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Figure 1: DiffVax is an optimization-free image immunization approach designed to protect images
and videos from diffusion-based editing. DiffVax demonstrates robustness across diverse content,
providing protection for both in-the-wild (a) unseen images and (b) unseen video content while
effectively preventing edits across various editing methods, including inpainting (illustrated with a
human in the left column and a non-human foreground object in the right column) and instruction-
based edits (right column) with InstructPix2Pix (Brooks et al., 2023).

Abstract

Current image immunization defense techniques against diffusion-based editing2

embed imperceptible noise into target images to disrupt editing models. However,3

these methods face scalability challenges, as they require time-consuming optimiza-4

tion for each image separately, taking hours for small batches. To address these5

challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free6

framework for image immunization, specifically designed to prevent diffusion-7

based editing. Our approach enables effective generalization to unseen content,8

reducing computational costs and cutting immunization time from days to millisec-9

onds, achieving a speedup of 250,000×. This is achieved through a loss term that10

ensures the failure of editing attempts and the imperceptibility of the perturbations.11

Extensive qualitative and quantitative results demonstrate that our model is scalable,12

optimization-free, adaptable to various diffusion-based editing tools, robust against13

counter-attacks, and, for the first time, effectively protects video content from14

editing. Our code and qualitative results are provided in the supplementary.15
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1 Introduction16

Recent advancements in generative models, particularly diffusion models (Sohl-Dickstein et al.,17

2015; Ho et al., 2020; Rombach et al., 2022), have enabled realistic content synthesis, which can18

be used for various applications, such as image generation (Saharia et al., 2022; Ruiz et al., 2023;19

Chefer et al., 2023; Zhang et al., 2023b; Li et al., 2023a; Mou et al., 2024b; Bansal et al., 2023)20

and editing (Brooks et al., 2023; Couairon et al., 2023a; Hertz et al., 2023b; Meng et al., 2022).21

However, the widespread availability and accessibility of these models introduce significant risks, as22

malicious actors exploit them to produce deceptive, realistic content known as deepfakes (Pei et al.,23

2024). Deepfakes pose severe threats across multiple domains, from political manipulation (Appel24

and Prietzel, 2022) and blackmail (Blancaflor et al., 2024) to biometric fraud (Wojewidka, 2020)25

and compromising trust in legal processes (Delfino, 2022). Furthermore, they have become tools for26

sexual harassment through the creation of non-consensual explicit content, victimizing many women27

day by day (Jean Mackenzie, 2024; Davies and McDermott, 2022; Cole, 2018). Given the widespread28

accessibility of diffusion models, the scale of these threats continues to grow, underscoring the urgent29

need for robust defense mechanisms to protect individuals, institutions, and public trust from such30

misuse.31

To address these challenges, a line of research has focused on deepfake detection (Naitali et al., 2023;32

Passos et al., 2024) and verification methods (Hasan and Salah, 2019), which facilitate post-hoc33

identification. While effective for detection, these approaches do not proactively prevent malicious34

editing, as they only identify it after it happens. Another branch modifies the parameters of editing35

models (Li et al., 2024) to prevent unethical content synthesis (e.g. NSFW material); however, the36

widespread availability of unrestricted generative models limits its effectiveness. A more robust37

defense mechanism, known as image immunization (Salman et al., 2023; Lo et al., 2024; Yeh38

et al., 2021; Ruiz et al., 2020), safeguards images from malicious edits by embedding imperceptible39

adversarial perturbation. This approach ensures that any editing attempts lead to unintended or40

distorted results, proactively preventing malicious modifications rather than depending on post-hoc41

detection. The subtlety of this protection is particularly valuable for large-scale, publicly accessible42

content, such as social networks, where user data is especially vulnerable to malicious attacks.43

By uploading immunized images instead of original ones, users can reduce the risk of misuse by44

malicious actors, highlighting the practical potential of immunization-based methods for real-world45

applications.46

However, current immunization approaches remain inadequate, as they do not simultaneously satisfy47

the key requirements of an effective defense: (i) scalability for large-scale content, (ii) memory and48

runtime efficiency, and (iii) robustness against counter-attacks. PhotoGuard (Salman et al., 2023) (PG)49

embeds adversarial perturbations into target images to disrupt components of the diffusion model50

by solving a constrained optimization problem via projected gradient descent (Madry et al., 2018a).51

Although PhotoGuard was the first immunization model targeting diffusion-based editing, it requires52

over 10 minutes of runtime per image and at least 15GB of memory, causing both computational and53

time inefficiency. To alleviate these demands, DAYN (Lo et al., 2024) proposes a semantic-based54

attack that disrupts the diffusion model’s attention mechanism during editing. While this approach55

reduces computational load, it remains time-inefficient like PhotoGuard, as it requires a separate56

optimization process for each image and cannot generalize to unseen content. Furthermore, both57

approaches are vulnerable to counter-attacks, such as denoising the added perturbation or applying58

JPEG compression (Sandoval-Segura et al., 2023) to the immunized image. Consequently, neither59

method is practical for large-scale applications, such as safeguarding the vast volume of image and60

video data uploaded daily on social media platforms.61

To address these challenges, we introduce DiffVax, an end-to-end framework for training an “im-62

munizer model” that learns how to generate imperceptible perturbations to immunize target images63

against diffusion-based editing (see Fig 2). This immunization process ensures that any attempt to64

edit the immunized image using a diffusion-based model fails. DiffVax is more effective than prior65

works in ensuring editing failure.66

Our training process is guided by two objectives, expressed as separate terms in the loss function: (1)67

encouraging the model to generate an imperceptible perturbation, and (2) ensuring that any editing68

attempt on the immunized image fails. Our trained immunizer operates with a single forward pass,69

completed within milliseconds, eliminating the need for time-intensive per-image optimization. This70

efficiency enables scalability to high-volume content protection. Additionally, DiffVax enhances71
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Figure 2: Comparing DiffVax with existing approaches. (a) An attacker performs malicious editing
on an original image. (b) Existing defenses immunize images by solving a costly optimization
problem for each image individually, taking over 10 minutes per image. (c) DiffVax enables scalable
protection by first training an immunizer model (green box) on a diverse dataset. Once trained, the
model can immunize unseen images with a single forward pass, producing effective perturbations in
approximately 70 milliseconds per image.

