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Abstract

Web-scale search systems learn an encoder to embed a given query which is then
hooked into an approximate nearest neighbor search (ANNS) pipeline to retrieve
similar data points. To accurately capture tail queries and data points, learned
representations typically are rigid, high-dimensional vectors that are generally
used as-is in the entire ANNS pipeline and can lead to computationally expensive
retrieval. In this paper, we argue that instead of rigid representations, different
stages of ANNS can leverage adaptive representations of varying capacities to
achieve significantly better accuracy-compute trade-offs, i.e., stages of ANNS that
can get away with more approximate computation should use a lower-capacity

representation of the same data point. To this end, we introduce AANNS 5,
a novel ANNS design framework that explicitly leverages the flexibility of Ma-
tryoshka Representations [3 1]. We demonstrate state-of-the-art accuracy-compute
trade-offs using novel AAANNS-based key ANNS building blocks like search
data structures (AdANNS-IVF) and quantization (AdANNS-OPQ). For exam-
ple on ImageNet retrieval, AAANNS-IVF is up to 1.5% more accurate than the
rigid representations-based IVF [48] at the same compute budget; and matches
accuracy while being up to 90x faster in wall-clock time. For Natural Questions,
32-byte AAANNS-OPQ matches the accuracy of the 64-byte OPQ baseline [13]
constructed using rigid representations — same accuracy at half the cost! We further
show that the gains from AdANNS translate to modern-day composite ANNS
indices that combine search structures and quantization. Finally, we demonstrate
that AANNS can enable inference-time adaptivity for compute-aware search
on ANNS indices built non-adaptively on matryoshka representations. Code is
open-sourced at https://github.com/RAIVNLab/AJANNS.

1 Introduction

Semantic search [24] on learned representations [40, 41, 50] is a major component in retrieval
pipelines [4, 9]. In its simplest form, semantic search methods learn a neural network to embed
queries as well as a large number (V) of data points in a d-dimensional vector space. For a given query,
the nearest (in embedding space) point is retrieved using either an exact search or using approximate
nearest neighbor search (ANNS) [21] which is now indispensable for real-time large-scale retrieval.

Existing semantic search methods learn fixed or rigid representations (RRs) which are used as is
in all the stages of ANNS (data structures for data pruning and quantization for cheaper distance
computation; see Section 2). That is, while ANNS indices allow a variety of parameters for searching
the design space to optimize the accuracy-compute trade-off, the provided data dimensionality is
typically assumed to be an immutable parameter. To make it concrete, let us consider inverted file
index (IVF) [48], a popular web-scale ANNS technique [16]. IVF has two stages (Section 3) during
inference: (a) cluster mapping: mapping the query to a cluster of data points [36], and (b) linear
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Figure 1: AdANNS helps design search data structures and quantization methods with better
accuracy-compute trade-offs than the existing solutions. In particular, (a) AAANNS-IVF improves on
standard IVF by up to 1.5% in accuracy while being 90x faster in deployment and (b) AAANNS-OPQ
is as accurate as the baseline at half the cost! Rigid-IVF and Rigid-OPQ are standard techniques that
are built on rigid representations (RRs) while AAANNS uses matryoshka representations (MRs) [31].

scan: distance computation w.r.t all points in the retrieved cluster to find the nearest neighbor (NN).
Standard IVF utilizes the same high-dimensional RR for both phases, which can be sub-optimal.

Why the sub-optimality? Imagine one needs to partition a dataset into k clusters for IVF and the
dimensionality of the data is d — IVF uses full d representation to partition into k clusters. However,
suppose we have an alternate approach that somehow projects the data in d/2 dimensions and learns
2k clusters. Note that the storage and computation to find the nearest cluster remains the same in both
cases, i.e., when we have k clusters of d dimensions or 2k clusters of d/2 dimensions. 2k clusters
can provide significantly more refined partitioning, but the distances computed between queries and
clusters could be significantly more inaccurate after projection to d/2 dimensions.

So, if we can find a mechanism to obtain a d/2-dimensional representation of points that can accurately
approximate the topology/distances of d-dimensional representation, then we can potentially build
significantly better ANNS structure that utilizes different capacity representations for the cluster
mapping and linear scan phases of IVF. But how do we find such adaptive representations? These
desired adaptive representations should be cheap to obtain and still ensure distance preservation
across dimensionality. Post-hoc dimensionality reduction techniques like SVD [14] and random
projections [25] on high-dimensional RRs are potential candidates, but our experiments indicate that
in practice they are highly inaccurate and do not preserve distances well enough (Figure 2).

Instead, we identify that the recently proposed Matryoshka Representations (MRs) [31] satisfy
the specifications for adaptive representations. Matryoshka representations pack information in a
hierarchical nested manner, i.e., the first m-dimensions of the d-dimensional MR form an accurate
low-dimensional representation while being aware of the information in the higher dimensions.
This allows us to deploy MRs in two major and novel ways as part of ANNS: (a) low-dimensional
representations for accuracy-compute optimal clustering and quantization, and (b) high-dimensional
representations for precise re-ranking when feasible.

To this effort, we introduce AAANNS 5, a novel design framework for semantic search that uses
matryoshka representation-based adaptive representations across different stages of ANNS to ensure
significantly better accuracy-compute trade-off than the state-of-the-art baselines.

Typical ANNS systems have two key components: (a) search data structure to store datapoints, (b)
distance computation to map a given query to points in the data structure. Through AAANNS, we
address both these components and significantly improve their performance. In particular, we first
propose AAANNS-IVF (Section 4.1) which tackles the first component of ANNS systems. AAANNS-
IVF uses standard full-precision computations but uses adaptive representations for different IVF
stages. On ImageNet 1-NN image retrieval (Figure 1a), AAANNS-IVF is up to 1.5% more accurate
for the compute budget and 90x cheaper in deployment for the same accuracy as IVF.



We then propose AdANNS-OPQ (Section 4.2) which addresses the second component by using
AdANNS-based quantization (OPQ [13]) — here we use exhaustive search overall points. AdANNS-
OPQ is as accurate as the baseline OPQ on RRs while being at least 2 faster on Natural Ques-
tions [32] 1-NN passage retrieval (Figure 1b). Finally, we combine the two techniques to obtain
AdANNS-IVFOPQ (Section 4.3) which is more accurate while being much cheaper — up to 8x
— than the traditional IVFOPQ [24] index. To demonstrate generality of our technique, we adapt
AdANNS to DiskANN [22] which provides interesting accuracy-compute tradeoff; see Table 1.

While MR already has multi-granular representations, careful integration with ANNS building blocks
is critical to obtain a practical method and is our main contribution. In fact, Kusupati et al. [31]
proposed a simple adaptive retrieval setup that uses smaller-dimensional MR for shortlisting in re-
trieval followed by precise re-ranking with a higher-dimensional MR. Such techniques, unfortunately,
cannot be scaled to industrial systems as they require forming a new index for every shortlisting
provided by low-dimensional MR. Ensuring that the method aligns well with the modern-day
ANNS pipelines is important as they already have mechanisms to handle real-world constraints like
load-balancing [16] and random access from disk [22]. So, AANNS is a step towards making the
abstraction of adaptive search and retrieval feasible at the web-scale.

Through extensive experimentation, we also show that AAANNS generalizes across search data
structures, distance approximations, modalities (text & image), and encoders (CNNs & Transformers)
while still translating the theoretical gains to latency reductions in deployment. While we have mainly
focused on IVF and OPQ-based ANNS in this work, AAANNS also blends well with other ANNS
pipelines. We also show that AAANNS can enable compute-aware elastic search on prebuilt indices
without making any modifications (Section 5.1); note that this is in contrast to AAANNS-IVF that
builds the index explicitly utilizing “adaptivity” in representations. Finally, we provide an extensive
analysis on the alignment of matryoshka representation for better semantic search (Section 5.2).

