong
Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive hidden states. arXiv preprint
arXiv:2407.04620, 2024. 6

Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All roads lead to
likelihood: The value of reinforcement learning in fine-tuning. arXiv preprint arXiv:2503.01067, 2025. 3

AlphaCode Team. Alphacode 2 technical report. December 2023. 3
Christian Tomani, Kamalika Chaudhuri, Ivan Evtimov, Daniel Cremers, and Mark Ibrahim. Uncertainty-based

abstention in llms improves safety and reduces hallucinations. arXiv preprint arXiv:2404.10960, 2024. 32

15

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. 6, 7, 8, 26, 29, 36

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always say what they
think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural Information Processing
Systems, 36:74952-74965, 2023. 29

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017. 29, 32

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
5,25,29

L. Vilares, J. D. Howard, Hugo L. Fernandes, J. Gottfried, and Konrad Paul Kording. Differential representations
of prior and likelihood uncertainty in the human brain. Current Biology, 22:1641-1648, 2012. doi: 10.1016/j.
cub.2012.07.010. 32

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho. Will we run
out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint arXiv:2211.04325,
2022. 20

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):
1661-1674, 2011. 32, 34

Yezhen Wang, Tong Che, Bo Li, Kaitao Song, Hengzhi Pei, Yoshua Bengio, and Dongsheng Li. Your autoregres-
sive generative model can be better if you treat it as an energy-based one. arXiv preprint arXiv:2206.12840,
2022. 31

Ze Wang, Jiang Wang, Zicheng Liu, and Qiang Qiu. Energy-inspired self-supervised pretraining for vision
models. arXiv preprint arXiv:2302.01384,2023. 4, 5, 32, 34, 37

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu,
Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for training large language
models. Advances in neural information processing systems, 37:116462-116492, 2024. 6

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824-24837,2022. 29

Dirk Weissenborn, Oscar Téckstrom, and Jakob Uszkoreit. Scaling autoregressive video models. arXiv preprint
arXiv:1906.02634,2019. 20

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D Hwang, Liwei Jiang, Jillian Fisher,
Abhilasha Ravichander, Khyathi Chandu, et al. The generative ai paradox:" what it can create, it may not
understand". arXiv preprint arXiv:2311.00059, 2023. 4

XAl Grok 3 Beta— The Age of Reasoning Agents, 2025. URL https://x.ai/blog/grok—3. Accessed:
2025-02-21. 29

Yang Yan, Yu Lu, Renjun Xu, and Zhenzhong Lan. Do phd-level llms truly grasp elementary addition? probing
rule learning vs. memorization in large language models. arXiv preprint arXiv:2504.05262, 2025. 1, 4

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models, 2023. 3

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1, grade-
school math and the hidden reasoning process. In The Thirteenth International Conference on Learning
Representations, 2024. 6

16

https://x.ai/blog/grok-3

Xi Ye and Guillaume-Alexandre Bilodeau. Video prediction by efficient transformers. Image and Vision
Computing, 130:104612, 2023. 20

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does rein-
forcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv preprint
arXiv:2504.13837,2025. 1

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained visual
features enable zero-shot planning. arXiv preprint arXiv:2411.04983,2024. 18

17

In this appendix, we provide additional insight and details on EBTs. First, we provide more insight
on the broader impact/future work of EBTs in Section A. Next, in Section B, we include additional
experiments. Then, we include additional approach details in Section C, as well as additional
experimental details in Section D. After that, we include a comprehensive related work in Section E,
additional facets of cognition in Section F, and a discussion of counterarguments in Section G. Finally,
in the hopes of making EBTs more accessible to general audiences, in Section H we contain a general
easier-to-understand intro to EBMs, and in Section I we describe a tutorial for getting started with
EBTs.

Large Language Model Usage Statement: We use Large Language Models (LLMs) to assist
with grammar, formatting, and writing clarity/flow in the paper. All intellectual and experimental
contributions were made by the authors.

A FUTURE WORKS AND BROADER IMPACT

A.1 REVERSAL CURSE

Recently, a phenomenon known as “The Reversal Curse” has been observed where LLMs fail to
learn a symmetric mapping Berglund et al. (2023) “B is A” despite learning “A is B”. For example,
LLMs trained on an example such as “Q: Who is Tom Cruise’s mother? A: Mary Lee Pfeiffer”
often fail to generalize to know the answer to the reverse question of “Who is Mary Lee Pfeiffer’s
son?” Remarkably, the Reversal Curse has manifested itself in LLMs regardless of the size or
scale Berglund et al. (2023)—probing researchers to investigate whether there are fundamental
limitations to traditional feed-forward LLMs. One predicted cause of The Reversal Curse is the
nature of gradient updates, where backpropagation only updates tokens within context. That is, while
learning the mapping “A is B”, none of B’s tokens are within context, meaning they do not receive
gradient updates when updating A’s tokens. We hypothesize that LLMs trained with EBTs rather than
standard feed-forward Transformers could help reduce this phenomenon, as with EBTs the tokens of
A and B are within context during gradient updates due to predictions being made in the input space.
Therefore, an exciting research direction would be investigating whether this hypothesis is correct in
LLMs trained with EBT, allowing improved generalization.

A.2 IMPROVED STABLITY

In this work, we primarily trained EBT with either two or three optimization steps. While these
parameters worked well, we suspect that increasing the number of steps would improve the System
2 Thinking capabilities and the scaling during pretraining of EBTs, as more steps enable a longer
“thinking process” before needing to converge. However, because of challenges in stability when
training with more steps, due to a larger gradient computation graph, we were unable to successfully
increase past two or three steps. Future work could focus more on extending the number of steps by
studying ways to improve the training stability of EBMs.

A.3 WORLD MODELS

In this work, we focus on autoregressive and bidirectional models over just state information (no
actions). EBTs offer high promise in modeling states and actions due to the nature of EBMs learning
a distribution over all possible inputs. Particularly, given a model trained to estimate the unnormalized
joint distribution of the current context, future, as well as future actions, such world models could
implicitly be used as policies to generate actions to achieve a specific state, similar to Chi et al.
(2023); Janner et al. (2022); Zhou et al. (2024). This would involve holding the current context (past
states) constant, and minimizing the energy by propagating the gradient back to the action inputs and
future state predictions. Thus, world models trained in this manner become capable of more than just
predicting the future, but also in decision making to achieve a specific goal state.

A.4 EBTs AS COMPLEMENTARY MODELS

As demonstrated in Bakhtin et al. (2021); Bhattacharyya et al. (2020), EBMs can be used to improve
the quality of generated text from language models. It’s possible EBTs could be used in a similar
manner for a broad variety of tasks, serving as the verifier of predictions initialized by standard
feed-forward models. Therefore, although we do a side-by-side comparison to existing models in this
work, EBTs could be complementary to existing modeling approaches—being used as the System 2
Backbone for helping lighter models that perform System 1 thinking.

18

There exist several current real-world use cases, such as low-latency LLM serving, where doing a
single forward pass is sufficient, and where the added inference overhead of gradients with EBTs
would not be worth the extra computation. However, we also envision a world in which people use
EBTs for long-term System 2 Thinking to solve challenging problems. How much computation
would it be worth dedicating to prove a long-standing mathematical conjecture, or figuring out a cure
to cancer?

A.5 RECURRENT ENERGY-BASED MODELS

While EBTs scale well, for latency-driven use cases, Transformers require significantly more memory
than Recurrent Neural Networks. Additionally, there is strong evidence for recurrence in the human
brain Douglas & Martin (2007). Therefore, we anticipate that recurrent Energy-Based Models,
possibly leveraging the Mamba architecture Gu & Dao (2023) will eventually become common.

A.6 IMPROVED THINKING ALGORITHMS

The EBM thinking algorithms described have strong connections to or are derived from Markov
Chain Monte Carlo (MCMC) sampling. Therefore, we broadly expect known MCMC samplers with
more advanced techniques for traversing the energy landscape to be successful, such as Hamiltonian
Monte Carlo Betancourt (2017) or annealed Langevin dynamics Du & Mordatch (2019). Additionally,
we did not explore more advanced search algorithms such as Monte Carlo Tree Search, which we
suspect could offer performance improvements and leave for future work.

A.7 MULTIMODAL ENERGY-BASED MODELS

We did not experiment with multimodal EBMs, however, EBMs offer several advantages for learning
over multiple modalities. For example, multimodal EBMs would enable a single energy scalar to
represent the alignment between modalities, and would simplify joint training across modalities by
providing a unified objective that naturally captures inter-modal dependencies.

A.8 THINKING SCALABILITY

Due to a lack of computational resources, we were unable to train models with more than 102! FLOPs
(~ 1300 A100 GPU Hours). Therefore, training and thinking with EBTs remains untested at larger
foundation model scale. We leave it to future work to scale with more GPUs and investigate the
qualitative differences in training and thinking with EBTs.

A.9 LEARNING MULTIMODAL DISTRIBUTIONS

We found that EBTs, with the current training approach, struggle to capture distributions with many
modes (e.g., unconditional image generation). Therefore, future work could explore approaches to
improve the learning of distributions with many modes. More info is in Section B.3.

A.10 UNDERSTANDING PREDICTIONS

We posit that there exists a fundamental distinction between the internal representations associated
with model inputs and outputs. Specifically, models generate internal representations of inputs, as
these serve as the foundation that dictate the model’s behavior at any given point in time. Conversely,
as outputs do not affect a model’s behavior at a given point in time, we contend that models construct
representations for predicting (and not necessarily understanding) outputs. This distinction leads us
to a consequential insight: models may not achieve a genuine understanding of outputs in the same
way they understand inputs. This implies that while models may develop an intricate understanding
of input data, such understanding does not naturally extend to predictions that are made in the output
space. Therefore, existing feed-forward models primarily making predictions in the output space
may not understand their predictions in the same way they understand their inputs. This intuition
further supports the principles behind EBT, where predictions are made in the input space enabling
representations of predictions to be developed. We leave the investigation of this hypothesis to future
work.