memory efficiency by avoiding gradient computation during inference, setting it apart from prior72

methods. It also exhibits robustness against common counter-attacks, such as JPEG compression73

and image denoising (Sandoval-Segura et al., 2023). Crucially, our framework is compatible with74

any diffusion-based editing method, making it a universal defense tool (see Fig. 1 for examples on75

inpainting and instruction-based editing). Leveraging these strengths, we extend immunization to76

video content for the first time, achieving results previously unattainable due to the computational77

limitations of earlier approaches. As a result, DiffVax satisfies all key requirements for an effective78

defense.79

To summarize, our contributions are as follows:80

• We are the first to introduce a training framework in which the model learns to effectively81

immunize a given image against diffusion-based editing, drastically reducing inference time82

from days to milliseconds and enabling real-time protection.83

• Thanks to its computational efficiency, our model shows promising potential as a founda-84

tional step toward immunizing video content.85

• Unlike prior methods that require per-image optimization and therefore cannot generalize to86

unseen data, our approach enables generalization to new content through a learned “image87

immunizer”.88

• DiffVax achieves superior results with substantial degradation of the editing operation, and89

minimal memory requirement, demonstrating resistance to counter-attacks, making it the90

fastest, most cost-effective, and robust method available.91

2 Related Work92

Adversarial attacks Adversarial attacks exploit model vulnerabilities by introducing perturbations93

that induce misclassification. Early gradient-based methods efficiently generated such examples via94

gradient manipulation (Goodfellow et al., 2015; Madry et al., 2018b), later refined to minimize per-95

ceptual distortion (Carlini and Wagner, 2017; Moosavi-Dezfooli et al., 2016). Generative approaches96

advanced these attacks by synthesizing realistic adversarial inputs (Xiao et al., 2018). Subsequent97

work improved transferability and query efficiency using momentum and random search (Dong98

et al., 2018; Andriushchenko et al., 2020), while ensemble-based methods strengthened robustness99

evaluation (Croce and Hein, 2020). Universal perturbations (Moosavi-Dezfooli et al., 2017; Hayes100

and Danezis, 2018) and generative perturbation networks (Poursaeed et al., 2018) further generalized101

attacks across data and models. Building on these advances, our work focuses on immunizing against102

diffusion-based editing, addressing its unique characteristics.103
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Figure 3: Overview of DiffVax. Our end-to-end training framework is illustrated in (a). The training
process consists of two stages. In Stage 1, immunization is applied to the training image I. In
Stage 2, the immunized image Iim is edited using a stable diffusion model SD(·) with the specified
text prompt and mask, during which the Lnoise and Ledit are computed. During inference (b), the
trained immunizer model generates immunization noise (see Inference Stage 1 in (b)) applied to the
original (target) image using an immunization mask. When a malicious user attempts to attack these
immunized images with an editing mask, the editing tool (see Inference Stage 2 in (b)) is unable to
produce the intended edited content.

Preventing image editing The proliferation of Latent Diffusion Models (LDMs) has underscored104

the demand for robust immunization strategies against unauthorized image manipulation. Initial105

efforts focused on Generative Adversarial Network (GAN)-based models, employing adversarial106

perturbations to inhibit edits (Yeh et al., 2021; Aneja et al., 2022). PhotoGuard (Salman et al.,107

2023) extended this line of work to diffusion models via encoder- and model-level perturbations but108

incurred substantial computational overhead due to backpropagation across multiple timesteps. To109

alleviate this, Lo et al. (2024)1 proposed an attention-disruption strategy that bypasses full gradient110

computation, though its reliance on fixed prompts limits robustness. DiffusionGuard (Choi et al.,111

2025) enhances PhotoGuard by optimizing over augmented masks, yet remains computationally112

intensive. Other approaches, including Mist (Liang and Wu, 2023), AdvDM (Liang et al., 2023),113

SDS (Xue et al., 2024), and Glaze (Shan et al., 2023), target text-to-image diffusion or fine-tuned114

models, but exhibit high computational demands and limited resilience to adaptive attacks. In115

contrast, DiffVax introduces a model-agnostic immunizer that generalizes to unseen data via a single116

forward pass. Furthermore, we present, for the first time, promising results in the direction of video117

immunization.118

Diffusion-based image editing Diffusion models have emerged as powerful tools for image editing119

tasks such as inpainting (Wang et al., 2023; Lugmayr et al., 2022; Zhang et al., 2023a), style120

transfer (Wang et al., 2023; Mou et al., 2024a; Yang et al., 2023; Hertz et al., 2023a), and text-121

guided transformations (Brooks et al., 2023; Lin et al., 2024; Ravi et al., 2023), by conditioning on122

prompts or image regions. Edits are guided through attention manipulation (Parmar et al., 2023) and123

multi-step noise prediction. Approaches include both training-based (Couairon et al., 2023b; Kim124

et al., 2022) and training-free methods (Mokady et al., 2023; Miyake et al., 2023) requiring minimal125

fine-tuning. We use stable diffusion inpainting as our primary editing model and include results with126

InstructPix2Pix (Brooks et al., 2023) to show model-agnostic performance.127

3 Methodology128

3.1 Preliminaries129

Image immunization Adversarial attacks exploit the vulnerabilities of machine learning models by130

introducing small, imperceptible perturbations to input data, causing the model to produce incorrect131

or unintended outputs (Szegedy et al., 2014; Biggio et al., 2013). In the context of diffusion models,132

such perturbations can be crafted to disrupt the editing process, ensuring that attempts to modify an133

adversarially perturbed image fail to achieve intended outcomes. Given an image I, the goal is to134

transform it into an adversarially immunized version, Iim, by introducing a perturbation ϵim:135