We make the following key contributions:

e We introduce AAANNS Z, a novel framework for semantic search that leverages matryoshka
representations for designing ANNS systems with better accuracy-compute trade-offs.

o AdANNS powered search data structure (AdANNS-IVF) and quantization (AdANNS-OPQ)
show a significant improvement in accuracy-compute tradeoff compared to existing solutions.

o AJANNS generalizes to modern-day composite ANNS indices and can also enable compute-aware
elastic search during inference with no modifications.

2 Related Work

Approximate nearest neighbour search (ANNS) is a paradigm to come as close as possible [7] to
retrieving the “true” nearest neighbor (NN) without the exorbitant search costs associated with
exhaustive search [21, 52]. The “approximate” nature comes from data pruning as well as the cheaper
distance computation that enable real-time web-scale search. In its naive form, NN-search has a
complexity of O(dN); d is the data dimensionality used for distance computation and N is the size
of the database. ANNS employs each of these approximations to reduce the linear dependence on the
dimensionality (cheaper distance computation) and data points visited during search (data pruning).

Cheaper distance computation. From a bird’s eye view, cheaper distance computation is always
obtained through dimensionality reduction (quantization included). PCA and SVD [14, 26] can
reduce dimensionality and preserve distances only to a limited extent without sacrificing accuracy.
On the other hand, quantization-based techniques [6, 15] like (optimized) product quantization
((O)PQ) [13, 23] have proved extremely crucial for relatively accurate yet cheap distance computation
and simultaneously reduce the memory overhead significantly. Another naive solution is to indepen-
dently train the representation function with varying low-dimensional information bottlenecks [31]
which is rarely used due to the costs of maintaining multiple models and databases.

Data pruning. Enabled by various data structures, data pruning reduces the number of data points
visited as part of the search. This is often achieved through hashing [8, 46], trees [3, 12, ]
and graphs [22, 38]. More recently there have been efforts towards end to-end learmng of the
search data structures [17, 29, 30]. However, web-scale ANNS indices are often constructed on rigid
d-dimensional real vectors using the aforementioned data structures that assist with the real-time
search. For a more comprehensive review of ANNS structures please refer to [5, 34, 51].



Composite indices. ANNS pipelines often benefit from the complementary nature of various building
blocks [24, 42]. In practice, often the data structures (coarse-quantizer) like IVF [48] and HNSW [37]
are combined with cheaper distance alternatives like PQ [23] (fine-quantizer) for massive speed-ups
in web-scale search. While the data structures are built on d-dimensional real vectors, past works
consistently show that PQ can be safely used for distance computation during search time. As
evident in modern web-scale ANNS systems like Disk ANN [22], the data structures are built on
d-dimensional real vectors but work with PQ vectors (32 — 64-byte) for fast distance computations.

ANNS benchmark datasets. Despite the Herculean advances in representation learning [19, 42],
ANNS progress is often only benchmarked on fixed representation vectors provided for about a
dozen million to billion scale datasets [1, 47] with limited access to the raw data. This resulted in
the improvement of algorithmic design for rigid representations (RRs) that are often not specifically
designed for search. All the existing ANNS methods work with the assumption of using the provided
d-dimensional representation which might not be Pareto-optimal for the accuracy-compute trade-
off in the first place. Note that the lack of raw-image and text-based benchmarks led us to using
ImageNet-1K [45] (1.3M images, SOK queries) and Natural Questions [32] (21M passages, 3.6K
queries) for experimentation. While not billion-scale, the results observed on ImageNet often translate
to real-world progress [28], and Natural Questions is one of the largest question answering datasets
benchmarked for dense passage retrieval [27], making our results generalizable and widely applicable.

In this paper, we investigate the utility of adaptive representations — embeddings of different dimen-
sionalities having similar semantic information — in improving the design of ANNS algorithms. This
helps in transitioning out of restricted construction and inference on rigid representations for ANNS.
To this end, we extensively use Matryoshka Representations (MRs) [3 1] which have desired adaptive
properties in-built. To the best of our knowledge, this is the first work that improves accuracy-compute
trade-off in ANNS by leveraging adaptive representations on different phases of construction and
inference for ANNS data structures.

3 Problem Setup, Notation, and Preliminaries

The problem setup of approximate nearest neighbor search (ANNS) [21] consists of a database of N
data points, [x1, z2, ..., xN], and a query, ¢, where the goal is to “approximately” retrieve the nearest
data point to the query. Both the database and query are embedded to R? using a representation
function ¢ : X — RY, often a neural network that can be learned through various representation
learning paradigms [2, 19, 20, 40, 42].

Matryoshka Representations (MRs). The d-dimensional representations from ¢ can have a nested
structure like Matryoshka Representations (MRs) [3 1] in-built — pMR(4) Matryoshka Representation
Learning (MRL) learns these nested representations with a simple strategy of optimizing the same
training objective at varying dimensionalities. These granularities are ordered such that the lowest
representation size forms a prefix for the higher-dimensional representations. So, high-dimensional
MR inherently contains low-dimensional representations of varying granularities that can be accessed
for free — first m-dimensions (m € [d]) ie., pMR(@[1 : m] from the d-dimensional MR form an
m-dimensional representation which is as accurate as its independently trained rigid representation
(RR) counterpart — RR("™)_ Training an encoder with MRL does not involve any overhead or
hyperparameter tuning and works seamlessly across modalities, training objectives, and architectures.

Inverted File Index (IVF). IVF [48] is an ANNS data structure used in web-scale search sys-
tems [ 16] owing to its simplicity, minimal compute overhead, and high accuracy. IVF construction
involves clustering (coarse quantization through k-means) [36] on d-dimensional representation that
results in an inverted file list [53] of all the data points in each cluster. During search, d-dimensional
query representation is assigned to the most relevant cluster (C;; ¢ € [k]) by finding the closest cen-
troid (u;) using an appropriate distance metric (L2 or cosine). This is followed by an exhaustive linear
search across all data points in the cluster which gives the closest NN (see Figure 5 in Appendix A
for IVF overview). Lastly, IVF can scale to web-scale by utilizing a hierarchical IVF structure within
each cluster [16]. Table 2 in Appendix A describes the retrieval formula for multiple variants of IVF.

Optimized Product Quantization (OPQ). Product Quantization (PQ) [23] works by splitting a
d-dimensional real vector into m sub-vectors and quantizing each sub-vector with an independent 2°



length codebook across the database. After PQ, each d-dimensional vector can be represented by a
compact m x b bit vector; we make each vector m bytes long by fixing b = 8. During search time,
distance computation between the query vector and PQ database is extremely efficient with only m
codebook lookups. The generality of PQ encompasses scalar/vector quantization [15, 36] as special
cases. However, PQ can be further improved by rotating the d-dimensional space appropriately to
maximize distance preservation after PQ. Optimized Product Quantization (OPQ) [13] achieves this
by learning an orthonormal projection matrix R that rotates the d-dimensional space to be more
amenable to PQ. OPQ shows consistent gains over PQ across a variety of ANNS tasks and has
become the default choice in standard composite indices [22, 24].

Datasets. We evaluate the ANNS algorithms while changing the representations used for the search
thus making it impossible to evaluate on the usual benchmarks [1]. Hence we experiment with two
public datasets: (a) ImageNet-1K [45] dataset on the task of image retrieval — where the goal is to
retrieve images from a database (1.3M image train set) belonging to the same class as the query
image (50K image validation set) and (b) Natural Questions (NQ) [32] dataset on the task of question
answering through dense passage retrieval — where the goal is to retrieve the relevant passage from a
database (21M Wikipedia passages) for a query (3.6K questions).

Metrics Performance of ANNS is often measured using recall score [22], k-recall@ N — recall of
the exact NN across search complexities which denotes the recall of k “true” NN when N data points
are retrieved. However, the presence of labels allows us to compute 1-NN (top-1) accuracy. Top-1
accuracy is a harder and more fine-grained metric that correlates well with typical retrieval metrics
like recall and mean average precision (NAP@Fk). Even though we report top-1 accuracy by default
during experimentation, we discuss other metrics in Appendix C. Finally, we measure the compute
overhead of ANNS using MFLOPS/query and also provide wall-clock times (see Appendix B.1).

