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ABSTRACT

Generating realistic graphs presents challenges in estimating accurate distribu-
tion of graphs in an embedding space while preserving structural characteristics
such as topology. However, existing graph generation methods primarily focus
on approximating the joint distribution of graph nodes and edges, overlooking
topology-wise similarity hindering accurate representation of global graph struc-
tures such as connected components and loops. To address this issue, we propose
a topology-aware diffusion-based graph generation method that aims to closely
resemble the structural characteristics of the original graph by leveraging persistent
homology from topological data analysis (TDA). Specifically, we suggest a novel
loss function, Persistence Diagram Matching (PDM) loss, which ensures the gener-
ated graphs to closely match the topology of the original graphs, enhancing their
fidelity and preserving essential homological properties. Also, we introduce a novel
topology-aware attention to enhance the self-attention module in the denoising
network. Through comprehensive experiments, we demonstrate the effectiveness
of our approach not only by exhibiting high generation performance across various
metrics, but also by demonstrating a closer alignment with the distribution of
topological features observed in the original graphs. In addition, application to
real brain network data showcases its versatility and potential for complex and real
graph application.

1 INTRODUCTION

The major goal of graph generation is to achieve high resemblance between generated graphs and
their reference counterparts. To achieve this goal, various graph generation approaches have been
taken based on conventional generative models, e.g., recurrent neural networks (You et al.,[2018b),
variational autoencoders (Simonovsky & Komodakis, 2018) and diffusion models (Jo et al., |[2022;
Vignac et al.||2023), and each exhibited promising results. Despite the achievement in the context of
the quantitative measures, e.g., similarity in distributions of graph characteristics such as degree and
clustering coefficients, there remains a limitation on generating graphs coherent to the graph structure
via the lens of graph topology.

A brain network is perhaps a suitable example that demonstrates the challenges above. A brain
network is typically represented as a graph that characterizes intricate wiring system of the brain,
which is comprised of anatomical regions of interest (ROIs) defining its nodes and the connectivity
between different ROIs serving as edges (Farahani et al.,|2019; [Bullmore & Sporns} 2009). It is often
large and dense, but its topological properties are well-known as critical biomarkers (Sizemore et al.,
2019; [Saggar et al.,[2018)). Moreover, brain networks are expensive; acquiring diffusion magnetic
resonance images (AMRI) and processing them via tractography (Sporns et al., |2005) to obtain
structural brain connectome data is costly in both cost and labor. In this regime, generating realistic
graphs (e.g., brain networks) that preserve their inherent connectivity as well as global structures is
highly demanding, however, existing methods often fall short in capturing the essential topological
features crucial for modeling interconnected brain regions with high fidelity.

In recent years, diffusion methods have been heavily studied for graph generation (Liu et al.| [2023).
The methods in |Niu et al.| (2020) andJo et al.|(2022) proposed score-based diffusion methods in a
continuous time domain, originally defined for images (Song et al.,[2020). However, the continuous
diffusion methods suffer from high computational cost, as the forward and reverse diffusion process
is performed on infinitesimal continuous time point. Moreover, the uniformly added Gaussian noise
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results in a noisy and complete graph, which causes the loss of structural information and destroys
the sparsity of a graph. Later, [Vignac et al.| (2023)) proposed a discrete diffusion method and applied
additive noise to each nodes and edges independently for graphs, nevertheless, existing methods
overlook the fopologically invariant characteristics, e.g., geometric shape and connectivity, limiting
the generation.

To overcome such issues, we propose a novel Topology-Aware Graph Generation (TAGG) method,
from which the sampled graphs resemble not only in the distributions of the original graphs in
the embedding space but also in the homological features of the original graphs. Conventionally,
topological data analysis (TDA) from algebraic topology have been studied in various graph analyses
(Carlsson, 2020; Bukkuri et al., 2021} Xu et al., 2021) to investigate topological features, and we
bridge the gap between TDA and graph diffusion model to generate topologically realistic graphs.
We define Persistence Diagram Matching (PDM) loss with persistence homology, which regularize
the homological features of the reference graphs to be incorporated in graph generation process via
1-Wasserstein distance. Furthermore, we introduce a topology-aware attention module, utilizing the
homological features derived from the persistence landscape (Bubenik, |[2015)) of a given graph, to
foster the denoising network with global structural information.

Contributions. To this end, our main contributions are as follows: 1) We propose a novel topology-
aware graph generation method that yields homologically similar graphs with high fidelity. 2) We
propose PDM loss, utilizing persistent homology to encode the graph topology. 3) We propose
a topology-aware attention module that leverages persistence landscape to enhance the denoising
network in capturing graph topology.

Our model demonstrates superior performance on real and synthetic graph generation tasks, with
intuitive visualizations for topological comparisons. Especially with the application on brain network
generation from Alzheimer’s Disease Neuroimaging Initiative (ADNI), our method demonstrates its
adaptability to diverse real-world graph generation tasks.

2 RELATED WORK

Graph Generation. Graph generation has been developed in two major branches; autoregressive
and one-shot. Auto-regressive methods (You et al.l 2018a;b} [Simonovsky & Komodakis), 2018;
Jin et al.| 2020; |Kong et al., [2023} | Bergmeister et al., 2024) recursively capture the intricate graph
dependencies, and sequentially generate the graph structure conditioned on the current incomplete
graph. In spite of their impressive performance, auto-regressive approaches exhibit considerable
computational demands due to the increasing number of generation steps along with the graph size.
Also, they face a challenge stemming from the absence of an inherent node generation order.

Conversely, one-shot methods (Ma et al.,[2018; [De Cao & Kipf] 2018; Madhawa et al.| 2019} [Zang
& Wang, 2020) generate the whole graph, i.e., every nodes and edges, at once. By doing so, they
reduce the computational requirements while facing performance degradation as the dataset scale
grows. Recently, diffusion-based methods (Jo et al. [2022} |Vignac et al.| 2023 Bergmeister et al.,
2024) showed promising capability in graph generation, by defining the forward and reverse diffusion
processes and training a neural network that mimic the reverse process to reconstruct the graphs.

