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Abstract

Deep learning models are able to memorize the training set. This makes them vul-
nerable to recovery attacks, raising privacy concerns to users, and many widespread
algorithms such as empirical risk minimization (ERM) do not directly enforce
safety guarantees. In this paper, we study the safety of ERM models when the
training samples are interpolated (i.e., at interpolation) against a family of powerful
black-box information retrieval attacks. Our analysis quantifies this safety via two
separate terms: (i) the model stability with respect to individual training samples,
and (ii) the feature alignment between attacker query and original data. While the
first term is well established in learning theory and it is connected to the gener-
alization error in classical work, the second one is, to the best of our knowledge,
novel. Our key technical result characterizes precisely the feature alignment for the
two prototypical settings of random features (RF) and neural tangent kernel (NTK)
regression. This proves that privacy strengthens with an increase in generalization
capability, unveiling the role of the model and of its activation function. Numerical
experiments show an agreement with our theory not only for RF/NTK models, but
also for deep neural networks trained on standard datasets (MNIST, CIFAR-10).

1 Introduction
Deep learning models can memorize the training dataset [42], which becomes concerning if sensitive
information can be extracted by adversarial users. Thus, a thriving research effort has aimed
at addressing this issue, with differential privacy [21, 1] emerging as a safety criterion. Despite
numerous improvements and provable privacy guarantees [5], this approach still comes at a significant
performance cost [45], creating a difficult trade-off for users and developers. For this reason, many
popular applications still rely on empirical risk minimization (ERM), with training times long enough
to achieve 0 training loss. These settings, however, do not offer any theoretical guarantee for privacy
protection, which leads to the following critical questions:

When do ERM-trained models interpolating the data offer privacy guarantees?
How do these guarantees depend on the model design and on its generalization performance?

In this work, we focus on a family of powerful black-box attacks in which the attacker has partial
knowledge about a training sample z1 and aims to recover information about the rest, without access
to the model weights. This setting is of particular interest when the training samples contain both
public and private information, and it is considered in [12], under the name of relational privacy.

Formally, the samples are modeled by two distinct components, i.e., z ≡ [x, y]. Given knowledge
on y, the attacker aims to retrieve information about x by querying the trained model with the
masked sample zm := [−, y], see Figure 2 for an illustration, and Appendix B for a broader practical
motivation of these settings. We consider generalized linear models trained with ERM, when the
training algorithm completely fits the dataset. It turns out that in this setting the power of the attack
can be exactly analyzed through two distinct components:
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Figure 1: Test and attack accuracies as a function of the number of training samples N , for fully
connected (FC, first two plots) and small convolutional neural networks (CNN, last two plots).

1. The feature alignment F(zm, z), see (6). This captures the similarity in feature space between the
training sample z and its masked counterpart zm, and it depends on the feature map of the model.
To the best of our knowledge, this is the first time that attention is raised over such an object.

2. The stability Sz of the model with respect to z, see Definition 2.1. Similar notions of stability are
in the seminal work by [15], which draws a connection to generalization.

Our technical contributions can be summarized as follows:
• We connect the stability of generalized linear models to the feature alignment between samples,

see Lemma 3.1. Then, we show that this connection makes the privacy of the model a natural
consequence of its generalization capability, when F(zm, z) can be well approximated by a
constant γ > 0, independent of the original sample z.

• We focus on two settings widely analyzed in the theoretical literature, i.e., (i) random features
(RF) [39], and (ii) the neural tangent kernel (NTK) [29]. Here, under a natural scaling of the
models, we prove the concentration of F(zm, z) to a positive constant γ, see Theorems 4.2 and
4.3. For the NTK, we obtain a closed-form expression for γ, which connects the power of the
attack to the activation function.

We experimentally show that both synthetic and standard datasets (MNIST, CIFAR-10) agree well
with the theoretical predictions. Remarkably, we see the same proportionality between generalization
and privacy for various neural network architectures (see Figure 1, and its further discussion in
Appendix H). This provides empirical evidence of the wide generality of our findings, which appears
to go beyond RF/NTK models.
In a nutshell, our results give a precise characterization of how the accuracy of the attack grows
with the generalization error, unveiling the role of the model (and, specifically, of its activation). In
contrast with the vast body of work relating differential privacy with generalization [20, 19, 8, 44],
we focus on the widespread paradigm of empirical risk minimization, when all the training samples
are interpolated. In this setting, there is no explicit assumption on algorithmic stability and no a-priori
guarantee in terms of privacy, as training is not performed via a differentially private mechanism.
Thus, no generalization or privacy bound similar to [15, 20, 27, 7] can be explicitely computed. For a
more comprehensive discussion on the related work, we refer to Appendix A.

2 Preliminaries
Notation. Given a vector v, we denote by ∥v∥2 its Euclidean norm. Given v ∈ Rdv and u ∈ Rdu ,
we denote by v ⊗ u ∈ Rdvdu their Kronecker product. Given a matrix A ∈ Rm×n, we denote by
PA ∈ Rn×n the projector over Span{rows(A)}. All the complexity notations Ω(·), O(·), o(·) and
Θ(·) are understood for sufficiently large data size N , input dimension d, number of neurons k, and
number of parameters p. We indicate with C, c > 0 numerical constants, independent of N, d, k, p.
Setting. Let (Z,G) be a labelled training dataset, where Z = [z1, . . . , zN ]⊤ ∈ RN×d contains
the training data (sampled i.i.d. from a distribution PZ) on its rows and G = (g1, . . . , gN ) ∈ RN
contains the corresponding labels. We assume the label gi to be a deterministic function of the sample
zi. Let φ : Rd → Rp be a generic feature map, from the input space to a feature space of dimension
p. We consider the following generalized linear model

f(z, θ) = φ(z)⊤θ, (1)
where φ(z) ∈ Rp is the feature vector associated with the input sample z, and θ ∈ Rp are the
trainable parameters of the model. We minimize the empirical risk with a quadratic loss:

minθ
∥∥φ(Z)⊤θ −G

∥∥2
2
. (2)

2



Here, φ(Z) ∈ RN×p is the feature matrix, containing φ(zi) in its i-th row. We use the shorthands
Φ := φ(Z) and K := ΦΦ⊤ ∈ RN×N , where K denotes the kernel associated with the feature
map. If K is invertible (i.e., the model can fit any set of labels G), gradient descent converges to the
interpolator which is the closest in ℓ2 norm to the initialization [26], i.e.,

θ∗ = θ0 +Φ+(G− f(Z, θ0)), (3)

where θ∗ is the gradient descent solution, θ0 is the initialization, f(Z, θ0) = Φ⊤θ0 the output
of the model (1) at initialization, and Φ+ := Φ⊤K−1 the Moore-Penrose inverse. Let z ∼ PZ
be an independent test sample. Then, we define the generalization error of the trained model as
R = Ez∼PZ

[
(f(z, θ∗)− gz)

2
]
, where gz denotes the ground-truth label of the test sample z.

Stability. For our discussion, it is convenient to introduce quantities related to “incomplete” datasets.
In particular, we indicate with Φ−1 ∈ R(N−1)×p the feature matrix of the training set without the
first sample z1. For simplicity, we focus on the removal of the first sample, and similar considerations
hold for the removal of any other sample. In other words, Φ−1 is equivalent to Φ, without the first row.
Similarly, using (3), we indicate with θ∗−1 := θ0 + Φ+

−1 (G−1 − f(Z−1, θ0)) the set of parameters
the algorithm would have converged to if trained over (Z−1, G−1), the original dataset without the
first pair sample-label (z1, g1). We can now proceed with the definition of our notion of “stability”.

Definition 2.1. Let θ∗ (θ∗−1) be the parameters of the model f given by (1) trained on the dataset Z
(Z−1), as in (3). We define the stability Sz1 : Rd → R with respect to the training sample z1 as

Sz1 := f(·, θ∗)− f(·, θ∗−1). (4)

This quantity indicates how the trained model changes if we add z1 to the dataset Z−1. If the training
algorithm completely fits the data (as in (3)), then Sz1(z1) = g1 − f(z1, θ

∗
−1), which implies that

Ez1∼PZ

[
S2
z1(z1)

]
=Ez1∼PZ

[(
f(z1, θ

∗
−1)− g1

)2]
=Ez∼PZ

[(
f(z, θ∗−1)− gz

)2]
=: RZ−1

, (5)

where RZ−1 denotes the generalization error of the algorithm that uses Z−1 as training set.

3 Stability, Generalization and Privacy
Stability and feature alignment. Our goal is to quantify how much information about g(x1) the
attacker can recover through a generic query z. To do so, we relate f(z, θ∗) to the model evaluated
on the original sample z1. It turns out that, for generalized linear regression, under mild conditions
on the feature map φ, this can be elegantly done via the notion of stability of Definition 2.1.
Lemma 3.1. Let φ : Rd → Rp be a generic feature map, such that the induced kernel K ∈ RN×N

on the training set is invertible. Let z1 ∈ Rd be an element of the training dataset Z, and z ∈ Rd a
generic test sample. Let PΦ−1

be the projector over Span{rows(Φ−1)}, and Sz1 be the stability with
respect to z1, as in Definition 2.1. Let us denote by

Fφ(z, z1) :=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

(6)

the feature alignment between z and z1. Then, we have

Sz1(z) = Fφ(z, z1)Sz1(z1). (7)

The idea of the argument is to express PΦ as PΦ−1
plus the projector over the span of P⊥

Φ−1
φ(z1),

by leveraging the Gram-Schmidt decomposition of PΦ. The proof is deferred to Appendix D. In
words, Lemma 3.1 relates the stability with respect to z1 evaluated on z and z1 through the quantity
Fφ(z, z1), which captures the similarity between z and z1 in the feature space induced by φ.
Generalization and privacy. Armed with Lemma 3.1, we now characterize the power of the attack
query f(zm1 , θ∗). Let us replace Fφ(zm1 , z1) in (7) with a constant γφ > 0 (the concentration for
RF/NTK is proved in Section 4), independent from z1. Then, by using (4), we get

f(zm1 , θ∗) = f(zm1 , θ∗−1) + γφ Sz1(z1) = f(zm1 , θ∗−1) + γφ
(
g1 − f(z1, θ

∗
−1)
)
. (8)

To quantify the power of the attack, we look at Cov (f(zm1 , θ∗), g1), in the probability space of z1:

Cov (f(zm1 , θ∗), g1) = γφCov (Sz1(z1), g1)≤ γφ
√

Var (Sz1(z1))Var (g1)≤ γφ

√
RZ−1

√
Var (g1).

(9)
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Here, the first step uses (8) and the independence between f(zm1 , θ∗−1) and g1, the second step is
an application of Cauchy-Schwarz, and the last step follows from (5). Let us focus on the RHS of
(9). While

√
Var (g1) is a simple scaling factor, γφ and

√
RZ−1

lead to an interesting interpretation:
we expect the attack to become more powerful as the similarity between zm1 and z1 (formalized by
Fφ(zm1 , z1)) increases, and less effective as the generalization error of the model decreases. In fact,
the potential threat hinges on the model overfitting the y-component at training time. This overfitting
would both cause higher generalization error, and higher chances of recovering g1 given only y1.

4 Concentration Results for RF and NTK
Assumption 4.1 (Data distribution). The input data (z1, . . . , zN ) are N i.i.d. samples from PZ =
PX × PY , such that zi ∈ Rd can be written as zi = [xi, yi], with xi ∈ Rdx , yi ∈ Rdy and
d = dx + dy . We assume that xi ∼ PX is independent of yi ∼ PY , and the following holds:

1. ∥x∥2 =
√
dx, and ∥y∥2 =

√
dy , i.e., the data have normalized norm.