Encoders. For ImageNet, we encode both the database and query set using a ResNet50 (¢7) [19]
trained on ImageNet-1K. For NQ, we encode both the passages in the database and the questions in
the query set using a BERT-Base (¢x) [ 0] model fine-tuned on NQ for dense passage retrieval [27].

We use the trained ResNet50 models with varying representation sizes (d = [8, 16, . . ., 2048]; default
being 2048) as suggested by Kusupati et al. [3 1] alongside the MRL-ResNet50 models trained with
MRL for the same dimensionalities. The RR and MR models are trained to ensure the supervised
one-vs-all classification accuracy across all data dimensionalities is nearly the same — 1-NN accuracy
of 2048-d RR and MR models are 71.19% and 70.97% respectively on ImageNet-1K. Independently

trained models, qu?R(d), output d = [8,16. . .,2048] dimensional RRs while a single MRL-ResNet50

model, ¢¥R(d), outputs a d = 2048-dimensional MR that contains all the 9 granularities.

We also train BERT-Base models in a similar vein as the aforementioned ResNet50 models. The
key difference is that we take a pre-trained BERT-Base model and fine-tune on NQ as suggested
by Karpukhin et al. [27] with varying (5) representation sizes (bottlenecks) (d = [48,96, ..., 768];

default being 768) to obtain qS?VR(d) that creates RRs for the NQ dataset. To get the MRL-BERT-
Base model, we fine-tune a pre-trained BERT-Base encoder on the NQ train dataset using the MRL

objective with the same granularities as RRs to obtain ¢]l\\d,R(d) which contains all five granularities.
Akin to ResNet50 models, the RR and MR BERT-Base models on NQ are built to have similar 1-NN
accuracy for 768-d of 52.2% and 51.5% respectively. More implementation details can be found in
Appendix B and additional experiment-specific information is provided at the appropriate places.

4 AdANNS - Adaptive ANNS

In this section, we present our proposed AJANNS Z framework that exploits the inherent flexibility
of matryoshka representations to improve the accuracy-compute trade-off for semantic search com-
ponents. Standard ANNS pipeline can be split into two key components: (a) search data structure
that indexes and stores data points, (b) query-point computation method that outputs (approximate)
distance between a given query and data point. For example, standard IVFOPQ [24] method uses
an IVF structure to index points on full-precision vectors and then relies on OPQ for more efficient
distance computation between the query and the data points during the linear scan.



Below, we show that AAANNS can be applied to both the above-mentioned ANNS components
and provides significant gains on the computation-accuracy tradeoff curve. In particular, we present
AdANNS-IVF which is AAANNS version of the standard IVF index structure [48], and the closely
related ScaNN structure [16]. We also present AAANNS-OPQ which introduces representation adap-
tivity in the OPQ, an industry-default quantization. Then, in Section 4.3 we further demonstrate the
combination of the two techniques to get AAANNS-IVFOPQ —an AdANNS version of IVFOPQ [24]
—and AdANNS-DiskANN, a similar variant of Disk ANN [22]. Overall, our experiments show that
AdANNS-IVF is significantly more accuracy-compute optimal compared to the IVF indices built on
RRs and AANNS-OPQ is as accurate as the OPQ on RRs while being significantly cheaper.

4.1 AdANNS-IVF
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trade-off. Furthermore, this can provide a precise operating point on accuracy-compute tradeoff curve
which is critical in several practical settings.

Our experiments on regular IVF with MRs and RRs IVF-MR & IVF-RR) of varying dimensionali-
ties and IVF configurations (# clusters, # probes) show that (Figure 2) matryoshka representations
result in a significantly better accuracy-compute trade-off. We further studied and found that learned
lower-dimensional representations offer better accuracy-compute trade-offs for IVF than higher-
dimensional embeddings (see Appendix E for more results).

AdANNS utilizes d-dimensional matryoshka representation to get accurate d. and ds dimensional
vectors at no extra compute cost. The resulting AAANNS-IVF provides a much better accuracy-
compute trade-off (Figure 2) on ImageNet-1K retrieval compared to IVF-MR, IVF-RR, and MG-
IVF-RR — multi-granular IVF with rigid representations (akin to AAANNS without MR) — a strong
baseline that uses d. and ds dimensional RRs. Finally, we exhaustively search the design space of
IVF by varying d.., ds € [8,16, .. .,2048] and the number of clusters k € [8, 16, . ..,2048]. Please
see Appendix E for more details. For IVF experiments on the NQ dataset, please refer to Appendix G.

Empirical results. Figure 2 shows that AJANNS-IVF outperforms the baselines across all
accuracy-compute settings for ImageNet-1K retrieval. AAANNS-IVF results in 10x lower compute
for the best accuracy of the extremely expensive MG-IVF-RR and non-adaptive IVF-MR. Specifi-
cally, as shown in Figure la, AAANNS-IVF is up to 1.5% more accurate for the same compute and
has up to 100x lesser FLOPS/query (90 x real-world speed-up!) than the status quo ANNS on rigid
representations (IVF-RR). We filter out points for the sake of presentation and encourage the reader
to check out Figure 8 in Appendix E for an expansive plot of all the configurations searched.

The advantage of AAANNS for construction of search structures is evident from the improvements
in IVF (AdANNS-IVF) and can be easily extended to other ANNS structures like ScaNN [16] and



HNSW [38]. For example, HNSW consists of multiple layers with graphs of NSW graphs [37] of
increasing complexity. AAANNS can be adopted to HNSW, where the construction of each level can
be powered by appropriate dimensionalities for an optimal accuracy-compute trade-off. In general,
AdANNS provides fine-grained control over compute overhead (storage, working memory, inference,
and construction cost) during construction and inference while providing the best possible accuracy.

4.2 AdANNS-OPQ

Standard Product Quantization (PQ) essentially performs block-wise vector quantization via cluster-
ing. For example, suppose we need 32-byte PQ compressed vectors from the given 2048 dimensional
representations. Then, we can chunk the representations in m = 32 equal blocks/sub-vectors of 64-d
each, and each sub-vector space is clustered into 2% = 256 partitions. That is, the representation of
each point is essentially cluster-id for each block. Optimized PQ (OPQ) [13] further refines this idea,
by first rotating the representations using a learned orthogonal matrix, and then applying PQ on top
of the rotated representations. In ANNS, OPQ is used extensively to compress vectors and improves
approximate distance computation primarily due to significantly lower memory overhead than storing
full-precision data points IVF.

AdANNS-OPQ utilizes MR representations to apply OPQ on lower-dimensional representations.
That is, for a given quantization budget, AAANNS allows using top ds < d dimensions from MR and
then computing clusters with ds /m-dimensional blocks where m is the number of blocks. Depending
on d, and m, we have further flexibility of trading-off dimensionality/capacity for increasing the
number of clusters to meet the given quantization budget. AAANNS-OPQ tries multiple dg, m, and
number of clusters for a fixed quantization budget to obtain the best performing configuration.

We experimented with 8 — 128 byte OPQ budgets for both ImageNet and Natural Questions retrieval
with an exhaustive search on the quantized vectors. We compare AdANNS-OPQ which uses MRs of
varying granularities to the baseline OPQ built on the highest dimensional RRs. We also evaluate
OPQ vectors obtained projection using SVD [14] on top of the highest-dimensional RRs.

Empirical results. Figures 3 and 1b show that AAANNS-OPQ significantly outperforms — up to
4% accuracy gain — the baselines (OPQ on RRs) across compute budgets on both ImageNet and NQ.
In particular, AAANNS-OPQ tends to match the accuracy of a 64-byte (a typical choice in ANNS)
OPQ baseline with only a 32-byte budget. This results in a 2x reduction in both storage and compute
FLOPS which translates to significant gains in real-world web-scale deployment (see Appendix D).

