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DiffVax: Optimization-Free Image Immunization
Against Diffusion-Based Editing
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Figure 1: DiffVax is an optimization-free image immunization approach designed to protect images
and videos from diffusion-based editing. DiffVax demonstrates robustness across diverse content,
providing protection for both in-the-wild (a) unseen images and (b) unseen video content while
effectively preventing edits across various editing methods, including inpainting (illustrated with a
human in the left column and a non-human foreground object in the right column) and instruction-
based edits (right column) with InstructPix2Pix (Brooks et al.,[2023).

Abstract

Current image immunization defense techniques against diffusion-based editing
embed imperceptible noise into target images to disrupt editing models. However,
these methods face scalability challenges, as they require time-consuming optimiza-
tion for each image separately, taking hours for small batches. To address these
challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free
framework for image immunization, specifically designed to prevent diffusion-
based editing. Our approach enables effective generalization to unseen content,
reducing computational costs and cutting immunization time from days to millisec-
onds, achieving a speedup of 250,000x. This is achieved through a loss term that
ensures the failure of editing attempts and the imperceptibility of the perturbations.
Extensive qualitative and quantitative results demonstrate that our model is scalable,
optimization-free, adaptable to various diffusion-based editing tools, robust against
counter-attacks, and, for the first time, effectively protects video content from
editing. Our code and qualitative results are provided in the supplementary.
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1 Introduction

Recent advancements in generative models, particularly diffusion models (Sohl-Dickstein et al.,
2015; |Ho et al., [2020; Rombach et al., [2022), have enabled realistic content synthesis, which can
be used for various applications, such as image generation (Saharia et al., 2022} Ruiz et al.,|2023;
Chefer et al., 2023} Zhang et al., 2023b; [Li et al., [2023a; Mou et al., [2024b; Bansal et al.| [2023)
and editing (Brooks et al., [2023; |Couairon et al., |2023a; |[Hertz et al., 2023b; Meng et al., |2022).
However, the widespread availability and accessibility of these models introduce significant risks, as
malicious actors exploit them to produce deceptive, realistic content known as deepfakes (Pei et al.,
2024). Deepfakes pose severe threats across multiple domains, from political manipulation (Appel
and Prietzel, |2022) and blackmail (Blancaflor et al., |2024) to biometric fraud (Wojewidkal, [2020))
and compromising trust in legal processes (Delfino, [2022)). Furthermore, they have become tools for
sexual harassment through the creation of non-consensual explicit content, victimizing many women
day by day (Jean Mackenzie, 2024} Davies and McDermott, 2022} Colel [2018). Given the widespread
accessibility of diffusion models, the scale of these threats continues to grow, underscoring the urgent
need for robust defense mechanisms to protect individuals, institutions, and public trust from such
misuse.

To address these challenges, a line of research has focused on deepfake detection (Naitali et al., 2023;
Passos et al., [2024) and verification methods (Hasan and Salahl 2019)), which facilitate post-hoc
identification. While effective for detection, these approaches do not proactively prevent malicious
editing, as they only identify it after it happens. Another branch modifies the parameters of editing
models (Li et al.||2024)) to prevent unethical content synthesis (e.g. NSFW material); however, the
widespread availability of unrestricted generative models limits its effectiveness. A more robust
defense mechanism, known as image immunization (Salman et al.l 2023} [Lo et al.l [2024; |Yeh
et al.| 2021; Ruiz et al., [2020), safeguards images from malicious edits by embedding imperceptible
adversarial perturbation. This approach ensures that any editing attempts lead to unintended or
distorted results, proactively preventing malicious modifications rather than depending on post-hoc
detection. The subtlety of this protection is particularly valuable for large-scale, publicly accessible
content, such as social networks, where user data is especially vulnerable to malicious attacks.
By uploading immunized images instead of original ones, users can reduce the risk of misuse by
malicious actors, highlighting the practical potential of immunization-based methods for real-world
applications.