2. E[x] = 0, and E[y] = 0, i.e., the data are centered.

3. Both PX and PY satisfy the Lipschitz concentration property.

RF. The random features (RF) model takes the form fRF(z, θ) = φRF(z)
⊤θ, where φRF(z) =

ϕ(V z). V is a k × d matrix s.t. Vi,j ∼i.i.d. N (0, 1/d), and ϕ is an activation applied component-
wise. The number of parameters of this model is k, as V is fixed and θ ∈ Rk contains trainable
parameters. We consider the scalings N log3 N = o(k),

√
d log d = o(k), k log4 k = o

(
d2
)
, and ϕ

to be L-Lipschitz, and we denote by µl its l-th Hermite coefficient.

Theorem 4.2. Let x ∼ PX be sampled independently from everything, and zm1 = [x, y1]. Let
α = dy/d and FRF(z

m
1 , z1) be the feature alignment between zm1 and z1, as defined in (6). Then,

|FRF(z
m
1 , z1)− γRF| = o(1), (10)

with probability at least 1− exp(−c log2 N) over V , Z and x, where c is an absolute constant, and
γRF ≤ 1 does not depend on z1 and x. Furthermore, we have

γRF >

∑+∞
l=2 µ2

l α
l∑+∞

l=1 µ2
l

− o(1), (11)

with probability at least 1− exp(−c log2 N) over V , and Z−1, where c is an absolute constant, i.e.,
γRF is bounded away from 0 with high probability.

NTK. We consider a linearized 2-layer neural network, with trainable parameters only in its hidden
layer. The NTK regression model takes the form fNTK(z, θ) = φNTK(z)

⊤θ, where φNTK(z) =
z ⊗ ϕ′(Wz) [14, 32]. W is a k × d matrix s.t. Wi,j ∼i.i.d. N (0, 1/d), and ϕ′ is applied component-
wise. The number of parameters of this model is p = dk, as W is fixed and θ ∈ Rp contains
trainable parameters. We consider the scalings N log8 N = o(kd), N > d, k = O (d), and ϕ′ to be
L-Lipschitz and not constant, and we denote by µ′

l its l-th Hermite coefficient.

Theorem 4.3. Let x ∼ PX be sampled independently from everything, and zm1 = [x, y1]. Let
α = dy/d ∈ (0, 1) and FNTK(z

m
1 , z1) be the feature alignment between zm1 and z1, as defined in (6).

Then,

|FNTK(z
m
1 , z1)− γNTK| = o(1), where 0 < γNTK := α

∑+∞
l=1 µ′

l
2
αl∑+∞

l=1 µ′
l
2 < 1, (12)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x, and W , where c is an
absolute constant.

Remarks. The combination of Theorems 4.2/4.3 and (9) connects stability with privacy. In
addition, for the NTK model, we are able to express the limit γNTK of the feature alignment in a
closed form involving α and the Hermite coefficients of the derivative of the activation. The findings
of both Theorems are clearly displayed in Figures 4 and 5 in Appendix H: as N increases, the
test accuracy improves and the reconstruction attack becomes less effective. Furthermore, for the
synthetic dataset, while the test accuracy does not depend on α and on the activation function, the
success of the attack increases with α and by taking an activation function with dominant low-order
Hermite coefficients, as predicted by (12) and suggested by (11).
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A Related Work
Private machine learning. Information retrieval via partial knowledge of the data is observed in
question answering tasks by [12]. This setting is natural in language models, as they are prone to
memorize the training set [17, 16], and to hallucinate it at test time [50, 40]. Differential privacy [21]
enables training deep learning models maintaining privacy guarantees. This is achieved through the
DPSGD algorithm [1] which, despite improvements [49, 5], still comes at a steep performance cost
[1, 45]. To circumvent the problem, a recent line of work [10, 9, 11, 28] utilizes synthetic datasets,
analyzing efficient algorithms via tools from high dimensional probability.

Stability. The leave-one-out (error) stability is linked to generalization in [8, 22, 33], and a wide
range of variations on this object is discussed in the classical work by [15]. [24] takes a probabilistic
viewpoint and shows that, when the data distribution is heavy-tailed, stability might be detrimental for
learning. This is also supported empirically by [25]. In contrast, [33] proves that, if the generalization
gap vanishes with the number of samples, the learning algorithm has to be leave-one-out stable.

Random Features and Neural Tangent Kernel. Random features (RF) are introduced by [39],
and they can be regarded as a two-layer neural network with random first layer weights. This model
is theoretically appealing, as it is analytically tractable and offers deep-learning-like behaviours, such
as double descent [31]. The neural tangent kernel (NTK) can be regarded as the kernel obtained by
linearizing a neural network around the initialization [29]. A popular line of work has analyzed its
spectrum [23, 3, 48] and bounded its smallest eigenvalue [43, 37, 32, 13]. The behavior of the NTK
is closely related to the memorization [32], optimization [4, 18], generalization [6] and adversarial
robustness [14] of deep neural networks.

B Reconstruction Attack

Figure 2: Example of a train-
ing sample z (top-left) and its
masked counterpart zm (top-
right). In experiments, we add a
noise background (y) around the
original images (x) before train-
ing (bottom-left). The attack
consists in querying the trained
model only with the noise com-
ponent (bottom-right).

Reconstruction attack. Let the input samples be decomposed in
two independent components, i.e., z ≡ [x, y]. With this notation,
we mean that z ∈ Rd is the concatenation of x ∈ Rdx and y ∈ Rdy
(dx + dy = d). Here, x is the part of the input that is useful to ac-
complish the task (e.g., the cat in top-left image of Figure 2), while
y is noise (e.g., the background). Formally, we assume that, for
i ∈ {1, . . . , N}, gi = g(xi), where g is a deterministic labelling
function, i.e., the label depends only on x and it is independent of
y. In practice, the algorithm may overfit to the noise component,
learning the spurious correlations between yi and the correspond-
ing label gi. An attacker might then exploit this phenomenon to
reconstruct the label gi, by simply querying the model with the
noise component yi. Without access to the model, this reconstruc-
tion would be impossible, as the noise yi is independent from xi,
and therefore from g(xi). In our theoretical analysis, we assume
the attacker to have access to a masked sample zmi (x) = [x, yi],
i.e., a version of zi in which the component xi is replaced with
an independent sample x taken from the same distribution. We
do the same in the synthetic setting of the experiments, while for
MNIST and CIFAR-10 we just set x to 0, see Figure 2. Our goal is
to understand whether the output of the model evaluated on such
query, i.e., f(zmi , θ∗), provides information on the ground-truth
label g(xi). As the setting is symmetric with respect to the data ordering, without loss of generality,
we assume the attack to be aimed towards the first sample z1.

The setting above in which an attacker tries to recover information on xi from yi is a known issue
[12], and it is common when the sensitive information is not in the data itself, but rather in the relation
among data points. A first motivating example comes from face recognition in computer vision. If
the attacker wants to know if a certain individual (x) was at a certain compromising location (y), they
could simply plug in the trained model a picture of the location without the individual (the empty
shopping bag, in the first example of Figure 2). A second motivating example comes from NLP.
Sensitive information (x) about an individual (y) is stored in a textual dataset. The attacker could
guess that y was mentioned in the training dataset, and can try to recover x via the prompt “The
address of y is...”. Similar experiments are performed for question-answering in [12], where the
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tokens containing the information which is relevant to solve the task are masked, but the trained
model can still hallucinate the correct answer.

C Additional Notations and Remarks
Given a sub-exponential random variable X , let ∥X∥ψ1

= inf{t > 0 : E[exp(|X|/t)] ≤ 2}.
Similarly, for a sub-Gaussian random variable, let ∥X∥ψ2

= inf{t > 0 : E[exp(X2/t2)] ≤ 2}.
We use the analogous definitions for vectors. In particular, let X ∈ Rn be a random vector, then
∥X∥ψ2

:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ2

and ∥X∥ψ1
:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ1

. Notice that if a vector
has independent, mean 0, sub-Gaussian (sub-exponential) entries, then it is sub-Gaussian (sub-
exponential). This is a direct consequence of Hoeffding’s inequality and Bernstein’s inequality (see
Theorems 2.6.3 and 2.8.2 in [47]).

We say that a random variable or vector respects the Lipschitz concentration property if there exists
an absolute constant c > 0 such that, for every Lipschitz continuous function τ : Rd → R, we have
E|τ(X)| < +∞, and for all t > 0,

P (|τ(x)− EX [τ(x)]| > t) ≤ 2e−ct
2/∥τ∥2

Lip . (13)

When we state that a random variable or vector X is sub-Gaussian (or sub-exponential), we implicitly
mean ∥X∥ψ2

= O (1), i.e. it doesn’t increase with the scalings of the problem. Notice that, if X is
Lipschitz concentrated, then X − E[X] is sub-Gaussian. If X ∈ R is sub-Gaussian and τ : R → R
is Lipschitz, we have that τ(X) is sub-Gaussian as well. Also, if a random variable is sub-Gaussian
or sub-exponential, its p-th momentum is upper bounded by a constant (that might depend on p).

In general, we indicate with C and c absolute, strictly positive, numerical constants, that do not
depend on the scalings of the problem, i.e. input dimension, number of neurons, or number of training
samples. Their value may change from line to line.

Given a matrix A, we indicate with Ai: its i-th row, and with A:j its j-th column. Given a square
matrix A, we denote by λmin (A) its smallest eigenvalue. Given a matrix A, we indicate with
σmin(A) =

√
λmin (A⊤A) its smallest singular value, with ∥A∥op its operator norm (and largest

singular value), and with ∥A∥F its Frobenius norm (∥A∥2F =
∑
ij A

2
ij).

Given two matrices A,B ∈ Rm×n, we denote by A ◦B their Hadamard product, and by A ∗B =

[(A1: ⊗ B1:), . . . , (Am: ⊗ Bm:)]
⊤ ∈ Rm×n2

their row-wise Kronecker product (also known as
Khatri-Rao product). We denote A∗2 = A ∗A. We remark that (A ∗B) (A ∗B)

⊤
= AA⊤ ◦BB⊤.

We say that a matrix A ∈ Rn×n is positive semi definite (p.s.d.) if it’s symmetric and for every vector
v ∈ Rn we have v⊤Av ≥ 0.

C.1 Hermite Polynomials
In this subsection, we refresh standard notions on the Hermite polynomials. For a more comprehensive
discussion, we refer to [38]. The (probabilist’s) Hermite polynomials {hj}j∈N are an orthonormal
basis for L2(R, γ), where γ denotes the standard Gaussian measure. The following result holds.

Proposition C.1 (Proposition 11.31, [38]). Let ρ1, ρ2 be two standard Gaussian random variables,
with correlation ρ ∈ [−1, 1]. Then,

Eρ1,ρ2 [hi(ρ1)hj(ρ2)] = δijρ
i, (14)

where δij = 1 if i = j, and 0 otherwise.

The first 5 Hermite polynomials are

h0(ρ) = 1, h1(ρ) = ρ, h2(ρ) =
ρ2 − 1√

2
, h3(ρ) =

ρ3 − 3ρ√
6

, h4(ρ) =
ρ4 − 6ρ2 + 3√

24
.

(15)

Proposition C.2 (Definition 11.34, [38]). Every function ϕ ∈ L2(R, γ) is uniquely expressible as

ϕ(ρ) =
∑
i∈N

µϕi hi(ρ), (16)
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where the real numbers µϕi ’s are called the Hermite coefficients of ϕ, and the convergence is in
L2(R, γ). More specifically,

lim
n→+∞

∥∥∥∥∥
(

n∑
i=0

µϕi hi(ρ)

)
− ϕ(ρ)

∥∥∥∥∥
L2(R,γ)

= 0. (17)

This readily implies the following result.