We only report the best AAANNS-OPQ for each budget typically obtained through a much lower-
dimensional MR (128 & 192; much faster to build as well) than the highest-dimensional MR, (2048
& 768) for ImageNet and NQ respectively (see Appendix G for more details). At the same time, we
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note that building compressed OPQ vectors on projected RRs using SVD to the smaller dimensions
(or using low-dimensional RRs, see Appendix D) as the optimal AAANNS-OPQ does not help in
improving the accuracy. The significant gains we observe in AAANNS-OPQ are purely due to better
information packing in MRs — we hypothesize that packing the most important information in the
initial coordinates results in a better PQ quantization than RRs where the information is uniformly
distributed across all the dimensions [31, 49]. See Appendix D for more details and experiments.

4.3 AdANNS for Composite Indices

We now extend AdANNS to composite indices [24] which put together two main ANNS building
blocks — search structures and quantization — together to obtain efficient web-scale ANNS indices
used in practice. A simple instantiation of a composite index would be the combination of IVF and
OPQ - IVFOPQ — where the clustering in IVF happens with full-precision real vectors but the linear
scan within each cluster is approximated using OPQ-compressed variants of the representation —
since often the full-precision vectors of the database cannot fit in RAM. Contemporary ANNS indices
like DiskANN [22] make this a default choice where they build the search graph with a full-precision
vector and approximate the distance computations during search with an OPQ-compressed vector to
obtain a very small shortlist of retrieved datapoints. In DiskANN, the shortlist of data points is then
re-ranked to form the final list using their full-precision vectors fetched from the disk. AAANNS is
naturally suited to this shortlist-rerank framework: we use a low-d MR for forming index, where we
could tune AdANNS parameters according to the accuracy-compute trade-off of the graph and OPQ
vectors. We then use a high-d MR for re-ranking.

Empirical results. Figuye 4 shows  Table 1: AAANNS-DiskANN using a 16-d MR, +- re-ranking
that AJANNS-IVFOPQ is 1 — 4% with the 2048-d MR outperforms Disk ANN built on 2048-d

better than the baseline at all the RR at half the compute cost on ImageNet retrieval.
PQ compute budgets. Furthermore,

AdANNS-IVFOPQ has the same ac- RR-2048 AdANNS
curacy as the baselines at 8x lower
) : PQ Budget (Bytes) 32 16
head. With DiskA AdANN
overhead. With DiskANN, AdANNS Top-1 Accuracy (%) 70.37 70.56

accelerates shortlist generation by us-
ing low-dimensional representations
and recoups the accuracy by re-
ranking with the highest-dimensional
MR at negligible cost. Table 1 shows that AAANNS-DiskANN is more accurate than the baseline for
both 1-NN and ranking performance at only hal f the cost. Using low-dimensional representations
further speeds up inference in AAANNS-DiskANN (see Appendix F).

These results show the generality of AAANNS and its broad applicability across a variety of ANNS
indices built on top of the base building blocks. Currently, AAANNS piggybacks on typical ANNS
pipelines for their inherent accounting of the real-world system constraints [16, 22, 25]. However,
we believe that AAANNS’s flexibility and significantly better accuracy-compute trade-off can be
further informed by real-world deployment constraints. We leave this high-potential line of work that
requires extensive study to future research.

mAP@10 (%) 62.46 64.70
Precision@40 (%) 65.65 68.25

5 Further Analysis and Discussion

5.1 Compute-aware Elastic Search During Inference

AdANNS search structures cater to many specific large-scale use scenarios that need to satisfy precise
resource constraints during construction as well as inference. However, in many cases, construction
and storage of the indices are not the bottlenecks or the user is unable to search the design space.
In these settings, AAANNS-D enables adaptive inference through accurate yet cheaper distance
computation using the low-dimensional prefix of matryoshka representation. Akin to composite
indices (Section 4.3) that use PQ vectors for cheaper distance computation, we can use the low-
dimensional MR for faster distance computation on ANNS structure built non-adaptively with a
high-dimensional MR without any modifications to the existing index.

Empirical results. Figure 2 shows that for a given compute budget using IVF on ImageNet-1K
retrieval, AAANNS-IVF is better than AdANNS-IVE-D due to the explicit control during the building



of the ANNS structure which is expected. However, the interesting observation is that AAANNS-D
matches or outperforms the IVF indices built with MRs of varying capacities for ImageNet retrieval.

However, these methods are applicable in specific scenarios of deployment. Obtaining optimal
AdANNS search structure (highly accurate) or even the best IVF-MR index relies on a relatively
expensive design search but delivers indices that fit the storage, memory, compute, and accuracy
constraints all at once. On the other hand AdANNS-D does not require a precisely built ANNS index
but can enable compute-aware search during inference. AAANNS-D is a great choice for setups that
can afford only one single database/index but need to cater to varying deployment constraints, e.g.,
one task requires 70% accuracy while another task has a compute budget of 1| MFLOPS/query.

5.2 Why MRs over RRs?

Quite a few of the gains from AdANNS are owing to the quality and capabilities of matryoshka
representations. So, we conducted extensive analysis to understand why matryoshka representations
seem to be more aligned for semantic search than the status-quo rigid representations.

Difficulty of NN search. Relative contrast (C).) [18] is inversely proportional to the difficulty of
nearest neighbor search on a given database. On ImageNet-1K, Figure 14 shows that MRs have
better C,. than RRs across dimensionalities, further supporting that matryoshka representations are
more aligned (easier) for NN search than existing rigid representations for the same accuracy. More
details and analysis about this experiment can be found in Appendix H.2.

Clustering distributions. We also investigate the potential deviation in clustering distributions
for MRs across dimensionalities compared to RRs. Unlike the RRs where the information is
uniformly diffused across dimensions [49], MRs have hierarchical information packing. Figure 11 in
Appendix E.3 shows that matryoshka representations result in clusters similar (measured by total
variation distance [33]) to that of rigid representations and do not result in any unusual artifacts.

Robustness. Figure 9 in Appendix E shows that MRs continue to be better than RRs even for out-
of-distribution (OOD) image queries (ImageNetV2 [44]) using ANNS. It also shows that the highest
data dimensionality need not always be the most robust which is further supported by the higher
recall using lower dimensions. Further details about this experiment can be found in Appendix E.1.

Generality across encoders. IVF-MR consistently has higher accuracy than IVF-RR across dimen-
sionalities despite having similar accuracies with exact NN search (for ResNet50 on ImageNet and
BERT-Base on NQ). We find that our observations on better alignment of MRs for NN search hold
across neural network architectures, ResNet18/34/101 [19] and ConvNeXt-Tiny [35]. Appendix H.3
delves deep into the experimentation done using various neural architectures on ImageNet-1K.

Recall score analysis. Analysis of recall score (see Appendix C) in Appendix H.1 shows that for
a similar top-1 accuracy, lower-dimensional representations have better 1-Recall@1 across search
complexities for IVF and HNSW on ImageNet-1K. Across the board, MRs have higher recall scores
and top-1 accuracy pointing to easier “searchability” and thus suitability of matryoshka representations
for ANNS. Larger-scale experiments and further analysis can be found in Appendix H.

Through these analyses, we argue that matryoshka representations are better suited for semantic
search than rigid representations, thus making them an ideal choice for AAANNS.

5.3 Search for AAANNS Hyperparameters

Choosing the optimal hyperparameters for AAANNS, such as d., ds, m, # clusters, # probes, is an
interesting and open problem that requires more rigorous examination. As the ANNS index is formed
once and used for potentially billions of queries with massive implications for cost, latency and
queries-per-second, a hyperparameter search for the best index is generally an acceptable industry
practice [22, 38]. The Faiss library [24] provides guidelines” to choose the appropriate index for a
specific problem, including memory constraints, database size, and the need for exact results. There
have been efforts at automating the search for optimal indexing parameters, such as Autofaiss®, which
maximizes recall given compute constraints.