However, current immunization approaches remain inadequate, as they do not simultaneously satisfy
the key requirements of an effective defense: (i) scalability for large-scale content, (ii)) memory and
runtime efficiency, and (iii) robustness against counter-attacks. PhotoGuard (Salman et al.|[2023) (PG)
embeds adversarial perturbations into target images to disrupt components of the diffusion model
by solving a constrained optimization problem via projected gradient descent (Madry et al., [2018a).
Although PhotoGuard was the first immunization model targeting diffusion-based editing, it requires
over 10 minutes of runtime per image and at least 15GB of memory, causing both computational and
time inefficiency. To alleviate these demands, DAYN (Lo et al.} [2024) proposes a semantic-based
attack that disrupts the diffusion model’s attention mechanism during editing. While this approach
reduces computational load, it remains time-inefficient like PhotoGuard, as it requires a separate
optimization process for each image and cannot generalize to unseen content. Furthermore, both
approaches are vulnerable to counter-attacks, such as denoising the added perturbation or applying
JPEG compression (Sandoval-Segura et al., 2023) to the immunized image. Consequently, neither
method is practical for large-scale applications, such as safeguarding the vast volume of image and
video data uploaded daily on social media platforms.

To address these challenges, we introduce DiffVax, an end-to-end framework for training an “im-
munizer model” that learns how to generate imperceptible perturbations to immunize target images
against diffusion-based editing (see Fig[2). This immunization process ensures that any attempt to
edit the immunized image using a diffusion-based model fails. DiffVax is more effective than prior
works in ensuring editing failure.

Our training process is guided by two objectives, expressed as separate terms in the loss function: (1)
encouraging the model to generate an imperceptible perturbation, and (2) ensuring that any editing
attempt on the immunized image fails. Our trained immunizer operates with a single forward pass,
completed within milliseconds, eliminating the need for time-intensive per-image optimization. This
efficiency enables scalability to high-volume content protection. Additionally, DiffVax enhances
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Figure 2: Comparing D+ f f Vax with existing approaches. (a) An attacker performs malicious editing
on an original image. (b) Existing defenses immunize images by solving a costly optimization
problem for each image individually, taking over 10 minutes per image. (c¢) DiffVax enables scalable
protection by first training an immunizer model (green box) on a diverse dataset. Once trained, the
model can immunize unseen images with a single forward pass, producing effective perturbations in
approximately 70 milliseconds per image.

memory efficiency by avoiding gradient computation during inference, setting it apart from prior
methods. It also exhibits robustness against common counter-attacks, such as JPEG compression
and image denoising (Sandoval-Segura et al., [2023)). Crucially, our framework is compatible with
any diffusion-based editing method, making it a universal defense tool (see Fig. [T|for examples on
inpainting and instruction-based editing). Leveraging these strengths, we extend immunization to
video content for the first time, achieving results previously unattainable due to the computational
limitations of earlier approaches. As a result, DiffVax satisfies all key requirements for an effective
defense.

To summarize, our contributions are as follows:

* We are the first to introduce a training framework in which the model learns to effectively
immunize a given image against diffusion-based editing, drastically reducing inference time
from days to milliseconds and enabling real-time protection.

* Thanks to its computational efficiency, our model shows promising potential as a founda-
tional step toward immunizing video content.

* Unlike prior methods that require per-image optimization and therefore cannot generalize to
unseen data, our approach enables generalization to new content through a learned “image
immunizer”.

» DiffVax achieves superior results with substantial degradation of the editing operation, and
minimal memory requirement, demonstrating resistance to counter-attacks, making it the
fastest, most cost-effective, and robust method available.

2 Related Work

Adversarial attacks Adversarial attacks exploit model vulnerabilities by introducing perturbations
that induce misclassification. Early gradient-based methods efficiently generated such examples via
gradient manipulation (Goodfellow et al.,[2015} [Madry et al., 2018b), later refined to minimize per-
ceptual distortion (Carlini and Wagner, [2017}; Moosavi-Dezfooli et al2016). Generative approaches
advanced these attacks by synthesizing realistic adversarial inputs (Xiao et al.,[2018)). Subsequent
work improved transferability and query efficiency using momentum and random search (Dong
et al.,|2018; |/Andriushchenko et al.,|2020), while ensemble-based methods strengthened robustness
evaluation (Croce and Hein, [2020). Universal perturbations (Moosavi-Dezfooli et al., 2017; Hayes
and Danezis, |2018)) and generative perturbation networks (Poursaeed et al., 2018)) further generalized
attacks across data and models. Building on these advances, our work focuses on immunizing against
diffusion-based editing, addressing its unique characteristics.
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(a) End-to-End Training Framework (b) Inference

