Under review as a conference paper at ICLR 2024

PYRAMID VECTOR QUANTIZATION FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works on compression of large language models (LLM) using quantization
considered reparameterizing the architecture such that weights are distributed on
the sphere. This demonstratively improves the ability to quantize by increasing
the mathematical notion of coherence, resulting in fewer weight outliers without
affecting the network output. In this work, we aim to further exploit this spherical
geometry of the weights when performing quantization by considering Pyramid
Vector Quantization (PVQ) for large language models. Arranging points evenly
on the sphere is notoriously difficult, especially in high dimensions, and in case
approximate solutions exists, representing points explicitly in a codebook is typ-
ically not feasible due to its additional memory cost. Instead, PVQ uses a fixed
integer lattice on the sphere by projecting points onto the 1-sphere, which al-
lows for efficient encoding and decoding without requiring an explicit codebook
in memory. To obtain a practical algorithm, we propose to combine PVQ with
scale quantization for which we derive theoretically optimal quantizations, under
empirically verified assumptions. Further, we extend pyramid vector quantization
to use Hessian information to minimize quantization error under expected fea-
ture activations, instead of only relying on weight magnitudes. Experimentally,
we achieve state-of-the-art quantization performance with pareto-optimal trade-
off between performance and bits per weight and bits per activation, compared to
competitive methods. On weight-only, we find that we can quantize a Llama-3
70B model to 3.25 bits per weight and retain 98% accuracy on downstream tasks.

1 INTRODUCTION

Quantization enables compression of large language models (LLMs) by reducing the number of
bits per weight required to represent weights. Weight outliers can make quantization difficult, as
they cause weight distributions to not match the implicit evenly distributed grids used in many
quantization methods. To overcome this, recent works have proposed to reparameterize architectures
by rotating weights in a way that leaves the network as a function unchanged (Ashkboos et al.||2024;
Chee et al., [2024)).

In this work, we aim to exploit the spherical geometry in weights when performing quantization by
considering Pyramid Vector Quantization (PVQ) (Fischer, [1986)) for LLMs. In PVQ, weights are
quantized on a hyper-pyramidal lattice that allows efficient encoding and decoding without having
to explicitly represent a codebook in memory. By projecting the lattice onto the hyper-sphere, a
quantization grid is obtained that accurately approximates a uniform grid on the spherical domain.

PVQ has been very successful in well-known audio (Valin et al} [2012)) and video codecs (Daede
et al., 2016). We demonstrate that the same algorithm allows practical quantization of large lan-
guage models, by proposing a group-wise quantization scheme and further extending PVQ to use
Hessian information accounting for curvature in the loss. We also propose a scheme to quantize the
normalized scales (amplitudes) of each group according to theoretically derived quantiles, which
we verified to closely match the empirical weight distributions of pretrained LLMs in practice. Our
contribution extends beyond [Liguori| (2017), which considered PVQ on weights of small neural
networks.

Under review as a conference paper at ICLR 2024

Experimentally, we find that our proposed PVQ quantization scheme outperforms the state-of-the-art
in terms of bits per weight and bits per activation. We do not only perform simulated quantization,
but also provide kernels that allow hardware accelerated encoding and decoding of PVQ. We achieve
state-of-the-art quantization on the most prominent Llama-3, Phi-3 and Mistral architectures in terms
of performance against bits per weight (BPW). In particular, we demonstrate 3.25 bit weight quan-
tization at a negligible 1-3% drop in performance, as measured in accuracy on downstream tasks.

2 BACKGROUND

Before discussing our approach on using pyramid vector quantization to quantize LLMs, we provide
an overview of vector quantization, spherical geometry of LLM weights, and describe classic PVQ.

2.1 QUANTIZATION

Quantization is a compression technique for machine learning models by storing weights (W) or
activations () in a some chosen lower bit representation, such as lower precision floats or scaled

integers (W). A common conversion is to minimize a second-order layer-wise proxy loss (Nagel
et al.,[2020; Frantar et al., [2022),

L(W) =E, [||Wm - v’[?m||2} _ ((W ~W)H(W — W)) 1)

where the layer-wise Hessian H = E, [acna:] R Z 1 TnT I is empirically estimated using a

calibration dataset {x,,})_,. The objective is optimal in the sense that it minimizes the layer-wise
output at each layer, but a crude approximation with respect to the actual training loss. Some recent
works have proposed to also use gradients to improve the approximation to the true training objective
(van der Ouderaa et al., |2023)). Although it would be interesting to combine ideas presented in this
paper with gradients, we stick to a layer-wise loss Equation (1)) for simplicity and because this yields
a faster quantization method that does not require backpropagation.

2.2 VECTOR QUANTIZATION

Instead of individually quantizing weights, as done in scalar quantization, vector quantization aims
to simultaneously quantize multiple weights. It can be shown that, even for completely independent
Gaussian sources, this typically results in much higher theoretical signal-to-noise ratios, leading
recent works to consider vector quantization for LLMs (van Baalen et al., |2024; [Liu et al., 2024bj
Egiazarian et al.| [2024; Tseng et al.||2024ab). Yet, vector quantization is not widely adopted in prac-
tice because of two practical problems. Firstly, naive vector quantization requires constructing an
explicit codebook using clustering (such as K-means), quickly becoming infeasibly large for higher
number of dimensions. Secondly, quantization requires an expensive search over this explicit code-
book, which can not practically be used on-the-fly on activations. Although application to LLMs is
limited, it is common in vector quantization (Gray & Neuhoff] |1998)) to use an implicit codebook
which does not have to be explicitly instantiated in memory. PVQ is such a vector quantization and
comes with the additional benefit of being search-free, allowing encoding and decoding of vectors
without having to perform an explicit and exhaustive lookup that at least linearly scales in algorith-
mic complexity with the size of the codebook. As a result, it can be applied on-the-fly and not only
on the neural network weights, but also to the activations during inference.

2.3 WEIGHTS ON THE SPHERE

Instead of viewing weight vectors in Euclidean D-space w € RP, they can be interpreted as scaled
points w = sv on the unit sphere v € Qp, with Qp = {v = (’1)1,’1}2,.. vp) € ||'UH2 =1}
We refer to this spherical decomposition as the direction v = & and the amplltude s = |lwl2
of a vector. Recent works that use such a spherical perspective on LLM weights have offered new
insights in properties of the training dynamics and guide algorithmic improvements. For example,
(Kosson et al.,|2023)) noted that LLM weights under weight decay or popular deep learning optimiz-
ers converge to an equilibrium on the sphere, theoretically predicting the magnitude of the amplitude
after training. Recent works have shown that only updating direction components can be beneficial

Under review as a conference paper at ICLR 2024

Figure 1: Illustration of the PVQ integer lattice in d = 3 dimensions with increasing pulses k from
1 to 6. Points on the pyramid Ps ;, are projected onto the sphere Ss .

in low-rank adaptation Liu et al.[|(2024a)) and training itself (Loshchilov et al., 2024). Yet, weights
are not always uniformly distributed making quantization hard and giving rise to outliers. We use
coherence processing (Chee et al., |2024) to reparameterize weights on the sphere in a way that re-
duces outliers without functionally changing the output of the network. Further, in high dimensions
the information in the amplitude is negligible compared to the information in the direction (Kipnis
& Reeves}, 2021). The observation that LLM weights are in practice uniformly distributed across the
sphere is the primary motivation behind exploring pyramid vector quantization, which allows us to
construct an efficient spherical quantization code.