Iim = I+ ϵim, subject to: ∥ϵim∥p < κ, (1)

where κ is the perturbation budget that constrains the norm of the perturbation to ensure that it136

remains imperceptible. The norm p could be chosen as 1, 2, or ∞, depending on the application.137

1Code unavailable despite request.
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Latent diffusion models LDMs (Rombach et al., 2022) perform the generative process in a lower-138

dimensional latent space rather than pixel space, achieving computational efficiency while maintaining139

high-quality outputs. This design is ideal for large-scale tasks like image editing and inpainting.140

Training an LDM starts by encoding the input image I0 into a latent representation z0 = E(I0)141

using encoder E(·). The diffusion process operates in this latent space, adding noise over T steps to142

generate a sequence z1, . . . , zT , with zt+1 =
√
1− βt zt +

√
βt ϵt, ϵt ∼ N (0, I), where βt is the143

noise schedule at step t. The training aims to learn a denoising network ϵθ that predicts the added144

noise ϵt by minimizing L(θ) = Et,z0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t)∥22

]
. In the reverse process, a noisy145

latent vector zT ∼ N (0, I) is iteratively denoised via the trained denoising network to recover z0,146

which is decoded into the final image Ĩ = D(z0) with decoder D(·).147

3.2 Problem Formulation148

Let I ∈ RH×W×C represent an image with height H , width W , and C color channels. A malicious149

user using a diffusion-based editing tool, SD(·), attempts to maliciously edit the image based on a150

prompt P and a binary mask M ∈ {0, 1}H×W×C , which defines the target area for editing, with a151

value of 1 indicating the region of interest and 0 denotes the background or irrelevant areas. Ideally,152

this target region can represent any meaningful part of the image, such as a human body or a face.153

Our objective is to immunize the original (target) image I by carefully producing a noise ϵim that154

satisfies two key criteria: (a) ϵim remains imperceptible to the user, and (b) the edited immunized155

image Iim,edit fails to accurately reflect the prompt P applied by the malicious users. In other words,156

the immunized image disrupts the editing model SD(·) such that any attempt to edit the image157

results in unsuccessful or unintended modifications. While our approach is broadly applicable to any158

diffusion-based editing tool, such as inpainting models and InstructPix2Pix (Brooks et al., 2023), this159

study follows previous work (Salman et al., 2023; Lo et al., 2024) by using inpainting as the primary160

editing tool for problem formulation and quantitative experiments. We focus on scenarios where the161

sensitive regions such as human body or face remains constant, with other areas considered editable,162

reflecting real-world malicious editing scenarios. Additional results for other objects and tools (e.g.163

InstructPix2Pix) are provided in Fig. 1, Fig. 4, and in our Supplementary.164

3.3 Our Approach165

End-to-end training framework To overcome the speed limitations of previous methods, which166

require solving an optimization problem independently for each image, we propose an end-to-end167

training framework. This framework enables an immunizer model f(·; θ) to instantly generate168

immunization noise for a given input image. Our training algorithm (see Section Model Algorithm169

and Implementation Details in Supplementary, and Fig. 3 (a)) consists of two stages. In the first stage,170

we employ a UNet++ (Zhou et al., 2018) architecture for the “immunizer” model f(·; θ), which takes171

an input image I and generates the corresponding immunization noise ϵim. Subsequently, ϵim is172

multiplied by the immunization mask M, which targets the region of interest (e.g. a person’s face).173

The resulting masked noise is then added to the training image to produce the immunized image,174

computed as Iim = I + ϵim ⊙M. Finally, the image is clamped to the [0, 1] range. To ensure the175

noise remains imperceptible to the human eye, we introduce the following loss:176

Lnoise =
1

sum(M)
∥(Iim − I)⊙M∥p (2)

where p is empirically chosen to be 1. Lnoise penalizes deviations within the masked region, ensuring177

that the change between the immunized image and the training image is imperceptible. In the second178

stage, after generating the immunized image Iim, we apply diffusion-based editing using the editing179

tool SD(·). This model takes the immunized image Iim, the training mask M, and the training prompt180

P as input, performing edits in the regions specified by the mask. To ensure that the edited image is181

effectively distorted, we define the loss function:182

Ledit =
1

sum(∼ M)
∥SD(Iim,∼ M,P)⊙ (∼ M)∥1, (3)

where ∼ M represents the complement of the masked area and SD(·) is the stable diffusion inpainting183

model that modifies the region ∼ M in Iim according to the prompt P . This loss function is the key184

to our method, as it ensures that the immunization noise disrupts the editing process by forcing the185
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Figure 4: Qualitative results with DiffVax. Our method effectively immunizes (a) seen images and
generalizes to (b) unseen images with diverse text prompts. Additionally, it extends to (c) unseen
human videos, demonstrating its adaptability to new content. Furthermore, it supports various poses
and perspectives, from full-body shots (a) to close-up face shots (c).

unmasked regions to be filled with 0s. Note that for editing models that do not rely on masks, we186

exclude masks from the loss calculations.187

To enable training, we curate a dataset of image, mask, and prompt tuples, represented as D =188

{(Ik,Mk,Pk)}Nk=1. Specifically, we collect 1000 images of individuals from the CCP (Yang et al.,189

2014) dataset and use the Segment Anything Model (SAM) (Kirillov et al., 2023) to generate masks190

corresponding to the foreground objects in these images. To ensure diverse text descriptions for the191

editing tasks, we utilize ChatGPT OpenAI (2024) (see Section Dataset Setup in Supplementary). At192

each training step, a sample is selected from the dataset and initially processed by the immunizer193

model f(·; θ) to generate immunization noise ϵnim, which is added to the masked region of the194

training image and then clamped. The resulting immunized image Inim is then passed through195

the editing model SD(·) to produce the edited immunized image Inim,edit. The final loss function,196

L = α ·Lnoise+Ledit, is used for backpropagation with respect to the immunizer model’s parameters.197