Proposition C.3. Let ρ1, ρ2 be two standard Gaussian random variables with correlation ρ ∈ [−1, 1],
and let ϕ, τ ∈ L2(R, γ). Then,

Eρ1,ρ2 [ϕ(ρ1)τ(ρ2)] =
∑
i∈N

µϕi µ
τ
i ρ
i. (18)

D Proof of Lemma 3.1
We start by refreshing some useful notions of linear algebra. Let A ∈ RN×p be a matrix, with
p ≥ N , and A−1 ∈ R(N−1)×p be obtained from A after removing the first row. We assume AA⊤ to
be invertible, i.e., the rows of A are linearly independent. Thus, also the rows of A−1 are linearly
independent, implying that A−1A

⊤
−1 is invertible as well. We indicate with PA ∈ Rp×p the projector

over Span{rows(A)}, and we correspondingly define PA−1
∈ Rp×p. As AA⊤ is invertible, we have

that rank(A) = N .

By singular value decomposition, we have A = UDO⊤, where U ∈ RN×N and O ∈ Rp×p are
orthogonal matrices, and D ∈ RN×p contains the (all strictly positive) singular values of A in its
“left” diagonal, and is 0 in every other entry. Let us define O1 ∈ RN×p as the matrix containing
the first N rows of O. This notation implies that if O1u = 0 for u ∈ Rp, then Au = 0, i.e.,
u ∈ Span{rows(A)}⊥. The opposite implication is also true, which implies that Span{rows(A)} =
Span{rows(O1)}. As the rows of O1 are orthogonal, we can then write

PA = O⊤
1 O1. (19)

We define Ds ∈ RN×N , as the square, diagonal, and invertible matrix corresponding to the first N
columns of D. Let’s also define IN ∈ Rp×p as the matrix containing 1 in the first N entries of its
diagonal, and 0 everywhere else. We have

PA =O⊤
1 O1 = OINO⊤

=OD⊤D−2
s DO⊤ = OD⊤U⊤UD−2

s U⊤UDO⊤

=A⊤ (UD2
sU

⊤)−1
A = A⊤ (UDO⊤OD⊤U⊤)−1

A

=A⊤ (AA⊤)−1
A ≡ A+A,

(20)

where A+ denotes the Moore-Penrose inverse.

Notice that this last form enables us to easily derive

PA−1
A+v = A+

−1A−1A
+v = A+

−1I−1AA+v = A+
−1I−1v = A+

−1v−1, (21)

where v ∈ RN , I−1 ∈ R(N−1)×N is the N×N identity matrix without the first row, and v−1 ∈ RN−1

corresponds to v without its first entry.

Lemma D.1. Let Φ ∈ RN×k be a matrix whose first row is denoted as φ(z1). Let Φ−1 ∈ R(N−1)×k

be the original matrix without the first row, and let PΦ−1
be the projector over the span of its rows.

Then, ∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2
≥ λmin

(
ΦΦ⊤) . (22)

Proof. If λmin

(
ΦΦ⊤) = 0, the thesis becomes trivial. Otherwise, we have that ΦΦ⊤, and therefore

Φ−1Φ
⊤
−1, are invertible.
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Let u ∈ RN be a vector, such that its first entry u1 = 1. We denote with u−1 ∈ RN−1 the vector u
without its first component, i.e. u = [1, u−1]. We have∥∥Φ⊤u

∥∥2
2
≥ λmin

(
ΦΦ⊤) ∥u∥22 ≥ λmin

(
ΦΦ⊤) . (23)

Setting u−1 = −
(
Φ−1Φ

⊤
−1

)−1
Φ−1φ(z1), we get

Φ⊤u = φ(z1) + Φ⊤
−1u−1 = φ(z1)− PΦ−1φ(z1) = P⊥

Φ−1
φ(z1). (24)

Plugging this in (23), we get the thesis.

At this point, we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. We indicate with Φ−1 ∈ R(N−1)×p the feature matrix of the training set
Φ ∈ RN×p without the first sample z1. In other words, Φ−1 is equivalent to Φ, without the first row.
Notice that since K = ΦΦ⊤ is invertible, also K−1 := Φ−1Φ

⊤
−1 is.

We can express the projector over the span of the rows of Φ in terms of the projector over the span of
the rows of Φ−1 as follows

PΦ = PΦ−1 +
P⊥
Φ−1

φ(z1)φ(z1)
⊤P⊥

Φ−1∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

. (25)

The above expression is a consequence of the Gram-Schmidt formula, and the quantity at the
denominator is different from zero because of Lemma D.1, as K is invertible.

We indicate with Φ+ = Φ⊤K−1 the Moore–Penrose pseudo-inverse of Φ. Using (3), we can define
θ∗−1 := θ0+Φ+

−1 (G−1 − f(Z−1, θ0)), i.e., the set of parameters the algorithm would have converged
to if trained over (Z−1, G−1), the original data-set without the first pair sample-label (z1, g1).

Notice that PΦΦ
⊤ = Φ⊤, as a consequence of (20). Thus, again using (3), for any z we can write

f(z, θ∗)− φ(z)⊤θ0 = φ(z)⊤Φ+ (G− f(Z, θ0))

= φ(z)⊤PΦΦ
+ (G− f(Z, θ0))

= φ(z)⊤

PΦ−1 +
P⊥
Φ−1

φ(z1)φ(z1)
⊤P⊥

Φ−1∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

Φ+ (G− f(Z, θ0)) .

(26)

Notice that, thanks to (21), we can manipulate the first term in the bracket as follows

φ(z)⊤PΦ−1Φ
+ (G− f(Z, θ0)) = φ(z)⊤Φ+

−1 (G−1 − f(Z−1, θ0))

= f(z, θ∗−1)− φ(z)⊤θ0.
(27)

Thus, bringing the result of (27) on the LHS, (26) becomes

f(z, θ∗)− f(z, θ∗−1) =
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

φ(z1)
⊤P⊥

Φ−1
Φ+ (G− f(Z, θ0))

=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

φ(z1)
⊤ (I − PΦ−1

)
Φ+ (G− f(Z, θ0))

=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

(
f(z1, θ

∗)− f(z1, θ
∗
−1)
)
,

(28)

where in the last step we again used (3) and (27).
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E Useful Lemmas
Lemma E.1. Let x and y be two Lipschitz concentrated, independent random vectors. Let ζ(x, y) be
a Lipschitz function in both arguments, i.e., for every δ,

|ζ(x+ δ, y)− ζ(x, y)| ≤ L ∥δ∥2 ,
|ζ(x, y + δ)− ζ(x, y)| ≤ L ∥δ∥2 ,

(29)

for all x and y. Then, ζ(x, y) is a Lipschitz concentrated random variable, in the joint probability
space of x and y.

Proof. To prove the thesis, we need to show that, for every 1-Lipschitz function τ , the following
holds

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) < e−ct
2

, (30)

where c is a universal constant. An application of the triangle inequality gives

|τ (ζ(x, y))− Exy [τ (ζ(x, y))]|
≤ |τ (ζ(x, y))− Ex [τ (ζ(x, y))]|+ |Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| =: A+B.

(31)

Thus, we can upper bound LHS of (30) as follows:

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) ≤ Pxy (A+B > t) . (32)

If A and B are positive random variables, it holds that P(A+B > t) ≤ P(A > t/2) + P(B > t/2).
Then, the LHS of (30) is also upper bounded by

Pxy (|τ (ζ(x, y))− Ex [τ (ζ(x, y))]| > t/2)

+ Pxy (|Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| > t/2) .
(33)

Since τ ◦ ζ is Lipschitz with respect to x for every y, we have

Pxy (|τ (ζ(x, y))− Ex [τ (ζ(x, y))]| > t/2) < e−c1t
2

, (34)

for some absolute constant c1. Furthermore, χ(y) := Ex [τ (ζ(x, y))] is also Lipschitz, as

|χ(y + δ)− χ(y)| = |Ex [τ (ζ(x, y + δ))− τ (ζ(x, y))] |
≤ Ex [|τ (ζ(x, y + δ))− τ (ζ(x, y)) |] ≤ L ∥δ∥2 .

(35)

Then, we can write

Pxy (|Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| > t/2)

= Py (|χ(y)− Ey [χ(y)]| > t/2) < e−c2t
2

,
(36)

for some absolute constant c2. Thus,

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) < e−c1t
2

+ e−c2t
2

≤ e−ct
2

, (37)

for some absolute constant c, which concludes the proof.

Lemma E.2. Let x ∼ PX , y ∼ PY and z = [x, y] ∼ PZ . Let Assumption 4.1 hold. Then, z is a
Lipschitz concentrated random vector.

Proof. We want to prove that, for every 1-Lipschitz function τ , the following holds

Pz (|τ (z)− Ez [τ (z)]| > t) < e−ct
2

, (38)

for some universal constant c. As we can write z = [x, y], defining z′ = [x′, y], we have

|τ (z)− τ (z′)| ≤ ∥z − z′∥2 = ∥x− x′∥2 , (39)

i.e., for every y, τ is 1-Lipschitz with respect to x. The same can be shown for y, with an equivalent
argument. Since x and y are independent random vectors, both Lipschitz concentrated, Lemma E.1
gives the thesis.
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Lemma E.3. Let τ and ζ be two Lipschitz functions. Let z, z′ ∈ Rd be two fixed vectors such that
∥z∥2 = ∥z′∥2 =

√
d. Let V be a k × d matrix such that Vi,j ∼i.i.d. N (0, 1/d). Then, for any t > 1,∣∣τ(V z)⊤ζ(V z′)− EV

[
τ(V z)⊤ζ(V z′)

]∣∣ = O
(√

k log t
)
, (40)

with probability at least 1 − exp(−c log2 t) over V . Here, τ and ζ act component-wise on their
arguments. Furthermore, by taking τ = ζ and z = z′, we have that

EV
[
∥τ(V z)∥22

]
= kEρ

[
τ2(ρ)

]
, (41)

where ρ ∼ N (0, 1). This implies that ∥τ(V z)∥22 = O (k) with probability at least 1 − exp(−ck)
over V .

Proof. We have

τ(V z)⊤ζ(V z′) =

k∑
j=1

τ(v⊤j z)ζ(v
⊤
j z

′), (42)

where we used the shorthand vj := Vj:. As τ and ζ are Lipschitz, vj ∼ N (0, I/d), and ∥z∥2 =

∥z′∥2 =
√
d, we have that τ(V z)⊤ζ(V z′) is the sum of k independent sub-exponential random

variables, in the probability space of V . Thus, by Bernstein inequality (cf. Theorem 2.8.1 in [47]),
we have ∣∣τ(V z)⊤ζ(V z′)− EV

[
τ(V z)⊤ζ(V z′)

]∣∣ = O
(√

k log t
)
. (43)

with probability at least 1− exp(−c log2 t), over the probability space of V , which gives the thesis.
The second statement is again implied by the fact that vj ∼ N (0, I/d) and ∥z∥2 =

√
d.

Lemma E.4. Let x, x1 ∼ PX and y1 ∼ PY be independent random variables, with x, x1 ∈ Rdx
and y1 ∈ Rdy , and let Assumption 4.1 hold. Let d = dx + dy, V be a k × d matrix, such that
Vi,j ∼i.i.d. N (0, 1/d), and let τ be a Lipschitz function. Let z1 := [x1, y1] and zm1 := [x, y1]. Let
α = dy/d ∈ (0, 1) and µl be the l-th Hermite coefficient of τ . Then, for any t > 1,∣∣∣∣∣τ(V zm1 )⊤τ(V z1)− k

+∞∑
l=0

µ2
l α

l

∣∣∣∣∣ = O

(
√
k

(√
k

d
+ 1

)
log t

)
, (44)

with probability at least 1 − exp(−c log2 t) − exp(−ck) over V and x, where c is a universal
constant.