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
*https://github.com/criteo/autofaiss
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In case of AAANNS, we suggest starting at the best configurations of MRs followed by a local
design space search to lead to near-optimal AAANNS configurations (e.g. use IVF-MR to bootstrap
AdANNS-IVF). We also share some observations during the course of our experiments:

1. AdANNS-IVF: Top-1 accuracy generally improves (with diminishing returns after a point) with
increasing dimensionality of clustering (d.) and search (ds), as we show on ImageNet variants and
with multiple encoders in the Appendix (Figures 9 and 15). Clustering with low-d MRs matches
the performance of high-d MRs as they likely contain similar amounts of useful information,
making the increased compute cost not worth the marginal gains. Increasing # probes naturally
boosts performance (Appendix, Figure 10a). Lastly, it is generally accepted that a good starting
point for the # clusters k is 1/ Np /2, where Np is the number of indexable items [39]. k = +/Np
is the optimal choice of k£ from a FLOPS computation perspective as can be seen in Appendix B.1.

2. AdJANNS-OPQ: we observe that for a fixed compute budget in bytes (m), the top-1 accuracy
reaches a peak at d < d,q: (Appendix, Table 4). We hypothesize that the better performance of
AdANNS-OPQ at d < d,,4; is due to the curse of dimensionality, i.e. it is easier to learn PQ
codebooks on smaller embeddings with similar amounts of information. We find that using an
MR with d = 4 x m is a good starting point on ImageNet and NQ. We also suggest using an 8-bit
(256-length) codebook for OPQ as the default for each of the sub-block quantizer.

3. AdANNS-DiskANN: Our observations with Disk ANN are consistent with other indexing struc-
tures, i.e. the optimal graph construction dimensionality d < d,,q, (Appendix, Figure 12). A
careful study of DiskANN on different datasets is required for more general guidelines to choose
graph construction and OPQ dimensionality d.

5.4 Limitations

AdANNS?’s core focus is to improve the design of the existing ANNS pipelines. To use AAANNS
on a corpus, we need to back-fill [43] the MRs of the data — a significant yet a one-time overhead.
We also notice that high-dimensional MRs start to degrade in performance when optimizing also for
an extremely low-dimensional granularity (e.g., < 24-d for NQ) — otherwise is it quite easy to have
comparable accuracies with both RRs and MRs. Lastly, the existing dense representations can only
in theory be converted to MRs with an auto-encoder-style non-linear transformation. We believe
most of these limitations form excellent future work to improve AdANNS further.

6 Conclusions

We proposed a novel framework, AADANNS %, that leverages adaptive representations for different
phases of ANNS pipelines to improve the accuracy-compute tradeoff. AAANNS utilizes the inherent
flexibility of matryoshka representations [3 1] to design better ANNS building blocks than the standard
ones which use the rigid representation in each phase. AAANNS achieves SOTA accuracy-compute
trade-off for the two main ANNS building blocks: search data structures (AdANNS-IVF) and
quantization (AdANNS-OPQ). The combination of AdANNS-based building blocks leads to the
construction of better real-world composite ANNS indices — with as much as 8 x reduction in cost at
the same accuracy as strong baselines — while also enabling compute-aware elastic search. Finally, we
note that combining AdANNS with elastic encoders [ 1] enables truly adaptive large-scale retrieval.
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A

AdANNS Framework

Algorithm 1 AAANNS-IVF Psuedocode

# Index database to construct clusters and build inverted file system

def

def

adannsConstruction(database, d_cluster, num_clusters):

# Slice database with cluster construction dim (d_cluster)
xb = databasel[:d_cluster]

cluster_centroids = constructClusters(xb, num_clusters)

return cluster_centroids

adannsInference(queries, centroids, d_shortlist, d_search, num_probes,
k):

# Slice queries and centroids with cluster shortlist dim (d_shortlist)
xq = queries[:d_shortlist]

xc = centroids[:d_shortlistl]

for q in queries:
# compute distance of query from each cluster centroid
candidate_distances = computeDistances(q, xc)
# sort cluster candidates by distance and choose small number to
probe
cluster_candidates = sortAscending(candidate_distances) [:num_probes]
database_candidates = getClusterMembers(cluster_candidates)
# Linear Scan all shortlisted clusters with search dim (d_search)
k_nearest_neighbors[q] = linearScan(q, database_candidates, d_search,
k)

return k_nearest_neighbors
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Figure 5: The schematic of inverted file index (IVF) outlaying the construction and inference phases.
Adaptive representations can be utilized effectively in the decoupled components of clustering and
searching for a better accuracy-compute trade-off (AdANNS-IVF).
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Table 2: Mathematical formulae of the retrieval phase across various methods built on IVF. See
Section 3 for notations.

AJANNS-IVE-D | argmingec, MR (@)[1 : d] — d)MR(d (z)[1:d]||,st. h(q
IVFOPQ arg minje(f,,,(,,) [|pPRUm™D) (q) — pPRU™: h)( Al
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B Training and Compute Costs

A bulk of our ANNS experimentation was written with Faiss [24], a library for efficient similarity
search and clustering. AAANNS was implemented from scratch (Algorithm 1) due to difficulty in
decoupling clustering and linear scan with Faiss, with code available at https://github.com/
RAIVNLab/AdANNS. We also provide a version of AJANNS with Faiss optimizations with the
restriction that D, > D, as a limitation of the current implementation, which can be further optimized.
All ANNS experiments (AdANNS-IVE, MG-IVF-RR, IVE-MR, IVF-RR, HNSW, HNSWOPQ,
IVFOPQ) were run on an Intel Xeon 2.20GHz CPU with 12 cores. Exact Search (Flat L2, PQ, OPQ)
and DiskANN experiments were run with CUDA 11.0 on a A100-SXM4 NVIDIA GPU with 40G
RAM. The wall-clock inference times quoted in Figure 1a and Table 3 are reported on CPU with
Faiss optimizations, and are averaged over three inference runs for ImageNet-1K retrieval.

Table 3: Comparison of AJANNS-IVF and Rigid-IVF wall-clock inference times for ImageNet-1K
retrieval. AAANNS-IVF has up to ~ 1.5% gain over Rigid-IVF for a fixed search latency per query.

AdANNS-IVF Rigid-IVF
Top-1 Search Latency/Query (ms) \ Top-1  Search Latency/Query (ms)
70.02 0.03 68.51 0.02
70.08 0.06 68.54 0.05
70.19 0.06 68.74 0.08
70.36 0.88 69.20 0.86
70.60 5.57 70.13 5.67

DPR [27] on NQ [32]. We follow the setup on the DPR repo*: the Wikipedia corpus has 21 million
passages and Natural Questions dataset for open-domain QA settings. The training set contains
79,168 question and answer pairs, the dev set has 8,757 pairs and the test set has 3,610 pairs.

B.1 Inference Compute Cost

We evaluate inference compute costs for IVF in MegaFLOPS per query (MFLOPS/query) as shown
in Figures 2, 10a, and 8 as follows:

npdsND

:Sk
Cd+k

where d.. is the cluster construction embedding dimensionality, d is the embedding dim used for
linear scan within each probed cluster, which is controlled by # of search probes n,. Finally, k
is the number of clusters |C;| indexed over database of size Np. The default setting in this work,
unless otherwise stated, is n, = 1, k = 1024, Np = 1281167 (ImageNet-1K trainset). Vanilla IVF
supports only d. = d,, while AAANNS-IVF provides flexibility via decoupling clustering and search
(Section 4). AANNS-IVE-D is a special case of AAANNS-IVF with the flexibility restricted to
inference, i.e., d.. is a fixed high-dimensional MR.