Backpropagating through the stable diffusion stages allows the immunizer to learn the interaction198

between the perturbation and the generated pixels. Through this iterative process, the immunizer199

model learns to generate perturbations that disrupt the editing model. Following the insights from200

PhotoGuard’s encoder attack, we do not condition the immunizer model on text prompts, as the noise201

is empirically shown to be prompt-agnostic (see Section Prompt-Agnostic Immunization Experiment202

in Supplementary).203

Inference During inference, the trained immunizer model generates immunization noise for any204

original (target) image using the mask of the region intended for protection. This noise is then205

applied to create the immunized image, with the noise restricted to the masked region. The resulting206

immunized image can be safely shared publicly. When a malicious user inputs this immunized image207

along with an editing mask into a diffusion-based editing tool (the same tool used during training),208

the immunization noise disrupts the edited output (see Fig. 3 (b)). Unlike previous approaches that209

require the same mask to be used during both training and inference, our method decouples these210

phases. This separation allows the immunizer model to generalize to unseen content, addressing the211

limitation of previous methods where malicious users could exploit different masks during editing212

(e.g. using an immunization mask of full-body but applying an editing mask of face).213

4 Experimentation214

Baselines We compare DiffVax with several existing image immunization methods. As a naive215

baseline, we include Random Noise, which applies arbitrary noise to images. We also evaluate216

two variants of PhotoGuard (Salman et al., 2023): PhotoGuard-E, which embeds adversarial217
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Figure 5: Qualitative comparison of edited images across immunization methods. This figure
shows the results of different immunization methods: Random Noise, PhotoGuard-E, PhotoGuard-D,
DiffusionGuard, and our proposed method, DiffVax. Results for (a) seen and (b) unseen images are
shown, with different prompts applied to each (right side). The first column contains the original
images, while subsequent columns show the edited outputs under different settings, as depicted on the
top. Note that DiffVax is substantially more effective than PhotoGuard-E, -D and DiffusionGuard in
degrading the edit.

perturbations in the latent encoder, and PhotoGuard-D, which disrupts the entire generative process.218

Additionally, we compare against DiffusionGuard (Choi et al., 2025), an extension of PhotoGuard219

that augments masks during optimization. To evaluate robustness against counter-attacks, we develop220

three additional baselines where editing is applied after immunization: (i) passing the image through221

a convolutional neural network (CNN)-based denoiser (Li et al., 2023b), denoted as DiffVax w/ D.;222

(ii) compressing the image as JPEG (Sandoval-Segura et al., 2023) with a 0.75 compression ratio,223

denoted as DiffVax w/ JPEG; and (iii) applying the IMPRESS defense (Cao et al., 2023), denoted224

as DiffVax w/ IMPRESS.225

Evaluation metrics and dataset We focus on four key aspects in evaluation: (a) the amount of226

editing failure, where we follow previous approaches (Salman et al., 2023) and utilize SSIM (Wang227

et al., 2004), PSNR and FSIM (Zhang et al., 2011) metrics to measure the visual differences between228

the edited immunized image and the edited original image; (b) imperceptibility, where the amount229

of the immunization noise quantified by measuring the SSIM between the original image and the230

immunized image, denoted as SSIM (Noise); (c) the degree of textual misalignment evaluated using231

CLIP (Radford et al., 2021) by measuring the average similarity between the edited immunized image232

and the text prompt, denoted as CLIP-T; and (d) scalability by reporting the average runtime and233

GPU memory required to immunize a single image on average from the dataset. We curate a dataset234

of 875 human images from the CCP (Yang et al., 2014) dataset. Of these, 800 images are used for235

training (seen), and the remaining 75 seen images along with 75 unseen images are reserved for236

testing.237

Qualitative results Fig. 1 and 4 illustrate the qualitative results achieved by our method, with238

Fig. 5 comparing our results to those of baseline methods. Our model effectively immunizes239

images against various editing techniques, including inpainting (as shown in the left column of240

Fig. 1) and InstructPix2Pix (Brooks et al., 2023) (right column of Fig. 1). It demonstrates a strong241

ability to generalize to previously unseen images and a wide range of prompts describing different242

edits, accommodating various human perspectives, including full-body and close-up shots (Fig. 4).243

Additionally, although trained primarily on human subjects, our model extends its robustness to244

non-human objects, such as the eagle depicted in the right column of Fig. 1. Compared to the baseline245

methods shown in Fig. 5, our approach qualitatively outperforms on both seen and unseen images,246

generating backgrounds that deviate significantly from the intended edits, thereby demonstrating247

robust results across a variety of text prompts. Notably, in many cases with our approach, it is248

impossible to infer the original prompt from the immunized image background, a stark contrast249

to PhotoGuard, which often retains discernible hints of the prompt. Please see Section Additional250

Results in Supplementary for more examples.251

DiffVax is more effective in corrupting edits As shown in Table 1, DiffVax achieves the low-252

est SSIM, PSNR, and FSIM values overall, securing second place in the SSIM metric for unseen253

data, with a small margin behind PG-D, indicating that malicious edits on immunized images are254

7



Table 1: Performance comparisons on images. The SSIM, PSNR, FSIM, SSIM (Noise), and CLIP-T metrics
are reported separately for the seen and unseen splits of the test dataset. Runtime and GPU requirements are
measured as the average time (in seconds) and memory usage (in MiB) needed to immunize a single image.
“N/A" indicates that the corresponding value is unavailable. The symbols ↑ and ↓ indicate the direction toward
better performance for each metric, respectively. Bold values indicate the best scores, while underlined values
denote the second-best scores.