Hadamard coherence processing Recent works have shown that rotating weights (Chee et al.,
2024} Ashkboos et al., [2024)) can improve weight coherence and reduce the number of outliers with-

out altering the network’s output, W = UWYV where U € R*E and V' € R*® are both
orthogonal matrices. Since the transpose of orthogonal matrices equals their inverse, the reparam-
eterisation can simply be undone in the forward pass by left- and right multiplying with matrix

transposes, W = UTWVT. We follow Chee et al. (2024); |Ashkboos et al.| (2024) and use random
Hadamard matrices for U and V', which can be implemented very efficiently.

Representing weights on the sphere through incoherence processing has shown to improve existing
quantization methods by preventing outliers in weight distributions. Yet, these methods still quantize
weights to Euclidean grids and do not exploit the spherical geometry of underlying weight distribu-
tions. We explore pyramid vector quantization to construct a quantization grid that is tailored to the
spherical geometry by being approximately uniform on the sphere.

Absorbing rotation matrices In most cases, the additional rotation matrices do not result in a
memory or compute overhead during inference since rotation matrices can be absorbed into weight
matrices: depending on the placement of the rotation matrix in the architecture, it can be left- or
right- multiplied with an adjacent weight matrix. This principle was used in QuaRot (Ashkboos
et al., [2024), which describes how rotation matrices can be efficiently absorbed into attention and
fully-connected layers in commonly used LLM architectures.

2.4 CLASSIC PYRAMID VECTOR QUANTIZATION

To quantize points on the sphere, we would like to construct spherical code, a finite subset on the
unit sphere S C Qp. Packing a set of points on the surface of a sphere such that their distance
is maximized is a notoriously hard problem in mathematics, famously dating back to the Dutch
botanist|Tammes| (1930). Just like sphere packing, optimal spherical codes are not generally known,
with the exception of some specific dimensions, similar to the E8 packing in 8 dimensions exploited
in (Tseng et al.,|2024a)). Even though good but sub-optimal spherical codes exist (Conway & Sloane},
2013), there is not always an efficient method to enumerate the packing without requiring an explicit
codebook, resulting in costly quantization. PVQ (Fischer, |1986) provides a solution to both of these
issues simultaneously, allowing good spherical codes to be constructed in arbitrary dimension that
can be efficiently encoded and decoded without having to maintain an explicit codebook in memory.
This is achieved by projecting an integer lattice on the [; ball Pp g onto the hypersphere Sp x. We
now formalize these concepts by providing an overview of classic PVQ algorithm.

The integer pyramid lattice Formally, the integer lattice of PVQ on the D-dimensional hyper-
sphere is obtained by starting from a set of points on the /; ball of radius K, and projecting the set

Under review as a conference paper at ICLR 2024

of points onto the sphere. We denote the set of integer points on the {; ball as Pp g,

D
7>D,KZ{PEZDI|p|1=§:|10d|=K} 2
d=1
To obtain our spherical code Sp_ x, we can project the points Pp_ g onto the sphere, by normalizing,
SD,KZ{pIPEPD,K} . 3)
|1pl]2

The number of codes N(D, K) = |Sp k| = |Pp, k| can be written as
N(D,K)=2D-»F (1 - D,1—K,2;2) &)

where o Fi (a, b, ¢; z) is the hypergeometric function (Terriberry, [2007), and for specific D, K € Z
can be computed through the following recurrence relation,

N(D,K)=N(D -1,K)+ N(D,K — 1)+ N(D, K) 5)
where we define N(D,0) = 1forall D > 0and N(0,K) =0 forall K > 1.

2.5 SUBROUTINES OF CLASSIC PVQ

Quantizing the direction To quantizing a vector w € R, we map it to the closest point on the
pyramid Pp_ i using an iterative procedure that projects the vector wy = w onto the /; ball of radius
K, and round it to the closest integer,

K
w1 = quantize_step ; (w;) = round <|||wt> (6)
We||1

After this step, we check whether the norm satisfies ||w]||; = K. If this is the case, we’re done. If
not, we either decrease by 1 or increase by 1, the element in w; with the biggest deviation |w;| —
K. We then call quantize_step (-) again, and repeat this process until convergence, which should
happen within at most 7' < D steps. The resulting vector lies on the pyramid wr € Pp g C
ZP, meaning it is integer-valued and the absolute values sum to 1. We provide pseudocode of the
quantization algorithm in Algorithm 2]in Appendix [B.2]to be fully self-contained.

Pyramid encoding We can encode points on the pyramid o pyramid points 72 T

P € Pp Kk to integer codes ¢ € [1,...,N(D,K) — 1] us- TP

ing an efficient algorithm, which avoids having to build an 7] si\ VL ;zo
explicit table in memory to represent the codebook. The 2 BN AT
original PVQ paper (Fischer, |1986) describes an encoding 1 20— 2
scheme, of which we provide pseudocode Algorithm [Jin] "=]
Appendix for the purpose of being self-contained. The 2] T NGy
algorithm provides a bijective mapping from the points of -4 W / | \\.\m

the pyramid Pp to the set of integer indices Cp g, pro- | L

viding a compact representation that allow vectors to be ef- 1 g

-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8

ficiently stored in as few bits as possible. In Figure 2] we
provide an example illustration of points on P, 7 and indices
Ca,7 = [0,27]. The table of N(d, k) can be precomputed for
0<d< Dand0 < k < K and reused to avoid recomput-
ing the same quantity.

Figure 2: Illustration of points on
pyramid Ps 7, their projections onto
the sphere Sz 7 and codes in Ca 7.

Pyramid decoding We decode the integer codes ¢ € C of PVQ to their associated vectors p €
Pp,k through a decoding algorithm which performs the inverse operation of the encoding algorithm
above. In Appendix [B.3] we provide a corrected version of the decoding algorithm described in the
original PVQ paper (Fischer, [1986). The original paper contains an error and misses a line after
setting x; < —j, resulting in wrong decodings when p contains negative values, except for when
the last value is negative (which happens to be the case for the example given in the original paper).

Under review as a conference paper at ICLR 2024

3 PVQ FOR LLM COMPRESSION

Before we present our overall algorithm to perform PVQ to LLMs in Section we discuss the
motivations and practical benefits of PVQ for LLM quantization in Section [3.1] and analyse the
theoretical signal-to-noise ratio of PVQ Section[3.2]

3.1 PRACTICAL ADVANTAGES OF PVQ

PVQ offers several practical advantages over competing methods. Firstly, PVQ is a vector quan-
tization method which means it can achieve higher signal-to-noise ratios than scalar quantization
methods that quantize weights independently. Secondly, PVQ uses an implicit codebook, which
means that it does not require an explicit codebook to be constructed in memory. This makes the
approach more memory efficient, but more importantly, the implicit codebook size can reach far be-
yond the memory that would have been required with an explicit codebook. To illustrate, explicitly
storing a codebook that quantizes 16 bit precision vectors of a groupsize of 128 to 4 bit per weight
would require approximately 2.7 - 10'°* bytes, exceeding the estimated information capacity of the
observable universe. With PVQ, we can use implicit codebooks of this size because encoding and
decoding are done by an efficient algorithm, not a table lookup. Thirdly, PVQ is search-free, which
means that vectors can be encoded without having to search over a codebook. This is significant
apart from the computational benefits, because it allows for on-the-fly quantization of activations
and opens the door to quantization at train time. Lastly, the desired bits per weight after quantiza-
tion can also be fractions (e.g. bgirection = 3.5) and are not limited to integers. The ability to choose
the groupsize, and bits for the direction make PVQ highly flexible and can be chosen such that
the most optimal trade-off between compression and performance is achieved. We find that PVQ
outperforms competitive quantization methods in terms of weight-only and activation quantization.