“https://github.com/facebookresearch/DPR
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C Evaluation Metrics

In this work, we primarily use top-1 accuracy (i.e. 1-Nearest Neighbor), recall@k, corrected mean
average precision (mAP@k) [30] and k-Recall@N (recall score), which are defined over all queries
@ over indexed database of size Np as:

> Q correct_pred@1
Q)

top-1 =

ZQ correct_pred@k  num_classes

Recall@k = *
Q INp|

where correct_pred@¥k is the number of k-NN with correctly predicted labels for a given query. As
noted in Section 3, k-Recall@N is the overlap between k exact search nearest neighbors (considered
as ground truth) and the top N retrieved documents. As Faiss [24] supports a maximum of 2048-
NN while searching the indexed database, we report 40-Recall@2048 in Figure 13. Also note
that for ImageNet-1K, which constitutes a bulk of the experimentation in this work, |Q| = 50000,
[Np| = 1281167 and num_classes = 1000. For ImageNetv2 [44], |Q| = 10000 and num_classes
= 1000, and for ImageNet-4K [31], |Q| = 210100, |[Np| = 4202000 and num_classes = 4202. For
NQ [32], |Q| = 3610 and |[Np| = 21015324. As NQ consists of question-answer pairs (instance-
level), num_classes = 3610 for the test set.
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Figure 6: Top-1 Accuracy of AAANNS composite indices with OPQ distance computation compared
to MR and Rigid baselines models on ImageNet-1K and Natural Questions.
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D AdANNS-OPQ

In this section, we take a deeper dive into the quantization characteristics of MR. In this work, we
restrict our focus to optimized product quantization (OPQ) [13], which adds a learned space rotation
and dimensionality permutation to PQ’s sub-vector quantization to learn more optimal PQ codes. We
compare OPQ to vanilla PQ on ImageNet in Table 4, and observe large gains at larger embedding
dimensionalities, which agrees with the findings of Jayaram Subramanya et al. [22].

We perform a study of composite OPQ m x b indices on ImageNet-1K across compression compute
budgets m (where b = 8, i.e. 1 Byte), i.e. Exact Search with OPQ, IVF+OPQ, HNSW+OPQ, and
DiskANN+OPQ, as seen in Figure 6. It is evident from these results:

1. Learning OPQ codebooks with AAANNS (Figure 6a) provides a 1-5% gain in top-1 accuracy
over rigid representations at low compute budgets (< 32 Bytes). AJANNS-OPQ saturates to
Rigid-OPQ performance at low compression (> 64 Bytes).

2. For IVF, learning clusters with MRs instead of RRs (Figure 6b) provides substantial gains (1-
4%). In contrast to Exact-OPQ, using AdANNS for learning OPQ codebooks does not provide
substantial top-1 accuracy gains over MR with d = 2048 (highest), though it is still slightly better
or equal to MR-2048 at all compute budgets. This further supports that IVF performance generally
scales with embedding dimensionality, which is consistent with our findings on ImageNet across
robustness variants and encoders (See Figures 9 and 15 respectively).

3. Note that in contrast to Exact, IVF, and HNSW coarse quantizers, DiskANN inherently re-ranks
the retrieved shortlist with high-precision embeddings (d = 2048), which is reflected in its high
top-1 accuracy. We find that AAANNS with 8-byte OPQ (Figure 6¢) matches the top-1 accuracy
of rigid representations using 32-byte OPQ, for a 4x cost reduction for the same accuracy. Also
note that using AAANNS provides large gains over using MR-2048 at high compression (1.5%),
highlighting the necessity of AAANNS’s flexibility for high-precision retrieval at low compute
budgets.

4. Our findings on the HNSW-OPQ composite index (Figure 6d) are consistent with all other indices,
i.e. HNSW graphs constructed with AAANNS OPQ codebooks provide significant gains over RR
and MR, especially at high compression (< 32 Bytes).
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Figure 7: Top-1 Accuracy of AAANNS composite indices with OPQ distance computation compared
to MR and Rigid baselines models on Natural Questions.

Our observations on ImageNet with ResNet-50 MR across search structures also extend to the Natural
Questions dataset with Dense Passage Retriever (DPR with BERT-Base MR embeddings). We note
that AAANNS provides gains over RR-768 embeddings for both Exact Search and IVF with OPQ
(Figure 7a and 7b). We find that similar to ImageNet (Figure 15) IVF performance on Natural
Questions generally scales with dimensionality. AdANNS thus reduces to MR-768 performance
for M > 16. See Appendix G for a more in-depth discussion of AJANNS with DPR on Natural
Questions.
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Table 4: Comparison of PQ-MR with OPQ-MR for exact search on ImageNet-1K across embedding
dimensionality d € {8, 16, ...,2048} quantized to m € {8,16,32,64} bytes. OPQ shows large
gains over vanilla PQ at larger embedding dimensionalities d > 128. Entries with the highest top-1
accuracy for a given (d, m) tuple are bolded.

Config PQ OPQ

d | m | Top-1 mAP@1I0 P@I100 | Top-1 mAP@I0 P@100
8 | 8 | 6218 5671 6123 | 6222 5670  61.23
8 | 6791 62.85 67.21 67.88 62.96 67.21

16 16 | 67.85 62.95 67.21 | 67.96 62.94 67.21
8 | 68.80 63.62 67.86 | 68.91 63.63 67.86

32 16 | 69.57 64.22 68.12 | 69.47 64.20 68.12
32 | 69.44 64.20 68.12 | 69.47 64.23 68.12

8 | 68.39 63.40 67.47 | 68.38 63.42 67.60

64 16 | 69.77 64.43 68.25 | 69.95 64.55 68.38
32 | 70.13 64.67 68.38 | 70.05 64.65 68.38

64 | 70.12 64.69 68.42 | 70.18 64.70 68.38

8 | 67.27 61.99 65.78 | 68.40 63.11 67.34

128 16 | 69.51 64.32 68.12 | 69.78 64.56 68.38
32 | 70.27 64.72 68.51 | 70.60 64.97 68.51

64 | 70.61 64.93 68.49 | 70.65 64.98 68.51

8 | 66.06 60.44 64.09 | 67.90 62.69 66.95

256 16 | 68.56 63.33 66.95 | 69.92 64.71 68.51
32 | 70.08 64.83 68.38 | 70.59 65.15 68.64

64 | 70.48 64.98 68.55 | 70.69 65.09 68.64

8 | 65.09 59.03 62.53 | 67.51 62.12 66.56

512 16 | 67.68 62.11 65.39 | 69.67 64.53 68.38
32 | 69.51 64.01 67.34 | 70.44 65.11 68.64

64 | 70.53 65.02 68.52 | 70.72 65.17 68.64

8 | 64.58 58.26 61.75 | 67.26 62.07 66.56

1024 16 | 66.84 61.07 64.09 | 69.34 64.23 68.12
32 | 68.71 62.92 66.04 | 70.43 65.03 68.64

64 | 69.88 64.35 67.68 | 70.81 65.19 68.64

8 | 62.19 56.11 59.80 | 66.89 61.69 66.30

2048 16 | 65.99 60.27 63.18 | 69.25 64.09 67.99
32 | 67.99 62.04 64.74 | 70.39 64.97 68.51

64 | 69.20 63.46 66.40 | 70.57 65.15 68.51

E AdANNS-IVF

Inverted file index (IVF) [48] is a simple yet powerful ANNS data structure used in web-scale search
systems [16]. IVF construction involves clustering (coarse quantization often through k-means) [36]
on d-dimensional representation that results in an inverted file list [53] of all the data points in each
cluster. During search, the d-dimensional query representation is first assigned to the closest clusters
(# probes, typically set to 1) and then an exhaustive linear scan happens within each cluster to obtain
the nearest neighbors. As seen in Figure 9, IVF top-1 accuracy scales logarithmically with increasing
representation dimensionality d on ImageNet-1K/V2/4K. The learned low-d representations thus
provide better accuracy-compute trade-offs compared to high-d representations, thus furthering the
case for usage of AAANNS with IVFE.