Proof. Define the vector x′ as follows

x′ =

√
dx

(
I − x1x

⊤
1

dx

)
x∥∥∥(I − x1x⊤

1

dx

)
x
∥∥∥
2

. (45)

Note that, by construction, x⊤
1 x

′ = 0 and ∥x′∥2 =
√
dx. Also, consider a vector y orthogonal to

both x1 and x. Then, a fast computation returns y⊤x′ = 0. This means that x′ is the vector on the√
dx-sphere, lying on the same plane of x1 and x, orthogonal to x1. Thus, we can easily compute∣∣x⊤x′

∣∣
dx

=

√
1−

(
x⊤x1

dx

)2

≥ 1−
(
x⊤x1

dx

)2

, (46)

where the last inequality derives from
√
1− a ≥ 1− a for a ∈ [0, 1]. Then,

∥x− x′∥22 = ∥x∥22 + ∥x′∥22 − 2x⊤x′ ≤ 2dx

(
1−

(
1−

(
x⊤x1

dx

)2
))

= 2

(
x⊤x1

)2
dx

. (47)

As x and x1 are both sub-Gaussian, mean-0 vectors, with ℓ2 norm equal to
√
dx, we have that

P (∥x− x′∥2 > t) ≤ P
(
|x⊤x1| >

√
dxt/

√
2
)
< exp(−ct2), (48)
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where c is an absolute constant. Here the probability is referred to the space of x, for a fixed x1. Thus,
∥x− x′∥2 is sub-Gaussian.

We now define z′ := [x′, y1]. Notice that z⊤1 z′ = ∥y1∥22 = dy and ∥zm1 − z′∥2 = ∥x− x′∥2. We
can write ∣∣τ(V zm1 )⊤τ(V z1)− τ(V z′)⊤τ(V z1)

∣∣ ≤ ∥τ(V zm1 )− τ(V z′)∥2 ∥τ(V z1)∥2
≤ C ∥V ∥op ∥z

m
1 − z′∥2 ∥τ(V z1)∥2

≤ C1

(√
k

d
+ 1

)
∥x− x′∥2

√
k

= O

(
√
k

(√
k

d
+ 1

)
log t

)
.

(49)

Here the second step holds as τ is Lipschitz; the third step holds with probability at least 1 −
exp(−c1 log

2 t) − exp(−c2k), and it uses Theorem 4.4.5 of [47] and Lemma E.3; the fourth step
holds with probability at least 1− exp(−c log2 t), and it uses (48). This probability is intended over
V and x. We further have∣∣τ(V z′)⊤τ(V z1)− EV

[
τ(V z′)⊤τ(V z1)

]∣∣ = O
(√

k log t
)
, (50)

with probability at least 1− exp(−c3 log
2 t)− exp(−c2k) over V , because of Lemma E.3.

We have
EV
[
τ(V z′)⊤τ(V z1)

]
= kEρ1ρ2 [τ(ρ1)τ(ρ2)] , (51)

where we indicate with ρ1 and ρ2 two standard Gaussian random variables, with correlation

corr(ρ1, ρ2) =
z⊤1 z

∥z1∥2 ∥z′∥2
=

dy
d

= α. (52)

Then, exploiting the Hermite expansion of τ , we have

Eρ1ρ2 [τ(ρ1)τ(ρ2)] =
+∞∑
l=0

µ2
l α

l. (53)

Putting together (49), (50), (51), and (53) gives the thesis.

F Proofs for Random Features
In this section, we indicate with Z ∈ RN×d the data matrix, such that its rows are sampled indepen-
dently from PZ (see Assumption 4.1). We denote by V ∈ Rk×d the random features matrix, such
that Vij ∼i.i.d. N (0, 1/d). Thus, the feature map is given by (see Section 4)

φ(z) := ϕ(V z) ∈ Rk, (54)

where ϕ is the activation function, applied component-wise to the pre-activations V z. We use the
shorthands Φ := ϕ(ZV ⊤) ∈ RN×k and K := ΦΦ⊤ ∈ RN×N , we indicate with Φ−1 ∈ R(N−1)×k

the matrix Φ without the first row, and we define K−1 := Φ−1Φ
⊤
−1. We call PΦ the projector over

the span of the rows of Φ, and PΦ−1 the projector over the span of the rows of Φ−1. We use the
notations φ̃(z) := φ(z)− EV [φ(z)] and Φ̃−1 := Φ−1 − EV [Φ−1] to indicate the centered feature
map and matrix respectively, where the centering is with respect to V . We indicate with µl the l-th
Hermite coefficient of ϕ. We use the notation zm1 = [x, y1], where x ∼ PX is sampled independently
from V and Z. We denote by Vx (Vy) the first dx (last dy) columns of V , i.e., V = [Vx, Vy]. We
define α = dy/d. Throughout this section, for compactness, we drop the subscripts “RF” from these
quantities, as we will only treat the proofs related to the Random Features model. Again for the
sake of compactness, we will not re-introduce such quantities in the statements or the proofs of the
following lemmas.

Through the following Section, as mentioned in the main body of the paper, we will work under the
following assumptions
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Assumption F.1 (Over-parameterization and high-dimensional data).

N log3 N = o(k),
√
d log d = o(k), k log4 k = o

(
d2
)
. (55)

The first condition in (55) requires the number of neurons k to scale faster than the number of data
points N . This over-parameterization leads to a lower bound on the smallest eigenvalue of the kernel
induced by the feature map, which in turn implies that the model interpolates the data, as required to
write (3). This over-parameterized regime also achieves minimum test error [31]. Combining the
second and third conditions in (55), we have that k can scale between

√
d and d2 (up to log factors).

Finally, merging the first and third condition gives that d2 scales faster than N . We notice that this
holds for standard datasets (MNIST, CIFAR-10 and ImageNet).

Assumption F.2 (Activation function). The activation function ϕ is a non-linear L-Lipschitz function.

This requirement is satisfied by common activations, e.g., ReLU, sigmoid, or tanh.

Summary of this Section.

• In Lemma F.4 we prove a lower bound on the smallest eigenvalue of K, adapting to our
settings Lemma C.5 of [14]. As our assumptions are less restrictive than those in [14], we
will crucially exploit Lemma F.3.

• In Lemma F.5, we treat separately a term that derives from EV [ϕ(V z)] = µ01k, showing
that we can center the activation function, without changing our final statement in Theorem
4.2. This step is necessary only if µ0 ̸= 0.

• In Lemma F.6, we show that the non-linear component of the features φ̃(z1)− µ1V z1 and
φ̃(zm1 )− µ1V zm1 have a negligible component in the space spanned by the rows of Φ−1.

• In Lemma F.9, we provide concentration results for φ(zm1 )⊤P⊥
Φ−1

φ(z1), and we lower
bound this same term in Lemma F.8, exploiting also the intermediate result provided in
Lemma F.7.

• Finally, we prove Theorem 4.2.

Lemma F.3. Let A := (Z∗m) ∈ RN×dm , for some natural m ≥ 2, where ∗ refers to the Khatri-Rao
product, defined in Appendix C. We have

λmin

(
AA⊤) = Ω(dm), (56)

with probability at least 1− exp(−c log2 N) over Z, where c is an absolute constant.

Proof. As m ≥ 2, we can write A =
(
Z∗2) ∗ (Z∗(m−2)

)
=: A2 ∗ Am (where

(
Z∗0) is defined to

be the vector full of ones 1N ∈ RN ). We can provide a lower bound on the smallest eigenvalue of
such product through the following inequality [41]:

λmin

(
AA⊤) = λmin

(
A2A

⊤
2 ◦AmA⊤

m

)
≥ λmin

(
A2A

⊤
2

)
mini ∥(Am)i:∥22 . (57)

Note that the rows of Z are mean-0 and Lipschitz concentrated by Lemma E.2. Then, by following
the argument of Lemma C.3 in [14], we have

λmin

(
A2A

⊤
2

)
= Ω(d2), (58)

with probability at least 1− exp(−c log2 N) over Z. We remark that, for the argument of Lemma C.3
in [14] to go through, it suffices that N = o(d2/ log4 d) and N log4 N = o(d2) (see Equations (C.23)
and (C.26) in [14]), which is implied by AssumptionF.1, despite it being milder than Assumption 4 in
[14].

For the second term of (57), we have

∥(Am)i:∥22 = ∥zi∥2(m−2)
2 = dm−2, (59)

due to Assumption 4.1. Thus, the thesis readily follows.
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Lemma F.4. We have that
λmin (K) = Ω(k), (60)

with probability at least 1− exp
(
−c log2 N

)
over V and Z, where c is an absolute constant. This

implies that λmin (K−1) = Ω(k).

Proof. The proof follows the same path as Lemma C.5 of [14]. In particular, we define a truncated
version of Φ as follows

Φ̄:j = ϕ(Zvj)χ
(
∥ϕ(Zvj)∥22 ≤ R

)
, (61)

where χ is the indicator function and we introduce the shorthand vi := Vi:. In this case, χ = 1 if
∥ϕ(Zvj)∥22 ≤ R, and χ = 0 otherwise. As this is a column-wise truncation, it’s easy to verify that
ΦΦ⊤ ⪰ Φ̄Φ̄⊤. Over such truncated matrix, we can use Matrix Chernoff inequality (see Theorem 1.1
of [46]), which gives that λmin

(
Φ̄Φ̄⊤) = Ω(λmin

(
Ḡ
)
), where Ḡ := EV

[
Φ̄Φ̄⊤]. Finally, we prove

closeness between Ḡ and G, which is analogously defined as G := EV
[
ΦΦ⊤].

To be more specific, setting R = k/ log2 N , we have

λmin (K) ≥ λmin

(
Φ̄Φ̄⊤) ≥ λmin

(
Ḡ
)
/2 ≥ λmin (G) /2− o(k), (62)

where the second inequality holds with probability at least 1− exp(c1 log
2 N) over V , if λmin (G) =

Ω(k) (see Equation (C.47) of [14]), and the third comes from Equation (C.45) in [14]. To perform
these steps, our Assumptions F.1 and F.2 are enough, despite the second one being milder than
Assumption 2 in [14].

To conclude the proof, we are left to prove that λmin (G) = Ω(k) with probability at least 1 −
exp(−c2 log

2 N) over V and Z.

We have that

G = EV [K] = EV

[
k∑
i=1

ϕ(ZV ⊤
i: )ϕ(ZV ⊤

i: )
⊤

]
= kEv

[
ϕ(Zv)ϕ(Zv)⊤

]
:= kM, (63)

where we use the shorthand v to indicate a random variable distributed as V1:. We also indicate with
zi the i-th row of Z. Exploiting the Hermite expansion of ϕ, we can write

Mij = Ev
[
ϕ(z⊤i v)ϕ(z

⊤
j v)

]
=

+∞∑
l=0

µ2
l

(
z⊤i zj

)l
dl

=

+∞∑
l=0

µ2
l

[(
Z∗l) (Z∗l)⊤]

ij

dl
, (64)

where µl is the l-th Hermite coefficient of ϕ. Note that the previous expansion was possible since
∥zi∥ =

√
d for all i ∈ [N ]. As ϕ is non-linear, there exists m ≥ 2 such that µ2

m > 0. In particular,
we have M ⪰ µ2

m

dm AA⊤ in a PSD sense, where we define

A := (Z∗m) . (65)

By Lemma F.3, the desired result readily follows.

Lemma F.5. Let µ0 ̸= 0. Then, ∥∥∥P⊥
Φ−1

1k

∥∥∥
2
= o(

√
k), (66)

with probability at least 1− e−cd − e−cN over V and Z, where c is an absolute constant.