A.11 SOCIETAL IMPACT

The ability to achieve human-like thinking with AI offers benefits in multiple domains. As such,
EBTs offer several potential positive impacts, through the enabling of Al to potentially think more
like humans. On the other hand, it’s also possible that more intelligent AI models trained using EBT
could be misused for harm by malicious actors.

19

EBT Scales 33.66% Faster Than Transformer++ EBT Scales 34.28% Faster Than Transformer++

Transformer++ 19 o
EBT

Transformer++
® EBT

Loss (log scale)
3

Loss (log scale)
3

15 . 15 °
400 500 600 700 800900 1536 2000 10 1
Embedding Dimension (log scale) Non-Embedding Parameters (M, log scale)
(a) Scaling for the embedding dimension. (b) Scaling for the Non-Embedding Parameters.

Figure B.1: Video Learning Scalability—Width and Parameters. The minimum validation loss achieved on
the Something Something V2 (SSV2) dataset. While EBTs achieve higher validation loss than the Transformer++
at smaller scales, the scaling rate is more than 33% higher, suggesting that at foundation model scale with
hundreds of billions of parameters EBTs would perform much better than the Transformer++. Notably, scaling
with respect to the embedding dimension behaves more linearly than for the number of parameters, likely due to
the embedding dimension serving as a bottleneck for the image representation.

B ADDITIONAL EXPERIMENTATION

B.1 AUTOREGRESSIVE VIDEO EXPERIMENTS

To assess how EBTs scale in continuous domains, we train models to predict the next image in a
video conditioned on all previous frames—a common pretraining objective for video models Deng
et al. (2024b); Gu et al. (2025); Rakhimov et al. (2020); Weissenborn et al. (2019); Ye & Bilodeau
(2023). Unlike in the NLP experiments, where models see each sample only once due to the dataset
size, current popular video datasets are relatively small, requiring models to train repeatedly on the
same data. As a result, this setting probes a different question: “how well can models fit a fixed
dataset?”, rather than how efficiently models scale under non data-bound regimes. This distinction is
especially important given the recent scarcity of high-quality datasets Dat; Villalobos et al. (2022)
and the perspective that data will increasingly become a bottleneck.

For experiments, we encode all 224 x 224 images into 3136 dimensional features with the frozen
SD-XL VAE sta; Rombach et al. (2022). Then, all models are trained using a Smooth L1 loss with
B = 1.0 on the Something Something V2 dataset Goyal et al. (2017), where we report the minimum
validation loss achieved. In Figure B.1 we report scaling results for the embedding dimension and
non-embedding parameter count, as we found these axes behaved the most linearly. The results
demonstrate that, despite achieving a higher initial loss, EBTs scale at a more than 33% faster
rate than the Transformer++. This suggests that at foundation model scale EBTs would achieve
significantly better performance than the Transformer++.

We believe this large scaling rate gap can be linked to the fact that EBTs more seamlessly model
continuous distributions than standard feed forward transformers due to being able to express
uncertainty (Facet 3) through their energy scalar. To confirm this, we visualize results for different
energies when predicting video frames in Figure B.2. The results demonstrate that EBTs successfully
learn to capture uncertainty—where frames earlier on in the video have higher energy (higher
uncertainty) due to no large objects being within the frame, and then as the major object in the
scene becomes revealed more EBT predicts lower energy (lower uncertainty). EBTs learn to exhibit
this behavior without any supervision using a Smooth L1 loss, whereas the standard feed-forward
Transformer++ would require discretization schemes such as Vector Quantization Islam et al. (2023)
with a categorical loss, or other tricks to achieve the same effect.

B.2 ADDITIONAL NATURAL LANGUAGE PROCESSING EXPERIMENTS

We conduct experiments to confirm hypotheses on thinking results obtained in the main paper. First,
we confirm that EBTs become less adversarial with scale by comparing the performance of using
Best-of-N (BoN) with 2 versus 10 samples. The results in Figure B.4a demonstrate that when models
are trained on less tokens, there is little performance improvement by verifying 10 samples instead
of just 2. In fact, verifying 10 samples occasionally leads to worse performance than verifying 2

20

Frame Energies Across Thinking Steps

0.8

Frame
o
(=)

I
i

Normalized Energy

0.2

0.0

Iteration

Figure B.2: Learning Uncertainty on Video Results. In line with cognitive Facet 3, EBTs learn to express
uncertainty across continuous video frames without supervision. At the start of the video, uncertainty is high
(high energy) because the frame is mostly empty and the scene is highly unpredictable. As a blue garment
is placed into the frame, uncertainty decreases (low energy), reflecting the greater predictability of the scene.
When the blue garment is removed from the scene, uncertainty increases again, indicating a return to higher
unpredictability. Such a capability is significantly more difficult to achieve in continuous spaces with traditional
feed-forward transformers without discretization schemes Pei et al. (2022).

samples, likely because the EBT found an adversarial sample (a sample with low energy that is in fact
not a good prediction). However, as data scale increases we observe that performance improvements
from BoN-10 versus BoN-2 increase, and that these adversarial dynamics decrease. Together, these
results suggest that with scale EBTs become less adversarial due to an improved energy landscape.
In an effort to understand the impacts of thinking at the scale of modern foundation models, we
project results from Figure 7b to the scale of modern foundation models Grattafiori et al. (2024)
to extrapolate a projected performance gain from self-verification based thinking. The results are
visualized in Figure B.4b, where they demonstrate that, because of the 1000x data scale of modern
foundation models, the performance improvement from self-verification increases drastically.

Additionally, we visualize results from EBT at representing uncertainty while predicting tokens in
Figure B.3. The results demonstrate that for easier to predict tokens, such as “the” or “but”, EBTs
optimize to lower energies faster, whereas for harder to predict tokens, such as “fox” or “problem”
EBTs have higher energy that does not converge across steps. This suggests that during pretraining
EBTs learn to capture uncertainty regarding which tokens are harder or easier to predict, achieving
Facet 3. In addition to learning aleatoric uncertainty (uncertainty related to noise), in an effort to
understand whether EBTSs can capture epistemic uncertainty (uncertainty related to knowledge), we
visualize the energies of different token sequences that are in versus Out-Of-Distribution (OOD)
in Figure B.5. The results demonstrate that, for a more in-distribution sequence, EBTs have lower
energy (less uncertainty), than for an OOD sequence. This suggests that EBT's learn to know what they
don’t know, as they learn to have higher energy for OOD sequences signifying harder predictability.
This is a promising characteristic of EBTs, as it enables uncertainty estimation within continuous
state spaces, enabling principled inference-time behavior adaptation (Facet 1) when models sense a
more challenging problem.

B.3 EBT FAILURE CASES

During experimentation, along with image denoising experiments, we also conducted small-scale
experiments with text-to-image generation. We found that, in datasets such as COCO with many
different modes for a single condition (e.g., hundreds of images with a caption similar to “giraffe
with a long neck”), that EBTs did not learn to generate high-quality novel images. Instead, EBTs
often generated blurred images similar to the training distribution. We believe this is caused by the
training approach pushing the energy landscape to be convex surrounding the training examples.
Therefore, when there are many different modes, this convex energy landscape “merges” to one
landscape averaged around the different modes, resulting in blurriness. We believe that this is not a
fundamental limitation of EBTs, and that future work could address this issue.

21

Token Energies Across Thinking Steps 10 Token Energies Across Thinking Steps o

=)
oo
=)
o]

g
=N

0.6

N
~

AS1oug pazijeuLIoN
Token
[e]
: =
=N
T
=
(]
5
7o
N
N
A310uq pazijeuLioN

0.2

S
[N}

0.0

0 2 4 6 8 10 00 0 2 4 6 8 10

Iteration Iteration
Figure B.3: Learning Uncertainty on Text Results. EBTs learn to vary uncertainty across text tokens without
any explicit supervision. As an example, in both (a) and (b), simple tokens such as “.”, “is”, “a”, “but”, or “the”
have lower energies across inference-time optimization (thinking) steps, indicating lower uncertainty. On the
other hand, harder to predict tokens such as “quick™, “brown”, “research”, and “problem” have higher energies
across optimization steps, and more difficulty in achieving energy convergence, meaning the model is more

uncertain. Inspired by Geiping et al. (2025).

§ Self-Verification Capabilities Extrapolated
Self-Verification Capablities Scale.Dunng Training é 1000] ® BoN-5 Samples

2.5 ® BoN-10 Samples ° e § —*— BoN-5 Samples (extrapolated)
220 z
= 5
= >
= S 100
E 1.5 =
E o
3] £
> 1.0 o
o
: :
Eos ° E 10
=X =

0.0 &

' ° = 10° 10" 10" 107 107
3 10 15 20 25 30 Tokens Trained on (log scale)

Tokens Trained On (B
okens Trained On (B) (b) Results in Fig. 7b projected to Llama3

(a) Self-verification with BoN-10 versus BoN-2. scale Grattafiori et al. (2024).

Figure B.4: EBT Thinking Analysis for Data Scaling. (a) Self-verification of BoN-2 compared to BoN-10.
EBTs become less adversarial and thus benefit more from verifying an increasing number of samples during
training. (b) A projection of the results from Figure 7b to the data scale of Llama3 Grattafiori et al. (2024),
demonstrating that as data scale increases, improvements from self-verification can lead to potentially massive
performance increases from System 2 Thinking.