In this work, our focus is on post-training quantization of weights and activations. Some current
works quantize LLMs during training (e.g. Ma et al., 2024)). We anticipate that PVQ could be used
during training because of the advantages outlined above, though we leave a thorough investigation
and comparisons to future work.

3.2 SIGNAL-TO-QUANTIZATION-NOISE ON IDEAL GAUSSIAN SOURCE

To assess the theoretical effectivity 20 Weight quantization methods 20 Activation quantization methods
between different quantization al- —— 8 RN, group size: 16, clip ratio: 1
. —>& RTN (search), group size: 16 RTN, group size: 16, clip ratio: 0.9
gorithms are, we start by compar- 55 | —— RTN (search), group size: 256 55 | ¢ RTN. group size: 16, ciip ratio: 0.8
: L : : PVQ, group size: 2 RTN, group size: 256, clip ratio: 1
lng emplrlcal eStlmates Of thelr per-) PVQ, group size: 16 o RTN, group size: 256, clip ratio: 0.9
formance on an idealized Standard % 20 —=— PVQ, group size: 256 / E’ 20 RTN, group size: 256, clip ratio: 0.8
. . xul 1 xul 1 PVQ, group size: 2
Gaussian source, zero mean unit 2 2 * PVQ, group size: 16
. . o S —— PVQ, group size: 256
variance. We measure the signal-to- 154 Z 154
. . . . c c
quantization-noise ratio QSNR by 2 2
averaging the mean squared error 104 101
between true and quantized sig- p
nal over 1000 Samples mn Flg 1.0 15 20 25 3.0 35 4.0 1.0 15 20 25 3.0 35 4.0

ure We compare PVQ with ES, Bits-per-weight (BPW) Bits-per-weight (BPW)

a method that has optimal packing

of uniformly distributed weights in Figure 3: Signal-to-quantization-noise-ratio (QSNR) of
D = 8 dimensions only (Tseng| quantization methods on standard Gaussian source. PVQ
et al 20244d) and naive rounding- achieves high QSNR close to E8, which uses an optimal
to-nearest (RTN) scalar quantiza- packing on a uniform source. PVQ uses an implicit code-
tion. We find that PVQ achieves book and is search-free, thereby amenable to quantization of
QSNR ratios close to the optimal E§ ~ weight and activations.

method. Further, PVQ can also be applied to activation quantization, in which case we compare to
RTN without search as a baseline that is suitable to quantization of both weights and activations.

Under review as a conference paper at ICLR 2024

3.3 PYRAMID VECTOR QUANTIZATION FOR LLMS

This section describes the overall method for quantizing an LLM using PVQ.

Step 0. Choose the desired BPW. In PVQ, the trade-off between performance and effective
bits per weight (BPW) is controllable through the groupsize D, which must divide the number of
columns so that W € RY*PG direction bits bgirection € N and amplitude bits bympliude € N:

BPW = bdirection / D+ bamplilude / G (7)

As the number of direction bits per weight bgirection/ D, and amplitude bits per weight bamplitude /G
are fractions, it is easy to choose a non-integer number of bits per weight in PVQ.

Step 1. Coherence processing. Before we begin quantizing the weights, we perform coherence
processing using efficient Hadamard rotation matrices proposed in (Chee et al., 2024)), which can be
fused into the architecture as described in QuaRot(Ashkboos et al.| 2024]).

Step 2. Determine the number of pulses K. To determine the number of pulses K such that the
number of bits required to encode PVQ vectors remains within the desired maximum, we find the
largest K by increasing it such that it still satisfies [logs (N (D, K))/D7 < bgirection- Here, N (D, K)
is computed using the recursive algorithm outlined in Section In practice, the number N (D, K)
can exceed regular integer types and may require arbitrary precision integers.

Step 3. Quantizing the direction. We quantize all LLM weight matrices making up key,
query, value and fully-connected components. We write the normalized weight matrix W =
W1 Wy ... Wg] € RVXGP with N features, G groups and a groupsize of D. Given our

choice of K, we quantize groups W, € RN P using the quantization procedure of Section

yielding a quantized direction matrix W, on the pyramid Pp , ie. elements are rounded integers
and absolute values of rows sum to 1. This operation can be parallelized over features and groups.

Step 4. Computing the amplitude. For each quantized row vector @ € R in a group, we can
find an optimal rescaling by s € R that minimizes the Euclidean distance to the original weight w
in closed-form s = @’ w/w!’ w. Repeating this for all features and groups yields an amplitude

matrix § € RVX . We refer to quantized W as the ‘direction’ and the scales S as the ‘amplitude’.

Step 5. Quantizing the amplitude (optional) For small groupsizes, we can optionally quantize
amplitudes as described in Section For each row s € R in S, this entails quantizing normalized
elements |[CDF(s?/||s||3) - 2°] using the CDF of the Beta(D/2, D(G — 1)/2) distribution. The
normalizing constant ||s||3 needs to be stored for dequantization, but because it is shared across
groups its contribution to the total < 0.01 bits per weight is negligibly small.

Step 6. Correcting the quantization error. For each quantized group of weights indexed by
the quantized columns sgﬁ\/g € RY¥*DP | we can update the other remaining columns W_,, €
RN X(G=1D to compensate the quantization error that minimizes the proxy loss L of Equation l)

Wy Wog—H_ _ H., (W, —s,W,) (8)
where H_, _, is a square submatrix of the inverse Hessian with rows and columns corresponding
to remaining weights and H ~! is a rectangular submatrix of the inverse Hessian with rows and
columns that correspond to quantized and remaining weights respectively. We can avoid inverting
the full Hessian for every update by working with its Cholesky decomposition H = LL™, as de-
tailed in GPTQ (Frantar et al.,[2022)) which proposed the update in the context of scalar quantization.

Step 7. Encoding the direction. To encode a quantized weight W € RVXGD (e.g. 32 bit float
for R) into the actual low bit integer representation W € NV*& sometimes referred to as the
‘code’, we can use the PVQ encoding algorithm described in Algorithm [2] This is problematic,
since the number of bits required to store a vector may exceed the bit width of integer types in many
languages (e.g. when [log, (N (D, K))] > 128 bits, it can not be represented in a 128 bit integer).
To overcome this, we implemented arbitrary precision arithmetic in CUDA/C++ to support arbitrary
bit width integer types to allow encoding and decoding kernels.