Proof. Note that Φ⊤
−1 = µ01k1

⊤
N−1 + Φ̃⊤

−1. Here, Φ̃⊤
−1 is a k × (N − 1) matrix with i.i.d. and

mean-0 rows, whose sub-Gaussian norm (in the probability space of V ) can be bounded as∥∥∥Φ̃:i

∥∥∥
ψ2

= ∥ϕ(ZVi:)− EV [ϕ(ZVi:)]∥ψ2
≤ L

∥Z∥op√
d

= O
(√

N/d+ 1
)
, (67)

where first inequality holds since ϕ is L-Lipschitz and Vi: is a Gaussian (and hence, Lipschitz
concentrated) vector with covariance I/d. The last step holds with probability at least 1− e−cd over
Z, because of Lemma B.7 in [13].
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Thus, another application of Lemma B.7 in [13] gives∥∥∥Φ̃⊤
−1

∥∥∥
op

= O
((√

k +
√
N
)(√

N/d+ 1
))

= O
(√

k
(√

N/d+ 1
))

, (68)

where the first equality holds with probability at least 1− e−cN over V , and the second is a direct
consequence of Assumption F.1.

We can write

Φ⊤
−1

1N−1

µ0(N − 1)
=
(
µ01k1

⊤
N−1 + Φ̃⊤

−1

) 1N−1

µ0(N − 1)
= 1k + Φ̃⊤

−1

1N−1

µ0(N − 1)
=: 1k + v, (69)

where

∥v∥2 ≤ 1

µ0(N − 1)

∥∥∥Φ̃⊤
−1

∥∥∥
op
∥1N−1∥2 = O

(√
k

N

(√
N/d+ 1

))
= o(

√
k). (70)

Thus, we can conclude∥∥∥P⊥
Φ−1

1k

∥∥∥
2
=

∥∥∥∥P⊥
Φ−1

(
Φ⊤

−1

1N−1

µ0(N − 1)
− v

)∥∥∥∥
2

≤
∥∥∥∥P⊥

Φ−1
PΦ−1

Φ⊤
−1

1N−1

µ0(N − 1)

∥∥∥∥
2

+ ∥v∥2 = o(
√
k),

(71)

where in the second step we use the triangle inequality, Φ⊤
−1 = PΦ−1Φ

⊤
−1, and

∥∥∥P⊥
Φ−1

v
∥∥∥
2
≤

∥v∥2.

Lemma F.6. Let z ∼ PZ , sampled independently from Z−1, and denote ϕ̃(x) := ϕ(x)− µ0. Then,∥∥∥PΦ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
= o(

√
k), (72)

with probability at least 1− exp
(
−c log2 N

)
over V , Z−1 and z, where c is an absolute constant.

Proof. As PΦ−1 = Φ+
−1Φ−1, we have∥∥∥PΦ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
≤
∥∥Φ+

−1

∥∥
op

∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2

= O


∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2√

k

 ,
(73)

where the last equality holds with probability at least 1− exp
(
−c log2 N

)
over V and Z−1, because

of Lemma F.4.

An application of Lemma E.3 with t = N gives

|ui − EV [ui]| = O
(√

k logN
)
, (74)

where ui is the i-th entry of the vector u := Φ−1

(
ϕ̃(V z)− µ1V z

)
. This can be done since both

ϕ and ϕ̃ ≡ ϕ− µ0 are Lipschitz, vj ∼ N (0, I/d), and ∥z∥2 = ∥zi+1∥2 =
√
d. Performing a union

bound over all entries of u, we can guarantee that the previous equation holds for every 1 ≤ i ≤ N−1,
with probability at least 1− (N − 1) exp(−c log2 N) ≥ 1− exp(−c1 log

2 N). Thus, we have

∥u− EV [u]∥2 = O
(√

k
√
N logN

)
= o(k), (75)

where the last equality holds because of Assumption F.1.
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Note that the function f(x) := ϕ̃(x)− µ1x has the first 2 Hermite coefficients equal to 0. Hence, as
v⊤i z and v⊤i zi are standard Gaussian random variables with correlation z⊤zi

∥z∥2∥zi∥2
, we have

|EV [ui]| ≤ k

+∞∑
l=2

µ2
l

( ∣∣z⊤zi∣∣
∥z∥2 ∥zi∥2

)l

≤ kmaxl µ
2
l

+∞∑
l=2

( ∣∣z⊤zi∣∣
∥z∥2 ∥zi∥2

)l

= kmaxl µ
2
l

(
z⊤zi

∥z∥2 ∥zi∥2

)2
1

1− |z⊤zi|
∥z∥2∥zi∥2

≤ 2kmaxl µ
2
l

(
z⊤zi

∥z∥2 ∥zi∥2

)2

= O
(
k log2 N

d

)
,

(76)

where the last inequality holds with probability at least 1− exp
(
−c log2 N

)
over z and zi, as they

are two independent, mean-0, sub-Gaussian random vectors. Again, performing a union bound over
all entries of EV [u], we can guarantee that the previous equation holds for every 1 ≤ i ≤ N − 1,
with probability at least 1− (N − 1) exp(−c log2 N) ≥ 1− exp(−c1 log

2 N). Then, we have

∥EV [u]∥2 = O
(√

N
k log2 N

d

)
= o(k), (77)

where the last equality is a consequence of Assumption F.1.

Finally, (75) and (77) give∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
≤ ∥EV [u]∥2 + ∥u− EV [u]∥2 = o(k), (78)

which plugged in (73) readily provides the thesis.

Lemma F.7. We have ∣∣∣∣(V zm1 )
⊤
P⊥
Φ−1

V z1 −
∥∥∥P⊥

Φ−1
Vyy1

∥∥∥2
2

∣∣∣∣ = o(k), (79)

with probability at least 1− exp(−c log2 N) over x, z1 and V , where c is an absolute constant.

Proof. We have
V zm1 = Vxx+ Vyy1, V z1 = Vxx1 + Vyy1. (80)

Thus, we can write∣∣∣∣(V zm1 )
⊤
P⊥
Φ−1

V z1 −
∥∥∥P⊥

Φ−1
Vyy1

∥∥∥2
2

∣∣∣∣ = ∣∣∣(Vxx)⊤ P⊥
Φ−1

V z1 + (Vyy1)
⊤
P⊥
Φ−1

Vxx1

∣∣∣
≤
∣∣∣x⊤V ⊤

x P⊥
Φ−1

V z1

∣∣∣+ ∣∣∣y⊤1 V ⊤
y P⊥

Φ−1
Vxx1

∣∣∣ . (81)

Let’s look at the first term of the RHS of the previous equation. Notice that ∥V ∥op = O
(√

k/d+ 1
)

with probability at least 1− 2e−cd, because of Theorem 4.4.5 of [47]. We condition on such event
until the end of the proof, which also implies having the same bound on ∥Vx∥op and ∥Vy∥op. Since x

is a mean-0 sub-Gaussian vector, independent from V ⊤
x P⊥

Φ−1
V z1, we have∣∣∣x⊤V ⊤

x P⊥
Φ−1

V z1

∣∣∣ ≤ logN
∥∥∥V ⊤

x P⊥
Φ−1

V z1

∥∥∥
2

≤ logN ∥Vx∥op

∥∥∥P⊥
Φ−1

∥∥∥
op
∥V ∥op ∥z1∥

= O
(
logN

(
k

d
+ 1

)√
d

)
= o(k),

(82)
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where the first inequality holds with probability at least 1− exp(−c log2 N) over x, and the last line
holds because

∥∥∥P⊥
Φ−1

∥∥∥
op

≤ 1, ∥z1∥ =
√
d, and because of Assumption F.1.

Similarly, exploiting the independence between x1 and y1, we can prove that
∣∣∣y⊤1 V ⊤

y P⊥
Φ−1

Vxx1

∣∣∣ =
o(k), with probability at least 1 − exp(−c log2 N) over y1. Plugging this and (82) in (81) readily
gives the thesis.

Lemma F.8. We have∣∣∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)−

(
k

(
+∞∑
l=2

µ2
l α

l

)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

)∣∣∣∣∣ = o(k), (83)

with probability at least 1− exp(−c log2 N) over V and Z, where c is an absolute constant.

Proof. An application of Lemma E.3 and Assumption F.1 gives

∥φ(z1)∥2 = O
(√

k
)
, ∥φ(zm1 )∥2 = O

(√
k
)
,

∥V z1∥2 = O
(√

k
)
, ∥V zm1 ∥2 = O

(√
k
)
,

(84)

with probability at least 1− exp(−c1 log
2 N) over V , where c1 is an absolute constant. We condition

on such high probability event until the end of the proof.

Let’s suppose µ0 ̸= 0. Then, we have∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)− ϕ̃(V zm1 )⊤P⊥
Φ−1

ϕ̃(V z1)
∣∣∣ = o(k), (85)

with probability at least 1 − exp(c2 log
2 N) over V and Z, because of (84) and Lemma F.5. Note

that (85) trivially holds even when µ0 = 0, as ϕ ≡ ϕ̃. Thus, (85) is true in any case with probability
at least 1− exp(c2 log

2 N) over V and Z.

Furthermore, because of (84) and Lemma F.6, we have∣∣∣ϕ̃(V zm1 )⊤PΦ−1
ϕ̃(V z1)− µ2

1(V zm1 )⊤PΦ−1
(V z1)

∣∣∣ = o(k), (86)

with probability at least 1− exp(−c3 log
2 N) over V and Z.

Thus, putting (85) and (86) together, and using Lemma F.7, we get∣∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)−
(
ϕ̃(V zm1 )⊤ϕ̃(V z1)− µ2

1(V zm1 )⊤(V z1) + µ2
1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

)∣∣∣∣
≤
∣∣∣φ(zm1 )⊤P⊥

Φ−1
φ(z1)− ϕ̃(V zm1 )⊤P⊥

Φ−1
ϕ̃(V z1)

∣∣∣
+
∣∣∣−ϕ̃(V zm1 )⊤PΦ−1

ϕ̃(V z1) + µ2
1(V zm1 )⊤PΦ−1

(V z1)
∣∣∣

+

∣∣∣∣µ2
1(V zm1 )⊤P⊥

Φ−1
(V z1)− µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

∣∣∣∣ = o(k),

(87)

with probability at least 1− exp(−c4 log
2 N) over V and X and x. To conclude we apply Lemma

E.4 setting t = N , together with Assumption F.1, to get∣∣∣∣∣ϕ̃(V zm1 )⊤ϕ̃(V z1)− k

(
+∞∑
l=1

µ2
l α

l

)∣∣∣∣∣ = O

(
√
k

(√
k

d
+ 1

)
logN

)
= o(k), (88)

and ∣∣µ2
1(V zm1 )⊤(V z1)− kµ2

1α
∣∣ = O

(
√
k

(√
k

d
+ 1

)
logN

)
= o(k), (89)

which jointly hold with probability at least 1− exp(−c5 log
2 N) over V and x.

Applying the triangle inequality to (87), (88), and (89), we get the thesis.
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Lemma F.9. We have that∣∣∣∣∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]∣∣∣∣ = o(k), (90)

∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)− Ez1,zm1
[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]∣∣∣ = o(k), (91)

jointly hold with probability at least 1− exp(−c log2 N) over z1, V and x, where c is an absolute
constant.

Proof. Let’s condition until the end of the proof on both ∥Vx∥op and ∥Vy∥op to be O
(√

k/d+ 1
)

,

which happens with probability at least 1− e−c1d by Theorem 4.4.5 of [47]. This also implies that
∥V ∥op = O

(√
k/d+ 1

)
.