Persistent Homology. Persistent homology from computational topology studies the topological
features of given objects, such as the number of holes (Edelsbrunner & Harer, 2022). It provides
a way to capture and quantify the shapes and global structures by computing homological features
of objects. By treating a graph as a topological object, the concept of persistent homology can be
utilized to analyze the global structure of graphs, which leads improvements for graph classification
(Hofer et al.| |2020; Zhang et al., [2022; Horn et al.| [2022) and link prediction (Yan et al., 2021]).
Furthermore, persistent homology has been successfully applied in biology (Chen & Voli¢} 2021} |Qiu
& Wei, [2023]; |Bukkuri et al.} [2021), signal processing (Xu et al.,[2021), and point cloud (Nishikawa
et al.| 2024)), demonstrating its versatility and robustness.

3 PRELIMINARIES

We provide a brief introduction to persistent homology, which extracts homological properties from
objects. We refer the readers to [Edelsbrunner & Harer|(2022) and |Carlsson| (2009), should further
questions regarding Topological Data Analysis.
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Simplicial Complex. Let V' be a non-empty set. A simplicial complex K is a collection of non-empty
subsets of V' which satisfies the following two properties; (1) for any v € V, {v} € K, and (2) if
o0 € Kand 7 C o, then 7 € K. An element of K is called a simplex and the dimension of a simplex
is determined by the length of its elements. For example, an element 7 € K with |7| = kK + 1 is
a k-simplex whose dimension is k. The dimension of a simplicial complex K is defined by the
highest-dimension of its simplices.

Graph as a Simplicial Complex. Consider an undirected graph G = (V, E), where V' is a set of
N nodes and £ C V' x V is a set of edges. Then, a graph G can be interpreted as a 1-dimensional
simplicial complex whose O-simplicies are the nodes and 1-simplicies are the edges, i.e.,

G=Keg={{v}:veV}UE. (1

Homology. To investigate the homological properties of a given set X algebraically, assign a chain
structure Cp, C, ... to X connected by homomorphism Og+1 : Cr+1 — Cj, satisfying 0y 00g 11 =0
for every integer k (Edelsbrunner & Harer, |2022). We can obtain homological properties of X in
k dimension by investigating the homology group Hj, = ker 0y /imdy1, where ker and im denote
the kernel and image of the homomorphism, respectively. The rank of the homology group Hy, i.e.,
Betti number S, represents the homological properties of X in k-dimension, e.g., Sy = rank(Hy)
represents the number of connected components, and 5, = rank(H;) represents the number of loops.

Filtration. Filtration of a graph G is a sequence of nested subgraphs of G, i.e., § = G(© € G C
G® c ... c GW-1 c @) = @. Specifically, the filtration of G can also be defined using a
0-simplex (i.e. vertex) filter function f : V' — [0, c0) defined as Hofer et al.| (2017):

V{v'} € G, f({v’})1=:deg({v’})/{gygé(deg({v}))- @

To define the filtration of a graph G, we adopt a non-negative scale parameter €, which is incrementally
increased from 0. Suppose that the computed filter values a; are given in an ascending order
0=uag <ay <az<---<ay,where a; € {f({v}) : {v} € G}. Upon reaching ¢ = a;, we
construct G¥+1 from G0 = () by adding the node v;. When € subsequently reaches at a,, we extend
G/ to G/ by adding the node v, and the edge connecting v, and the nodes in previous subgraph,
i.e., GT'1, if the edge exists. By repeating this process, we systemically define the sublevel set
filtration induced by f as:

Glhi={recq: meaxf(v) <a;y = f71(0,ai])
veo (3)
0= G o C GhHt C Gr2 c...C GfHN-1 C GHN —
for0 <i < N.
Persistent Homology. The homological features can be extended via tracking the filtration of G.
Filtration leads to the notion of persistent homology group, H ,5” ) — ker 9,/ (imd;, | Nker ), for
1 <i < j < N. By monitoring the (de)formation of homological features in each G¥** along the
filtration, we can obtain their homological relevance, i.e., how long each homological features persist.
Specifically, if a homological feature, e.g., a connected component or a loop, first appears at G/*7,
we define the birth of that homological feature as being at i. Likewise, the death of a homological
feature is defined as j if it disappears at G7+/. The rank of persistent homology groups, rank (H ,E” ) ),
represents the number of homological features which persist from G7+* to G7 in k-dimension.

Representation of Persistent Homology. Suppose that a homological feature is born at G¥** and
dies at G/7, i.e., that it persists from i to j. It can be denoted as a tuple of birth and death pair, i.e.,
(4, 4), known as persistence barcode. By considering each i and j as coordinates and plotting the
barcodes (4, j) on the R? plane, we can obtain a persistence diagram D¢ of the graph G

D = {(b,d) : (b, d) is persistence barcode of G} C R?. 4)

Note that a persistence diagram D¢ can be obtained separately with respect to the dimension of
the barcodes, i.e., the dimension of the homological feature a barcode encodes. For every n points
(b,d) € Dg,i.e., |Dg| = n , we associate a piece-wise linear function f(; 4) : R — [0, 00), which is
defined as :
0 if x¢(bd],
foa()=qz—b if ze (b ], ©)
d—z if xze (¥4.d).
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Figure 1: Training of the denoising network ¢o (G, i, ). This network takes a noisy graph G, and the
embedding 1, obtained from persistence landscape of the original graph Gy as an input, and output the
probability vector of nodes and edges, pv;, and pg,, to predict Go. During training, we utilize these predictions
in two ways: 1) cross-entropy loss Lcg over all nodes and edges, and 2) Persistence Diagram Matching loss
L ppn which computes the discrepancy between persistence diagrams of G and pg, .