Under review as a conference paper at ICLR 2024

6 groups implies B(3, 5) 10 groups implies B(5, 9)

© Quantization grid
W Theoretical distribution

oo0
2 shape bits + 4 gain bits 3 shape bits + 3 gain bits 4 shape bits + 2 gain bits 2 shape bits + 4 gain bits 3 shape bits + 3 gain bits 4 shape bits + 2 gain bits

Figure 4: Effect of different direction and amplitude bits on effective PVQ quantization grid. The
distribution automatically matches the theoretical Beta weight distribution.

3.4 AMPLITUDE QUANTIZATION

Normalized amplitudes follow the Beta distribution. Smaller groupsizes lead to a lower quan-
tization error, but lead to an increase in the number of bits required to store amplitude parameters.
This is because the amplitude S € RN > grows linearly with the number of groups G, and therefore
inversely proportional to the chosen groupsize D. To overcome this issue, we propose a theoreti-
cally and empirically motivated scheme to quantize amplitude parameters. In Theorem 3.1} we note

that row vectors of normalized amplitudes follow a Beta distribution Beta(%, w) of which the
coefficients depend on the groupsize D and the number of groups G. We empirically confirm that
our theory meets practice, as we find that the Beta distribution matches normalized weight distribu-
tions of pretrained LLM models, after performing the rotation described in Section [2.3] as shown
for selection of layers in a pretrained LLM in Figure [d] To exploit the observation that amplitudes

are Beta distributed, we propose to use the quantiles of this distribution to quantize amplitudes.

Theorem 3.1 Let w € RYP be a normally distributed vector that can be grouped in G equally

sized vectors w = [v1 vy -+ vg| where each of the vectors vy has the same dimensionality

equal to the groupsize vy € RP. Then the normalized radius (the ‘amplitude’) of each group
D G(D—l))

277 2

59 = vg vy /||w|[3 follows the s, ~ Beta(distribution. (Proof in Appendix

Groupsize: 2048
Beta(1624, 1024)

ayer 5.6, self_att ht
5 G 5
8) 8 7]
o o0
0
" 75
0 "

11

Figure 5: Theoretical Beta distribution of Theorem [3.1] closely match amplitudes of rotated weights
in trained LLMs, here demonstrated for empirical weight distributions of a pretrained Llama-v3 §B.

Quantizing amplitudes using Beta quantiles. The obser- Beta(2, 6) quantiles
vation that normalized amplitudes are Beta distributed is R VAN
important, as it suggests that we can quantize amplitudes 5 08,#_ 2 5
efficiently by mapping centers of linearly spaced regions > i 2.0 5
through the quantile function of a Beta distribution, with- 500 I 155
out introducing additional hyper-parameters. To obtain a b 204 1o
bit quantizer, we take a regular uniform grid of 2° points af- 3 3
ter first transforming elements through a change-of-variables £0° & 032
given by the CDF of the Beta distribution and dequantizing 0.0 /eeee00® & 100
using the inverse CDF (see Figure|[6): SO0 o2 04 06 08 10
it quantiles points ® from inverse CDF
: b
quantize(x) = |CDF(z) - 2] © Figure 6: Quantiles of Beta(2, 6).
dequantize(z) = PPF((x + 0.5)/2°) (10)

where |- | denotes the floor function, CDF(-) the cumulative density function of the Beta distribution
and its inverse PPF(-), known as the percentile point function of the Beta distribution.

Under review as a conference paper at ICLR 2024

4 RESULTS

4.1 WEIGHT-ONLY QUANTIZATION (WITHOUT AMPLITUDE QUANTIZATION)

Since most prior work focuses on weight-only quantization, we begin by comparing the performance
of weight-only PVQ quantization with common weight-only quantization baselines. Following prior
work (Frantar et al.| [2022}; |Ashkboos et al., 2024), we measure test perplexity (PPL) and average
accuracy on a range of zero-shot downstream tasks after quantizing common open-source LLM
models of Phi, Mixtral and Llama families. We compare groupsizes in [16, 32, 64, 128, 256], keep
the amplitude in 16 bit, and use direction bits in [3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8] for PVQ and [3, 4,
5, 6, 7, 8] for other methods. Unlike most scalar quantization methods, PVQ more easily supports
non-integer number of direction bits as we can choose an integer number of bits per codeword that
is not divisible by the number of groups GG — for instance, with groupsize D = 16 and 40 bits per
group results in 40/16 = 2.5 direction bits).

Phi-3 Mixtral 8x7B Llama-3 8B Llama-3 70B
10 101 10 10

=== Original
RTN

8 256 81 Quarot
"

bits per weight (BPW) bits per weight (BPW) bits per weight (BPW) bits per weight (BPW)

©
©
!

Test perplexity (PPL)

Figure 7: Weight only quantization. Test perplexities (PPL) after quantizing with different methods
at group size settings (within connected set) and various direction bits (between connected sets).

Phi-3-mini-4k Mixtral-8x7B Llama-3-8B Llama-3-70B
Method Hessian Spherical Groupsize BPW | PPL(}) Avg. Acc (1) | PPL(}) Avg. Acc (1) | PPL(}) Avg. Acc(1) PPL(]) Avg. Acc (1)
Original 16 6.01 0.72 3.84 0.78 6.13 0.73 2.85 0.80
RTN 128 3.125 | 19.03 0.53 8.95 0.66 29.41 0.41 487.94 0.45
GPTQ v 128 3.125 7.36 0.65 8.40 0.52 17.77 0.40 nan* nan*
QuaRot v v 128 3.125 7.17 0.67 4.29 0.76 7.62 0.69 5.14 0.76
PVQ v v 128 3.125 6.85 0.68 420 0.77 7.01 0.72 4.82 0.77

Table 1: Weight-only quantization in sub-4 bits. Post-quantization test perplexity (PPL) and average
zero-shot (Avg. Acc) performance. PVQ yields the highest performance after quantization. Details
and additional results in Appendix [E.T} nan* indicates GPTQ fails due to non-psd Hessian.

4.2 WEIGHT-ONLY QUANTIZATION (DIRECTION AND AMPLITUDE QUANTIZATION)

A benefit of PVQ is that the number of bits for the direction and bits for the amplitudes can be chosen
flexibly, even to not-integer ratios. To evaluate the effect of different amplitude bits, we repeat the
same experiment as before, but rather than varying the groupsize, we fix the groupsize to 16 and
vary the amount of bits used for the amplitude.