We indicate with ν := Ez1 [φ(z1)] = Ezm1 [φ(zm1 )] ∈ Rk, and with φ̂(z) := φ(z)− ν. Note that, as

φ is a C
(√

k/d+ 1
)

-Lipschitz function, for some constant C, and as z1 is Lipschitz concentrated,
by AssumptionF.1, we have

|∥φ(z1)∥2 − Ez1 [∥φ(z1)∥2]| = o
(√

k
)
, (92)

with probability at least 1 − exp(−c2 log
2 N) over z1 and V . In addition, by the last statement

of Lemma E.3 and Assumption F.1, we have that ∥φ(z1)∥2 = O
(√

k
)

with probability 1 −
exp(−c3 log

2 N) over V . Thus, taking the intersection between these two events, we have

Ez1 [∥φ(z1)∥2] = O
(√

k
)
, (93)

with probability at least 1− exp(−c4 log
2 N) over z1 and V . As this statement is independent of z1,

it holds with the same probability just over the probability space of V . Then, by Jensen inequality,
we have

∥ν∥2 = ∥Ez1 [φ(z1)]∥2 ≤ Ez1 [∥φ(z1)∥2] = O
(√

k
)
. (94)

We can now rewrite the LHS of the first statement as∣∣∣∣∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]∣∣∣∣
=

∣∣∣∣∥∥∥P⊥
Φ−1

(φ̂(z1) + ν)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

(φ̂(z1) + ν)
∥∥∥2
2

]∣∣∣∣
=
∣∣∣φ̂(z1)⊤P⊥

Φ−1
φ̂(z1) + 2ν⊤P⊥

Φ−1
φ̂(z1)− Ez1

[
φ̂(z1)

⊤P⊥
Φ−1

φ̂(z1)
]∣∣∣

≤
∣∣∣φ̂(z1)⊤P⊥

Φ−1
φ̂(z1)− Ez1

[
φ̂(z1)

⊤P⊥
Φ−1

φ̂(z1)
]∣∣∣+ 2

∣∣∣ν⊤P⊥
Φ−1

φ̂(z1)
∣∣∣ .

(95)

The second term is the inner product between φ̂(z1), a mean-0 sub-Gaussian vector (in the probability
space of z1) such that ∥φ̂(z1)∥ψ2

= O
(√

k/d+ 1
)

, and the independent vector P⊥
Φ−1

ν, such that∥∥∥P⊥
Φ−1

ν
∥∥∥
2
≤ ∥ν∥2 = O

(√
k
)

, because of (94). Thus, by AssumptionF.1, we have that∣∣∣ν⊤P⊥
Φ−1

φ̂(z1)
∣∣∣ = o(k), (96)

with probability at least 1 − exp(−c5 log
2 N) over z1 and V . Then, as

(√
k/d+ 1

)−1

φ̂(z1) is a
mean-0, Lipschitz concentrated random vector (in the probability space of z1), by the general version
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of the Hanson-Wright inequality given by Theorem 2.3 in [2], we can write

P
(∣∣∣∣∥∥∥P⊥

Φ−1
φ̂(z1)

∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ̂(z1)
∥∥∥2
2

]∣∣∣∣ ≥ k/ logN

)

≤ 2 exp

−c6 min

 k2

log2 N ((k/d)2 + 1)
∥∥∥P⊥

Φ−1

∥∥∥2
F

,
k

logN (k/d+ 1)
∥∥∥P⊥

Φ−1

∥∥∥
op




≤ 2 exp

(
−c6 min

(
k

log2 N ((k/d)2 + 1)
,

k

logN (k/d+ 1)

))
≤ exp

(
−c7 log

2 N
)
,

(97)

where the last inequality comes from Assumption F.1.This, together with (95) and (96), proves the
first part of the statement.

For the second part of the statement, we have∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)− Ez1,zm1
[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]∣∣∣
≤
∣∣∣φ̂(zm1 )⊤P⊥

Φ−1
φ̂(z1)− Ez1,zm1

[
φ̂(zm1 )⊤P⊥

Φ−1
φ̂(z1)

]∣∣∣+ ∣∣∣ν⊤P⊥
Φ−1

φ̂(z1)
∣∣∣+ ∣∣∣ν⊤P⊥

Φ−1
φ̂(zm1 )

∣∣∣ .
(98)

Following the same argument that led to (96), we obtain∣∣∣ν⊤P⊥
Φ−1

φ̂(zm1 )
∣∣∣ = o(k), (99)

with probability at least 1− exp(−c8 log
2 N) over zm1 and V . Let us set

P2 :=
1

2

(
0 P⊥

Φ−1

P⊥
Φ−1

0

)
, V2 :=

(
Vx Vy 0
0 Vy Vx

)
, (100)

and
φ̂2 := ϕ

(
V2[x1, y1, x]

⊤)− Ex1,y1,x

[
ϕ
(
V2[x1, y1, x]

⊤)] ≡ [φ̂(z1), φ̂(z
m
1 )]⊤. (101)

We have that ∥P2∥op ≤ 1, ∥P2∥2F ≤ k, ∥V2∥op ≤ 2 ∥Vx∥op + 2 ∥Vy∥op = O
(√

k/d+ 1
)

, and that

[x1, y1, x]
⊤ is a Lipschitz concentrated random vector in the joint probability space of z1 and zm1 ,

which follows from applying Lemma E.2 twice. Also, we have

φ̂(zm1 )⊤P⊥
Φ−1

φ̂(z1) = φ̂⊤
2 P2φ̂2. (102)

Thus, as
(√

k/d+ 1
)−1

φ̂2 is a mean-0, Lipschitz concentrated random vector (in the probability
space of z1 and zm1 ), again by the general version of the Hanson-Wright inequality given by Theorem
2.3 in [2], we can write

P
(∣∣φ̂⊤

2 P2φ̂2 − Ez1,zm1
[
φ̂⊤
2 P2φ̂2

]∣∣ ≥ k/ logN
)

≤ 2 exp

(
−c9 min

(
k2

log2 N ((k/d)2 + 1) ∥P2∥2F
,

k

logN (k/d+ 1) ∥P2∥op

))

≤ 2 exp

(
−c9 min

(
k

log2 N ((k/d)2 + 1)
,

k

logN (k/d+ 1)

))
≤ exp

(
−c10 log

2 N
)
,

(103)

where the last inequality comes from Assumption F.1. This, together with (98), (96), (99), and (102),
proves the second part of the statement, and therefore the desired result.

Finally, we are ready to give the proof of Theorem 4.2.

21



Proof of Theorem 4.2. We will prove the statement for the following definition of γRF, independent
from z1 and zm1 ,

γRF :=
Ez1,zm1

[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

] . (104)

By Lemma D.1 and F.4, we have ∥∥∥P⊥
Φ−1

φ(z)
∥∥∥2
2
= Ω(k) (105)

with probability at least 1− exp(−c1 log
2 N) over V , Z−1 and z. This, together with Lemma F.9,

gives ∣∣∣∣∣∣∣∣
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

−
Ez1,zm1

[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]
∣∣∣∣∣∣∣∣ = o(1), (106)

with probability at least 1 − exp(−c2 log
2 N) over V , Z and x, which proves the first part of the

statement.

The upper-bound on γRF can be obtained applying Cauchy-Schwarz twice

Ez1,zm1
[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

] ≤
Ez1,zm1

[∥∥∥P⊥
Φ−1

φ(zm1 )
∥∥∥
2

∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥
2

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]

≤

√
Ezm1

[∥∥∥P⊥
Φ−1

φ(zm1 )
∥∥∥2
2

]√
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

] = 1.

(107)

Let’s now focus on the lower bound. By AssumptionF.1 and Lemma E.4 (in which we consider the
degenerate case α = 1 and set t = N ), we have∣∣∣∣∣∥∥∥ϕ̃ (V z1)

∥∥∥2
2
− k

+∞∑
l=1

µ2
l

∣∣∣∣∣ = o(k), (108)

with probability at least 1− exp(−c3 log
2 N) over V and z1. Then, a few applications of the triangle

inequality give

Ez1,zm1
[
φ(zm1 )⊤P⊥

Φ−1
φ(z1)

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

] ≥
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

− o(1)

≥
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥2
2

− o(1)

≥
k
(∑+∞

l=2 µ2
l α

l
)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

∥φ̃(z1)∥22
− o(1)

≥
k
(∑+∞

l=2 µ2
l α

l
)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

k
∑+∞
l=1 µ2

l

− o(1)

≥
∑+∞
l=2 µ2

l α
l∑+∞

l=1 µ2
l

− o(1),

(109)
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where the first inequality is a consequence of (106), the second of Lemma F.5 and (105), the third
of Lemma F.8 and again (105), and the fourth of (108), and they jointly hold with probability
1− exp(−c4 log

2 N) over V , Z−1 and z1. Again, as the statement does not depend on z1, we can
conclude that it holds with the same probability only over the probability spaces of V and Z−1, and
the thesis readily follows.

G Proofs for NTK Regression
In this section, we will indicate with Z ∈ RN×d the data matrix, such that its rows are sampled
independently from PZ (see Assumption 4.1). We denote by W ∈ Rk×d the weight matrix at
initialization, such that Wij ∼i.i.d. N (0, 1/d). Thus, the feature map is given by (see Section 4)

φ(z) := z ⊗ ϕ′(Wz) ∈ Rdk, (110)

where ϕ′ is the derivative of the activation function ϕ, applied component-wise to the vector Wz.
We use the shorthands Φ := Z ∗ ϕ′(ZW⊤) ∈ RN×p and K := ΦΦ⊤ ∈ RN×N , where ∗ denotes
the Khatri-Rao product, defined in Appendix C. We indicate with Φ−1 ∈ R(N−1)×k the matrix
Φ without the first row, and we define K−1 := Φ−1Φ

⊤
−1. We call PΦ the projector over the span

of the rows of Φ, and PΦ−1
the projector over the span of the rows of Φ−1. We use the notations

φ̃(z) := φ(z)− EW [φ(z)] and Φ̃−1 := Φ−1 − EW [Φ−1] to indicate the centered feature map and
matrix respectively, where the centering is with respect to W . We indicate with µ′

l the l-th Hermite
coefficient of ϕ′. We use the notation zm1 = [x, y1], where x ∼ PX is sampled independently from
V and Z. We define α = dy/d. Throughout this section, for compactness, we drop the subscripts
“NTK” from these quantities, as we will only treat the proofs related to the NTK Regression model.
Again for the sake of compactness, we will not re-introduce such quantities in the statements or the
proofs of the following lemmas.

Through the following Section, as mentioned in the main body of the paper, we will work under the
following assumptions

Assumption G.1 (Over-parameterization and topology).

N log8 N = o(kd), N > d, k = O (d) . (111)

The first condition is the smallest (up to log factors) over-parameterization that guarantees inter-
polation [13]. The second condition is rather mild (it is easily satisfied by standard datasets) and
purely technical. The third condition is required to lower bound the smallest eigenvalue of the kernel
induced by the feature map, and a stronger requirement, i.e., the strict inequality k < d, has appeared
in prior work [34, 35, 36].

Assumption G.2 (Activation function). The activation function ϕ is a non-linear function with
L-Lipschitz first order derivative ϕ′.

This requirements is satisfied by common activations, e.g. smoothed ReLU, sigmoid, or tanh.

Summary of this Section.

• In Lemma G.3, we prove the lower bound on the smallest eigenvalue of K, adapting to our
settings the main result of [13].

• In Lemma G.7, we treat separately a term that derives from EW [ϕ′(Wz)] = µ′
01k, showing

that we can center the derivative of the activation function (Lemma G.11), without changing
our final statement in Theorem 4.3. This step is necessary only if µ′

0 ̸= 0. Our proof tackles
the problem proving the thesis on a set of “perturbed” inputs Z̄−1(δ) (Lemma G.6), critically
exploiting the non degenerate behaviour of their rows (Lemma G.5), and transfers the result
on the original term, using continuity arguments with respect to the perturbation (Lemma
G.4).

• In Lemma G.10, we show that the centered features φ̃(z1) and φ̃(zm1 ) have a negligible
component in the space spanned by the rows of Φ−1. To achieve this, we exploit the bound
proved in Lemma G.9.