Persistence landscape (Bubenik! |2015)) of a persistence diagram D¢ can be established as a sequence
of functions \; : R — [0, 00) for [ € N, where )\;(z) denotes the I largest value of the functions
fvi,d) (), for i < n. We obtain s points by dividing the domain of the function \;(x) where
Ai(z) > Ointo (s + 1) equal sub-intervals. With chosen L and S € R, we can obtain a homological
feature vector ju; € RV for a given graph G as follows:

ph = Ni(x1), .. (Ts), -, M(zs)] € RY

‘ (6)
e = [MGP‘WMZGV'WM%}] ERLS7

where 1 <[ < L,and1 <s < §S.

These representations, the persistence diagram D¢ and the homological feature vector p, encode
the entire information about persistent homology of a given graph (Edelsbrunner & Harer, 2022
Bubenikl, [2015)).

4 TAGG: TOPOLOGY-AWARE GRAPH GENERATION

Unlike conventional diffusion-based graph generation, which utilizes Gaussian noise in continuous
space, we perform the diffusion process in discrete space to preserve the sparsity of the graph for
every diffusion time steps. We follow the settings in|Vignac et al.|(2023)), who successfully expands
the method in |Austin et al.|(2021) for generating graphs with categorical node and edge attributes by
treating each node and edge as a categorical random variable.

Let Gy = (Vp, Ey) be the original graph with N nodes, where Vy € RV*V and E; € RVXN*Fe
are the node and edge matrices with Fy, and Fg attributes, respectively. At time step ¢, we denote the
attribute of the i-th node v as a one-hot vector v{ € RV and denote the attribute of the edge '
between v® and v/ as a one-hot vector e;” € R, In this way, the elements of V; and E; are given
by each one-hot vectors.

4.1 FORWARD PROCESS

Considering node and edge attributes as one-hot vectors, we follow the settings of |Austin et al.
(2021) and |Vignac et al.[ (2023) to define the forward and reverse process of diffusion acting on
the node and edge attributes. We denote the forward diffusion process of each time step to impose
noise as transition matrices (¢, where t = 1,2, ..., T, and each element of the matrices, [Q4] e
represents the probability that state 7 changes to state & as the time step changes from ¢t — 1 to ¢, i.e.,

Q] v = a(v' =€ [v=1 = V) and [QF] . . = qle! = €F | ei=1 = nF).

From time step ¢ — 1, a noised graph G can be obtained by sampling the type of nodes and edges
from the categorical distribution after transition, which is derived as:
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q(Gy | Gio1) = (Viea QY Ev1QF)

1,1, 1,1 I,N. 1,N
Cat (’Utl;vtlleY) Cat <et ,et_thE> ... Cat (et ,et_le) -

Cat (00,1, QY) Cat(Nlet 1QF) . Cat(NNef”vaf)

where Cat(z;w) denotes the categorical distribution over one-hot row vector z with a probability
vector w, and the dimensions of w are Fy, and F'r for node and edge, respectively. Specifically, the
transition matrix @} is determined by the dimension of node categories, i.e., Q) = (1 — ;) I +
(Bt/Fv)J r, where I € REV*¥V ig an identity matrix and J , € RFvV*¥V is a matrix of ones, and
f3; is a real value in range [0, 1]. The transition matrix for edge QF is determined in the same manner.

Assuming Markovian property of the process, we_can derive the transition rnatrix from time O to time ¢

by simply multiplying each transition matrices: QY = QY - QY --- QY ,and QF = Q¥ - QF - -- QF.

Then, similar to Eq. (7), the n01sed graph G can also be obtalned from time 0O by samphng from
¢ (G| Go) = (VoQY', EoQF)

4.2 TOPOLOGY-AWARE DENOISING NETWORK

In this section, we introduce a topology-aware
graph denoising network ¢y parametrized by "+ 7
6, which estimates the probability vector of the
nodes and edges of the original graph Gy. In
addition to the noisy graph G, we leverage the
computed fi¢,, a vectorized representation of ~ E.
homological information of GG obtained via o X times
Eq. (6, as an input to the denoising network Figure 2: Topology-aware attention module of TAGG. ®

¢y to retain the topological structure of the 34 @ denotes the outer product and element-wise product.
original graph during estimation.

Specifically, we utilize the Graph Transformer Network (Dwivedi & Bresson||[2020) to estimate the
categorical probability vector of the original graph for each node and edge, i.e., pe, = (Pvy, DE,)>
given a noisy graph G;. While traditional graph transformer models rely on the self-attention modules
on the node and edge embeddings (Dwivedi & Bresson, [2020; Vignac et al.| 2023), we introduce a
novel edge-homology embedding that incorporates the homological feature yi, of the original graph
to the attention module in the denoising network ¢g (G, pc, )-

The attention mechanism of our topology-aware denoising network ¢y is defined as follows:

Qr =N,(V2) Ki = Nk (V) Vi = N,(V2)
ZV, - Qt ®ICt ZEt :NS(Etquo) (8)
Vi=Nv(Zv,,Z5,,V:)  Ei=Ng(Zv,, ZLg,),

where N/ (+) with different subscripts denotes different neural networks, and ® and @ denote the outer
and element-wise product, respectively. Also, Q, K¢, and V; are the embedding vectors representing
the query, key, and value, each obtained by NV (-), N (-) and N, (-). The edge-homology embedding
Zp,, obtained by incorporating the edge embeddings E; and the homological feature g, using
Ne(+), as well as the intermediate attention score Zy, and the value embedding V; are then combined
and passed through Ay (+) to produce a new topology-aware node embedding. Likewise, Nz (+)
produces a topology-aware edge embedding by utilizing Zy, and Z, . By repeating the process in
Eq. (), we consequently obtain the final estimations py, and pg, . Fig. 2| further demonstrates the
topology-aware attention module of TAGG.