C ADDITIONAL EBT DETAILS

C.1 FORMALIZING THINKING

Due to the recent surge of interest in scaling the performance of models during inference/test
time, there are several common terms used to refer to these ideas. These include scaling the
thinking capabilities of models Jaech et al. (2024), inference time scaling Ma et al. (2025),
inference time compute Manvi et al. (2024), and test time compute Jaech et al. (2024); Snell
et al. (2024). Therefore, to reduce confusion stemming from a wide variety of terminol-
ogy and unite the community, in this work we broadly define these concepts as System Two
Thinking or more simply Thinking. We formalize improvements made by Thinking as the following:

Definition C.1 (System 2 Thinking). Given a problem with data x, a model 6, and additional
computational resources in the form of function evaluations F' greater than the minimum number
of function evaluations to get a valid prediction from the model Fy, System Two Thinking STT(-)
quantifies the expected percentage improvement in performance as F increases. Let P(x,0, F) be

the performance on input x when the model 0 uses F' function evaluations:
P(xz,0,F)
STT(z,0,F) = E; | =———% — 1],

(=6, F) [P(x,&,Fg) }

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Energy Comparison for Different Sequences
Sequence 1

—
(=)

0.8

[=]
[=)}

Token

=]

N
A310uq pazifewIoN

=]
9]

Sc|ucncc 2
2 4 6 8 10 0 2 4 6 8 10 ’

Iteration Iteration

Figure B.5: Epistemic Uncertainty Comparison. EBTs learn to express epistemic uncertainty (uncertainty
related to lack of knowledge) on unseen data. Particularly, the sequence on the left, which is a text sequence
likely seen during training, has consistently lower energy (uncertainty) for tokens than the sequence on the right,
which is a random text sequence not from the training distribution. This demonstrates that EBTs learn to “know
what they don’t know.”

Performance as Forward Passes Increases

—o— DiT
o2 —e— EBT
8
20
m
518
)
Z
-9
£ 16
wn
(-9
14
i 10 100

Number of Forward Passes (log scale)

Figure B.6: Image Denoising Thinking Scalability. A comparison between EBT and DiT on image denoising
given a different number of forward passes. EBTs require only 1% of the forward passes used by DiT to achieve
comparable or better PSNR. Further, the scaling rate of PSNR improvement given more forward passes is much
higher for EBTs than it is for DiTs. These results suggest EBTs have superior thinking capabilities than DiTs on
OOD data.

This formalization is compatible with any type of metric (e.g., Accuracy, Perplexity, FID, etc), and
uses more psychology-aligned terminology Kahneman (2011). Further, avoiding terms such as
“inference” or “test-time” makes the idea of Thinking more compatible with domains where the line
between inference and training is blurry, such as real-world continual learning, domain adaptation, or
actual human learning/thinking processes Parr et al. (2022). Just as learning has become a flexible
term across machine learning representing several different ideas, we intend for thinking to similarly
unify many diverse ideas under a common framework. For a greater justification on this perspective,
please see Section G

C.2 ENERGY-BASED TRANSFORMER (EBT) THINKING TYPES

All experiments in the paper are conducted with two main variants of EBTs, which we call System 1
(S1) and System 2 (S2) EBTs. S1-EBTs have hyperparameters specifically optimized for stability
and learning convergence, whereas S2-EBTs have hyperparameters optimized for System 2 Thinking
capabilities. Many of the pretraining scaling experiments conducted in Section 4 are with S1 models
as to reduce the computational resources required for experimentation. To confirm that these results
hold for S2 models, we plot the scaling trends of S1 and S2 models side by side; in Figure C.1, we find
that S2 models scale at the same or a higher rate than S1 models during training, but have a higher
Y-intercept. This Y-intercept offset does not affect asymptotic scaling behavior (as asymptotically

23

EBT-S2 Scales 3.30% Faster Than EBT-S1

o0
(=]

EBT-S1
® EBT-S2

=
(=]

(=)
(=)

wn
(=]

Validation Perplexity (log scale)

1.0 10.0
Non-Embedding Parameters in Millions (log scale)

Figure C.1: EBT S1 and S2 Scaling Comparison. Scaling rate of System 1 (S1) compared to System 2 (S2)
models. System 2 models have a higher Y-intercept but scale slightly faster than System 1 models. Therefore, as
the scaling rate ultimately dominates asymptotic scaling behavior, and not the Y-intercept, scaling results in the
main paper that hold for S1 models generally hold for S2 models.

the scaling rate dominates), and hence, scaling trends that hold for S1 models hold for S2 models
(S2 models may even perform better than S1 models during pretraining asymptotically because of
the higher scaling rate). Intuitively, switching from S1 to S2 models allows for a compute trade-off
between the model’s pretraining performance and the model’s System 2 Thinking capabilities.

S1 models have the gradient of predictions detached between optimization steps to increase training
stability. Conversely, following Du et al. (2024), the S2 models truncate backpropagation and avoid
detaching prediction tensors between optimization steps. Additionally, the S2 models have all the
energy landscape regularization techniques described in Section 3.3, whereas the S1 models have
none. We also find that S2 models require a different value for the optimization step size, that the
optimization step size not be learned, and to perform a minimum number of steps (and not just any
value from 1 to the max number of steps).

C.3 AUTOREGRESSIVE CAUSAL ENERGY-BASED TRANSFORMERS IMPLEMENTATION

In this section, we detail the implementation of decoder-only autoregressive EBTs, and the complexity
that arises due to the way EBMs work. Particularly, the implementation of causal-attention decoder-
only autoregressive transformers poses a challenge due to making predictions in the output space
rather than in the input space. To demonstrate why this poses a challenge, for the decoder-only
autoregressive transformer consider the case of the n x n attention scores matrix after the causal
mask has been applied:

Oz 2 0 . 0

o « - 0
scores = | 2 7272 ,

azn;zl azmzz et azvuzn

where o, ., represents the attention score (probability mass) from state z; to state z;. Now, in the
case of an EBM, where predictions of future states are made in the input space, the intended n x n+ 1
attention scores matrix would look like the following:

Oz 2y Oz 3, 0 . 0
« « Qpy 3 vo- 0

scores = 22,21 22,22 22,23 . (3)
aznyzl azn722 a23723 st az7172n+1

This is challenging to compute because each Z; along the superdiagonal is unique for its row.

T
Consequently, this matrix cannot be computed with a matrix multiplication (softmax (%)) as in
regular attention, as every value on the superdiagonal is a prediction and not a past state.

Additionally, in a traditional transformer, if the context length is n, the size of the passed in tensor
will be bs x n x d where bs is the batch size and d is the embedding dimension. However, since

24

EBMs make predictions in the input space, the input tensor needs to be different to allow for inputting
future predictions. Therefore, for a context length of n, we define the first n — 1 elements as z,,, or
the original sequence representations, and the final n — 1 elements as z,,, or the predicted sequence
representations.

The values for z7;, or the given states, are computed the same as in the original transformer Vaswani
et al. (2017), as the attention scores of the original states do not depend on the predicted states. This
can be formalized as the following:

. QoK
Attention(Q,, Ko, V5).n = softmax R Vo,)
Where @),, K,, and V,, are the Query, Key, and Value matrices of the past states 2, . In every block
of the transformer, the representations of all past states are updated in this manner, independent of the
representations of the predicted future states.

For the computation of representations over future states, 3 matrices are also computed, but for the
representations of predicted future states rather than past states. We call these @, K, and V/,. First,
we compute the self-attention scores of all future representations to all past representations:

QpKJ
Vi
Note, however, that the self-attention scores of each predicted future state with itself is not calculated—
due to the key matrix being from the original states. Therefore, the superdiagonal needs to be replaced
with the self-attention scores of each predicted future state with itself to achieve the attention score

matrix shown in Equation 3.

unnormalized_scores_p =

&)

EBT involves two separate tensors—one for past states and one for predicted future states. We denote
these as 21" and 27" where z are known past states and 2 are predicted future states. The intended
attention scores matrix is the following:

Oz 2 Oz 3 0 ... 0
scores = Qzy,z1 zpzg CQzp 23 - 0
Nznzr Xzpzo Qzgzizg o0 Qg 2,0

To compute Equation 3, we first need to append a column to the right side of the
unnormalized_scores_p matrix, as the size of the matrix is currently n — 1 x n — 1, but we
need to have n representations within context. After doing this, we first mask out the superdiagonal,
to ensure that the probabilities in the score matrix only correspond to the values of the predicted
future states with itself. This masking operation is done through elementwise multiplication of
a matrix with 1’s everywhere except the superdiagonal, which has 0’s. Then, we compute the
self-attention scores of each predicted future state with itself, using the following equation:

z_p_self_attention = sum(Q, * K,,), (6)

where the * indicates the Hadamard product and the sum is across the fourth, attention head,
dimension. Using a superdiagonal mask again, we set the diagonal of the unnormalized_scores_p to
these values. Now, after applying the softmax:

scores_p = softmax (unnormalized_scores_p) , 7)

we have the intended scores matrix shown in Equation 3. However, one more barrier towards finally
extracting all updated z;; representations is the fact that we cannot simply multiply this resulting
scores matrix by the values matrix, as each element of the superdiagonal corresponds to a different
predicted next future state. Thus, using similar techniques to before, we first clone and then extract
the superdiagonal from this scores matrix using a diagonal mask.