Amount of Editing Failure Imperceptibility Text Misalignment Scalability
Immunization Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓ Runtime (s) ↓ GPU Req. (MiB) ↓

seen unseen seen unseen seen unseen seen unseen seen unseen (Immunization) (Immunization)

Random Noise 0.586 0.585 16.09 16.40 0.460 0.458 0.902 0.903 31.68 31.62 N/A N/A
PhotoGuard-E 0.558 0.565 15.29 15.63 0.413 0.408 0.956 0.956 31.69 30.88 207.00 9,548
PhotoGuard-D 0.531 0.523 14.70 14.92 0.386 0.379 0.978 0.979 29.61 29.27 911.60 15,114
DiffusionGuard 0.551 0.556 14.37 14.71 0.389 0.386 0.965 0.966 26.98 27.10 131.10 6,750
DiffVax (Ours) 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17 0.07 5,648

significantly distorted, even on previously unseen data, whereas baseline methods, which require255

optimization to be re-run for each image, do not differentiate between seen and unseen data. Ad-256

ditionally, CLIP-T results, which measure textual misalignment, further verify these findings by257

measuring the misalignment semantically in the edited immunized images. DiffVax outperforms the258

baselines by maintaining the highest SSIM (Noise) values for both seen and unseen data, highlighting259

its effectiveness in corrupting malicious edits while keeping the immunized image imperceptible.260

Thus, training an immunizer model enables it to learn how to strategically place immunization noise261

to effectively disrupt diffusion-based editing.262

DiffVax is more scalable In addition to its strong qualitative performance, DiffVax offers significant263

advantages in speed and memory efficiency. It completes the immunization process in just 0.07264

seconds per image on average, compared to 207.0 seconds for PhotoGuard-E, 911.6 seconds for265

PhotoGuard-D, and 131.1 seconds for DiffusionGuard. In terms of GPU memory usage, DiffVax266

requires only 5,648 MiB, much lower than PhotoGuard-E (9,548 MiB), PhotoGuard-D (15,114267

MiB), and DiffusionGuard (6,750 MiB). This makes DiffVax a practical and scalable solution for268

large-scale applications.269

DiffVax is more robust to counter-attacks Table 2 reports PSNR, SSIM, SSIM (Noise), and CLIP-T270

metrics for immunized images subjected to common counter-attacks, including CNN-based denoising,271

JPEG compression, and IMPRESS (Cao et al., 2023). DiffVax consistently outperforms PhotoGuard-272

D across all these scenarios, as evidenced by the results of DiffVax w/ D., DiffVax w/ JPEG, and273

DiffVax w/ IMPRESS. This robustness arises from DiffVax’s ability to learn spatially targeted274

perturbations, primarily applied to low-frequency regions. JPEG compression, which discards high-275

frequency content, is less effective against such perturbations. Similarly, denoisers and IMPRESS,276

which are typically trained to suppress uniformly distributed or high-frequency noise, fail to fully277

neutralize DiffVax’s learned immunization signals. In contrast, existing approaches, which produce278

more uniform-type noise, are more susceptible to these counter-attacks. Please see Section Additional279

Robustness Evaluation in Supplementary for additional results.280

User study results We also conduct a user study with 67 participants on Prolific (2024), in which281

participants compare the “unrealisticness” level of baselines, and the edited image across 20 randomly282

selected image pairs, including both seen and unseen samples. For each model, we report the average283

rank, with our model achieving the top position with an average rank of 1.64, demonstrating clear284

superiority over prior methods (see Section User Study in Supplementary), followed by PhotoGuard-D285

with a rank of 2.63.286

Ablation study To assess the contribution of each component in our framework, we conduct an287

ablation study by individually removing Ledit and Lnoise. As shown in Table 3, when Lnoise is288

removed, the model achieves slightly better performance on unseen data in terms of failed immunized289

editing (measured by SSIM, PSNR, FSIM and CLIP-T). However, the immunization noise is no290

longer imperceptible, as indicated by the change in the SSIM (Noise) metric. Conversely, when Ledit291

is removed, the SSIM (Noise) metric reaches its highest value, indicating minimal noise, but the292

model fails to prevent malicious editing, as reflected in the SSIM, PSNR, FSIM and CLIP-T metrics.293

Thus, combining both terms in the final loss function is crucial for balancing imperceptibility and294

robustness in the training process (see Section Loss Weight Selection in Supplementary).295
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Table 2: Performance comparisons on edits with counter-attacks. We report the SSIM, SSIM (Noise) and
CLIP-T metrics for the denoiser (D.), JPEG (compression ratio of 0.75) counter-attacks separately for the seen
and unseen splits of the test dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
seen unseen seen unseen seen unseen seen unseen seen unseen

PG-D w/ D. 0.702 0.709 18.27 18.43 0.528 0.528 0.966 0.965 31.48 31.20
DiffusionGuard w/ D. 0.708 0.719 18.26 18.69 0.530 0.531 0.964 0.964 31.08 30.99
DiffVax w/ D. 0.552 0.565 14.48 14.91 0.388 0.392 0.960 0.960 27.32 27.74
PG-D w/ JPEG 0.664 0.674 17.32 17.68 0.495 0.501 0.956 0.956 32.15 32.48
DiffusionGuard w/ JPEG 0.680 0.684 17.45 17.83 0.505 0.503 0.951 0.951 31.52 31.53
DiffVax w/ JPEG 0.522 0.538 14.17 14.61 0.374 0.382 0.959 0.959 26.04 26.05
PG-D w/ IMPRESS 0.578 0.563 15.89 16.07 0.436 0.426 0.640 0.634 31.35 31.26
DiffusionGuard w/ IMPRESS 0.604 0.595 15.89 16.09 0.453 0.442 0.636 0.630 30.88 30.50
DiffVax w/ IMPRESS 0.488 0.500 14.04 14.38 0.355 0.359 0.644 0.637 24.88 25.27

Table 3: Ablation study. We report the SSIM and SSIM (Noise) metrics for each loss term ablation, with results
presented individually for the seen and unseen splits of the dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
s u s u s u s u s u

DiffVax w/o Lnoise 0.508 0.520 13.57 13.82 0.335 0.344 0.785 0.786 24.34 25.78
DiffVax w/o Ledit 0.944 0.932 31.36 31.05 0.821 0.806 0.999 0.999 32.01 32.27