Training Stage 1: Image Immunization Inference Stage 1: Image Immunization ~Inference Stage 2: Image Editing”,

Stable Diffusion SD(-)

Figure 3: Overview of DiffVax Our end-to-end training framework is illustrated in (a). The training
process consists of two stages. In Stage 1, immunization is applied to the training image I. In
Stage 2, the immunized image I, is edited using a stable diffusion model SD(-) with the specified
text prompt and mask, during which the £ ;e and Leq;; are computed. During inference (b), the
trained immunizer model generates immunization noise (see Inference Stage 1 in (b)) applied to the
original (target) image using an immunization mask. When a malicious user attempts to attack these
immunized images with an editing mask, the editing tool (see Inference Stage 2 in (b)) is unable to
produce the intended edited content.

Preventing image editing The proliferation of Latent Diffusion Models (LDMs) has underscored
the demand for robust immunization strategies against unauthorized image manipulation. Initial
efforts focused on Generative Adversarial Network (GAN)-based models, employing adversarial
perturbations to inhibit edits (Yeh et al.| 2021} |Aneja et al.| 2022)). PhotoGuard (Salman et al.,
2023)) extended this line of work to diffusion models via encoder- and model-level perturbations but
incurred substantial computational overhead due to backpropagation across multiple timesteps. To
alleviate this,|Lo et al. (2024 proposed an attention-disruption strategy that bypasses full gradient
computation, though its reliance on fixed prompts limits robustness. DiffusionGuard (Choi et al.,
2025) enhances PhotoGuard by optimizing over augmented masks, yet remains computationally
intensive. Other approaches, including Mist (Liang and Wu, [2023)), AdvDM (Liang et al., [2023)),
SDS (Xue et al} 2024), and Glaze (Shan et al., 2023)), target text-to-image diffusion or fine-tuned
models, but exhibit high computational demands and limited resilience to adaptive attacks. In
contrast, DiffVax introduces a model-agnostic immunizer that generalizes to unseen data via a single
forward pass. Furthermore, we present, for the first time, promising results in the direction of video
immunization.

Diffusion-based image editing Diffusion models have emerged as powerful tools for image editing
tasks such as inpainting (Wang et al.| [2023; [Lugmayr et al. [2022; |[Zhang et al., [2023a)), style
transfer (Wang et al., [2023; Mou et al., [2024a; [Yang et al., 2023 Hertz et al., [2023a)), and text-
guided transformations (Brooks et al.,[2023; Lin et al.||2024; Ravi et al., [2023)), by conditioning on
prompts or image regions. Edits are guided through attention manipulation (Parmar et al.,|2023)) and
multi-step noise prediction. Approaches include both training-based (Couairon et al., |2023bj | Kim
et al.,|2022) and training-free methods (Mokady et al.| [2023} [Miyake et al., [2023) requiring minimal
fine-tuning. We use stable diffusion inpainting as our primary editing model and include results with
InstructPix2Pix (Brooks et al.,[2023)) to show model-agnostic performance.

3 Methodology

3.1 Preliminaries

Image immunization Adversarial attacks exploit the vulnerabilities of machine learning models by
introducing small, imperceptible perturbations to input data, causing the model to produce incorrect
or unintended outputs (Szegedy et al.| [2014; Biggio et al., [2013)). In the context of diffusion models,
such perturbations can be crafted to disrupt the editing process, ensuring that attempts to modify an
adversarially perturbed image fail to achieve intended outcomes. Given an image I, the goal is to
transform it into an adversarially immunized version, I;;,, by introducing a perturbation €j,:

Lim = I+ €, subjecttor |€mllp < 5, )

where k is the perturbation budget that constrains the norm of the perturbation to ensure that it
remains imperceptible. The norm p could be chosen as 1, 2, or oo, depending on the application.