After extracting the superdiagonal, we can multiply the resulting scores matrix by the V,, matrix to
get all of the representations summed together of each predicted future state with all past states. This
is represented as the following matrix multiplication:

25

2y =
As we also need to add the representation of each predicted future state weighted with its own
attention score (what was extracted on the superdiagonal), we perform another Hadamard product
of the V,, matrix with the cloned superdiagonal to get these values, and then add these element
wise to the 2}, representations. Now, we have computed the intended representations involving the
scores matrix shown in Equation 3. Thus, 27" and 27" are updated using z;; and z;); respectively, by
multiplying these tensors by the output weight matrix W, .

scores_p - V. 3

C.4 AUTOREGRESSIVE ENERGY-BASED TRANSFORMERS SIMPLIFIED IMPLEMENTATION

A more simplified implementation involves the entire attention matrices and a generalized causal
mask, as described in Deng et al. (2024a). However, because this implementation involves a matrix
multiplication with 2 times the sequence length, this results in 4 times the number of FLOPSs as normal
attention, which is around double the number of FLOPs of our more efficient implementation.

D EXPERIMENTATION DETAILS

Tables D.2 and D.3 specify general model information and hyperparameters. We utilized the Llama 2
transformer implementation Touvron et al. (2023) for the Transformer++ and used this implementa-
tion as the backbone upon which we built EBT. We seed all libraries using PyTorch Lightning Falcon
(2019) for all experiments with a seed of 33. For the Diffusion Transformer, we use the implementa-
tion from Peebles & Xie (2023)—for the bidirectional EBT we build upon this implementation.

D.1 AUTOREGRESSIVE LANGUAGE MODELING EXPERIMENTAL DETAILS

For all scaling experiments, we copy the popular Mamba paper pretraining settings (for the model
configuration, not necessarily for data and learning rate configuration), shown in Table D.1. Because
we are compute-limited, we also include two extra model sizes in this table, extra extra small (xxs)
and extra small (xs).

We manually created a training and validation split of 66 million and 33 thousand samples for the
red pajama dataset, respectively. Additionally, we focus on reporting perplexity as our relatively
small models trained from scratch, when compared to current foundation models, do not achieve high
accuracies on many of the benchmarks used. Furthermore, perplexity often functions as a more linear
metric than accuracy Gu & Dao (2023); Schaeffer et al. (2023), enabling a more comparable analysis
of downstream performance as we scale compute during inference.

D.1.1 LEARNING SCALABILITY EXPERIMENTAL DETAILS

Conducting thorough scaling experiments is very challenging—a recent survey on “scaling laws” Li
et al. (20252a) showed just how fragile many of these “scaling laws” are to hyperparameters, data, etc.
and how changing these parameters slightly can lead to different conclusions. Being bottlenecked
by a limited set of computing resources further exacerbates this issue. Therefore, we sought out to
conduct controlled experiments that revealed the most information possible regarding the scaling of
EBTs compared to different models.

Most existing works studying scaling by changing several factors at the exact same time, including
depth (number of transformer blocks) Kaplan et al. (2020), width (embedding dimension) Kaplan
et al. (2020), possibly batch size Chen et al. (2024); Hu et al. (2023), and the amount of data Kaplan
et al. (2020). Therefore, to be more comprehensive in determining when EBTs scale differently than
the Transformer++, we decided to conduct normal scaling experiments over all of these factors at the
exact same time (as is standard), as well as ablating over just changing just one of these parameters
at a time. Notably, conducting experiments in this manner allows for controlling a single independent
variable at a time (i.e., just changing the number of Transformer Blocks), which allows for stronger
conclusions regarding what aspects of model scaling different models perform better over (i.e., EBTs
scale better then the Transformer++ when increasing the number of Transformer Blocks). Scaling all
factors at once does not allow for such insight, as there are many independent variables.

For learning scalability experiments, all models are pretrained for 105% steps. For each model size,
following Chen et al. (2024); Hu et al. (2023), we scale the batch size. We use the following batch
sizes for the xxs, xs, small, medium, and large models respectively: 32, 46, 90, 170, and 256. All

26

Table D.1: Model sizes and hyperparameters for scaling experiments. For most model sizes we follow Gu &
Dao (2023).

Size Non-Embedding Params #layers embed. dim # heads
XXS 6.18M 6 384 6
XS 12.4M 12 384 6
small 48.8M 12 768 12
medium 176M 24 1024 16
large 396M 24 1536 16
x1 708M 24 2048 32

model sizes use the same learning rate as in the Mamba paper Gu & Dao (2023), where for the xxs
and xs models we use a learning rate of 0.0012 and 0.0009 respectively.

D.1.2 THINKING SCALABILITY EXPERIMENTAL DETAILS

We train xxs models with the same setup as above, with the exception that models are trained with
a batch size of 128 for 1M training steps. Increasing the data scale enables us to better understand
how thinking scales during pretraining. It’s worth noting that since we are training small language
models, they could not benefit from modern techniques such as Chain of Thought (CoT) in improving
performance.

D.2 AUTOREGRESSIVE VIDEO EXPERIMENTAL DETAILS

We use the same model parameter scaling, shown in Table D.1, as the NLP experiments. We
also used a batch size of 256 for all models, as we found that it did not significantly affect the
scaling performance due to models training for many epochs. We also processed videos with 0.25
seconds between frames. For the Transformer++ baseline, we use the same learning rates as the NLP
experiments. For EBT, we found that it was necessary to use a lower learning rate by a factor of
3. We use the standard SSV2 train and validation split for experiments. Other hyperparameters are
shown in Figure D.2 and Figure D.3.

D.3 BIDIRECTIONAL IMAGE DENOISING EXPERIMENTAL DETAILS

We use the COCO 2014 dataset Abd; Lin et al. (2014) with 128 by 128 images, its train/validation
split, a patch size of 16, and the Diffusion Transformer implementation from Peebles & Xie (2023).
All models were trained using the large model size described in Table D.1, with a learning rate of
le — 4 for 100, 000 steps. For the DiT baseline, we used the same hyperparameters from Peebles
& Xie (2023), changing only the batch size to 128 from 256. We based our bidirectional EBT
implementation on the code from this repository. We experimented with several different diffusion
inference strategies to ensure fair comparison, including DDPM, DDIM, increasing the number of
diffusion steps at inference, as well as recursing the diffusion model on its own denoised output.
Ultimately, we found that the combination of DDIM recursed on its own output performed best,
hence we used this as the baseline in all experiments. We used the default denoising schedule from
the DiT codebase Peebles & Xie (2023). As the noise level 5 was set to 0.1 during training, and the
default number of diffusion denoising steps was 1, 000, the number of denoising steps the diffusion
model was trained on was 100.

To make the denoising experiments compatible with diffusion models, we deviate from the original
noising schemes performed in the denoising works mentioned in the main paper Du et al. (2022), and
use a scheme based on the noising schedule from diffusion models. Specifically, we follow Peebles &
Xie (2023), and use a linear variance schedule ranging from 1 x 10~% to 2 x 10~2. To control the
noise level, we use a hyperparameter denoted (3 representing the percentage of the diffusion schedule
to noise samples; 3 was set to 0.1 during training.

For both DiTs and EBTs, we found that models performed best on OOD noise levels when denoising
their own outputs twice, that is applying the model to denoise the same image three times recursively.
This is how we are able to get the results in Figure B.6 demonstrating the performance for 300
forward passes from DiTs and 3 forward passes from EBTs. We found that for image denoising, it
was not necessary to train EBTs with the S2 hyperparameters for System 2 Capabilities to emerge,
although its possible these would further improve performance. Additionally, for image classification,
for both models, we take the average of all the final patch tokens, and for DiTs we feed in 7' = 0.

27

Table D.2: Hyperparameters for Transformer++.

Hyperparameter Cv NLP
Optimizer AdamW

Optimizer Momentum B1, B2 = 0.9,0.999

LR Schedule Linear warm up cosine decay

Warmup steps led

Minimum LR Scale 10

Gradient Clip Value 1

Weight Decay 0.01

Context Length 16 256
Encoder SD-XL VAE sta; Rombach et al. (2022) -
Image Dimension 224x224 -
Tokenizer - EleutherAl/gpt-neox-20b Black et al. (2022a)
Vocab Size - 50277

Table D.3: Hyperparameters for EBT experiments.

Hyperparameter Cv NLP
Optimizer AdamW

Optimizer Momentum 51, B2 = 0.9,0.999

LR Schedule Linear warm up cosine decay

Warmup Steps led

Minimum LR Scale 10

Gradient Clip Value 1

Weight Decay 0.01

Context Length 16 256
Encoder SD-XL VAE sta; Rombach et al. (2022) -
Image Dimension 224x224 -
Tokenizer - EleutherAl/gpt-neox-20b Black et al. (2022a)
Vocab Size - 50277
Optimization Steps 2 2
Optimization Step Size 30,000 500
Optimization Step Size LR Multiplier 90, 000 1,500

Learnable Optimization Step Size

D.4 COMPUTATIONAL RESOURCES

All experiments were conducted on either Nvidia A100s or GH200s, with the largest scale experiment
requiring approximately =~ 1300 A100 GPU Hours. The runtime for each experiment was dependent
on the model sizes used as well as the amount of data trained on.

D.5 FLOP CALCULATIONS

We adopt the standard estimate of 6N FLOPs per token for the AR Transformer++ Casson (2023),
where NV denotes the number of non-embedding parameters. For AR EBTs, however, the per-token
cost varies with the number of training optimization steps and chosen hyperparameters.