DiffVax 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17

5 Conclusion and Discussion296

In this work, we present DiffVax, an optimization-free image immunization framework that protects297

against diffusion-based editing. Central to our approach is a trained “image immunizer” model that298

generates imperceptible perturbations to disrupt the editing process. At inference, DiffVax requires299

only a single forward pass, enabling scalability to large-scale deployments. Leveraging this efficiency,300

we extend our framework to video, demonstrating promising results for the first time (see Section301

Video Evaluation in Supplementary). Moreover, DiffVax is compatible with any diffusion-based302

editing tool and demonstrates strong robustness against counter-attacks. Overall, it establishes a new303

benchmark for scalable, real-time, and effective content protection.304

Test-time mask variability All SOTA methods use the same masks during both training and305

editing. This is somewhat defensible, as inpainting-based deepfakes often rely on standardized306

masks, transferring either the entire body or the head. We further conduct an additional experiment307

to assess the impact of mask variation during test time. Our approach outperforms PhotoGuard308

(PG) by generating a more distinct image than PG relative to the “original edited image” while also309

disrupting the background edit. Future work can improve further by enhancing dataset diversity, as it310

includes “human body” pairs but does not contain masks that are misaligned with object boundaries.311

Moreover, while our model is the first to enable flexibility in defining separate immunization mask312

(for the immunization region) and editing mask (used by malicious users), unlike previous methods,313

its effectiveness diminishes when the editing mask deviates significantly from the immunization mask314

(see Section Discussion on Test-time Mask Variability in Supplementary). It is important to note that315

none of the previous methods can generalize to different editing masks during inference.316

Inpainting-based vs. instruction-based editing models Following prior SOTA, our main eval-317

uations are conducted using inpainting-based editing methods. However, we emphasize that our318

framework is model-agnostic and can be applied to various editing tools. To demonstrate this, we319

include additional results using the instruction-based model InstructPix2Pix (IP2P) (Brooks et al.,320

2023) (see Sections Additional Results With Instruction-Based Model and Additional Results With321

Non-ROI Editing in Supplementary). We find that IP2P is particularly well suited for complex or322

localized editing tasks, such as background modifications, stylistic changes, or edits outside sensitive323

regions, where inpainting-based approaches may fall short. Specifically, inpainting methods can324

introduce unintended alterations in sensitive areas like faces when the provided mask only partially325

covers the target region. This can conflict with the intent of a malicious user, whose goal is often to326

preserve identity while making selective edits.327

Transferability of immunization noise While DiffVax offers optimization-free protection against328

diffusion-based editing, its current design operates on a per-editing-tool basis, requiring separate329

training for each tool, which limits its ability to generalize across multiple editing tools simultaneously.330

Future work will aim to develop a more universal immunization strategy to enhance scalability across331

diverse models (see Section Transferability of Immunization Noise in Supplementary for preliminary332

results). Moreover, In addition, we plan to extend this work by integrating it with a range of video333

editing tools.334
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made in the paper.554

• The abstract and/or introduction should clearly state the claims made, including the555

contributions made in the paper and important assumptions and limitations. A No or556

NA answer to this question will not be perceived well by the reviewers.557

• The claims made should match theoretical and experimental results, and reflect how558

much the results can be expected to generalize to other settings.559

• It is fine to include aspirational goals as motivation as long as it is clear that these goals560

are not attained by the paper.561

2. Limitations562

Question: Does the paper discuss the limitations of the work performed by the authors?563

Answer: [Yes]564

Justification: The limitations have explained in Section 5 and Supplementary.565

Guidelines:566

• The answer NA means that the paper has no limitation while the answer No means that567

the paper has limitations, but those are not discussed in the paper.568

• The authors are encouraged to create a separate "Limitations" section in their paper.569

• The paper should point out any strong assumptions and how robust the results are to570

violations of these assumptions (e.g., independence assumptions, noiseless settings,571

model well-specification, asymptotic approximations only holding locally). The authors572

should reflect on how these assumptions might be violated in practice and what the573

implications would be.574

• The authors should reflect on the scope of the claims made, e.g., if the approach was575

only tested on a few datasets or with a few runs. In general, empirical results often576

depend on implicit assumptions, which should be articulated.577

• The authors should reflect on the factors that influence the performance of the approach.578

For example, a facial recognition algorithm may perform poorly when image resolution579

is low or images are taken in low lighting. Or a speech-to-text system might not be580

used reliably to provide closed captions for online lectures because it fails to handle581

technical jargon.582

• The authors should discuss the computational efficiency of the proposed algorithms583

and how they scale with dataset size.584

• If applicable, the authors should discuss possible limitations of their approach to585

address problems of privacy and fairness.586

• While the authors might fear that complete honesty about limitations might be used by587

reviewers as grounds for rejection, a worse outcome might be that reviewers discover588

limitations that aren’t acknowledged in the paper. The authors should use their best589

judgment and recognize that individual actions in favor of transparency play an impor-590

tant role in developing norms that preserve the integrity of the community. Reviewers591

will be specifically instructed to not penalize honesty concerning limitations.592

3. Theory assumptions and proofs593

Question: For each theoretical result, does the paper provide the full set of assumptions and594

a complete (and correct) proof?595

Answer: [NA]596
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Justification: The paper does not present any theoretical results.597

Guidelines:598

• The answer NA means that the paper does not include theoretical results.599

• All the theorems, formulas, and proofs in the paper should be numbered and cross-600

referenced.601

• All assumptions should be clearly stated or referenced in the statement of any theorems.602

• The proofs can either appear in the main paper or the supplemental material, but if603

they appear in the supplemental material, the authors are encouraged to provide a short604

proof sketch to provide intuition.605

• Inversely, any informal proof provided in the core of the paper should be complemented606

by formal proofs provided in appendix or supplemental material.607

• Theorems and Lemmas that the proof relies upon should be properly referenced.608