Phi-3-mini-4k Mixtral-8x7B Llama-3-8B Llama-3-70B
Method Groupsize Hessian Spherical BPW | PPL (}) Avg. Acc (1) | PPL(}) Avg. Acc(?) | PPL(]) Avg. Acc(?) PPL(]) Avg. Acc ()
Original 16.00 6.01 0.72 3.84 0.78 6.13 0.73 2.85 0.80
PVQ [2.5 bit directions, 16 bit amplitudes] 16 v v 3.50 7.52 0.67 442 0.76 8.04 0.68 5.92 0.74
PVQ [3 bit directions, 4 bit amplitudes] 16 v v 3.25 6.85 0.69 4.22 0.76 7.14 0.70 451 0.78

Table 2: Quantizing direction and amplitude. We compare post-training perplexity (PPL) and av-
erage zero-shot performance (Avg. Acc). PVQ yields the highest performance after quantization.
Details and additional results in Appendix [E.2]

Under review as a conference paper at ICLR 2024

Phi-3, groupsize: 16 s Mixtral 8x7B, groupsize: 16 10 Llama-3 8B, groupsize: 16 150 Llama-3 70B, groupsize: 16

=
IS

=== Original
—o- PVQ
@ RTN
© Quarot
e GPTQ

-
~

Test perplexity (PPL)
o o

B
<
206
E 0.6
Sos —=—~- Original
H 0.5 0.5 -O0— PVQ
E o4 e RTN
8 0.4 0.4 65;0—0 © Quarot
& © GPTQ
0.3 L] 0.3 4 () 0.3 () 0.3 °
T T T T T T T T T T T T T T T T
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
bits per weight (BPW) bits per weight (BPW) bits per weight (BPW) bits per weight (BPW)

Figure 8: direction and amplitude quantization. Test perplexities (PPL) and test accuracies (Avg.
Acc) at different bits for amplitudes (within connected sets) and various direction bits (between
sets).

4.3 WEIGHTS AND ACTIVATION QUANTIZATION

As PVQ use an implicit codebook and is search-free, it can be applied to not only the weights but
also the activations during inference and reduce computational requirements of the forward-pass.
In Figure [T3] we evaluate the final test perplexity for different settings of effective bits per weight
and bits per activations. In Table[3] we compare the resulting test perplexities to other methods for
quantizing weight and activation. We also compare to naive round-to-nearest (RTN) without search,
which is also amenable to quantization of weights and activations but has much lower signal to noise.
We find that PVQ obtains state-of-the-art performance across the considered LLM architectures, and
that this holds generally across different settings of bit rates.

Test perplexity on Phi-3 Test perplexity on Mixtral 8x7B Test perplexity on Llama-3 8B
° 5 66 65 64 63 63 © prprererereraaan 150 © e o5 6
n n n
a 73 7 68 67 66 _10
20 0 -12.5 in
3 < 15 < <
S o o 100 o ?
E < < <
> 8
s 10 w 75
gm) m 7
O. - O - 35 33 35 31 34 31 31 31 18 5'0 O -
m 6.01 ™ l l l | 3.84 ™ 7 6.13
3.0 35 40 45 5.0 30 35 40 45 5.0 3.0 35 40 45 5.0
Weight bits Weight bits Weight bits

Figure 9: Weights and activations. Comparing test perplexity at different bits per weight and bits
per activations. From minimal compression (top right) to high levels of compression (bottom left).

Method Phi-3-mini-4k Mixtral-8x7B Llama-3-8B
Weights Activations Groupsize Hessian Spherical BPW BPA | PPL(]) Avg. Acc (1) | PPL(l) Avg. Acc (1) | PPL(}) Avg. Acc (1)
Original - 16 16 6.01 0.72 3.84 0.78 6.13 0.73
GPTQ RTN 128 v 4.125 4.125 8.36 0.63 7.41 0.59 4747.68 0.36
QuaRot RTN 128 v v 4.125 4.125 7.48 0.67 4.43 0.75 7.34 0.70
PVQ RTN 128 v v 4.125 4125 7.37 0.66 4.40 0.76 7.16 0.70
PVQ PVQ 128 v v 4.125 4.125 6.94 0.68 4.57 0.75 6.89 0.71

Table 3: Quantizing weight and activation in 4 bits. We compare perplexity (PPL) and average zero-
shot performance (Avg. Acc) after quantizing different open source LLM models using various post-
training quantization methods. PVQ yields the highest performance after quantization. Additional
results in Appendix [E-3]

4.4 DOWNSTREAM ZERO-SHOT TASKS

In Table] we provide results on downstream zero-shot tasks split out per task. We report weight-
only PVQ with both direction and amplitude quantization on a Llama-3-8B model. Additional
results including other LLM models can be found in Appendix [E.4]

Under review as a conference paper at ICLR 2024

Llama-3-8B
Method Groupsize Hessian Spherical BPW | PPL| | PQT WG1T HST A-e? A-ct LAT | Avg. T
Original 16.000 | 6.13 | 081 073 079 078 053 076 | 0.73
RTN 3.125 | 2941 | 064 055 042 041 025 022 0.41
GPTQ 128 v 3125 | 17.77 | 063 059 035 043 026 0.17 0.40
QuaRot 128 v v 3.125 762 | 077 071 073 075 046 071 0.69
PVQ [3 bit directions, 16 bit amplitudes] 128 v v 3.125 7.01 080 073 076 078 050 0.75 0.72

Table 4: Performance on downstream tasks. We compare performance on zero-shot downstream
tasks after quantizing weights using different weight quantization methods.

4.5 OPTIMIZING PVQ FOR CUDA

For large D and K, PVQ results in large precision integer codes c, far surpassing the native 32-
bit integer operations on CUDA. As highlighted in Section even 128-bit operations introduced
with CUDA 11.5 are not sufficient. We therefore implement the CUDA kernels for PVQ on custom
subroutines for arbitrary precision integer arithmetic relying on PTX instructions using the carry-
forward registry (CC.CF) for multi-word integer addition, subtraction and bit-shifting. We use a
word-minor memory layout to ensure that the memory access can be coalesced. [Table 5|presents the
time and I/O complexity for our implementations.

For quantization, encoding and decoding we parallelize the work across the batch dimension. Fur-
ther optimizations are possible, especially for small batch sizes B. In particular, the inner loops of
each algorithm (Appendix[B) can be further parallelized by first sorting or computing the cumulative
sum of |x;| respectively using a CUDA optimized reduction (Harris et al., 2007).

The recurrent formulation for the size table (N [D, K]) quickly becomes prohibitive as its naive
implementation requires O(D - K - G) serial operations, each requiring overlapping reads and writes.
Instead, we reformulate the algorithm to perform K operations in parallel using a CUDA optimized
Hillis-Steele type scan reduction (Hillis & Steele, |1986) which accounts for the log(K') factor in
computing each row in parallel (Appendix [C.2). This has the further advantage of only
having to read from global memory for synchronization following (Xiao & Feng,|[2010), otherwise
the threads keep the values in registry and exclusively writes to global memory.

Function Time complexity I/0 complexity
Quantization O(B-D) O(B-D)
Encoding / Decoding O(B - D - Q) O(B - D - G) reads, O(B - D) ordered writes

Size table generation O(K -log(K)-D-G) O(K - D -G) ordered writes

Table 5: The time and I/O complexity on the HBM for our CUDA optimized PVQ kernels, where
B is the batch size and G the number of words comprising each integer. All functions have O(G)
space complexity. We highlight ordered I/O operations as this more efficient use of the memory
bandwidth as they can be coalesced into fewer operations as opposed to random ones.