To derive the FLOPs for EBT training, we follow Dagréou et al. (2024) for the Hessian-vector product
(HVP), which EBTs require to backpropagate through a first-order derivative. Since an HVP has the
same theoretical complexity as a gradient computation, we express the per-step FLOPs as

FLOPs = F' + B + B.

Based on Casson (2023), the forward and backward passes require approximately 2N and 4N FLOPs
per token, respectively, where /N denotes the count of non-embedding parameters in the Transformer.
In the autoregressive EBT implementation, the effective sequence length becomes twice that of the
original Transformer (formally 2.5 — 2 for an original sequence length S). Owing to the efficient
scheme of Section C.3, this doubling of sequence length translates roughly into a two-fold increase
in FLOPs, rather than a four-fold increase in FLOPs. Hence, each second-order optimization step
demands roughly

(F+B+B)x2=(2N+4N+4N) x2=10N x 2,

making it &~ 3.33x more expensive than a standard feed-forward Transformer step.

28

The overall FLOP count also depends on one’s choice of hyperparameters. For S2 models, where the
loss is evaluated at every iteration without gradient truncation, the total FLOPs simply multiply by the
number of steps. Therefore, for our pretraining experiments using two steps, we get that EBTs used
6.66x the FLOPs of a comparable Transformer++ training. In contrast, for S1 models, a random
number of optimization steps are used, the gradient is truncated, the loss is only calculated at the last
step following Du et al. (2022), and a Replay Buffer is used. Therefore, the FLOP count varies and
can both decrease (as truncating uses less FLOPs for earlier steps) as well as increase (as using more
steps and a replay buffer both use more FLOPs). These numbers also vary during inference, where
the full EBT implementation parallelizing all predictions at once is not necessary.

Given the scarcity of published methods for computing higher-order derivative FLOPs and our
inability to leverage existing libraries for Hessian-vector products, these estimates remain approximate.
We welcome corrections or additional insights from readers familiar with FLOP calculations for
second-order methods.

E RELATED WORKS

E.1 TRADITIONAL TRANSFORMERS

The Transformer architecture Vaswani et al. (2017) has become ubiquitous across various do-
mains Latif et al. (2023); Oquab et al. (2023); Radford et al. (2019); Touvron et al. (2023). The most
commonly used transformer variant of today makes predictions directly in the output space with a
single forward pass, demonstrated in Figure 1a. Because these models have a finite depth and width,
and make predictions in a single forward pass, they are unable to dynamically allocate more com-
putation to each prediction being made. Furthermore, they cannot model uncertainty in continuous
state spaces in the same way they can in discrete state spaces because the normalization process
for continuous state spaces is not as well-defined as it is for discrete spaces using softmax Dawid
& LeCun (2024). Rather, training these models to express uncertainty relies on tricks such as
Vector Quantization Van Den Oord et al. (2017) or pseudo losses/objectives (e.g., ELBO Kingma
et al. (2013)). Finally, because these models are not trained to explicitly verify samples, improving
inference-time performance at a per-prediction level often requires external models Lightman et al.
(2023).

E.2 RNNS

Recently, several RNN variants (Figure 1b) have emerged to alleviate memory bottlenecks and achieve
faster inference Gu & Dao (2023); Peng et al. (2023). These approaches have scaled similarly to
Transformers in autoregressive sequence modeling and achieve better memory efficiency and reduced
latency. However, traditional RNNs updating internal state based only on new information/data Gu &
Dao (2023); Peng et al. (2023) are not capable of allocating additional computation during inference,
and thus suffer from the same flaws as traditional transformers in achieving human-like System 2
Thinking.

To resolve these issues, people have equipped RNNs with the ability to allocate computation dynami-
cally, with architectures such as the Universal Transformer Dehghani et al. (2018). Recently, this type
of RNN has also been applied to LLMs Geiping et al. (2025); Saunshi et al. (2025), allowing LLMs
to reason using additional computation in a continuous latent space through the depth of an unrolled
RNN. However, like Diffusion models, these models learn to amortize gradient prediction of the
energy function Geiping et al. (2025), rather than learning to explicitly verify predictions, meaning
they cannot model uncertainty or explicitly verify predictions. Consequently, EBMs generalize these
RNN-based architectures by offering explicit prediction verification capabilities Ma et al. (2025).
Further discussion on this relationship is provided in Section E.6.

E.3 DyNAMIC COMPUTATION (THINKING) WITH LLMS

The ability to leverage a dynamic amount of computation in LLMs has been emulated using chain-of-
thought prompting Wei et al. (2022) and continuous latent space reasoning Hao et al. (2024). While
these approaches can improve performance, they don’t seamlessly transfer to continuous modalities,
and LLM chain-of-thought has been shown to be unreliable for reasoning Agarwal et al. (2024); Lin
et al. (2025); Turpin et al. (2023). More recently, models have been explicitly trained to perform
reasoning using Reinforcement Learning Anthropic (2025); Guo et al. (2025); Jaech et al. (2024);
xAl (2025). These approaches allow LLMs to simulate additional computational depth based on
the number of tokens decoded before making a prediction, and as a result, significantly improve

29

performance Guo et al. (2025); Jaech et al. (2024). The main limitations of these approaches are that
they currently apply only to discrete domains (i.e., LLMs), are effective on a narrow set of problems
that are easily verifiable (e.g., math and coding), and require additional supervision, typically in the
form of reward signals, making them incompatible with purely unsupervised pretraining Guo et al.
(2025).

E.4 DyYNAMIC COMPUTATION (THINKING) WITH DIFFUSION

The most common instance of a model architecture specifically created to leverage dynamic computa-
tion is diffusion models (Figure 1c), where using multiple forward passes to generate a prediction is a
core aspect of both training and inference Hoppe et al. (2022); Rombach et al. (2022). Although dif-
fusion models implicitly define a likelihood through the reverse process Ho et al. (2020), which could
theoretically be used to verify predictions, in practice an external verifier is necessary to improve
performance at inference time beyond increasing denoising steps Liu et al. (2025); Ma et al. (2025);
Singhal et al. (2025). This requirement limits the generalizability and scalability of diffusion models
as an approach for System 2 Thinking, as they do not have two of the cognitive facets described:
the ability to model uncertainty in continuous state spaces or explicitly verify predictions without
additional models Liu et al. (2025); Ma et al. (2025); Singhal et al. (2025). Furthermore, diffusion
models rely on a fixed denoising schedule, which restricts their ability to adaptively halt or extend
computation—unlike EBMs. Additionally, diffusion models can be seen as predicting the gradient of
the data density/energy function Du et al. (2023), and therefore that EBMs are a generalization of
diffusion models that learn to explicitly verify predictions. More on this connection is in Section E.6,
and a side-by-side comparison of diffusion models and EBMs is in Figure E.1.

E.5 ENERGY-BASED MODELS (EBMS)

The perspective of energy minimization as thinking/reasoning has been known for some time LeCun
et al. (2006). Therefore, the most similar approaches to EBTs also train EBMs to do reasoning/think-
ing Du et al. (2022; 2024). While these works achieved impressive generalization results, they only
focus on small-scale problems, and did not scale EBMs to high-dimensional real-world problems
such as language or video. Additionally, these works did not perform an in-depth analysis on the
types of System 2 Thinking that emerge with EBMs, more complex inference time procedures beyond
just increasing the number of gradient descent steps, approaches towards improving EBM scalability,
and required techniques for enhancing System 2 Thinking in EBMs.

E.6 ENERGY-BASED MODELS (EBMS) AS A GENERALIZATION OF DIFFUSION MODELS AND
RECURRENT DEPTH MODELS

Both diffusion models Du et al. (2023) and RNNs Saunshi et al. (2025) can be seen as predicting the
score, or the gradient of the energy function/data density, V. Fy(z), where diffusion models do this
with an additional time condition Liu et al. (2022). Thus, the largest benefit of explicit EBMs over
these approaches, which can be seen as implicit EBMs (due to only implicitly defining an energy
function), is that using an explicit EBM allows for explicit verification/likelihood modeling. We show
that this enables the use of self-verification to improve predictions, whereas with diffusion models
and RNNs an additional verifier model is necessary to achieve this capability Ma et al. (2025).

It’s also worth noting that RNN, diffusion models, and EBMs need not be incompatible with one
another. For example, Du et al. (2024) combines EBMs and diffusion to reason over challenging
problems. This can increase stability of the learned energy landscape by adding explicit score
supervision.

E.7 EBM AND DIFFUSION MODEL COMPARISON

Because of the similarity of diffusion models and EBMs, we present a side-by-side comparison of
the training and inference approach for both in Figure E.1, where the primary difference lie in the
supervision they receive during training and the update rule for predictions. Additionally, we provide
more information to compare these approaches.