'Code unavailable despite request.
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Latent diffusion models LDMs (Rombach et al., [2022) perform the generative process in a lower-
dimensional latent space rather than pixel space, achieving computational efficiency while maintaining
high-quality outputs. This design is ideal for large-scale tasks like image editing and inpainting.
Training an LDM starts by encoding the input image I, into a latent representation zo = £(I)
using encoder £(+). The diffusion process operates in this latent space, adding noise over T steps to
generate a sequence 21, . .., 21, with 2,41 = /1 — By 2t + /B €, €& ~ N(0,1), where 3 is the
noise schedule at step t. The training aims to learn a denoising network ¢y that predicts the added
noise €, by minimizing £(0) = E, ., .n01) [/l€ — €a(2¢,t)]|3] . In the reverse process, a noisy
latent vector zp ~ N(0,I) is iteratively denoised via the trained denoising network to recover zo,
which is decoded into the final image I = D(z() with decoder D(-).

3.2 Problem Formulation

Let I € REXWXC represent an image with height H, width T, and C' color channels. A malicious
user using a diffusion-based editing tool, SD‘g}), attempts to maliciously edit the image based on a
prompt P and a binary mask M € {0, 1}*W*C which defines the target area for editing, with a
value of 1 indicating the region of interest and 0 denotes the background or irrelevant areas. Ideally,
this target region can represent any meaningful part of the image, such as a human body or a face.
Our objective is to immunize the original (target) image I by carefully producing a noise €y, that
satisfies two key criteria: (a) €, remains imperceptible to the user, and (b) the edited immunized
image Iy, cqi¢ fails to accurately reflect the prompt P applied by the malicious users. In other words,
the immunized image disrupts the editing model SD(-) such that any attempt to edit the image
results in unsuccessful or unintended modifications. While our approach is broadly applicable to any
diffusion-based editing tool, such as inpainting models and InstructPix2Pix (Brooks et al.,[2023)), this
study follows previous work (Salman et al.| 2023 Lo et al.,|2024) by using inpainting as the primary
editing tool for problem formulation and quantitative experiments. We focus on scenarios where the
sensitive regions such as human body or face remains constant, with other areas considered editable,
reflecting real-world malicious editing scenarios. Additional results for other objects and tools (e.g.
InstructPix2Pix) are provided in Fig.[I] Fig.[] and in our Supplementary.

3.3 Our Approach

End-to-end training framework To overcome the speed limitations of previous methods, which
require solving an optimization problem independently for each image, we propose an end-to-end
training framework. This framework enables an immunizer model f(-;#) to instantly generate
immunization noise for a given input image. Our training algorithm (see Section Model Algorithm
and Implementation Details in Supplementary, and Fig. [3|(a)) consists of two stages. In the first stage,
we employ a UNet++ (Zhou et al.| 2018)) architecture for the “immunizer” model f(-; @), which takes
an input image I and generates the corresponding immunization noise €;,,. Subsequently, €;,y, is
multiplied by the immunization mask M, which targets the region of interest (e.g. a person’s face).
The resulting masked noise is then added to the training image to produce the immunized image,
computed as Iy, = I+ €, @ M. Finally, the image is clamped to the [0, 1] range. To ensure the
noise remains imperceptible to the human eye, we introduce the following loss:

1

noise — T w v Iim*I M 2
Laose = sy (i =D O M, @

where p is empirically chosen to be 1. £, ;s penalizes deviations within the masked region, ensuring
that the change between the immunized image and the training image is imperceptible. In the second
stage, after generating the immunized image I;,,,, we apply diffusion-based editing using the editing
tool SD(+). This model takes the immunized image I;,,, the training mask M, and the training prompt
‘P as input, performing edits in the regions specified by the mask. To ensure that the edited image is
effectively distorted, we define the loss function:

1

WHSD(IM, ~M,P)© (~ M), 3

Ecdit =

where ~ M represents the complement of the masked area and SD(+) is the stable diffusion inpainting
model that modifies the region ~ M in I;;, according to the prompt P. This loss function is the key
to our method, as it ensures that the immunization noise disrupts the editing process by forcing the
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Figure 4: Qualitative results with D+ ffVaxz. Our method effectively immunizes (a) seen images and
generalizes to (b) unseen images with diverse text prompts. Additionally, it extends to (c) unseen
human videos, demonstrating its adaptability to new content. Furthermore, it supports various poses
and perspectives, from full-body shots (a) to close-up face shots (c).

unmasked regions to be filled with Os. Note that for editing models that do not rely on masks, we
exclude masks from the loss calculations.