5 CONCLUSION

This work explored pyramid vector quantization (PVQ) for quantization of weights and activations
in large language models (LLMs). PVQ is a vector quantization method that allows high signal-to-
noise ratios without having to build an explicit codebook or perform search. This results in state-
of-the-art quantization performance in terms of the most favourable performance to bits-per-weight
trade-off, and is amenable to quantization of activation. This has direct practical benefit for post-
training model compression, but also opens the door towards quantization at train time. We propose
to quantize LL.Ms using an implicit PVQ codebook on the unit sphere, which can be flexibly config-
ured for codesize and dimensions. In addition, we propose a theoretically and empirically motivated
way to also quantize amplitudes enabling small groupsizes in practice. Lastly, we incorporate Hes-
sian information throughout the process to minimize feature error due to quantization. This yields a
novel and highly parallelisable algorithm for LLM weights and activations. We demonstrate state-
of-the-art quantization performance in terms of superior performance after quantizing pre-trained
models, on both weight-only and weight and activation quantization.

10

Under review as a conference paper at ICLR 2024

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices and groups,
volume 290. Springer Science & Business Media, 2013.

Thomas J Daede, Nathan E Egge, Jean-Marc Valin, Guillaume Martres, and Timothy B Terriberry.
Daala: A perceptually-driven next generation video codec. arXiv preprint arXiv:1603.03129,
2016.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Thomas Fischer. A pyramid vector quantizer. IEEE transactions on information theory, 32(4):
568-583, 1986.

Peter Frankl and Hiroshi Maehara. Some geometric applications of the beta distribution. Annals of
the Institute of Statistical Mathematics, 42:463-474, 1990.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory, 44
(6):2325-2383, 1998.

M. Harris, S. Sengupta, and J. D. Owens. GPU Gems 3, chapter 39. Parallel prefix sum (scan) with
CUDA, pp. 851-876. Addison-Wesley Professional, 2007.

W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM, 29(12):1170-1183,
December 1986. ISSN 0001-0782. doi: 10.1145/7902.7903. URL https://doi.org/10.
1145/7902.7903!l

Alon Kipnis and Galen Reeves. Gaussian approximation of quantization error for estimation from
compressed data. IEEE Transactions on Information Theory, 67(8):5562-5579, 2021.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks. arXiv preprint arXiv:2305.17212, 2023.

Vincenzo Liguori. Pyramid vector quantization for deep learning. arXiv preprint arXiv:1704.02681,
2017.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024a.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024b.

Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
with representation learning on the hypersphere. arXiv preprint arXiv:2410.01131, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

11

https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/7902.7903

Under review as a conference paper at ICLR 2024

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197-7206. PMLR, 2020.

Pieter Merkus Lambertus Tammes. On the origin of number and arrangement of the places of exit
on the surface of pollen-grains. Recueil des travaux botaniques néerlandais, 27(1):1-84, 1930.

Timothy B. Terriberry. Pulse vector coding. Xiph.Org Foundation., 2007.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024a.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. Qtip: Quantization with trellises
and incoherence processing. arXiv preprint arXiv:2406.11235, 2024b.

Jean-Marc Valin, Koen Vos, and Timothy Terriberry. Definition of the opus audio codec. Technical
report, 2012.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quan-
tization. arXiv preprint arXiv:2402.15319, 2024.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen
Blankevoort. The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Shucai Xiao and Wu-chun Feng. Inter-block gpu communication via fast barrier synchronization.
In 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1-12.
IEEE, 2010.

12

Under review as a conference paper at ICLR 2024

A MATHEMATICAL DETAILS

A.1 PROOF THAT AMPLITUDES ARE BETA DISTRIBUTED

Assume we have weights (wy,ws, ..., wy) that are normally distributed: w; ~ N'(0,02). The
sum of the squares of these weights for a subset of size (D) is chi-squared distributed u = w? +
wi + ...+ wi ~ o%x%. Now, consider two independent chi-squared distributed variables: a ~

o?x%,b ~ o?x%. It can be shown that the ratio of these two variables follows a Beta distribution:
~ Beta (%,) (Fran achara, . This result is independent of the scale parameter
5 ~B ‘3 g (Frankl & Maeh 1990). Thi It is independ f th le p (

2 2 2
2 s witws+...twp
0). To normalize the weights in a group, we consider the ratio: PR ey where D < N.

Given that (w} + w3 + ... + w%) ~
witwi .. twh
w12+w§+..4+w}"v

Beta (%, N ED) Thus, the normalized weights in a group follow a Beta distribution.

2, .2 2
witws+...+wp

This can be rewritten as: TG S iy Ce R

o?x%, and (w2D+1 +...+wh) ~ o?x%_ p, the ratio follows a Beta distribution:

13

Under review as a conference paper at ICLR 2024

B CLASSIC PVQ SUBROUTINES

The quantization, encoding and decoding algorithms of classic PVQ are provided below. They
are equivalent to the algorithms originally proposed in (Fischer, [1986)), and included to be self-
contained. We also fixed a small bug in the original description of the decoding algorithm.

B.1 ALGORITHM 1: PVQ QUANTIZATION

Algorithm 1 PVQ quantization: v — v, RP — ZP.
l: v+ v

while ||9||; # K do

3: i <— argmax;, (|v;])
: v; + v; — sign(v;)

N

o~

4

5: ¥ < round (ALU)
IR

6: end while

7: return U

B.2 ALGORITHM 2: PVQ ENCODING

Algorithm 2 PVQ encoding: p + ¢, ZP — [1,N(D, K)].
l: ¢« 0,i+ 1,d+< D, k+ K
2: while k! = 0 do
if |z;| = 1 then
cict N(d—1,k) + =20@) N(g 1,k - 1)
end if
if |x;| > 1 then
ce et N(d—1,k) + 25 N(d — 1,k — j) + 2CON(d — 1,k — |ay])
end if
9: k+—k— |J,‘Z|
10: d<—d-—1
11: 141+1
12: end while
13: return c

w

AR A

14

Under review as a conference paper at ICLR 2024

B.3 ALGORITHM 3: PVQ DECODING

Algorithm 3 PVQ decoding: ¢ — p, [1,N(D, K)] — ZP.
1. =0
2: 2+ 0,i+ 1,d+< D, k+ K
3: while £ > 0 do

4: if ¢ = z then

5: T; < 0

6: if £ > 0 then

7: Tp < k— |$z|

8: k<0

9: end if

10: else

11: ifc <cb+ N(d—1,k) then

12: z; <0

13: else

14: z=2z+N(d-1,k)

15: g1

16: while ¢ > 2 +2N(d — 1,k — j) do
17: 2+ 24+2N(d—-1,k—j)
18: j—i+1

19: end while

20: ifc<z+ N(d—1,k—j) then
21: T J

22: else

23: T; < 7]

24: z+N(d-1,k—7)

25: end if

26: end if

27: end if

28: end while
29: return x

The decode algorithm Algorithm [3] is akin to that described in the original PVQ paper (Fischer|
1986) and provided to be self-contained. It also fixes a missing line 23, setting z; < —j. Not
including this line results in wrongly decoded vectors when p contains negative values, except for
when the last value is negative (which is why the example provided in the original paper does not
fail).

C IMPLEMENTATION DETAILS

C.1 DATASET

We ran all methods on exactly the same data to ensure fair comparison. We follow the Quarot
paper (Ashkboos et al.|[2024), and use the same 128 samples of the WikiText-2 dataset and hold-out
validation data in all experiments.