Since pg, encodes the homological information by tracking every subgraph in the filtration of
Gy (from Eq. (3)), it contains a rich amount of structural information that is challenging for the
network to capture from the final subgraph of the filtration, i.e., the original graph. By incorporating
G, the attention mechanism of the denoising network can estimate topology-aware node and edge
embeddings, as described in Eq. (8], thereby enabling the final estimation of the topology-aware
probability vector pg,. Consequently, the edge-homology embeddings bolster the denoising network
¢p in generating more realistic graphs.
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Moreover, it is noteworthy that the homological feature vector ., can be pre-computed during the
data preprocessing step, thereby minimizing the need for additional computation for training. We
empirically demonstrate in Sec. [5|that the homological feature vector 1, helps the model to better
learn the original distribution of nodes and edges.

4.3 TRAINING OBJECTIVE FOR TOPOLOGY PRESERVING GRAPH GENERATION

To produce accurate estimation of the probability vector p¢,, we optimize the denoising network ¢y
with two loss terms: 1) Persistence Diagram Matching loss, which aligns the homological features of
the generated graphs, and 2) Cross Entropy loss, which ensures the node and edge attributes of the
generated graphs to closely resemble those of the original graphs.

We first introduce our Persistence Diagram Matching loss Lppps. As discussed in Sec.
persistence diagrams hold comprehensive homological information of graphs obtained via persistent
homology. In order to let the generated graphs to resemble the homological features of the original
graphs, which is our main contribution, we aim to minimize the discrepancy between the persistence
diagrams of the original and the generated graph.

Given the original adjacency G and the estimate p¢,,, the persistence diagrams D¢, and Dy, can
be computed, as defined in Eq. @]) Considering the diagrams as a distribution (Lacombe et al.| 2018)),
we calculate the discrepancy between the two distributions via 1-Wasserstein distance W (-) as:

Lppu (Go,p6y) = Wi(Day, Dpg, ) = inf > e —(@)]] ©)

z€Dg,
where ¢ € Dg,,, and any bijection w : D¢, — Dj -

Note that the bijection 7 between two persistence diagrams holds the following two challenges: 1)
if the persistence diagrams have different number of points, which is true in most cases, bijection
does not exist, and 2) the matching between points from two different persistence diagrams may
be misleading, i.e., the two matched points may hold homological features of different dimension,
such as matching a connected component to a loop. Hence, following the common approach in TDA
(Kerber et al}2017), we pad the diagrams with points on the diagonal to ensure a proper matching
between points of the two persistence diagrams. Also, as described in Sec. [3] a persistence diagram
of each dimension can be acquired separately by plotting the barcodes of each dimension. Therefore,
the PDM loss is computed over Dg,, and Dj,, of the same dimension, with the bijection guaranteed
to match points with homological features of the same dimension. The final £ ppu is determined by
summing the distances across all dimensions.

In addition, we guide the probability vectors from ¢y to approximate the ground truth attributes of
clean Gy. This is conventionally done by minimizing the following loss over all nodes and edges:

Lce (Go,Pa,) = LExg (Go,ba,) + a1LEg (Go, Pa,)

e (vi,ﬁvg>+a1 3 CE (ei’j,]ﬁei‘j>, (10)

1<i<N 1<ij<N
where CE(+) denotes the cross-entropy function, and «; € (0, 1] denotes a real value.

The final training objective linearly combines the two losses above as:

Léina = Lce(Go, Pa,) + a2Lppr(Gos Pa, ) (1D
for a real value s € (0,1]. During the training process, Lppas helps the network to learn the
topological structure of the original graphs. The overall training framework is shown in Fig. [T]and
the effect of £Lppas is validated in Sec. E} For further details of TAGG, refer to Appendix @

4.4 REVERSE PROCESS

After optimizing the denoising model ¢y, we utilize the reverse process in|Vignac et al.|(2023) to
generate new graphs. By iteratively estimating the denoised graph p¢, given a noisy graph G and
imposing noise to the estimated graphs pg, by ¢ (G1—1 | Go) fromt = T to t = 1, we can sample
a new graph. Note that, unlike in the training step where each homological feature vector p¢, is
derived from its corresponding original graph Gy, the matching of p¢, to its original graph G
cannot be defined in the reverse process, thus requiring homological feature vectors based on graphs
from the training dataset. Hence, we utilize the averaged homological feature vector, denoted as
pgr € RES | whose average operation is performed over all training graphs.
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5 EXPERIMENTS

5.1 DATASET AND EXPERIMENTAL SETTINGS

Benchmark Graph Datasets. To obtain a coherent analysis of graph generation performance, we
adopt three conventional benchmark datasets of real and synthetic graphs: (1) Community-small:
200 synthetic graphs with 12 < |V| < 20 generated from a stochastic block model with two
communities, (2) Ego-small: 200 small sub-graphs of the Citeseer network dataset (Sen et al., 2008)
with 4 < |V| < 18, and (3) ENZYMES: 600 protein tertiary structures of the enzymes in graphs
from the BRENDA database (Schomburg et al., 2004).

ADNI. To validate practicability of TAGG, we use brain connectivity from Alzheimer’s Disease
Neuroimaging Initiative (ADNI). In house tractography pipeline was applied to Diffusion Weighted
Imaging (DWI) of healthy subjects from ADNI adhering to the Destreiux atlas (Destrieux et al.,[2010)
with 160 regions of interest (ROIs) comprising 148 cortical and 12 sub-cortical regions. The dataset is
composed of N = 844 undirected weighted graphs, i.e., structural brain connectivity, where the edge
weights represent the number of fiber tracts connecting different ROIs. The edges were thresholded
by removing those below 5%p of the maximum edge weights to obtain sparsity.