To enable training, we curate a dataset of image, mask, and prompt tuples, represented as D =
{(X*, M*, PF)}_ . Specifically, we collect 1000 images of individuals from the CCP (Yang et al.,
2014) dataset and use the Segment Anything Model (SAM) (Kirillov et al.||2023) to generate masks
corresponding to the foreground objects in these images. To ensure diverse text descriptions for the
editing tasks, we utilize ChatGPT OpenAl| (2024) (see Section Dataset Setup in Supplementary). At
each training step, a sample is selected from the dataset and initially processed by the immunizer
model f(-;0) to generate immunization noise €}*,, which is added to the masked region of the
training image and then clamped. The resulting immunized image I7}, is then passed through
the editing model SD(-) to produce the edited immunized image I} ;. The final loss function,
L = a- Lyoise + Leait, 18 used for backpropagation with respect to the immunizer model’s parameters.
Backpropagating through the stable diffusion stages allows the immunizer to learn the interaction
between the perturbation and the generated pixels. Through this iterative process, the immunizer
model learns to generate perturbations that disrupt the editing model. Following the insights from
PhotoGuard’s encoder attack, we do not condition the immunizer model on text prompts, as the noise
is empirically shown to be prompt-agnostic (see Section Prompt-Agnostic Immunization Experiment
in Supplementary).

Inference During inference, the trained immunizer model generates immunization noise for any
original (target) image using the mask of the region intended for protection. This noise is then
applied to create the immunized image, with the noise restricted to the masked region. The resulting
immunized image can be safely shared publicly. When a malicious user inputs this immunized image
along with an editing mask into a diffusion-based editing tool (the same tool used during training),
the immunization noise disrupts the edited output (see Fig. [3|(b)). Unlike previous approaches that
require the same mask to be used during both training and inference, our method decouples these
phases. This separation allows the immunizer model to generalize to unseen content, addressing the
limitation of previous methods where malicious users could exploit different masks during editing
(e.g. using an immunization mask of full-body but applying an editing mask of face).

4 Experimentation

Baselines We compare DiffVax with several existing image immunization methods. As a naive
baseline, we include Random Noise, which applies arbitrary noise to images. We also evaluate
two variants of PhotoGuard (Salman et al.| [2023): PhotoGuard-E, which embeds adversarial
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Figure 5: Qualitative comparison of edited images across immunization methods. This figure
shows the results of different immunization methods: Random Noise, PhotoGuard-E, PhotoGuard-D,
DiffusionGuard, and our proposed method, DiffVax. Results for (a) seen and (b) unseen images are
shown, with different prompts applied to each (right side). The first column contains the original
images, while subsequent columns show the edited outputs under different settings, as depicted on the
top. Note that DiffVax is substantially more effective than PhotoGuard-E, -D and DiffusionGuard in
degrading the edit.

perturbations in the latent encoder, and PhotoGuard-D, which disrupts the entire generative process.
Additionally, we compare against DiffusionGuard [2025)), an extension of PhotoGuard
that augments masks during optimization. To evaluate robustness against counter-attacks, we develop
three additional baselines where editing is applied after immunization: (i) passing the image through
a convolutional neural network (CNN)-based denoiser (Li et al.,[2023Db), denoted as DiffVax w/ D.;
(ii) compressing the image as JPEG (Sandoval-Segura et al.,[2023)) with a 0.75 compression ratio,
denoted as DiffVax w/ JPEG; and (iii) applying the IMPRESS defense 2023), denoted
as DiffVax w/ IMPRESS.

Evaluation metrics and dataset We focus on four key aspects in evaluation: (a) the amount of
editing failure, where we follow previous approaches (Salman et al.,2023) and utilize SSIM

[2004), PSNR and FSIM (Zhang et al., 2011) metrics to measure the visual differences between
the edited immunized image and the edited original image; (b) imperceptibility, where the amount

of the immunization noise quantified by measuring the SSIM between the original image and the
immunized image, denoted as SSIM (Noise); (c) the degree of textual misalignment evaluated using
CLIP (Radford et al} 2021)) by measuring the average similarity between the edited immunized image
and the text prompt, denoted as CLIP-T; and (d) scalability by reporting the average runtime and
GPU memory required to immunize a single image on average from the dataset. We curate a dataset
of 875 human images from the CCP dataset. Of these, 800 images are used for
training (seen), and the remaining 75 seen images along with 75 unseen images are reserved for
testing.