Our proposed adaptive variant of IVE, AAANNS-IVF, decouples the clustering, with d. dimensions,
and the linear scan within each cluster, with d, dimensions — setting d. = d, results in non-
adaptive vanilla IVF. This helps in the smooth search of design space for the optimal accuracy-
compute trade-off. A naive instantiation yet strong baseline would be to use explicitly trained
d. and d, dimensional rigid representations (called MG-IVF-RR, for multi-granular IVF with

18



~
—

' 8
70 .o ts o :?‘A‘ g 00
2 & €L 9% ir ¥ 1T o :
o b A ¢
S69 o eit:*gs;w{f shens 8
® IV A O *. *0‘;2( .
< 68 et e ea e 4
3 B0 e e o4 7Y ¢ AdANNS-IVF
I67] ¢ . AJANNS-IVF-D
TV YR R SR b .
- : . *  MG-IVF-RR
8‘66 R B X  MG-IVF-SVD
P s e IVF-MR
e e e A IVF-RR
64
0.1 1 10 100
MFLOPS/Query

Figure 8: Top-1 accuracy vs. compute cost per query of AAANNS-IVF compared to IVF-MR,
IVF-RR and MG-IVF-RR baselines on ImageNet-1K.

rigid representations). We also examine the setting of adaptively choosing low-dimensional MR
to linear scan the shortlisted clusters built with high-dimensional MR, i.e. AAANNS-IVF-D, as
seen in Table 5. As seen in Figure 8, AAANNS-IVF provides pareto-optimal accuracy-compute
tradeoff across inference compute. This figure is a more exhaustive indication of AdANNS-IVF
behavior compared to baselines than Figures 1a and 2. AAANNS-IVF is evaluated for all possible
tuples of d.,ds, k = |C| € {8,16,...,2048}. AJANNS-IVF-D is evaluated for a pre-built IVF
index with d. = 2048 and ds; € {8,...,2048}. MG-IVF-RR configurations are evaluated for
d. € {8,...,ds}, ds € {32,...,2048} and k = 1024 clusters. A study over additional k values
is omitted due to high compute cost. Finally, IVF-MR and IVF-RR configurations are evaluated
for d. = ds € {8,16,...,2048} and k € {256,...,8192}. Note that for a fair comparison, we
use n, = 1 across all configurations. We discuss the inference compute for these settings in
Appendix B.1.

E.1 Robustness
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Figure 9: Top-1 Accuracy variation of IVF-MR of ImageNet 1K, ImageNetV2 and ImageNet-4K.
RR baselines are omitted on ImageNet-4K due to high compute cost.

As shown in Figure 9, we examined the clustering capabilities of MRs on both in-distribution (ID)
queries via ImageNet-1K and out-of-distribution (OOD) queries via ImageNetV2 [44], as well as
on larger-scale ImageNet-4K [31]. For ID queries on ImageNet-1K (Figure 9a), IVF-MR is at least
as accurate as Exact-RR for d < 256 with a single search probe, demonstrating the quality of in-
distribution low-d clustering with MR. On OOD queries (Figure 9b), we observe that IVF-MR is on
average 2% more robust than IVF-RR across all cluster construction and linear scan dimensionalities
d. It is also notable that clustering with MRs followed by linear scan with # probes = 1 is more robust
than exact search with RR embeddings across all d < 2048, indicating the adaptability of MRs to
distribution shifts during inference. As seen in Table 5, on ImageNetV2 AdANNS-IVF-D is the best
configuration for d < 16, and is similarly accurate to IVF-MR at all other d. AAANNS-IVF-D with
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Table 5: Top-1 Accuracy of AAANNS-IVF-D on out-of-distribution queries from ImageNetV2
compared to both IVF and Exact Search with MR and RR embeddings. Note that for AAANNS-
IVF-D, the dimensionality used to build clusters d. = 2048.

d | AJANNS-IVF-D | IVF-MR  Exact-MR | IVF-RR  Exact-RR

8 53.51 50.44 50.41 49.03 48.79
16 57.32 56.35 56.64 55.04 55.08
32 57.32 57.64 57.96 56.06 56.69
64 57.85 58.01 58.94 56.84 57.37
128 58.02 58.09 59.13 56.14 57.17
256 58.01 58.33 59.18 55.60 57.09
512 58.03 57.84 59.40 55.46 57.12
1024 57.66 57.58 59.11 54.80 57.53
2048 58.04 58.04 59.63 56.17 57.84

d = 128 is able to match its own accuracy with d = 2048, a 16 x compute gain during inference.
This demonstrates the potential of AdANNS to adaptively search pre-indexed clustering structures.

On 4-million scale ImageNet-4K (Figure 9c), we observe similar accuracy trends of IVF-MR
compared to Exact-MR as in ImageNet-1K (Figure 9a) and ImageNetV2 (Figure 9b). We omit
baseline IVF-RR and Exact-RR experiments due to high compute cost at larger scale.

E.2 IVF-MR Ablations
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Figure 10: Ablations on IVF-MR Clustering: a) Analysis of accuracy-compute tradeoff with in-
creasing IVF-MR search probes 7, on ImageNet-4K compared to Exact-MR and b) k-Recall@N on
ImageNet-1K cluster centroids across representation sizes d. Cluster centroids retrieved with highest
embedding dim d = 2048 were considered ground-truth centroids.

As seen in Figure 10a, IVF-MR can match the accuracy of Exact Search on ImageNet-4K with
~ 100x less compute. We also explored the capability of MRs at retrieving cluster centroids with
low-d compared to a ground truth of 2048-d with k-Recall@N, as seen in Figure 10b. MRs were able
to saturate to near-perfect 1-Recall@N for d > 32 and NV > 4, indicating the potential of AAANNS
at matching exact search performance with less than 10 search probes n,,.

E.3 Clustering Distribution

We examined the distribution of learnt clusters across embedding dimensionalities d for both MR,
and RR models, as seen in Figure 11. We observe IVF-MR to have less variance than IVF-RR at
d € {8,16}, and slightly higher variance for d > 32, while IVF-MR outperforms IVF-RR in top-1
across all d (Figure 9a). This indicates that although MR learns clusters that are less uniformly
distributed than RR at high d, the quality of learnt clustering is superior to RR across all d. Note that a
uniform distribution is N/k data points per cluster, i.e. ~ 1250 for ImageNet-1K with £ = 1024. We
quantitatively evaluate the proximity of the MR and RR clustering distributions with Total Variation
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Figure 11: Clustering distributions for IVF-MR and IVF-RR across embedding dimensionality d on
ImageNet-1K. An IVF-MR and IVF-RR clustered with d = 16 embeddings is denoted by MR-16
and RR-16 respectively.

Distance [33], which is defined over two discrete probability distributions p, g over [n] as follows:

1
drv(p.q) = B} Z Ipi — gil
i€[n]

We also compute dry,2048(MR-d) = dpy (MR-d, RR-2048), which evaluates the total variation dis-
tance of a given low-d MR from high-d RR-2048. We observe a monotonically decreasing drv,2048
with increasing d, which demonstrates that MR clustering distributions get closer to RR-2048 as we
increase the embedding dimensionality d. We observe in Figure 11 that dry (MR-d, RR-d) ~ Te — 4
for d € {8,256, ...,2048} and ~ 3e — 4 for d € {16, 32,64}. These findings agree with the top-1
improvement of MR over RR as shown in Figure 9a, where there are smaller improvements for
d € {16, 32,64} (smaller drv ) and larger improvements for d € {8,256, ...,2048} (larger drv ).
These results demonstrate a correlation between top-1 performance of IVF-MR and the quality of
clusters learnt with MR.