• To conclude, we prove Theorem 4.3, exploiting also the concentration result provided in
Lemma G.8.
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Lemma G.3. We have that
λmin (K) = Ω(kd), (112)

with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W , where c is an absolute constant.

Proof. The result follows from Theorem 3.1 of [13]. Notice that our assumptions on the data
distribution PZ are stronger, and that our initialization of the very last layer (which differs from the
Gaussian initialization in [13]) does not change the result. Assumption G.1, i.e., k = O (d), satisfies
the loose pyramidal topology condition (cf. Assumption 2.4 in [13]), and Assumption G.1 is the same
as Assumption 2.5 in [13]. An important difference is that we do not assume the activation function
ϕ to be Lipschitz anymore. This, however, stops being a necessary assumption since we are working
with a 2-layer neural network, and ϕ doesn’t appear in the expression of NTK.

Lemma G.4. Let A ∈ R(N−1)×d be a generic matrix, and let Z̄−1(δ) and Φ̄−1(δ) be defined as

Z̄−1(δ) := Z−1 + δA, (113)

Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W
⊤) . (114)

Let P̄Φ−1
(δ) ∈ Rdk×dk be the projector over the Span of the rows of Φ̄−1(δ). Then, we have that

P̄⊥
Φ−1

(δ) is continuous in δ = 0 with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W ,
where c is an absolute constant and where the continuity is with respect to ∥·∥op.

Proof. In this proof, when we say that a matrix is continuous with respect to δ, we always intend
with respect to the operator norm ∥·∥op. Then, Φ̄−1(δ) is continuous in 0, as∥∥Φ̄−1(δ)− Φ̄−1(0)

∥∥
op =

∥∥δA ∗ ϕ′ (Z−1W
⊤)∥∥

op ≤ δ ∥A∥op max2≤i≤N ∥ϕ′ (Wzi)∥2 , (115)

where the second step follows from Equation (3.7.13) in [30].

By Weyl’s inequality, this also implies that λmin

(
Φ̄−1(δ)Φ̄−1(δ)

⊤) is continuous in δ = 0. Recall
that, by Lemma G.3, det

(
Φ̄−1(0)Φ̄−1(0)

⊤) ≡ det
(
Φ−1Φ

⊤
−1

)
̸= 0 with probability at least 1 −

Ne−c log
2 k − e−c log

2N over Z and W . This implies that
(
Φ̄−1(δ)Φ̄−1(δ)

⊤)−1
is also continuous,

as for every invertible matrix M we have M−1 = Adj(M)/ det(M) (where Adj(M) denotes the
Adjugate of the matrix M ), and both Adj(·) and det(·) are continuous mappings. Thus, as P̄Φ−1(0) =

Φ̄−1(0)
⊤ (Φ̄−1(0)Φ̄−1(0)

⊤)−1
Φ̄−1(0) (see (20)), we also have the continuity of P̄Φ−1

(δ) in δ = 0,
which gives the thesis.

Lemma G.5. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each
other and from everything else) from a standard Gaussian distribution. Then, for every δ > 0, with
probability 1 over A, the rows of Z̄−1 := Z−1 + δA span Rd.

Proof. As N − 1 ≥ d, by Assumption G.1,negating the thesis would imply that the rows of Z̄−1 are
linearly dependent, and that they belong to a subspace with dimension at most d − 1. This would
imply that there exists a row of Z̄−1, call it z̄j , such that z̄j belongs to the space spanned by all the
other rows of Z̄−1, with dimension at most d − 1. This means that Aj: has to belong to an affine
space with the same dimension, which we can consider fixed, as it’s not a function of the random
vector Aj:, but only of Z−1 and {Ai:}i ̸=j . As the entries of Aj: are sampled independently from a
standard Gaussian distribution, this happens with probability 0.

Lemma G.6. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each
other and from everything else) from a standard Gaussian distribution. Let Z̄−1(δ) := Z−1 + δA
and Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W

⊤). Let P̄Φ−1(δ) ∈ Rdk×dk be the projector over the Span of
the rows of Φ̄−1(δ). Let µ′

0 ̸= 0. Then, for z ∼ PZ , and for any δ > 0, we have,∥∥∥P̄⊥
Φ−1

(δ) (z ⊗ 1k)
∥∥∥
2
= o(

√
dk), (116)

with probability at least 1− exp(−c log2 N) over Z, W , and A, where c is an absolute constant.
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Proof. Let B−1 := ϕ′(Z−1W
⊤) ∈ R(N−1)×k. Notice that, for any ζ ∈ RN−1, the following

identity holds

Φ̄⊤
−1(δ)ζ =

(
Z̄−1(δ) ∗B−1

)⊤
ζ =

(
Z̄⊤
−1(δ)ζ

)
⊗
(
B⊤

−11N−1

)
. (117)

Note that B⊤
−1 = µ′

01k1
⊤
N−1+ B̃⊤

−1, where B̃⊤
−1 = ϕ′(WZ⊤

−1)−EW
[
ϕ′(WZ⊤

−1)
]

is a k× (N −1)
matrix with i.i.d. and mean-0 rows. For an argument equivalent to the one used for (67) and (68), we
have ∥∥∥B̃⊤

−1

∥∥∥
op

= O
((√

k +
√
N
)(√

N/d+ 1
))

, (118)

with probability at least 1− exp(−c log2 N) over Z−1 and W . Thus, we can write

B⊤
−1

1N−1

µ′
0(N − 1)

=
(
µ′
01k1

⊤
N−1 + B̃⊤

−1

) 1N−1

µ′
0(N − 1)

= 1k + B̃⊤
−1

1N−1

µ′
0(N − 1)

=: 1k + v, (119)

where we have

∥v∥2 ≤
∥∥∥B̃⊤

−1

∥∥∥
op

∥∥∥∥ 1N−1

µ′
0(N − 1)

∥∥∥∥
2

= O
((√

k/N + 1
)(√

N/d+ 1
))

= o(
√
k), (120)

where the last step is a consequence of Assumption G.1. Plugging (119) in (117) we get

1

µ′
0(N − 1)

Φ̄⊤
−1(δ)ζ =

1

µ′
0(N − 1)

(
Z̄−1(δ) ∗B−1

)⊤
ζ =

(
Z̄⊤
−1(δ)ζ

)
⊗ (1k + v) . (121)

By Lemma G.5, we have that the rows of Z̄−1(δ) span Rd, with probability 1 over A. Thus,
conditioning on this event, we can set ζ to be a vector such that z = Z̄⊤

−1(δ)ζ. We can therefore
rewrite the previous equation as

1

µ′
0(N − 1)

Φ̄⊤
−1(δ)ζ = z ⊗ 1k + z ⊗ v. (122)

Thus, we can conclude∥∥∥P̄⊥
Φ−1

(δ) (z ⊗ 1k)
∥∥∥
2
=

∥∥∥∥P⊥
Φ−1

(
Φ⊤

−1(δ)ζ

µ′
0(N − 1)

− z ⊗ v

)∥∥∥∥
2

≤
∥∥∥∥P̄⊥

Φ−1
(δ)Φ⊤

−1(δ)
ζ

µ′
0(N − 1)

∥∥∥∥
2

+ ∥z ⊗ v∥2

= ∥z∥2 ∥v∥2 = o(
√
dk),

(123)

where in the second step we use the triangle inequality, in the third step we use that Φ⊤
−1(δ) =

P̄Φ−1
(δ)Φ⊤

−1(δ), and in the last step we use (120). The desired result readily follows.

Lemma G.7. Let µ′
0 ̸= 0. Then, for any z ∈ Rd, we have,∥∥∥P⊥

Φ−1
(z ⊗ 1k)

∥∥∥
2
= o(

√
dk), (124)

with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W , where c is an absolute constant.

Proof. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each other
and from everything else) from a standard Gaussian distribution. Let Z̄−1(δ) := Z−1 + δA and
Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W

⊤). Let P̄Φ−1(δ) ∈ Rdk×dk be the projector over the Span of the
rows of Φ̄−1(δ).

By triangle inequality, we can write∥∥∥P⊥
Φ−1

(z ⊗ 1k)
∥∥∥
2
≤
∥∥∥P⊥

Φ−1
− P̄⊥

Φ−1
(δ)
∥∥∥

op
∥z ⊗ 1k∥2 +

∥∥∥P̄⊥
Φ−1

(δ) (z ⊗ 1k)
∥∥∥
2
. (125)
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Because of Lemma G.4, with probability at least 1−Ne−c log
2 k−e−c log

2N over Z and W , P̄⊥
Φ−1

(δ)

is continuous in δ = 0, with respect to ∥·∥op. Thus, there exists δ∗ > 0 such that, for every δ ∈ [0, δ∗],∥∥∥P⊥
Φ−1

− P̄⊥
Φ−1

(δ)
∥∥∥

op
≡
∥∥∥P̄⊥

Φ−1
(0)− P̄⊥

Φ−1
(δ)
∥∥∥

op
<

1

N
. (126)

Hence, setting δ = δ∗ in (125), we get∥∥∥P⊥
Φ−1

(z ⊗ 1k)
∥∥∥
2
≤
∥∥∥P⊥

Φ−1
− P̄⊥

Φ−1
(δ∗)

∥∥∥
op
∥z ⊗ 1k∥2 +

∥∥∥P̄⊥
Φ−1

(δ∗) (z ⊗ 1k)
∥∥∥
2

≤ ∥z∥2 ∥1k∥2 /N +
∥∥∥P̄⊥

Φ−1
(δ∗) (z ⊗ 1k)

∥∥∥
2

= o(
√
dk),

(127)

where the last step is a consequence of Lemma G.6, and it holds with probability at least 1 −
exp(−c log2 N) over Z, W , and A. As the LHS of the previous equation doesn’t depend on A, the
statements holds with the same probability, just over the probability spaces of Z and W , which gives
the desired result.

Lemma G.8. We have ∣∣∣∣∣ φ̃(zm1 )⊤φ̃(z1)

∥φ̃(z1)∥22
− α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2

∣∣∣∣∣ = o(1), (128)

with probability at least 1−exp(−c log2 N)−exp(−c log2 k) over W and z1, where c is an absolute
constant. With the same probability, we also have

φ̃(zm1 )⊤φ̃(z1) = Θ(dk), ∥φ̃(z1)∥22 = Θ(dk). (129)

Proof. We have

∥φ̃(z1)∥22 =
∥∥∥z1 ⊗ ϕ̃′ (Wz1)

∥∥∥2
2
= ∥z1∥22

∥∥∥ϕ̃′ (Wz1)
∥∥∥2
2
= d

∥∥∥ϕ̃′ (Wz1)
∥∥∥2
2
. (130)

By Assumption G.1 and Lemma E.4 (in which we consider the degenerate case α = 1 and set t = k),
we have ∣∣∣∣∣∥∥∥ϕ̃′ (Wz1)

∥∥∥2
2
− k

+∞∑
l=1

µ′
l
2

∣∣∣∣∣ = o(k), (131)

with probability at least 1− exp(−c log2 k) over W and z1. Thus, we have∣∣∣∣∣∥φ̃(z1)∥22 − dk

+∞∑
l=1

µ′
l
2

∣∣∣∣∣ = o(dk). (132)

Notice that the second term in the modulus is Θ(dk), since the µ′
l-s cannot be all 0, because of

Assumption G.2; this shows that ∥φ̃(z1)∥22 = Θ(dk).