C.2 PARALLELIZATION USING CUDA KERNELS

Here, we provide additional details for the CUDA implementation described in Section .3]

The quantization, encoding and decoding operations described in Appendix [B]can all be parallelized
across the batch dimension. To utilize this, we implementing these operations in custom CUDA
kernels. To achieve the time complexities of we must re-write the summation in the encoding
operation (Algorithm 2] line [7). This is done by in addition to the size table N computing an
additional cumulative sum

15

Under review as a conference paper at ICLR 2024

k
V(d,k)=> N(di) Vd=0,...,D andk=0,....K. (11)

i=1

Using V, the expression becomes

cc+N(d-1k)
Fo(V(d—1,k—1)—V(d— 1k —|zi]))
1 — sgn(x;)

+ 2N~ Lk~ i),

which has constant time and I/O complexity.

Furthermore, the size table function can be parallelized across the K axis, by recognizing that the
contributions N(D — 1, K) + N(D, K — 1) to N(D, K) from[Equation 5correspond to adding the
cumulative sum V(D — 1, k) to each k at row D which may be done efficiently in CUDA (Harris
et al., 2007). The pseudocode for each thread is shown in E} Notice how the threads only write to
global memory, except for any synchornization reads.

Algorithm 4 Size table computation.

1: N(D,K)=0

2: d<+0

3: k < thread index

4: v 2 > Value in thread registry
5: whiled < D do

6: if £ = 0 then

7 vd<<l1 > Recurrent relationship does not hold for k£ = 0, set to 2d
8: else

9: Vg 4 Vg + Uk—1 > Add diagonal relationships through warp shuffle
10: end if
11: Vg — Zle v; > Add cumulative sums through a parallelized scan
12: N(d, k) « vy > Write to size table in global memory

13: d+d+1
14: end while
15: return N

C.3 AMPLITUDE QUANTIZATION

For scale quantization, we pre-compute a list of 10000 points using scipy.stats.beta.cdf
onto GPU. We then directly index neighbouring points on this list which we interpolate linearly
to obtain quantized values. To dequantize, we use scipy.stats.beta.ppf to construct an
explicit codebook on GPU, which we can index in parallel to perform dequantization.

16

Under review as a conference paper at ICLR 2024

D EMPIRICAL AMPLITUDE HISTOGRAMS

To assess how well our theory of theoretical Section 3.4 matches the empircial weight distribuitons
of pretrained LLM models, we compare the empirical weight histograms of all layers of a pretrained

LLM model with the expected Beta (%, w> distribution. We consider the weights of a pre-

trained Llama-v2-7b after coherence processing and provide the histograms of all weight matrices
in the model below. We find that the Beta distribution closely matches the empirical weight distri-
butions in practice.

ORI SRR
OUOO0E CORRDIT

CLUAADE ORI
ClIDom

COURTIT
OULID
COATI]
OLLDT0
CULIT
OULODL
GO
ORI
COLA]
OULIDA
COLLCT
NVUUEn

OOLIDIE
Y
VLA
Ui
VLA

COLTII]

COLLII0
COLLDIT
Nvvyuls
COLIT0

ORI

CUDDDD

17

OO
COLDOT
UL
COLLOTT
COLKILL
COLDU
CUCREI
COLDDT
COLRDLE
COLDII
CORRLLR
COLKDDT

COLTODD
WUUTRE
YR
CALIOO0
COOCOn

Coooooo

Under review as a conference paper at ICLR 2024

OO0 COCDONT
0D CODCTOT
WODD OO0

D0 CO00000

0 OOUCTD

| DRI

] OUUDDAGD COUADDD CARI00
CONTINT GO0 CUCELL

VAT DUDAAG0 DULADDD 000000
AR COLDDI0 COLKMmK

18

Under review as a conference paper at ICLR 2024

OULAAD OO O
SOUTIDY SOOI B
CUALAD Ox

DA CODETIT
 "1f CODONOn
IH CO0II
Wi OUKI0T
| ORI

UULIO00

19

Under review as a conference paper at ICLR 2024

OULRAD CURAAOC O
ﬂmmmmm P ——

IAD COREROE
OO0
1 OOLII]
01 COO0DET

| COCTIG

D CODLIO

NN VUTINEY VU UV TRV s Wil
COOODD CODLL CO0DDIL

20

Under review as a conference paper at ICLR 2024

E ADDITIONAL RESULTS

E.1 ADDITIONAL WEIGHT-ONLY EXPERIMENTS (DIRECTION ONLY)

Phi-3
Method Groupsize Hessian Spherical BPW | PPL1T | PQT WG?T HST A-e? AT LAT | Avg. T
Original 16.000 | 6.01 081 073 078 079 057 0.65 0.72
RTN 3125 | 19.03 | 072 058 0.62 060 041 025 0.53
GPTQ 128 v 3.125 736 | 077 066 069 074 051 053 0.65
QuaRot 128 v v 3.125 7.17 1 077 069 071 074 050 0.62 0.67
PVQ [3 bit directions, 16 bit amplitudes] 128 v v 3.125 685 | 079 071 072 076 051 0.62 0.68

Table 6: Performance on downstream tasks.

tasks after quantizing weights using different weight quantization methods.

Mixtral 8x7B

We compare performance on zero-shot downstream

Method Groupsize Hessian Spherical BPW | PPL1 | PQ1T WG1T HST A-e?t A-ct LAT | Avg. T
Original 16.000 | 384 [084 076 084 083 060 078] 0.78
RTN 3.125 8.95 0.78 0.66 0.69 0.71 045 0.64 0.66
GPTQ 128 v 3.125 | 840 | 069 0.60 047 047 030 0.60 | 052
QuaRot 128 v v 3.125 4.29 082 076 0.83 082 0.58 0.78 0.76
PVQ [3 bit directions, 16 bit amplitudes] 128 v v 3.125 4.20 0.83 0.76 0.82 0.81 0.58 0.79 0.77

Table 7: Performance on downstream tasks. We compare performance on zero-shot downstream
tasks after quantizing weights using different weight quantization methods.

Llama-3-8B
Method Groupsize Hessian Spherical BPW | PPL1 | PQ1T WG1T HST A-e?t A-ct LAT | Avg. T
Original 16.000 | 6.13 0.81 0.73 0.79 0.78 0.53 0.76 0.73
RTN 3.125 | 2941 | 0.64 055 042 041 025 022 0.41
GPTQ 128 v 3125 | 1777 | 063 059 035 043 026 0.17 | 040
QuaRot 128 v v 3.125 7.62 0.77 0.71 0.73 0.75 046 0.71 0.69
PVQ [3 bit directions, 16 bit amplitudes] 128 v v 3.125 7.01 0.80 0.73 0.76 0.78 0.50 0.75 0.72

Table 8: Performance on downstream tasks. We compare performance on zero-shot downstream
tasks after quantizing weights using different weight quantization methods.