Baselines and Quantitative Metrics. We used the following one-shot deep generative methods as
baselines: EDP-GNN (Niu et al.; 2020), GDSS (Jo et al.;,|2022), DiGress (Vignac et al.|[2023)), and the
one-shot version of LocalPPGN (Bergmeister et al.,2024)). In addition, a conventional auto-regressive
generation method, i.e., GraphRNN (You et al.| 2018b), is used for comparison. The (dis)similarity
between distributions of graph statistics on the same number of generated and test graphs were
computed using the maximum mean discrepancy (MMD) (Gretton et al., 2012). Specifically, we
compared the distributions of degree, clustering coefficient, and the number of occurrences of orbits
with 4 nodes, as in|Niu et al.| (2020) and Jo et al.| (2022)). For consistency, we adhered to the train/test
split reference from Jo et al.| (2022)) and performed three replicate experiments to report averaged
performance on all models.

Visualization of Homological Assessment. We utilized two distinct measures to assess the homo-
logical (dis)similarity between the test and generated graphs: 1) Automatic Topologically-Oriented
Learning (ATOL) (Royer et al., 2021)), and 2) Mean Landscape (Bubenik, 2015). These methods
directly encode the homological features from the persistence diagrams into vectors of desired dimen-
sions, thus facilitating a topology-aware assessment of the generated graphs. We further visualized
the generated graphs for qualitative comparison.

5.2 QUANTITATIVE ANALYSIS

Results. The comparison between the baselines and the proposed method is shown in Tab. |1} Note
that although the models for the best and the second best performances vary in each metric, the
proposed method steadily shows highly promising performance, especially in the averaged value
of the three MMD metrics. Specifically, we observed that [Vignac et al.| (2023), the referenced
discrete diffusion based graph generation method, did not perform well on small-scale graphs, i.e.,
Community-small and Ego-small, whereas TAGG showed better performance across all metrics.

Despite the superior performance, it is hard to observe how the proposed topology-aware learning
framework effects the training of a generation model. Hence, we provide two ablation studies to
empirically show their effect on the distribution learning of graphs in the following.

Table 1: Quantitative comparison with baseline models on synthetic and real graph datasets. The best and
second best results are highlighted in bold and underline, respectively. The values are the averaged performance
of 3 different runs.

ADNI ENZYMES Community-small Ego-small
Method Real, [V| =160 Real, 10 < |V| < 125 Synthetic, 12 < [V| < 20 Real, 4 < |V| <18
Deg.] Clus.l Orbit] Avg.l Deg.| Clus.] Orbit] Avg.| Deg.| Clus.| Orbit| Avg.| Deg.| Clus.| Orbit] Avg.|
GraphRNN (You et al.|2018b} 1.392 0916 0.153 0.820 0.161 0.942 0.112 0.405 0.183 0.182 0.113 0.159 0.069 0.090 0.052 0.071
EDP-GNN (Niu et al.[2020} 1.063 1.430 0.626 1.039 0.052 0.895 0.474 0.474 0.056 0.038 0.069 0.054 0.029 0.046 0.008 0.028
GDSS (Jo et al.||2022) 0.949 1.104 0.165 0.739 0.314 0.506 0.084 0.301 0.033 0.112 0.009 0.051 0.045 0.076 0.008 0.043
DiGress (Vignac et al.|[2023) 0.504 1.168 0.379 0.683 0.023 0.051 0.205 0.093 0.089 0.091 0.049 0.076 0.026 0.090 0.023 0.046

LocalPPGN (Bergmeister et al.{2024) 0.777 0.149 0.954 0.627 0.037 0.068 0.048 0.051 0.034 0.218 0.018 0.090 0.014 0.091 0.006 0.037

TAGG 0.213 0.841 0.176 0.410 0.012 0.046 0.116 0.058 0.050 0.064 0.016 0.043 0.001 0.051 0.015 0.023
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Ablation study on y, (Homological feature). We conducted an ablation study to evaluate the
impact of the homological feature jic,. In Tab. [2} we show that the feature 1, introduced in Sec.
[M.2] enhances the denoising network to generate realistic graphs by providing the underlying global
structural information. Note that Tab. [2 shows performance gain on all metrics when utilizing pc,,
with the exception of the clustering coefficient and the averaged MMD score for Ego-small dataset,
which consists of the smallest graphs with an average of 6.41 nodes. This may be attributed to
the small size of the graphs, which allows the denoising network to sufficiently capture the global
structural information within a few hops.

Table 2: Ablation study on c,. Gain refers to the performance gain obtained by adding i, to the denoising
network, where lower score means better performance with lower MMD discrepancy. |V'| denotes the average
number of nodes on each dataset.

ADNI ENZYMES Community-small Ego-small
Metric [V| = 160, (|V] = 160) V| =32.63,(10 < |[V| <125) |V]|=15.28,(12<|V[<20) |V|=6.41,(4<|V|<18) Avg. Gain
w/o jig, With pg,  Gain  wlo pug, with g, Gain ~ w/o pug, withpug, Gain  w/o pug, withug,  Gain
Deg.| 0.399 0.213 -0.186 0.017 0.012 -0.005 0.106 0.050 -0.056 0.007 0.001 -0.006 -0.063
Clus.]  1.006 0.841 -0.165  0.049 0.046 -0.003 0.123 0.064  -0.059  0.039 0.051 0.015 -0.053
Orbit] 0.267 0.176 -0.091 0.146 0.116 -0.030 0.020 0.016 -0.004 0.021 0.015 -0.006 -0.033
Avg.l 0557 0410  -0.147  0.071 0.058 -0.013 0.083 0.043 -0.040  0.022 0.023 0.001 -0.050

Ablation study on Lppj;. To evaluate the effectiveness of our PDM loss £pp s, we also provide
an ablation study in Tab. [3| Similar to the method explained in Sec. we applied the Lppys on
the persistence diagrams of the original clean graph G and the estimate p, on the one-shot graph
generation baselines to observe the general performance gap when utilizing £ppas. Shown in Tab. [3]
we empirically demonstrate that £ppjs successfully guides the network to produce topologically
reliable graphs. In almost all datasets, the average metric values improved by 1.2 ~ 2 times for both
the baselines and TAGG, highlighting the impact of Lpp .