Under the assumption that the energy landscape is well formed and that optimization is well behaved,
EBMs offer several distinct advantages over diffusion models. In EBMs, the energy function is
trained to represent a meaningful landscape where the energy value of a sample directly corresponds
to its relative unnormalized likelihood. Consequently, two samples can be directly compared to
determine which is more likely, in a single forward pass. On the other hand, diffusion models require

30

Diffusion Models Energy Based Models
Learned Denoising Path Learned Energy Landscape
1 1-a; N N o
Vi1 = —| 9 — Ve, x,t) | + ope, e~N(0, 1 i+1 = Yi — aVy,(Eg(x, J;
Yt-1 \/a—t<}’t \/1_—&,:59(}’1: x)) Ot€, € ()] 5}0 Yi+1 = Vi 9,(Eo(x, 91))
Initial
Initial Target
Yo y
\ y Supervision
_ Supervision) 9 Target)
(a) Diffusion Model (b) Energy-Based Model (EBM)

Figure E.1: EBM and Diffusion Comparison. Diffusion models receive supervision at each step of the
denoising process (e.g., for one thousand steps), whereas EBMs only receive supervision at the end of the
optimization process. This training procedure allows EBMs to learn an entire Energy Landscape over predictions,
associating a scalar energy for every prediction according to its likelihood. Learning landscapes in this manner
can reduce “error” accumulation throughout the denoising process Du et al. (2024) and makes EBMs more
flexible by allowing unnormalized likelihood estimation at each step of the denoising process. Additionally,
diffusion models update predictions by predicting the noise at each timestep, meaning they must follow a set
denoising schedule. On the other hand, EBMs update predictions by performing gradient descent with respect
to the energy scalar, allowing for flexible inference where this optimization process can be performed for any
number of steps. = here refers to some condition (e.g., a class or text) whereas vy is the generated prediction.

running samples through the entire reverse diffusion process to get likelihoods, which often requires
hundreds to thousands of steps, and rely on likelihood approximations such as ELBOs or numerical
solvers for SDEs/ODEs. In practice, these result in incomparable likelihoods, as ELBOs only give
likelihood lower bounds and numerical solvers result in high approximation error Ma et al. (2025).

Furthermore, the learning of an energy landscape means that any approximation errors at each
individual step of the Markov Chain (optimization process) do not result in cumulative error, as the
minimum of the energy landscape can still be reached. This differs from diffusion models, where any
approximation error at each step will result in increasing accumulated error across the entire Markov
Chain Du et al. (2024) (demonstrated in Figure E.1).

Lastly, EBMs, giving an unnormalized likelihood estimate at each step, are in practice much more
flexible for generation than diffusion models. While diffusion models require running the entire
reverse diffusion process with a specific denoising schedule to generate a sample, EBMs can be
trained to directly predict the next sample in a single step, and giving an unnormalized likelihood
at each step can indicate how likely they think this sample is. This better approximates human-like
System 2 thinking, where humans naturally evaluate the strength of current predictions, and on
the basis of knowing how good their predictions are, decide to dynamically allocate more or less
computational resources.

E.8 ADDITIONAL ENERGY-BASED MODELS RELATED WORKS

One contribution of this work was the design of a custom architecture for EBM’s called the Energy-
Based Transformer (EBT). Roughly similar is the work of the Energy Transformer Hoover et al.
(2024). Despite strong similarity in the names of these architectures, however, they are very different—
with the primary similarity in architectures being the usage of attention mechanisms as well as a global
energy function. The existing work integrated ideas from Modern Hopfield Networks, including
RNNSs, whereas in our work the architecture is non-recurrent and does not use associative memories.
Additionally, EBTs differs with its focus on System 2 Thinking, which this previous work did not
experiment with.

Other somewhat similar approaches to EBTs involve autoregressive Energy-Based Models, including
E-ARM Wang et al. (2022), EBR Bhattacharyya et al. (2020), and Residual EBMs Bakhtin et al.
(2021). E-ARM involves adding an objective to the learning process to turn a traditional autoregressive
model into an EBM, and as such does not achieve two of the cognitive facets discussed. EBR and
Residual EBMs involve the training of an EBM on top of an already pretrained autoregressive

31

language model. Both works, however, leverage a contrastive objective, which suffers from the curse
of dimensionality.

The optimization procedure used to train EBTs can be seen as a form of denoising score match-
ing Vincent (2011); Wang et al. (2023). Particularly, predictions being initialized at some Gaussian,
and then being optimized using the gradient of the energy function can be seen as training the EBM
to denoise by learning the score of the data. However, we find the optimization perspective is more
intuitive, and this denoising score matching perspective is more similar to the diffusion model training
procedure than it is EBMs, involving multiple levels of noise rather than just one.

F ADDITIONAL COGNITIVE FACETS

Facet 3: Modeling Uncertainty in Continuous State Spaces. While thinking longer is important for
improving performance, humans also weigh how uncertain they are before committing to a decision.
In language, LL.Ms can simulate this through token-level probabilities Tomani et al. (2024). In the
context of continuous state spaces, such as in vision, without the usage of discretization schemes such
as Vector Quantization Van Den Oord et al. (2017) or pseudo losses/objectives (such as ELBO Kingma
et al. (2013)), standard implementations of the most succesfully used approaches with Transformers,
RNNs, or Diffusion models generally do not provide strong or reliable uncertainty estimates Heng
et al. (2024); Nalisnick et al. (2018); Sankararaman et al. (2022); Serra et al. (2019). 7 EBMs can
naturally model uncertainty without having to model exact likelihoods Dawid & LeCun (2024) by
modeling the relative unnormalized likelihoods of predictions, as demonstrated in Figure 3. As the
real world often contains many inherently unpredictable elements, for instance, when a pedestrian
might emerge from behind a parked vehicle, the ability to express uncertainty in predictions is
essential to being cautious, and is a natural capability of humans Peters et al. (2017); Sarinopoulos
et al. (2010); Vilares et al. (2012).

Facet 4: Compositional Reasoning and Systematicity. Humans routinely solve novel tasks by
recombining familiar primitives (e.g., verbs with new arguments or visual parts into unseen objects), a
hallmark of compositional generalization well-documented in neuroscience Friederici & Weissenborn
(2007). In contrast, state-of-the-art Transformers and diffusion models often fall short when evaluated
on compositional generalization Huang et al. (2023); Kobayashi et al. (2024). Energy-Based Models
(EBMs) seamlessly address these limitations: energies for individual factors are composable in several
different manners Du et al. (2023), enabling zero-shot generation of novel combinations without
retraining, where gradient-based sampling provides an intrinsic mechanism to verify and iteratively
correct compositions Du et al. (2023). Thus, EBMs offer a promising path toward human-like
systematicity that remains elusive for existing approaches.

G COUNTERARGUMENTS

G.1 SYSTEM 2 THINKING

In this paper, strong claims were made regarding the capabilities of current models and their ability
to perform System 2 Thinking. However, there are common counterarguments to our claims, which
we address here, in hopes of clarifying why we believe this is not currently possible.

G.1.1 SYSTEM 2 THINKING AND INFERENCE-TIME COMPUTE TERM USAGE

Whether the computational effort spent at inference time fully captures what psychologists term
System 2 Thinking is still actively debated. In Section C.1 we outline three reasons for preferring
the broader label System 2 Thinking: (i) it naturally extends to settings such as continual learning
where terms such as “inference-time compute” becomes ambiguous, (ii) it connects our discussion to
a substantial body of cognitive-science work, and (iii) it offers a conceptually straightforward entry
point for readers beyond the machine-learning community.

It is widely acknowledged, and we agree with the idea, that human System 2 Thinking encompasses
a far greater depth and complexity than the specific approaches explored in this paper, such as
“Thinking Longer” and “Self-Verification.” We wish to emphasize that our work does not claim

"We acknowledge that there are approaches to achieve uncertainty with the models discussed, such as Mixture
Density Networks Bishop (1994) as well as score-based diffusion models Song et al. (2020). However, these
approaches have seen less widespread success and scalability than the current dominant approaches.

32

current models replicate the full spectrum of human System 2 Thinking. Rather, we view the methods
presented here as foundational steps toward that more ambitious long-term goal.

We propose that “System 2 Thinking” offers a useful umbrella term that can effectively encompass
and generalize other existing terminologies, including “inference-time compute,” “test-time compute,”
or “reasoning." A parallel can be drawn with the term “learning” in our field. “Learning” itself
has evolved to describe a wide array of processes, some of which, such as k-Nearest Neighbors
(KNNs) or the specific mechanisms of weight matrix updates in Artificial Neural Networks (ANNs),
represent distinct facets rather than the entirety of human-like learning, meaning these approaches
may not encompass the complexity of true human-like learning. However, despite this breadth and
these simplicities, “learning” has become a cornerstone term, upon which our entire field of machine
learning is named upon.

In a similar vein, while the “thinking” exhibited by the models discussed in this paper may not yet
capture the full nuance and intricacy of human cognition, we believe the term “System 2 Thinking”
can still serve a valuable role. It offers a generalizing framework for existing vocabulary and can
contribute to making complex concepts within the field more accessible and understandable to
newcomers or experts from other fields. Our intention is to contribute to a constructive and unifying
dialogue of intelligent systems.

G.1.2 1Is CHAIN-OF-THOUGHT (COT) SUFFICIENT FOR SYSTEM 2 THINKING?

CoT is commonly thought to be sufficient for advanced reasoning to emerge in LLMs. However, in
this paper we argue there are several flaws with CoT preventing advanced thinking capablities. First,
Chain-of-Thought (CoT) involves reasoning over a discrete state space, which limits the granularity
of “thoughts.” Second, CoT is not an intrinsic architectural capability but an external procedure
applied to token sequences. Ideally, such reasoning should be embedded within the model and learned
during training. Third, each token is produced with a fixed computational budget, restricting the
depth of reasoning per step. In contrast, humans allocate variable effort across steps when reasoning
“step by step”. Similarly, models should be able to spend a variable amount of computation per token,
as enabled by EBTs. This aligns with the intuition behind the saying: “a chain is only as strong as its
weakest link”—each step in the chain should receive sufficient computation to avoid failure points
that result in bad reasoning chains.

H ENERGY-BASED MODELS (EBMS) INTRODUCTION

H.1 SIMPLIFIED ENERGY-BASED MODEL (EBM) INTRODUCTION

Feed-forward neural networks generally take the form of: given an z predict y (Fig. H.1a). Energy-
Based Models (EBMs) are a family of models that learn the compatibility (unnormalized probability)
over all possible combinations of z and y (Fig. H.1b). Intuitively, this can be seen as learning to
verify the strength of y as a prediction with x as the input. Training models in this manner allows for
representing multiple plausible versions of y compatible with a given x. The differences between
these models is visualized in Fig. H.1.