Qualitative results Fig.[T]and H]illustrate the qualitative results achieved by our method, with
Fig. [5] comparing our results to those of baseline methods. Our model effectively immunizes
images against various editing techniques, including inpainting (as shown in the left column of
Fig.[I) and InstructPix2Pix (Brooks et all[2023) (right column of Fig.[I). It demonstrates a strong
ability to generalize to previously unseen images and a wide range of prompts describing different
edits, accommodating various human perspectives, including full-body and close-up shots (Fig. ).
Additionally, although trained primarily on human subjects, our model extends its robustness to
non-human objects, such as the eagle depicted in the right column of Fig.[I] Compared to the baseline
methods shown in Fig. 5] our approach qualitatively outperforms on both seen and unseen images,
generating backgrounds that deviate significantly from the intended edits, thereby demonstrating
robust results across a variety of text prompts. Notably, in many cases with our approach, it is
impossible to infer the original prompt from the immunized image background, a stark contrast
to PhotoGuard, which often retains discernible hints of the prompt. Please see Section Additional
Results in Supplementary for more examples.

DiffVax is more effective in corrupting edits As shown in Table[I} DiffVax achieves the low-
est SSIM, PSNR, and FSIM values overall, securing second place in the SSIM metric for unseen
data, with a small margin behind PG-D, indicating that malicious edits on immunized images are
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Table 1: Performance comparisons on images. The SSIM, PSNR, FSIM, SSIM (Noise), and CLIP-T metrics
are reported separately for the seen and unseen splits of the test dataset. Runtime and GPU requirements are
measured as the average time (in seconds) and memory usage (in MiB) needed to immunize a single image.
“N/A" indicates that the corresponding value is unavailable. The symbols 1 and | indicate the direction toward
better performance for each metric, respectively. Bold values indicate the best scores, while underlined values
denote the second-best scores.

| Amount of Editing Failure | Imperceptibility | Text Misalignment | Scalability
Immunization Method SSIM | PSNR | FSIM | SSIM (Noise) T CLIP-T | Runtime (s) | | GPU Req. (MiB) |
seen  unseen  seen  unseen  seen  unseen seen unseen seen unseen (Immunization) (Immunization)

Random Noise 0586 0585 1609 1640 0460 0458 | 0.902  0.903 31.68 31.62 N/A N/A
PhotoGuard-E 0.558 0565 1529 15.63 0413 0408 | 0.956  0.956 31.69 30.88 207.00 9,548
PhotoGuard-D 0531 0523 1470 1492 038 0379 | 0.978  0.979 29.61 29.27 911.60 15,114
DiffusionGuard 0.551 0556 14.37 14.71 0389 0386 | 0.965 0.966 26.98 27.10 131.10 6,750
DiffVax (Ours) 0510 0526 1396 1432 0353 0.362 | 0.989  0.989 23.13 24.17 0.07 5,648

significantly distorted, even on previously unseen data, whereas baseline methods, which require
optimization to be re-run for each image, do not differentiate between seen and unseen data. Ad-
ditionally, CLIP-T results, which measure textual misalignment, further verify these findings by
measuring the misalignment semantically in the edited immunized images. DiffVax outperforms the
baselines by maintaining the highest SSIM (Noise) values for both seen and unseen data, highlighting
its effectiveness in corrupting malicious edits while keeping the immunized image imperceptible.
Thus, training an immunizer model enables it to learn how to strategically place immunization noise
to effectively disrupt diffusion-based editing.

DiffVax is more scalable In addition to its strong qualitative performance, DiffVax offers significant
advantages in speed and memory efficiency. It completes the immunization process in just 0.07
seconds per image on average, compared to 207.0 seconds for PhotoGuard-E, 911.6 seconds for
PhotoGuard-D, and 131.1 seconds for DiffusionGuard. In terms of GPU memory usage, DiffVax
requires only 5,648 MiB, much lower than PhotoGuard-E (9,548 MiB), PhotoGuard-D (15,114
MiB), and DiffusionGuard (6,750 MiB). This makes D¢ f fVaz a practical and scalable solution for
large-scale applications.