Table 3: Ablation study on the persistence diagram matching loss £ppas. Results are the averaged performance
of 3 replicates, and the superior values are given in bold.

ADNI ENZYMES Community-small Ego-small
Method Deg.] Clus.] Orbit] Avg.| Deg.| Clus.| Orbit| Avg.| Deg.| Clus.| Orbit] Avg.| Deg.| Clus.] Orbit] Avg.]
EDP-GNN 1.063 1.430 0.626 1.039 0.052 0.895 0.474 0.474 0.056 0.038 0.069 0.054 0.029 0.046 0.008 0.028
EDP-GNN+L,4,,, 1.011 0.854 0.600 0.822 0.134 0.729 0.143 0.335 0.041 0.041 0.015 0.032 0.024 0.041 0.007 0.024
GDSS 0.949 1.104 0.165 0.739 0.314 0.506 0.084 0.301 0.033 0.112 0.009 0.051 0.045 0.076 0.008 0.043
GDSS+Lpam 0.403 0.675 0.539 0.539 0.127 0.529 0.058 0.238 0.026 0.096 0.005 0.043 0.040 0.059 0.010 0.036
DiGress 0.504 1.168 0.379 0.683 0.023 0.051 0.205 0.093 0.089 0.091 0.049 0.076 0.026 0.090 0.023 0.046
DiGress+Lpdm 0.399 1.006 0.267 0.557 0.017 0.049 0.146 0.071 0.106 0.123 0.020 0.083 0.007 0.039 0.021 0.022
LocalPPGN 0.777 0.149 0.954 0.627 0.037 0.068 0.048 0.051 0.034 0.218 0.018 0.090 0.014 0.091 0.006 0.037

LocalPPGN+L 4, 0.374 0.120 0.695 0.396 0.025 0.061 0.031 0.039 0.030 0.154 0.019 0.068 0.012 0.081 0.009 0.034

TAGG(W/o Lpgm) 0379 1.263 0.247 0.630 0.010 0.049 0.148 0.069 0.047 0.079 0.028 0.051 0.005 0.060 0.017 0.027
TAGG 0.213 0.841 0.176 0.410 0.012 0.046 0.116 0.058 0.050 0.064 0.016 0.043 0.001 0.051 0.015 0.023

Moreover, the improvements in clustering and orbit metrics underscore the effectiveness of pg, and
L pp s in preserving essential topological structures. The improved clustering metrics demonstrate
TAGG'’s ability to capture local connectivity patterns, while the improved orbit metrics reflect its
capacity to preserve structural patterns in each node’s local subgraphs. These findings validate the
significant contribution of the proposed topology-aware framework in generating high-fidelity graphs.

5.3 QUALITATIVE ANALYSIS

Visualization of generated graphs. We qualitatively compare TAGG with other baselines via
visualization. As seen in Fig. [3land[d] TAGG produces more realistic graphs that closely resemble test
graphs from various datasets. More visualization of the generated graphs of TAGG can be found in
Appendix Baseline models (Niu et al., [2020; Jo et al.| 2022} | Vignac et al., 2023} [Bergmeister et al.,
2024) often failed to capture the nuanced patterns present in benchmark datasets. Particularly in Fig.
[3l TAGG better represent critical characteristics compared to baselines, i.e., sparse inter-hemisphere
connections and symmetry of hemispheres. Although the brain networks generated from the other
discrete diffusion method, i.e.,Vignac et al.|(2023)), also exhibit high quality, they failed to capture
the inter-hemisphere connection, a subtle but critical structural information of a brain network. Also
in a topological perspective, the existence of inter-hemisphere connection determines the number of
connected components, and the topology-aware generation of TAGG is capable of capturing such
topological structures. This demonstrates the effectiveness of topology-aware learning in capturing
both global and detailed structural properties of a graph.
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(d) DiGress (e) LocalPPGN (f) TAGG

Figure 3: Visualization of the averaged brain network of 50 samples from (a) test dataset, (b) EDP-GNN, (c)
GDSS, (d) DiGress, (e) LocalPPGN, and (f) TAGG. The inter-hemisphere connection of (a) and (f) are colored
in red to highlight the difference between the best resulting models (d) and (f). The global structure of the brain
network, e.g., the sparsity and the inter-hemisphere connectivity, are well preserved using TAGG.

/M

(d) DiGress (e) LocalPPGN () TAGG

Figure 4: Visualization of the ENZYMES samples from (a) test dataset, (b) EDP-GNN, (c) GDSS, (d) DiGress,
(e) LocalPPGN, and (f) TAGG. TAGG generates the most topologically equivalent graphs.

ATOL (Royer et al, 2021). Via ATOL, we visualize the homological feature vectors on a 2-
dimensional plane to assess the impact of our topology-aware learning as test samples vs. generated
samples. ATOL gets persistence diagrams derived from each graphs as inputs, and their homological
feature vectors are encoded to the plottings in 2-dimensional plane. The visualization of the plotted
samples in Fig. [5]thus demonstrates how closely the generated samples resemble the test samples in
topological perspectives. The proximity between the pink and blue points in (e) is significantly closer
compared to that observed in (a)-(d), illustrating the impact of our topology-aware generation.