Formulating models in this manner ultimately brings about two primary questions:

First question: Assuming we still care about ultimately predicting ¢ how do we use such an EBM to
predict §? With feed forward models, generally we can just input « and get the output of the model
as 7, but we can’t do this with EBMs?

With EBMs, what happens is conceptually similar to diffusion models Rombach et al. (2022), where
we (commonly) initialize ¢ as random noise. Then, we input x and ¢ into the model, and get a single
scalar energy output (our initial energy output) from the model. Now, because our entire model is
differentiable, we can get the gradient from this energy scalar to §j and perform gradient descent
along the energy landscape (energy landscapes are surfaces resulting from mapping all possible
predictions to scalar values, visualized in Figure 3) using this gradient (this is the key)! This process
is visualized in Figures 3, 2. This gradient can be seen as the opposite of the noise (e.g., denoising)
and therefore EBMs have strong relations with Diffusion models predicting the noise. EBMs can be
seen as a generalization of diffusion models, where diffusion models are predicting the gradient of
the energy function/scalar (more on this in Section E).

33

Second question: How do we train an EBM? Generally, models are trained over a dataset of and y
pairs, but now there are several different possible y values that can be associated with any given z
value—so how does that work?

It turns out that all the training techniques for EBMs boil down to two main categories: contrastive
and regularizing approaches Dawid & LeCun (2024).

Contrastive approaches are more common for EBMs and are easier to rationalize about due to their
similarity to GAN discriminators. The idea behind contrastive approaches is to push down on the
energy of positive samples (i.e., the true data), and to push up on the energy of negative samples.
While these positive samples are easy to rationalize about, as they are just the true data, the difficulty
of contrastive EBMs is finding negative samples. Several approach exist, such as GANs, which use a
generator to amortize negative sample generation, or running MCMC (similar to optimization) for
some time. However, as discussed in Section 3.1, such approaches don’t scale well due to the curse
of dimensionality.

Therefore, to achieve a scalable EBM approach, we train EBMs through an optimization procedure
(which has strong resemblance to Langevin Dynamics). That is, EBMs are trained to, starting from
an initial prediction, optimize predictions to the ground truth solution (shown in Figures 3, 2). This
pushes the energy landscape to be locally convex surrounding the ground truth solution, thereby
regularizing the energy landscape to have low energy only on the true data. As mentioned in Wang
et al. (2023), this can be seen as being similar to denoising score matching Vincent (2011).

Commonly, when people learn about EBMs and the iterative denoising/optimization procedure
performed during training, they think of diffusion models, so we include a more in depth comparison
between the two in Section E.7.

~

x x y
' | —
Feed Energy
Forward Based
Model Moldel
'
9 Energy(x,)

(a) Feed Forward Model (b) Energy-Based Model

Figure H.1: Feed-Forward and Energy-Based Model Comparison. Feed-forward models (a), given an input
x, directly try to predict g. Instead of just getting x as an input, EBMs receive both « and ¢ as an input and learn
the compatibility of all possible values of § with x by outputting a scalar energy value for each combination.
Low energy corresponds to high probability, and high energy to low probability. In practice, g is often initialized
as random.

H.2 ENERGY-BASED MODEL TYPES

Because EBMs are a broad modeling framework, and can generalize many existing approaches, we
aim to provide precise language to distinguish EBM types. We broadly classify the EBMs described
throughout this paper as explicit EBMs, meaning they explicitly define an energy function over
inputs as the entire function being learned. In other words, explicit EBMs directly map all variables
(inputs) to a single scalar energy as the output of the neural network. We define these in contrast
to implicit EBMs, or EBMs where the energy function is not the learned model but rather some
implicit definition of the learned model. For example, with diffusion models, the energy function is
implicitly defined by the learned score network (sg(z, t)) as the following:

ViE(x,t) = —sg(x,t)
E(z,t) = —/ so(u,t)du + C(t).

Other notable examples of implicit EBMs include Hopfield Networks Hopfield (1982), RNNs Geiping
et al. (2025), and Boltzmann machines.

34

H.3 ENERGY-BASED MODEL FREQUENTLY ASKED QUESTIONS (FAQ)

* What is energy/compatibility, what does it represent, and how is it learned? What
energy corresponds to what probability?
Energy is just a learned compatibility score between = and y (lower means more likely).
The EBMs described in this paper learn it implicitly as described in Section 3.1 such that
the true data (good pairs) have low energy and bad pairs (non-data) have higher energy.
Probabilities follow:

e~ Eo(zy)
Z(0)
po(z,y) e~ Fo(z.y)

po(x) =

so the energy F is essentially the (unnormalized) negative log-likelihood up to an additive
constant. The term compatibility is just a term used for intuition.

* Does training EBMs require a full Hessian calculation?
No—the approach described in the paper only requires Hessian-vector products. That makes
training only about a constant 1.66x as expensive as a vanilla feed-forward model given
everything else remains constant and you use a single step.

* Why is low energy good (and high energy bad)? Why not just use probability?
Low energy is good because of the negative exponential. The reason we don’t use prob-
abilities is avoiding normalized probabilities makes the problem much more tractable in
real-world high-dimensional continuous state spaces by removing the focus on explicit
normalization via regularizing the partition function. EBMs come from a long line of work
in statistical physics.

* Is it okay that energies are unnormalized probabilities?
Yes, for most real-world applications, you only ever need sample relative likelihood
comparison; it’s significantly less common to need the exact likelihood of samples. An
example of this is reward models, which can be seen as EBMs (just multiplying the reward
by —1), where all that really matters is the relative reward for choosing which sample to use
or which behavior to perform.

¢ Is it fine to not do Maximum Likelihood Training?

Contrary to what your intuition may say, the answer is yes! For most real-world distributions,
data lies completely concentrated on a very thin manifold with no defined distribution
outside of this manifold. Thus, directly doing Maximum Likelihood Estimation (MLE)
training would push EBMs to have low energy on the true data manifold and then infinite
energy off that manifold (as the probability of such samples is 0). We don’t want this as it
would make the score (gradient of the energy function) undefined and the energy landscape
untraversable—so not doing MLE makes the problem tractable.

I ENERGY-BASED TRANSFORMERS (EBTS) TUTORIAL

1.1 IMPROVING STABILITY AND SCALABILITY

Energy-Based Models are notorious for instability during training Arbel et al. (2020); Du & Mor-
datch (2019); Du et al. (2020); Li et al. (2023). Therefore, we experiment with several different
hyperparameters to increase the stability and scalability of EBTs and EBMs in general.

I.1.1 OPTIMIZATION STEP SIZE AND STABILITY

We found that the step size for gradient descent updates of predictions (a)) was one of the primary
factors affecting the stability of EBTs. Thus, for S1 models, we make the step size a learnable
parameter (this is not the case for S2 models). We calculate its learning rate by multiplying the
model’s learning rate by the step size learning rate multiplier. We found that the values for the step
size have a large effect on the magnitude of gradients generated for the optimization of predictions.
This is because the step size is directly multiplied by the prediction gradients. Particularly, a smaller
step size results in larger generated gradients, whereas a larger step size results in smaller gradients.
Therefore, the step size needs to be tuned per modality, as the update required for predictions depends
on data. It’s also worth noting that we do not weight decay the step size in any of the models.

35

We also found that a relatively high optimization step size was necessary (30, 000 for video and
between 5 and 500 for text). Without a high optimization step size, gradient magnitudes continued to
increase throughout training, resulting in unstable training dynamics.

1.1.2 ARCHITECTURE STABILITY

For autoregressive models, we found that simply prepending a learnable “step” embedding to
sequences significantly improved scalability and stability, especially for S1 models. This step
embedding mapped a discrete step index (i.e., step 0, 1, etc.) of the current optimization step to an
embedding the same dimension as the model’s embedding. We believe this helped improve stability
by enabling the accumulation of attention mass, as well as enabling less steep energy landscapes
conditioned on the optimization step.

Additionally, we experimented with adaptive layer normalization from the DiT architecture, but
we found that the timestep embedding worked better. We also experimented with several different
normalization and initialization approaches, where we found that the standard Llama2 Touvron et al.
(2023) architecture and initialization worked best. This involves using RMSNorm, Xavier init Glorot
& Bengio (2010), SwiGLU MLP Shazeer (2020), and RoPE Su et al. (2024).

1.1.3 SYSTEM 2 THINKING HYPERPARAMETER STABILITY

For S2 models, we found certain hyperparameters to be essential for the stability and scalability of
models. First, we found that using a lower number of optimization steps resulted in more stability, as
using more optimization steps necessitates longer gradient chains. Additionally, we found that the
strategy used for the randomization of « to be very important for stability. Particularly, we found that
randomizing « with a single value for an entire batch resulted in issues with training convergence. We
believe this is because using the same value for every element in the batch resulted in high-variance
gradients. Thus, when randomizing « differently for every batch and sequence element, we found
training convergence to be more stable. It’s possible that randomizing the number of optimization
steps would yield similar results in reducing gradient variance, however, we did not experiment with
such a configuration.

1.1.4 CLAMPING OPTIMIZATION GRADIENTS FOR STABILITY

We found that clamping gradients of the energy function with respect to predictions (or prediction
update gradients) could help improve training stability at the cost of some slight reductions in
convergence speed. We do not conduct any experiments in the paper with clamped prediction
gradients as we found that the other hyperparameters were sufficient for stable training, however, it’s
a potentially useful trick worth discussing.