E.2 ADDITIONAL QUANTIZING DIRECTION AND AMPLITUDE EXPERIMENTS

21

Under review as a conference paper at ICLR 2024

Phi-3, groupsize: 16

Mixtral 8x7B, groupsize: 16

Llama-3 8B, groupsize: 16

Llama-3 70B, groupsize: 16

Test perplexity (PPL)

- Original
12,54 o= PVQ
e RTN
10.0 4 © Quarot
e GPTQ
7.59
5.0 i
T T T T T T T T T T T R e ™ T
3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

bits per weight (BPW)

bits per weight (BPW)

bits per weight (BPW)

bits per weight (BPW)

Figure 10: direction and amplitude quantization. Test perplexities (PPL) with different quantization
methods at various bit levels for amplitudes (within connected sets) and for direction bits (between
connected sets).

o
~

o
o

Performance (Avg. Acc)
o o
~

o
w

Phi-3, groupsize: 16

Mixtral 8x7B, groupsize: 16

Llama-3 8B, groupsize: 16

Llama-3 70B, groupsize: 16

% 5 0.7
0.6
054 === Original
0.5+ h ° 0.5 —O0— PVQ
0ad ° o RIN
0.4+ h 0.4 FQ—O @ Quarot
e GPTQ
e 0.3 1 [} 0.3 1 ° 034 °
T T T T T T T T T T T T T T T T
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

bits per weight (BPW)

bits per weight (BPW)

bits per weight (BPW)

bits per weight (BPW)

Figure 11: direction and amplitude quantization. Average accuracies (Avg. Acc.) after quantizing
with different methods at different bits for amplitudes (within connected set) and various direction
bits (between connected sets).

E.3

Activation bits
3.0 3.5 4.0 45 5.0

ADDITIONAL WEIGHT AND ACTIVATIONS EXPERIMENTS

Test perplexity on Phi-3

35 4.0 45
Weight bits

Test perplexity on Mixtral 8x7B
° e 00 ©
n n
" s a2 a1 a1 a2 ”
15819 a2 e 1280
s as
So 7 aG 10.05 o
© ¥ © ¥
10w 758
Im Im
O. - 35 33 35 31 34 31 31 31 18 5'0 O -
6.01 ™ 1 1 1 1 3.84 ™
3.0 35 40 45 50 3.0
Weight bits

0 Test perplexity on Llama-3 8B

-10

9

8

7

6.13
35 40 45 5.0
Weight bits

Figure 12: Weights and activations. Comparing test perplexity at different bits per weight and bits
per activations. From minimal compression (top right) to high levels of compression (bottom left).

Activation bits
3.0 3.5 40 45 5.0

0.67
067
068
064
0.65
061 064 064

057 06 061 061 064 062

044 048047 049 053 048

-037

1
3.0

0 0
3.5 4.0

4.5
Weight bits

. Acc. on Phi-3

5.0

Avg. Acc. on Mixtral 8x7B

07 & S
062 073 4
6o« Qo <
c 0.6 €
Osgg s 074 075 0 .gfr.
20 2 0.72 c
2 052 5
S o o7 o S o

-0.4< 06 06 | 01 <
r?i 047 047 0. : :‘
Ll
30 35 4.0 45 5.0 3.0
Weight bits

071

071

0.67

X3

0.64

3.5

Llama-3 8B

073 3

.on

073
073
073
072 071
071 071
8 0.68 0.68 0.69 0.68 0.69
2 063 064 0.64

0.64 0.64 0.66

4.0

0.66

4.5

Weight bits

Figure 13: Weights and activations. Comparing average accuracy at different bits per weight and
bits per activations. From minimal compression (top right) to high levels of compression (bottom

left).

22

Under review as a conference paper at ICLR 2024

E.4 ADDITIONAL ZERO-SHOT DOWNSTREAM TASK EXPERIMENTS

Phi-3
Method Groupsize Hessian Spherical BPW | PPL1 | PQT WG?T HS1T A-et A-cT LAT | Avg. T
Original 16.00 [601 | 081 073 078 079 057 065] 072
RTN 4.00 8.39 0.77 0.68 0.74 0.76 0.53 0.55 0.67
GPTQ 16 v 4.00 6.82 0.79 0.71 0.74 0.79 0.57 0.63 0.70
QuaRot 16 v v 400 | 666 | 078 072 073 078 055 064 | 0.70
PVQ [3.0 bit directions, 4 bit amplitudes] 16 v v 325 6.85 0.79 072 074 077 0.54 0.60 0.69
PVQ [3.5 bit directions, 6 bit amplitudes] 16 v v 3.88 6.33 0.81 072 0.76 0.80 0.57 0.64 0.72

Table 9: Performance on downstream tasks after quantizing different open source LLM models using
various post-training quantization methods. PVQ yields the highest performance after quantization.

Mixtral 8x7B
Method Groupsize Hessian Spherical BPW | PPLT | PQ1T WGT HST A-et A-clT LAT | Avg 1
Mixtral 8x7B Original 1600 | 3.84 | 084 076 084 0.83 060 0.78 0.78
RTN 400 | 474 | 083 076 081 0.80 055 075 0.75
GPTQ 16 v 400 | 453 | 081 076 078 079 055 076 0.74
QuaRot 16 v v 400 | 413 | 083 076 083 0.83 059 079 0.77
PVQ [3.0 bit directions, 4 bit amplitudes] 16 v v 325 | 422 | 083 076 0.83 081 057 0.78 0.76
PVQ [3.5 bit directions, 6 bit amplitudes] 16 v v 388 | 399 | 084 076 084 0.82 0.60 0.78 0.77

Table 10: Performance on downstream tasks after quantizing different open source LLM models
using various post-training quantization methods. PVQ yields the highest performance after quanti-
zation.

Llama-3-8B
Method Groupsize Hessian Spherical BPW | PPLT | PQT WGt HST A-ef A-ctT LAT| Avg. 1
Original 16.00 6.13 081 073 079 078 053 076 | 0.73
RTN 4.00 8.17 078 071 074 070 045 070 | 0.68
GPTQ 16 v 4.00 | 141544 | 0.66 058 036 057 034 0.03 0.42
QuaRot 16 v v 4.00 7.10 079 073 076 076 051 075 0.72
PVQ [3.0 bit directions, 4 bit amplitudes] 16 v v 325 7.14 078 072 076 074 049 074 | 0.70
PVQ [3.5 bit directions, 6 bit amplitudes] 16 v v 3.88 6.53 080 073 0.77 076 051 0.75 0.72

Table 11: Performance on downstream tasks. We compare after quantizing different open source
LLM models using various post-training quantization methods. PVQ yields the highest performance
after quantization.

23

	Introduction
	Background
	Quantization
	Vector quantization
	Weights on the sphere
	Classic Pyramid Vector Quantization
	Subroutines of classic PVQ

	PVQ for LLM compression
	Practical advantages of PVQ
	Signal-to-quantization-noise on ideal Gaussian source
	Pyramid vector quantization for LLMs
	amplitude quantization

	Results
	Weight-only quantization (without amplitude quantization)
	Weight-only quantization (direction and amplitude quantization)
	Weights and Activation quantization
	Downstream zero-shot tasks
	Optimizing PVQ for CUDA

	Conclusion
	Mathematical details
	Proof that amplitudes are Beta distributed

	Classic PVQ subroutines
	Algorithm 1: PVQ Quantization
	Algorithm 2: PVQ Encoding
	Algorithm 3: PVQ Decoding

	Implementation details
	Dataset
	Parallelization using CUDA kernels
	amplitude quantization

	Empirical amplitude histograms
	Additional results
	Additional weight-only experiments (direction only)
	Additional quantizing direction and amplitude experiments
	Additional weight and activations experiments
	Additional Zero-shot downstream task experiments