Mean Landscape 2015). Persistence diagram obtained from a graph can be transformed
to a persistence landscape, where each barcode is transformed into a piecewise-linear function, as
introduced in Eq. (6). Given a sequence of piecewise-linear functions ); from a persistence diagram,
i.e., a persistence landscape, mean landscape can be computed by taking the average of the landscapes

defined as A(z) = + Ef\il Ai(x), where N is the number of piecewise-linear functions and \; ()
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Figure 5: ATOL visualization of homological features derived from the test (Pink) and generated graphs (Blue).
Top: ADNI dataset, Bottom: ENZYMES dataset. The distribution of features from a sample from TAGG exhibit
the best similarity with the ground truth.
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Figure 6: The averaged mean landscape (Bubenik obtained from (a) graphs via baseline methods, and
individual comparison between test graphs and (b) EDP-GNN, (c) GDSS, (d) DiGress, (e) LocalPPGN, and (f)
TAGG. The mean landscape is the averaged persistence landscape of 10 piecewise-linear functions, and graphs
from TAGG shows the highest resemblance to the test graphs.

is the I*" largest value of f(b:,4,) () at point = as described in Sec. Thus, a mean landscape
hold topological summary of a graph, and the similarity of two mean landscapes implies that their
topological structures, e.g., connected components and loops, are analogous. To further investigate
the validity of our method, Fig. [6] depicts the averaged mean landscape of the test and generated
graphs on each baseline models. As can be seen in Fig. [6} TAGG significantly resembles the averaged
mean landscape of the test graphs compared to all of the baseline methods. This demonstrates that
TAGG generates graphs with high fidelity in the lens of graph topology, i.e., homological features.

6 CONCLUSION

In this study, we proposed a novel graph generation framework preserving the intricate topology of
the network. Through the proposed topology-aware attention module and the Persistence Diagram
Matching Loss, we achieve high generation performance while maintaining the essential topological
features of the original graphs. This approach improves the fidelity of generated graphs and provides
valuable insights into their structure for both synthetic and real graph datasets. Our research addresses
a critical challenge in complex real-world graph generation, particularly in the context of brain
networks, and pave the way for practical graph generation with topological consistency.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a detailed figure of the topology-aware attention
module in Fig. 2] along with the algorithm of our general framework in Appendix [B] Furthermore, we
provide the experimental results, averaged across multiple runs, and the additional implementation
details for TAGG and the baseline methods are provided in Appendix |C| Thus, the experimental
results should remain consistent across different users, and we will make the code public that produce
the same result in this manuscript.
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A QUALITATIVE RESULTS

In this section, we provide additional generated graphs that has not been included in the main paper
due to space limit. For example, Fig. [7includes the (a) brain network and (b) ENZYMES graphs
generated by GraphRNN, a baseline method of our paper. Align with the qualitative comparison
results shown in Sec. [5]of the main paper, TAGG better represents critical characteristics compared
to GraphRNN. Also, Fig. shows additional graphs generated using TAGG to validate the
consistency of the generation performance.

A.1 GENERATED GRAPH SAMPLES VIA GRAPHRNN.

(a) ADNI (b) ENZYMES

Figure 7: Visualization of the generated graphs using GraphRNN; (a) Brain network from ADNI
dataset and (b) ENZYMES graphs.

A.2 GENERATED BRAIN NETWORK SAMPLES VIA TAGG.

Figure 8: Visualization of the brain network generated using TAGG. TAGG successfully generates
homologically reliable brain network, preserving the symmetry of brain network and the edges
interconnecting left and right hemisphere.
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A.3 GENERATED SAMPLES ON BENCHMARK DATASET VIA TAGG.

(e) LocalPPGN (f) TAGG

Figure 9: Visualization of the generated Ego-small graphs from (a) test dataset, (b) EDP-GNN, (c)
GDSS, (d) DiGress, (e) LocalPPGN, and (f) TAGG.
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(e) LocalPPGN (f) TAGG

Figure 10: Visualization of the generated Community-small graphs from (a) test dataset, (b) EDP-
GNN, (c) GDSS, (d) DiGress, (e) LocalPPGN, and (f) TAGG. Compared to the baselines, TAGG
generates the most topologically equivalent graphs. TAGG successfully generates an edge that
connects two communities.
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B DETAILS OF THE TOPOLOGY-AWARE DENOISING NETWORK

The overall scheme of TAGG is demonstrated in Algorithm[I} The homological feature vector i, is
obtained via persistence landscape of the original graph G, which is derived from the filtration of Gy.
Then, using the resultant i, , the denoising network of TAGG iteratively utilize the topology-aware
attention module. The homological feature yi, enhance the attention module to estimate topology-
aware node and edge embeddings, i.e., V; and E;, which leads to high fidelity of generated graphs.
Consequently, the denoising network outputs a probability vector pg, = (Pv;, Pr, ) of the original
graph, which is then optimized using the Cross-Entropy and Persistence Diagram Matching loss.

Algorithm 1 Overall scheme of TAGG
1: Input: Original graph Gy = (Vp, Ep), number of diffusion step T, hyperparameter vy and as.

2: 1. Obtain homological feature 1.,

3: phg, <« Filtration(Gp)

4: Obtain persistence barcodes and persistence diagram D¢, from ph;,

5: ua, = PersistenceLandscape(Dg,) > Homological feature of the given graph Gj.

6: 2. Training TAGG

7: Model input: G = (Vo, Fo), pa,

8: Sample t ~U(1,2,...,T)

9: Sample noisy graph G; = (V;, Ey) ~ (VOan EOQF)

10: 2-1. Estimate pg, via TAGG

11: Given V; and F,

12: for number of layers do

13: Qy, Ki, Vi < MLP,(V;), MLP(V;), MLP,(V;)

14: Zy, =9, K, > Self-attention of node features.