F AdANNS-DiskANN

DiskANN is a state-of-the-art graph-based ANNS index capable of serving queries from both RAM
and SSD. DiskANN builds a greedy best-first graph with OPQ distance computation, with compressed
vectors stored in memory. The index and full-precision vectors are stored on the SSD. During search,
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Table 6: Wall clock search latency (us) of AAANNS-DiskANN across graph construction dimension-
ality d € {8,16,...,2048} and compute budget in terms of OPQ budget M € {8, 16, 32, 48,64}.
Search latency is fairly consistent across fixed embedding dimensionality D.

d | M=8 M=16 M=32 M=48 M=64

8 495 -
16 555 571 -
32 669 655 653 - -
64 864 855 843 844 848
128 | 1182 1311 1156 1161 2011
256 | 1923 1779 1744 2849 1818
512 | 2802 3272 3423 2780 3171
1024 | 5127 5456 5724 4683 5087
2048 | 9907 9833 10205 10183 9329

when a query’s neighbor shortlist is fetched from the SSD, its full-precision vector is also fetched
in a single disk read. This enables efficient and fast distance computation with PQ on a large initial
shortlist of candidate nearest neighbors in RAM followed by a high-precision re-ranking with full-
precision vectors fetched from the SSD on a much smaller shortlist. The experiments carried out in
this work primarily utilize a Disk ANN graph index built in-memory> with OPQ distance computation.

As with IVF, DiskANN is also well
suited to the flexibility provided by

AdANNS as we demonstrate on both 702

ImageNet and NQ that the optimal _ ;¢

PQ codebook for a given compute X

budget is learnt with a smaller em- 2 98

bedding dimensionality d (see Fig- &

ures 6¢c and 7a). We demonstrate § 69.6

the capability of AAANNS-DiskANN <

with a compute budget of m € & 694

{32,64} in Table 1. We tabulate ,8 "' 32-Byte

the search time latency of AAANNS- 69.2 —@- 48-Byte
DiskANN in microseconds (us) in 4

Table 6, which grows linearly with 69.0 64-Byte
graph construction dimensionality d. 32 64 128 256 512 1024
We also examine DiskANN-MR with
SSD graph indices on ImageNet-1K
across OPQ budgets for distance com- Figure 12: Disk ANN-MR with SSD indices for ImageNet-

Representation Size

putation mg. € {32,48,64}, as seen 1K retrieval, with compute budgets mgisr, = Mye €
in Figure 12. With SSD indices, {32,48,64} across graph and OPQ codebook construction
we store PQ-compressed vectors on  dimensionalities d € {32,...,1024}. Note that this does

disk with mg;sx = mgc, wWhich es- not use any re-ranking after obtaining OPQ based shortlist.
sentially disables Disk ANN’s implicit

high-precision re-ranking. We ob-

serve similar trends to other composite ANNS indices on ImageNet, where the optimal dim for
fixed OPQ budget is not the highest dim (d = 1024 with fp32 embeddings is current highest dim
supported by Disk ANN which stores vectors in 4KB sectors on disk). This provides further motiva-
tion for AAANNS-DiskANN, which leverages MRs to provide flexible access to the optimal dim
for quantization and thus enables similar Top-1 accuracy to Rigid DiskANN for up to 1/4 the cost
(Figure 6¢).

G AdANNS on Natural Questions

In addition to image retrieval on ImageNet, we also experiment with dense passage retrieval (DPR) on
Natural Questions. As shown in Figure 6, MR representations are 1 — 10% more accurate than their

*https://github.com/microsoft/DiskANN
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RR counterparts across PQ compute budgets with Exact Search + OPQ on NQ. We also demonstrate
that IVF-MR is 1 — 2.5% better than IVF-RR for Precision@k, k € {1, 5,20, 100, 200}. Note that
on NQ, IVF loses ~ 10% accuracy compared to exact search, even with the RR-768 baseline. We
hypothesize the weak performance of IVF owing to poor clusterability of the BERT-Base embeddings
fine-tuned on the NQ dataset. A more thorough exploration of AAANNS-IVF on NQ is an immediate
future work and is in progress.

H Ablations

H.1 Recall Score Analysis
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Figure 13: k-Recall@N of d-dimensional MR for IVF and HNSW with increasing search probes
n, on ImageNet-1K and ImageNet-4K. On ImageNet-4K, we restrict our study to IVF-MR with
d € {8,64,256,2048}. Other embedding dimensionalities, HNSW-MR and RR baselines are
omitted due to high compute cost. We observe that trends from ImageNet-1K with increasing d and
n, extend to ImageNet-4K, which is 4x larger.
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Figure 14: Relative contrast of varying capacity MRs and RRs on ImageNet-1K corroborating the

findings of He et al. [18].

In this section we also examine the variation of k-Recall@N with by probing a larger search space
with IVF and HNSW indices. For IVF, search probes represent the number of clusters shortlisted for
linear scan during inference. For HNSW, search quality is controlled by the e f Search parameter [38],
which represents the closest neighbors to query ¢ at level [, of the graph and is analogous to number
of search probes in IVF. As seen in Figure 13, general trends show a) an intuitive increase in recall
with increasing search probes n,,) for fixed search probes, b) a decrease in recall with increasing
search dimensionality d c) similar trends in ImageNet-1K and 4 x larger ImageNet-4K.

H.2 Relative Contrast

We utilize Relative Contrast [18] to capture the difficulty of nearest neighbors search with IVF-MR
compared to IVF-RR. For a given database X = {z; € R i =1,...,Np}, aquery ¢ € R% and a
distance metric D(.,.) we compute relative contrast C,. as a measure of the difficulty in finding the
1-nearest neighbor (1-NN) for a query ¢ in database X as follows:

1. Compute DY . = vn%in D(q,x;), i.e. the distance of query ¢ to its nearest neighbor 24, € X
1=1...n
2. Compute D% .. = E.[D(q,z)] as the average distance of query ¢ from all database points
rzeX
D4
3. Relative Contrast of a given query C; = —2=**, which is a measure of how separable the
D, .

m
query’s nearest neighbor ¢  is from an average point in the database x

4. Compute an expectation over all queries for Relative Contrast over the entire database as
E, Dt

mean]

E DI

min]

Cr =

It is evident that C'. captures the difficulty of Nearest Neighbor Search in database X, asa C, ~ 1
indicates that for an average query, its nearest neighbor is almost equidistant from a random point in
the database. As demonstrated in Figure 14, MRs have higher R, than RR Embeddings for an Exact
Search on ImageNet-1K for all d > 16. This result implies that a portion of MR’s improvement
over RR for 1-NN retrieval across all embedding dimensionalities d [31] is due to a higher average
separability of the MR 1-NN from a random database point.

H.3 Generality across Encoders

We perform an ablation over the representation function ¢ : X — R? learnt via a backbone neural
network (primarily ResNet50 in this work), as detailed in Section 3. We also train MRL models [31]
»ME(D) on ResNet18/34/101 [19] that are as accurate as their independently trained RR baseline
models ¢717(@  where d is the default max representation size of each architecture. We also train
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MRL with a ConvNeXt-Tiny backbone with [d] = {48,96,192,384,786}. MR-768 has a top-1
accuracy of 79.45% compared to independently trained publicly available RR-768 baseline with
top-1 accuracy 82.1% (Code and RR model available on the official repo®). We note that this training
had no hyperparameter tuning whatsoever, and this gap can be closed with additional model training
effort. We then compare clustering the MRs via IVF-MR with & = 2048, n,, = 1 on ImageNet-1K to
Exact-MR, which is shown in Figure 15. IVF-MR shows similar trends across backbones compared
to Exact-MR, i.e. a maximum top-1 accuracy drop of ~ 1.6% for a single search probe. This suggests
the clustering capabilities of MR extend beyond an inductive bias of ¢ (4 e ResNet50, though
we leave a detailed exploration for future work.
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Figure 15: Top-1 Accuracy variation of IVF-MR on ImageNet-1K with different embedding rep-
resentation function ¢ (%) (see Section 3), where ¢ € {ResNet18/34/101, ConvNeXt-Tiny}. We
observe similar trends between IVF-MR and Exact-MR on ResNet18/34/101 when compared to
ResNet50 (Figure 9a) which is the default in all experiments in this work.
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