DiffVax is more robust to counter-attacks Tablereports PSNR, SSIM, SSIM (Noise), and CLIP-T
metrics for immunized images subjected to common counter-attacks, including CNN-based denoising,
JPEG compression, and IMPRESS (Cao et al.,|2023). DiffVax consistently outperforms PhotoGuard-
D across all these scenarios, as evidenced by the results of DiffVax w/ D., DiffVax w/ JPEG, and
DiffVax w/ IMPRESS. This robustness arises from DiffVax’s ability to learn spatially targeted
perturbations, primarily applied to low-frequency regions. JPEG compression, which discards high-
frequency content, is less effective against such perturbations. Similarly, denoisers and IMPRESS,
which are typically trained to suppress uniformly distributed or high-frequency noise, fail to fully
neutralize DiffVax’s learned immunization signals. In contrast, existing approaches, which produce
more uniform-type noise, are more susceptible to these counter-attacks. Please see Section Additional
Robustness Evaluation in Supplementary for additional results.

User study results We also conduct a user study with 67 participants on Prolific|(2024), in which
participants compare the “unrealisticness” level of baselines, and the edited image across 20 randomly
selected image pairs, including both seen and unseen samples. For each model, we report the average
rank, with our model achieving the top position with an average rank of 1.64, demonstrating clear
superiority over prior methods (see Section User Study in Supplementary), followed by PhotoGuard-D
with a rank of 2.63.

Ablation study To assess the contribution of each component in our framework, we conduct an
ablation study by individually removing Leq; and Lpeise- As shown in Table [3] when L ige 1S
removed, the model achieves slightly better performance on unseen data in terms of failed immunized
editing (measured by SSIM, PSNR, FSIM and CLIP-T). However, the immunization noise is no
longer imperceptible, as indicated by the change in the SSIM (Noise) metric. Conversely, when Leqjt
is removed, the SSIM (Noise) metric reaches its highest value, indicating minimal noise, but the
model fails to prevent malicious editing, as reflected in the SSIM, PSNR, FSIM and CLIP-T metrics.
Thus, combining both terms in the final loss function is crucial for balancing imperceptibility and
robustness in the training process (see Section Loss Weight Selection in Supplementary).
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Table 2: Performance comparisons on edits with counter-attacks. We report the SSIM, SSIM (Noise) and
CLIP-T metrics for the denoiser (D.), JPEG (compression ratio of 0.75) counter-attacks separately for the seen
and unseen splits of the test dataset.

Method SSIM | PSNR | FSIM | SSIM (Noise) CLIP-T |

seen  unseen | seen  unseen | seen  unseen | seen  unseen | seen  unseen
PG-D w/ D. 0.702  0.709 | 1827 1843 | 0.528 0.528 | 0.966 0.965 | 31.48 31.20
DiffusionGuard w/ D. 0.708 0719 | 1826 18.69 | 0.530 0.531 | 0.964 0.964 | 31.08  30.99
DiffVax w/ D. 0.552  0.565 | 14.48 1491 | 0388 0392 | 0.960 0.960 | 27.32 27.74
PG-D w/ JPEG 0.664 0.674 | 17.32 17.68 | 0.495 0.501 0.956 0956 | 32.15 3248
DiffusionGuard w/ JPEG 0.680 0.684 | 1745 17.83 | 0505 0.503 | 0951 0951 | 31.52 31.53
DiffVax w/ JPEG 0522 0538 | 1417 1461 | 0374 0382 | 0.959 0.959 | 26.04 26.05
PG-D w/ IMPRESS 0.578  0.563 1589 1607 | 0436 0426 | 0.640 0.634 | 31.35 31.26
DiffusionGuard w/ IMPRESS ~ 0.604  0.595 1589 1609 | 0453 0442 | 0.636  0.630 | 30.88  30.50
DiffVax w/ IMPRESS 0.488 0500 | 14.04 1438 | 0355 0.359 | 0.644 0.637 | 24.88 2527

Table 3: Ablation study. We report the SSIM and SSIM (Noise) metrics for each loss term ablation, with results
presented individually for the seen and unseen splits of the dataset.