1.1.5 NORMALIZING DATA FOR STABILITY

We found that normalizing/standardizing input data was crucial for the stability of EBTs. An example
of this was in our NLP experiments, where we ran experiments with and without normalizing proba-
bility distributions. The experiments with unnormalized distributions often had extreme activations
as well as large loss spikes, whereas the experiments with normalized distributions (by applying
softmax) were stable.

1.2 How 1O TRAIN YOUR EBT

The hyperparameters used for training EBTs are extremely important and can often be highly sensitive
towards performance, so here we offer a guide toward hyperparameter tuning. First, we recommend
starting off with training S1-EBTs, which are the easiest and most stable variant of EBTs not designed
for System 2 Thinking. Then, once S1-EBTs can be trained succesfully and scaled, we recommend
changing the hyperparameters gradually towards the hyperparameters used for S2 models (we say
gradually here as occasionally these parameters can cause instability and require additional tuning).

When training S1 EBTs, we recommend tuning hyperparameters in the following order:

* First, tune standard hyperparameters such as Learning Rate (LR), batch size, etc. Having a
high batch size helps with stability by making gradients less noisy (because you initialize

36

predictions from random noise this makes gradients noisier).

* Second, start tuning S1-specific hyperparameters—primarily alpha and its LR multiplier
(we recommend keeping its LR multiplier around 32 the value of alpha) and then tuning the
number of optimization steps.

* Third, potentially tune whether the step size is learnable and try other EBT architectures
(inspired by DiT Peebles & Xie (2023) we tried a time embedding as well as adaptive layer
normalization).

Once you have tuned these, the model should be stable and fine for most use cases. At which point, if
you are desiring System 2 capabilities, you can proceed to the S2 models I.3. Some potential metrics
to monitor and look out for include the gradient magnitudes (if these increase too much or spike a lot
that’s a bad sign) and the gap between the initial and final energy after optimization (if this is too
high or low it could be a sign your model’s alpha value needs to be adjusted).

Following Wang et al. (2023), we give pseudocode for training EBTs in natural language for language
modeling (Listing 1) as well as in computer vision for autoregressive video modeling (Listing 2). The
pseudocode is primarily for S2 models without any energy landscape regularization techniques. The
first primary design decision in the presented pseudocode is whether or not to detach predictions in
between steps. Not detaching predictions in between steps allows for more “Thinking Time” before
making predictions, but makes the gradient computation graph longer and therefore increases the
likelihood of stability issues with gradients. Similarly, calculating the loss at every step versus solely
the last step enables model to “think for longer” before needing to make accurate predictions, and
therefore affects the convexity and smoothness of the energy landscape. For S2 models, we found
that not detaching between steps was best, and similarly that calculating the loss only at the last step
was best. For S1 models, we found the opposite to be most stable. Generally, if one is calculating
the loss only at the last step, then one should not detach between steps as it’s best if the gradient
propagates to previous steps in this case. For more details on these techniques, we refer the reader to
the source code as well as Section 1.3.

make sure to enable gradient tracking

with torch.set_grad_enabled(True) :
loss_fn = nn.CrossEntropyLoss (weight=None, ignore_index=
tokenizer_ pad_token_id)

context_embeddings = self.embeddings (input_ids[:, :-1]) # B, S, D
next_tokens = input_ids[:, 1:]

next_embeddings = self.embeddings (next_tokens) # B, S, V; are just
used for shaping next tensor

predicted_distributions = torch.randn_like (next_embeddings) # B, S, V
; initialize predictions as random

for _ in range (num_steps) :

Can optionally detach predicted distributions so that no
gradient flows through past steps

predicted_distributions = predicted_distributions.detach()

predicted_embeddings = self.vocab_to_embed (softmax (
predicted_distributions)) # B, S, D; need to proj. to embed space for
transformer to work in, use linear layer, weighted sum, etc

all_embeddings = torch.cat ((context_embeddings,
predicted_embeddings), dim=1) # B, 2S, D

predicted_energies = self.transformer (all_embeddings) # B, S, 1;
this returns only energies for the predicted_embeddings

Compute the gradient of predicted energies w.r.t. predicted
distributions
predicted_distributions_grad = torch.autograd.grad/(
predicted_energies.sum(),
predicted_distributions,

37

create_graph=True
)[0] # B, S, V

Perform gradient descent w.r.t. the energy function where self.
alpha is the optimization step size

predicted_distributions = predicted_distributions - self.alpha =
predicted_distributions_grad

Calculate cce loss based on predicted and ground truth
distributions, optionally at each optimization step or only at the
end

cce_loss = loss_fn(predicted_distributions, next_tokens)

Listing 1: Autoregressive Language Model Training Pseudocode in PyTorch

make sure to enable gradient tracking

with torch.set_grad_enabled(True) :
loss_fn = torch.nn.SmoothLlLoss (beta=1.0) # use whichever loss
function desired

context_embeddings = embeddings[:, :-1] # B, S, D

next_embeddings = embeddings[:, 1:] # B, S, D

predicted_embeddings = torch.randn_like (next_embeddings) # B, S, D;
initialize predictions as random

for _ in range (num_steps) :

Can optionally detach embeddings so that no gradient flows
through past steps

predicted_embeddings = predicted_embeddings.detach ()

all_embeddings = torch.cat ((context_embeddings,
predicted_embeddings), dim=1) # B, 2S, D

predicted_energies = self.transformer (all_embeddings) # this
returns only energies for the predicted_embeddings # B, S, 1

Compute the gradient of predicted energies w.r.t. predicted
embeddings
predicted_embeddings_grad = torch.autograd.grad (
predicted_energies.sum(),
predicted_embeddings,
create_graph=True
) [0] # B, S, D

Perform gradient descent w.r.t. the energy function where self.
alpha is the optimization step size

predicted_embeddings = predicted_embeddings - self.alpha =*
predicted_embeddings_grad

Calculate reconstruction loss based on predicted and ground truth
embeddings, optionally at each optimization step or only at the end
reconstruction_loss = loss_fn (predicted_embeddings, next_embeddings)

Listing 2: Autoregressive Video Model Training Pseudocode in PyTorch

1.3 How 10O THINK USING YOUR EBT

Once an S1 EBT has been trained, we recommend tuning the System 2 hyperparameters in the
following manner:

* Remove detaching tensors between optimization steps and add loss truncation so the loss is
only calculated at the final step.

* Then, tune alpha, as it’s by far the most important EBT-specific hyperparameter. But, do not
make it learnable.

38

* Next, tune the number of optimization steps, including potentially a minimum and maximum
number when randomizing the number of steps.

* Then add a replay buffer, Langevin Dynamics, and eventually a randomized alpha (step
size). Tune all of these in tandem while tweaking the earlier parameters (particularly alpha).

It’s possible that randomizing the number of steps for each sample within a batch would work better
(similar to randomizing the alpha value within a batch). Additionally, it’s worth mentioning that all
optimization steps are performed along the same energy landscape (same time embedding condition),
unlike with S1-EBTs using multiple time steps.

39

	Introduction
	Energy-Based Transformers (EBT) Intuition
	Learning to Verify
	Learning to Understand

	Energy-Based Transformers (EBT) Approach
	Energy-Based Models (EBM) Background
	Scalable EBM Learning
	Scalable EBM Thinking
	Energy-Based Transformers (EBTs) Architecture

	Experimentation and Results
	Autoregressive Language Modeling Experiments
	Bidirectional Image Experiments

	Limitations and Conclusion
	Future Works and Broader Impact
	Reversal Curse
	Improved Stablity
	World Models
	EBTs as Complementary Models
	Recurrent Energy-Based Models
	Improved Thinking Algorithms
	Multimodal Energy-Based Models
	Thinking Scalability
	Learning Multimodal Distributions
	Understanding Predictions
	Societal Impact

	Additional Experimentation
	Autoregressive Video Experiments
	Additional Natural Language Processing Experiments
	EBT Failure Cases

	Additional EBT Details
	Formalizing Thinking
	Energy-Based Transformer (EBT) Thinking Types
	Autoregressive Causal Energy-Based Transformers Implementation
	Autoregressive Energy-Based Transformers Simplified Implementation

	Experimentation Details
	Autoregressive Language Modeling Experimental Details
	Learning Scalability Experimental Details
	Thinking Scalability Experimental Details

	Autoregressive Video Experimental Details
	Bidirectional Image Denoising Experimental Details
	Computational Resources
	FLOP Calculations

	Related Works
	Traditional Transformers
	RNNs
	Dynamic Computation (Thinking) with LLMs
	Dynamic Computation (Thinking) with Diffusion
	Energy-Based Models (EBMs)
	Energy-Based Models (EBMs) as a Generalization of Diffusion Models and Recurrent Depth Models
	EBM and Diffusion Model Comparison
	Additional Energy-Based Models Related Works

	Additional Cognitive Facets
	Counterarguments
	System 2 Thinking
	System 2 Thinking and Inference-Time Compute Term Usage
	Is Chain-of-Thought (CoT) Sufficient for System 2 Thinking?

	Energy-Based Models (EBMs) Introduction
	Simplified Energy-Based Model (EBM) Introduction
	Energy-Based Model Types
	Energy-Based Model Frequently Asked Questions (FAQ)

	Energy-Based Transformers (EBTs) Tutorial
	Improving Stability and Scalability
	Optimization Step Size and Stability
	Architecture Stability
	System 2 Thinking Hyperparameter Stability
	Clamping Optimization Gradients for Stability
	Normalizing Data for Stability

	How to Train Your EBT
	How to Think Using Your EBT