4. Experimental result reproducibility609

Question: Does the paper fully disclose all the information needed to reproduce the main ex-610

perimental results of the paper to the extent that it affects the main claims and/or conclusions611

of the paper (regardless of whether the code and data are provided or not)?612

Answer: [Yes]613

Justification: The proposed algorithm is detailed in Algorithm 1 (Supplementary) and614

illustrated in Fig. 3. Implementation details are also provided in the Supplementary.615

Guidelines:616

• The answer NA means that the paper does not include experiments.617

• If the paper includes experiments, a No answer to this question will not be perceived618

well by the reviewers: Making the paper reproducible is important, regardless of619

whether the code and data are provided or not.620

• If the contribution is a dataset and/or model, the authors should describe the steps taken621

to make their results reproducible or verifiable.622

• Depending on the contribution, reproducibility can be accomplished in various ways.623

For example, if the contribution is a novel architecture, describing the architecture fully624

might suffice, or if the contribution is a specific model and empirical evaluation, it may625

be necessary to either make it possible for others to replicate the model with the same626

dataset, or provide access to the model. In general. releasing code and data is often627

one good way to accomplish this, but reproducibility can also be provided via detailed628

instructions for how to replicate the results, access to a hosted model (e.g., in the case629

of a large language model), releasing of a model checkpoint, or other means that are630

appropriate to the research performed.631

• While NeurIPS does not require releasing code, the conference does require all submis-632

sions to provide some reasonable avenue for reproducibility, which may depend on the633

nature of the contribution. For example634

(a) If the contribution is primarily a new algorithm, the paper should make it clear how635

to reproduce that algorithm.636

(b) If the contribution is primarily a new model architecture, the paper should describe637

the architecture clearly and fully.638

(c) If the contribution is a new model (e.g., a large language model), then there should639

either be a way to access this model for reproducing the results or a way to reproduce640

the model (e.g., with an open-source dataset or instructions for how to construct641

the dataset).642

(d) We recognize that reproducibility may be tricky in some cases, in which case643

authors are welcome to describe the particular way they provide for reproducibility.644

In the case of closed-source models, it may be that access to the model is limited in645

some way (e.g., to registered users), but it should be possible for other researchers646

to have some path to reproducing or verifying the results.647

5. Open access to data and code648

Question: Does the paper provide open access to the data and code, with sufficient instruc-649

tions to faithfully reproduce the main experimental results, as described in supplemental650

material?651
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Answer: [Yes]652

Justification: The demo code is submitted along with the submission.653

Guidelines:654

• The answer NA means that paper does not include experiments requiring code.655

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/656

public/guides/CodeSubmissionPolicy) for more details.657

• While we encourage the release of code and data, we understand that this might not be658

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not659

including code, unless this is central to the contribution (e.g., for a new open-source660

benchmark).661

• The instructions should contain the exact command and environment needed to run to662

reproduce the results. See the NeurIPS code and data submission guidelines (https:663

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.664

• The authors should provide instructions on data access and preparation, including how665

to access the raw data, preprocessed data, intermediate data, and generated data, etc.666

• The authors should provide scripts to reproduce all experimental results for the new667

proposed method and baselines. If only a subset of experiments are reproducible, they668

should state which ones are omitted from the script and why.669

• At submission time, to preserve anonymity, the authors should release anonymized670

versions (if applicable).671

• Providing as much information as possible in supplemental material (appended to the672

paper) is recommended, but including URLs to data and code is permitted.673

6. Experimental setting/details674

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-675

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the676

results?677

Answer: [Yes]678

Justification: Implementation details are discussed in detail in Supplementary.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The experimental setting should be presented in the core of the paper to a level of detail682

that is necessary to appreciate the results and make sense of them.683

• The full details can be provided either with the code, in appendix, or as supplemental684

material.685

7. Experiment statistical significance686

Question: Does the paper report error bars suitably and correctly defined or other appropriate687

information about the statistical significance of the experiments?688

Answer: [No]689

Justification: To compute error bars, we would need to perform computationally intensive690

simulations with random seeds.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The authors should answer "Yes" if the results are accompanied by error bars, confi-694

dence intervals, or statistical significance tests, at least for the experiments that support695

the main claims of the paper.696

• The factors of variability that the error bars are capturing should be clearly stated (for697

example, train/test split, initialization, random drawing of some parameter, or overall698

run with given experimental conditions).699

• The method for calculating the error bars should be explained (closed form formula,700

call to a library function, bootstrap, etc.)701

• The assumptions made should be given (e.g., Normally distributed errors).702
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• It should be clear whether the error bar is the standard deviation or the standard error703

of the mean.704

• It is OK to report 1-sigma error bars, but one should state it. The authors should705

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis706

of Normality of errors is not verified.707

• For asymmetric distributions, the authors should be careful not to show in tables or708

figures symmetric error bars that would yield results that are out of range (e.g. negative709

error rates).710

• If error bars are reported in tables or plots, The authors should explain in the text how711

they were calculated and reference the corresponding figures or tables in the text.712

8. Experiments compute resources713

Question: For each experiment, does the paper provide sufficient information on the com-714

puter resources (type of compute workers, memory, time of execution) needed to reproduce715

the experiments?716

Answer: [Yes]717

Justification: The compute resources needed for the reproduction of the experiments are718

explained in Implementation Details section in Supplementary.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,722

or cloud provider, including relevant memory and storage.723

• The paper should provide the amount of compute required for each of the individual724

experimental runs as well as estimate the total compute.725

• The paper should disclose whether the full research project required more compute726

than the experiments reported in the paper (e.g., preliminary or failed experiments that727

didn’t make it into the paper).728

9. Code of ethics729

Question: Does the research conducted in the paper conform, in every respect, with the730