Method SSIM |, PSNR |, FSIM|  SSIM (Noise)t  CLIP-T |

s u s u B u s u s u
DiffVax w/o Loge 0.508 0.520 1357 13.82 0335 0344 0785 0786 2434 2578
DiffVax w/o L~ 0944 0932 3136 3105 0821 0806 0999 0999 3201 3227
DiffVax 0510 0526 1396 1432 0353 0362 0989 0989 2313 24.17

5 Conclusion and Discussion

In this work, we present DiffVax, an optimization-free image immunization framework that protects
against diffusion-based editing. Central to our approach is a trained “image immunizer” model that
generates imperceptible perturbations to disrupt the editing process. At inference, DiffVax requires
only a single forward pass, enabling scalability to large-scale deployments. Leveraging this efficiency,
we extend our framework to video, demonstrating promising results for the first time (see Section
Video Evaluation in Supplementary). Moreover, DiffVax is compatible with any diffusion-based
editing tool and demonstrates strong robustness against counter-attacks. Overall, it establishes a new
benchmark for scalable, real-time, and effective content protection.

Test-time mask variability All SOTA methods use the same masks during both training and
editing. This is somewhat defensible, as inpainting-based deepfakes often rely on standardized
masks, transferring either the entire body or the head. We further conduct an additional experiment
to assess the impact of mask variation during test time. Our approach outperforms PhotoGuard
(PG) by generating a more distinct image than PG relative to the “original edited image” while also
disrupting the background edit. Future work can improve further by enhancing dataset diversity, as it
includes “human body” pairs but does not contain masks that are misaligned with object boundaries.
Moreover, while our model is the first to enable flexibility in defining separate immunization mask
(for the immunization region) and editing mask (used by malicious users), unlike previous methods,
its effectiveness diminishes when the editing mask deviates significantly from the immunization mask
(see Section Discussion on Test-time Mask Variability in Supplementary). It is important to note that
none of the previous methods can generalize to different editing masks during inference.

Inpainting-based vs. instruction-based editing models Following prior SOTA, our main eval-
uations are conducted using inpainting-based editing methods. However, we emphasize that our
framework is model-agnostic and can be applied to various editing tools. To demonstrate this, we
include additional results using the instruction-based model InstructPix2Pix (IP2P) (Brooks et al.,
2023)) (see Sections Additional Results With Instruction-Based Model and Additional Results With
Non-ROI Editing in Supplementary). We find that IP2P is particularly well suited for complex or
localized editing tasks, such as background modifications, stylistic changes, or edits outside sensitive
regions, where inpainting-based approaches may fall short. Specifically, inpainting methods can
introduce unintended alterations in sensitive areas like faces when the provided mask only partially
covers the target region. This can conflict with the intent of a malicious user, whose goal is often to
preserve identity while making selective edits.

Transferability of immunization noise While DiffVax offers optimization-free protection against
diffusion-based editing, its current design operates on a per-editing-tool basis, requiring separate
training for each tool, which limits its ability to generalize across multiple editing tools simultaneously.
Future work will aim to develop a more universal immunization strategy to enhance scalability across
diverse models (see Section Transferability of Immunization Noise in Supplementary for preliminary
results). Moreover, In addition, we plan to extend this work by integrating it with a range of video
editing tools.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have explained our paper’s contributions in the Abstract and Section T]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations have explained in Section[5and Supplementary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not present any theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed algorithm is detailed in Algorithm 1 (Supplementary) and
illustrated in Fig. 3] Implementation details are also provided in the Supplementary.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The demo code is submitted along with the submission.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Implementation details are discussed in detail in Supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: To compute error bars, we would need to perform computationally intensive
simulations with random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources needed for the reproduction of the experiments are
explained in Implementation Details section in Supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The NeurIPS Code of Ethics has been reviewed by the authors, and the paper
conforms, in every respect, to the Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: These are explained in Sections[I]and 3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets used are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The details are explained in Supplementary.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The research conforms to the Code of Ethics.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs have been used in the process of dataset creation, using ChatGPT. Full
details are described in the Methodology section and Supplementary.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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