Similarly, we can write

φ̃(zm1 )⊤φ̃(z1) =
(
z⊤1 zm1

) (
ϕ̃′ (Wz1)

⊤
ϕ̃′ (Wzm1 )

)
. (133)

We have ∣∣z⊤1 zm1 − αd
∣∣ = ∣∣x⊤

1 x
∣∣ ≤√dx log d = o(d), (134)

where the inequality holds with probability at least 1 − exp(−c1 log
2 d) ≥ 1 − exp(−c2 log

2 N)
over x1, as we are taking the inner product of two independent and sub-Gaussian vectors with norm√
dx. Furthermore, again by AssumptionG.1 and Lemma E.4, we have∣∣∣∣∣ϕ̃′ (Wz1)

⊤
ϕ̃′ (Wzm1 )− k

+∞∑
l=1

µ′
l
2
αl

∣∣∣∣∣ = o(k), (135)

with probability at least 1 − exp(−c3 log
2 k) over W and z1. Notice that the second term in the

modulus is Θ(k), because of Assumption G.2.
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Thus, putting (133), (134) and (135) together, we get∣∣∣∣∣φ̃(zm1 )⊤φ̃(z1)− dkα

+∞∑
l=1

µ′
l
2
αl

∣∣∣∣∣ = o(dk), (136)

with probability at least 1 − exp(−c3 log
2 k) − exp(−c2 log

2 N) over W and z1; this shows that
φ̃(zm1 )⊤φ̃(z1) = Θ(dk).

Finally, merging (136) with (132) and applying triangle inequality, (128) follows and the proof is
complete.

Lemma G.9. Let z ∼ PZ be sampled independently from Z−1. Then,
∥Φ−1φ̃(z)∥2 = o (dk) , (137)

with probability at least 1− exp(−c log2 N) over W and z, where c is an absolute constant.

Proof. Let’s look at the i-th entry of the vector Φ−1φ̃(z), i.e.,

φ(zi+1)
⊤φ̃(z) =

(
z⊤i+1z

) (
ϕ′(Wzi+1)

⊤ϕ̃′(Wz)
)
. (138)

As z and zi+1 are sub-Gaussian and independent with norm
√
d, we can write

∣∣z⊤zi+1

∣∣ =

O
(√

d logN
)

with probability at least 1 − exp(−c log2 N) over z. We will condition on such
high probability event until the end of the proof.

By Lemma E.3, setting t = N , we have∣∣∣ϕ′(Wzi+1)
⊤ϕ̃′(Wz)− EW

[
ϕ′(Wzi+1)

⊤ϕ̃′(Wz)
]∣∣∣ = O

(√
k logN

)
, (139)

with probability at least 1− exp(−c1 log
2 N) over W . Exploiting the Hermite expansion of ϕ′ and

ϕ̃′, we have∣∣∣EW [ϕ′(Wzi+1)
⊤ϕ̃′(Wz)

]∣∣∣ ≤ k

+∞∑
l=1

µ′
l
2

( ∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2

)l

≤ kmaxl µ
′
l
2

+∞∑
l=1

( ∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2

)l

= kmaxl µ
′
l
2

∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2
1

1− |z⊤i+1z|
∥zi+1∥2∥z∥2

≤ 2kmaxl µ
′
l
2

∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2
= O

(
k logN√

d

)
.

(140)

Putting together (139) and (140), and applying triangle inequality, we get∣∣∣ϕ′(Wzi+1)
⊤ϕ̃′(Wz)

∣∣∣ = O
(√

k logN +
k logN√

d

)
= O

(√
k logN

)
, (141)

where the last step is a consequence of Assumption G.1.Comparing this last result with (138), we
obtain ∣∣φ(zi+1)

⊤φ̃(z)
∣∣ = O

(√
dk log2 N

)
, (142)

with probability at least 1− exp(−c2 log
2 N) over W and z.

We want the previous equation to hold for all 1 ≤ i ≤ N − 1. Performing a union bound, we have
that this is true with probability at least 1− (N − 1) exp(−c2 log

2 N) ≥ 1− exp(−c3 log
2 N) over

W and z. Thus, with such probability, we have

∥Φ−1φ̃(z)∥2 ≤
√
N − 1maxi

∣∣φ(zi+1)
⊤φ̃(z)

∣∣
=O

(√
dk

√
N log2 N

)
= o(dk),

(143)

where the last step follows from Assumption G.1.
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Lemma G.10. We have∣∣∣∣∣ φ̃(zm1 )⊤φ̃(z1)− φ̃(zm1 )⊤PΦ−1
φ̃(z1)∥∥φ̃(z1)− PΦ−1

φ̃(z1)
∥∥2
2

− φ̃(zm1 )⊤φ̃(z1)

∥φ̃(z1)∥22

∣∣∣∣∣ = o(1), (144)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x and W , where c is an
absolute constant. With the same probability, we also have

φ̃(zm1 )⊤φ̃(z1)− φ̃(zm1 )⊤PΦ−1
φ̃(z1) = Θ(dk),

∥∥φ̃(z1)− PΦ−1
φ̃(z1)

∥∥2
2
= Θ(dk). (145)

Proof. Notice that, with probability at least 1− exp(−c log2 N)− exp(−c log2 k) over W and z1,
we have both

φ̃(zm1 )⊤φ̃(z1) = Θ(dk) ∥φ̃(z1)∥22 = Θ(dk). (146)

by the second statement of Lemma G.8. Furthermore,∣∣φ̃(zm1 )⊤PΦ−1 φ̃(z1)
∣∣ = ∣∣φ̃(zm1 )⊤Φ⊤

−1K
−1
−1Φ−1φ̃(z1)

∣∣
≤∥Φ−1φ̃(z

m
1 )∥2 λmin (K−1)

−1 ∥Φ−1φ̃(z1)∥2

=o(dk)O
(

1

dk

)
o(dk) = o(dk),

(147)

where the third step is justified by Lemmas G.3 and G.9, and holds with probability at least
1 − Ne−c log

2 k − e−c log
2N over Z, x, and W . A similar argument can be used to show that∥∥PΦ−1

φ̃(z1)
∥∥2
2
= o(dk), which, together with (147) and (146), and a straightforward application of

the triangle inequality, provides the thesis.

Lemma G.11. We have∣∣∣∣∣∣∣
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

−
φ̃(zm1 )⊤P⊥

Φ−1
φ̃(z1)∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥2
2

∣∣∣∣∣∣∣ = o(1), (148)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x and W , where c is an
absolute constant.

Proof. If µ′
0 = 0, the thesis is trivial, as φ ≡ φ̃. If µ′

0 ̸= 0, we can apply Lemma G.7, and the proof
proceeds as follows.

First, we notice that the second term in the modulus in the statement corresponds to the first term in
the statement of Lemma G.10. We will condition on the result of Lemma G.10 to hold until the end
of the proof. Notice that this also implies

φ̃(zm1 )⊤P⊥
Φ−1

φ̃(z1) = Θ(dk),
∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥2
2
= Θ(dk), (149)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x, and W . Due to Lemma
G.7, we jointly have∥∥∥P⊥

Φ−1
(z1 ⊗ 1k)

∥∥∥
2
= o(

√
dk),

∥∥∥P⊥
Φ−1

(zm1 ⊗ 1k)
∥∥∥
2
= o(

√
dk), (150)

with probability at least 1− exp(c log2 N) over Z−1 and W . Also, by Lemma E.3 and Assumption
F.1, we jointly have∥∥∥P⊥

Φ−1
φ(zm1 )

∥∥∥
2
≤ ∥φ(zm1 )∥2 = ∥zm1 ∥2 ∥ϕ

′(Wzm1 )∥2 = O
(√

dk
)
, (151)

and ∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥
2
≤ ∥φ̃(z1)∥2 = ∥z1∥2

∥∥∥ϕ̃′(Wz1)
∥∥∥
2
= O

(√
dk
)
, (152)
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with probability at least 1−exp(−c1 log
2 N) over W . We will condition also on such high probability

events ((150), (151), (152)) until the end of the proof. Thus, we can write∣∣∣φ(zm1 )⊤P⊥
Φ−1

φ(z1)− φ̃(zm1 )⊤P⊥
Φ−1

φ̃(z1)
∣∣∣

≤
∣∣∣φ(zm1 )⊤P⊥

Φ−1
(φ(z1)− φ̃(z1))

∣∣∣+ ∣∣∣(φ(zm1 )− φ̃(zm1 ))
⊤
P⊥
Φ−1

φ̃(z1)
∣∣∣

≤
∥∥∥P⊥

Φ−1
φ(zm1 )

∥∥∥
2

∥∥∥P⊥
Φ−1

(z1 ⊗ µ01k)
∥∥∥
2
+
∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥
2

∥∥∥P⊥
Φ−1

(zm1 ⊗ µ01k)
∥∥∥
2
= o(dk),

(153)
where in the last step we use (150), (151), and (152). Similarly, we can show that∣∣∣∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥
2
−
∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥
2

∣∣∣ ≤ ∥∥∥P⊥
Φ−1

φ(z1)− P⊥
Φ−1

φ̃(z1)
∥∥∥
2

≤
∥∥∥P⊥

Φ−1
(z1 ⊗ µ01k)

∥∥∥
2
= o(

√
dk).

(154)

By combining (149), (153), and (154), the desired result readily follows.

Finally, we are ready to give the proof of Theorem 4.3.

Proof of Theorem 4.3. We have∣∣∣∣∣∣∣
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

− α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
φ(zm1 )⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

−
φ̃(zm1 )⊤P⊥

Φ−1
φ̃(z1)∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥2
2

∣∣∣∣∣∣∣
+

∣∣∣∣∣ φ̃(zm1 )⊤φ̃(z1)− φ̃(zm1 )⊤PΦ−1
φ̃(z1)∥∥φ̃(z1)− PΦ−1

φ̃(z1)
∥∥2
2

− φ̃(zm1 )⊤φ̃(z1)

∥φ̃(z1)∥22

∣∣∣∣∣
+

∣∣∣∣∣ φ̃(zm1 )⊤φ̃(z1)

∥φ̃(z1)∥22
− α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2

∣∣∣∣∣
= o(1),

(155)
where the first step is justified by the triangle inequality, and the second by Lemmas G.11, G.10, and
G.8, and it holds with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x, and
W .
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H Experiments
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Figure 3: Test and attack accuracies as a function of the number of training samples N , for fully
connected (FC, first two plots) and small convolutional neural networks (CNN, last two plots).
In the first plot, we use synthetic (Gaussian) data with d = 1000, and the labeling function is
g(x) = sign(u⊤x). As we consider binary classification, the accuracy of random guessing is 0.5.
The other plots use subsets of the MNIST and CIFAR-10 datasets, with an external layer of noise
added to images, see Figure 2. As we consider 10 classes, the accuracy of random guessing is 0.1.
We plot the average over 10 independent trials and the confidence band at 1 standard deviation.
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Figure 4: Test and attack accuracies as a function of the number of training samples N , for various
binary classification tasks. In the first two plots, we consider the RF model with k = 105 trained
over Gaussian data with d = 1000. The labeling function is g(x) = sign(u⊤x). We repeat the
experiments for α = {0.25, 0.5}, and for the two activations ϕ2 = h1 +h2 and ϕ4 = h1 +h4, where
hi denotes the i-th Hermite polynomial. In the last two plots, we consider the same model with ReLU
activation, trained over two MNIST and CIFAR-10 classes. The width of the noise background is 10
pixels for MNIST and 8 pixels for CIFAR-10, see Figure 2. The reconstruction attack queries the
model only with the noise background, replacing all the other pixels with 0, and takes the sign of the
output. As we consider binary classification, an accuracy of 0.5 is achieved by random guessing. We
plot the average over 10 independent trials and the confidence band at 1 standard deviation.
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Figure 5: We consider the NTK model with k = 100 and, in the first two plots, we repeat the
experiments for activations whose derivatives are ϕ′

2 = h0 + h1 and ϕ′
4 = h0 + h3, where hi denotes

the i-th Hermite polynomial (see Appendix C.1). The rest of the setup is similar to that of Figure 4.
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