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?731

Answer: [Yes]732

Justification: The NeurIPS Code of Ethics has been reviewed by the authors, and the paper733

conforms, in every respect, to the Code of Ethics.734

Guidelines:735

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.736

• If the authors answer No, they should explain the special circumstances that require a737

deviation from the Code of Ethics.738

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-739

eration due to laws or regulations in their jurisdiction).740

10. Broader impacts741

Question: Does the paper discuss both potential positive societal impacts and negative742

societal impacts of the work performed?743

Answer: [Yes]744

Justification: These are explained in Sections 1 and 5.745

Guidelines:746

• The answer NA means that there is no societal impact of the work performed.747

• If the authors answer NA or No, they should explain why their work has no societal748

impact or why the paper does not address societal impact.749

• Examples of negative societal impacts include potential malicious or unintended uses750

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations751

(e.g., deployment of technologies that could make decisions that unfairly impact specific752

groups), privacy considerations, and security considerations.753
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• The conference expects that many papers will be foundational research and not tied754

to particular applications, let alone deployments. However, if there is a direct path to755

any negative applications, the authors should point it out. For example, it is legitimate756

to point out that an improvement in the quality of generative models could be used to757

generate deepfakes for disinformation. On the other hand, it is not needed to point out758

that a generic algorithm for optimizing neural networks could enable people to train759

models that generate Deepfakes faster.760

• The authors should consider possible harms that could arise when the technology is761

being used as intended and functioning correctly, harms that could arise when the762

technology is being used as intended but gives incorrect results, and harms following763

from (intentional or unintentional) misuse of the technology.764

• If there are negative societal impacts, the authors could also discuss possible mitigation765

strategies (e.g., gated release of models, providing defenses in addition to attacks,766

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from767

feedback over time, improving the efficiency and accessibility of ML).768

11. Safeguards769

Question: Does the paper describe safeguards that have been put in place for responsible770

release of data or models that have a high risk for misuse (e.g., pretrained language models,771

image generators, or scraped datasets)?772

Answer: [NA]773

Justification: The paper poses no risks for misuse.774

Guidelines:775

• The answer NA means that the paper poses no such risks.776

• Released models that have a high risk for misuse or dual-use should be released with777

necessary safeguards to allow for controlled use of the model, for example by requiring778

that users adhere to usage guidelines or restrictions to access the model or implementing779

safety filters.780

• Datasets that have been scraped from the Internet could pose safety risks. The authors781

should describe how they avoided releasing unsafe images.782

• We recognize that providing effective safeguards is challenging, and many papers do783

not require this, but we encourage authors to take this into account and make a best784

faith effort.785

12. Licenses for existing assets786

Question: Are the creators or original owners of assets (e.g., code, data, models), used in787

the paper, properly credited and are the license and terms of use explicitly mentioned and788

properly respected?789

Answer: [Yes]790

Justification: All assets used are properly cited.791

Guidelines:792

• The answer NA means that the paper does not use existing assets.793

• The authors should cite the original paper that produced the code package or dataset.794

• The authors should state which version of the asset is used and, if possible, include a795

URL.796

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.797

• For scraped data from a particular source (e.g., website), the copyright and terms of798

service of that source should be provided.799

• If assets are released, the license, copyright information, and terms of use in the800

package should be provided. For popular datasets, paperswithcode.com/datasets801

has curated licenses for some datasets. Their licensing guide can help determine the802

license of a dataset.803

• For existing datasets that are re-packaged, both the original license and the license of804

the derived asset (if it has changed) should be provided.805
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• If this information is not available online, the authors are encouraged to reach out to806

the asset’s creators.807

13. New assets808

Question: Are new assets introduced in the paper well documented and is the documentation809

provided alongside the assets?810

Answer: [NA]811

Justification: We do not release new assets.812

Guidelines:813

• The answer NA means that the paper does not release new assets.814

• Researchers should communicate the details of the dataset/code/model as part of their815

submissions via structured templates. This includes details about training, license,816

limitations, etc.817

• The paper should discuss whether and how consent was obtained from people whose818

asset is used.819

• At submission time, remember to anonymize your assets (if applicable). You can either820

create an anonymized URL or include an anonymized zip file.821

14. Crowdsourcing and research with human subjects822

Question: For crowdsourcing experiments and research with human subjects, does the paper823

include the full text of instructions given to participants and screenshots, if applicable, as824

well as details about compensation (if any)?825

Answer: [Yes]826

Justification: The details are explained in Supplementary.827

Guidelines:828

• The answer NA means that the paper does not involve crowdsourcing nor research with829

human subjects.830

• Including this information in the supplemental material is fine, but if the main contribu-831

tion of the paper involves human subjects, then as much detail as possible should be832

included in the main paper.833

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,834

or other labor should be paid at least the minimum wage in the country of the data835

collector.836

15. Institutional review board (IRB) approvals or equivalent for research with human837

subjects838

Question: Does the paper describe potential risks incurred by study participants, whether839

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)840

approvals (or an equivalent approval/review based on the requirements of your country or841

institution) were obtained?842

Answer: [Yes]843

Justification: The research conforms to the Code of Ethics.844

Guidelines:845

• The answer NA means that the paper does not involve crowdsourcing nor research with846

human subjects.847

• Depending on the country in which research is conducted, IRB approval (or equivalent)848

may be required for any human subjects research. If you obtained IRB approval, you849

should clearly state this in the paper.850

• We recognize that the procedures for this may vary significantly between institutions851

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the852

guidelines for their institution.853

• For initial submissions, do not include any information that would break anonymity (if854

applicable), such as the institution conducting the review.855

16. Declaration of LLM usage856
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Question: Does the paper describe the usage of LLMs if it is an important, original, or857

non-standard component of the core methods in this research? Note that if the LLM is used858

only for writing, editing, or formatting purposes and does not impact the core methodology,859

scientific rigorousness, or originality of the research, declaration is not required.860

Answer: [Yes]861

Justification: LLMs have been used in the process of dataset creation, using ChatGPT. Full862

details are described in the Methodology section and Supplementary.863

Guidelines:864

• The answer NA means that the core method development in this research does not865

involve LLMs as any important, original, or non-standard components.866

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)867

for what should or should not be described.868
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