15: Zg, < concat(Ey, ug,) > Incorporate ¢, to edge embedding.
16: OE,UE — MLpo(ZEt), MLPU(ZEt)
17: Y«~Zy, ©0g+Ug

18: Z’Vt + Softmax(Y)
19: Vi, By « MLPy(Z}, ® V), MLP 5(Y)

20: end for
21: pg, = (Pvy» Pr,) = (LayerNorm(V;), LayerNorm(E;))

22: Model output: probability of denoised graph pg,

23: 2-2. Training Objective
24: Lina = LEg (Go, Pa,) + 1 LEE (Go, Pa,) + a2 Lppm (Go, pa,)

17



Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

We provide additional details of experiment settings used in TAGG. As explained in Sec. the
training objective of TAGG has two real valued hyperparameters «; € (0, 1] and a2 € (0, 1], each
used to control the cross-entropy loss of edges L& and the persistence diagram matching (PDM) loss
L pp ., respectively. The hyperparameters a;; and a; were chosen through a grid search of values in
{1, 0.1, 0.01, 0.001, 0.0001} on each dataset, and the settings are shown in Tab. El} We followed the
hyperparameters provided in the original papers for the baseline methods. For the datasets that were
not included in the original papers, we conducted the same hyperparameter search as with TAGG to
ensure a fair comparison. Additionally, after the reverse diffusion process to sample the generated
graphs, we quantize the entries of the adjacency matrices using the operator 1, 5, resulting in a
binary adjacency matrix.

Table 4: Hyperparameters of TAGG on different datasets

Hyperparameter ‘ ADNI ENZYMES Community-small Ego-small

o1 1 1 0.001 0.01
%) 0.001 0.0001 0.001 0.0001
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D ADDITIONAL EXPERIMENT ANALYSIS

We offer a more detailed analysis of the quantitative experiments presented in Sec. [3} along with
additional experiments examining the generation performance of TAGG.

D.1 ANALYSIS OF ABLATION STUDY (SEC. [5.2)).

The quantitative measure (MMD scores) of the graph generation performance with the use of
homological feature vector p, and PDM loss Lppas is shown in Tab. [2| and Tab. The
ablation study demonstrate that incorporating f, to the attention module and the use of PDM
loss as a regularizer generally enhances performance metrics across various datasets, suggesting
that TAGG effectively generates high-fidelity graphs by leveraging the proposed methods.

Moreover, the improvements in the clustering and orbit metrics underscore the impact of our
method in preserving critical topological structures. Specifically, the enhanced clustering metric
highlights the ability of TAGG to maintain local connectivity patterns, while the improved
orbit metric—capturing the structural patterns within each node’s local subgraph—shows the
effectiveness of TAGG in preserving the structural roles and relationships within a graph. These
results confirm that the proposed topology-aware learning framework significantly contributes
generating high-fidelity graphs.

D.2 CHOICE OF FILTER FUNCTION f.

The degree function was employed as the filter function in TAGG, as it is one of the most
simple but common and effective ways to define the filtration of a graph (Hofer et al., [2017}
2020; [Carriere et al., 2020). While the degree-based filter function may yield relatively smaller
improvements in clustering and orbit metrics compared to the degree metric itself, the overall
results of TAGG across all datasets demonstrate consistent improvements over other baselines
in the quantitative comparison and ablation studies. Additionally, further experiments were
conducted using alternative filter functions, such as the clustering coefficient and betweenness
centrality. The clustering coefficient C; measures the local density of connections, defined as
C; = 2¢;/k;(k; — 1), where k; is the number of neighbors of node 7, and e; is the number of
edges between those neighbors. Betweenness centrality measures how often a node lies on the
shortest path between other nodes, reflecting how crucial a node is in bridging different parts of
a graph. However, due to the computational complexity and differentiability, we approximate
the betweenness centrality using random walks. The betweenness centrality with random walks
Crp is defined as C,., (k) = Z#k# P, j(k)/P; ;, where P, ; is the total number of random
walks from node i to node j, and P; ;(k) is the number of random walks from node 7 to node
J that pass through node k. As presented in the Tab. [5] changing the filter function affect the
optimization process; for example, using the clustering coefficient enhances its corresponding
MMD score. However, the overall impact on the generation performance remains minimal, as
the new averaged MMD metrics continue to outperform the baseline methods without significant
degradation.

D.3 GENERALIZABILITY TO SMALL AND LARGE GRAPH DATASET.

Regardless of the size of the graph, the ablation studies presented in Tab. [2] and Tab. [3]
demonstrate that our proposed method, which utilize the topology-aware self-attention module
and PDM loss, consistently improves performance across the overall dataset. However, in the
case of small graphs, its limited number of simplices results in a restricted set of topological
features, which may diminish the effectiveness of our method when compared to larger graph
datasets. As a result, the MMD metric results (degree, clustering, orbit) in Tab. may not show
significant differences. Nevertheless, the averaged MMD scores outperform all baselines on
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Table 5: Comparison of filter functions across datasets. Filter functions are the degree, clustering coefficient
(Clus. Coeff), and betweenness centrality (Betw. Cent.). Empty values will be updated during the Rebuttal
period.

ADNI ENZYMES

Filter function Deg.l Clus.l Orbit] Avg.] Deg] Clus.] Orbit] Avg.]
Degree 0213 0.841 0.176 0410 0.012 0.046 0.116 0.058
Clus. Coeff. 0.242 0.802 0.198 0414 - - - -

Betw. Cent. 0.252 0.847 0.336 0478 0.009 0.047 0.112 0.056

Community-small Ego-small

Filter function 100 "o | Omitl  Ave] Deg. Clus. Orbit) Avel
Degree 0.050 0.064 0.016 0.043 0.001 0.051 0.015 0.023
Clus. Coeff. 0.071 0.057 0.008 0.045 0.006 0.040 0.025 0.023
Betw. Cent. 0.071 0.059 0.017 0.049 0.005 0.046 0.020 0.024

both the community-small and ego-small datasets, highlighting the meaningful impact of our
method on generation performance of small graphs.
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E VISUALIZATION OF HIDDEN REPRESENTATIONS
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Figure 11: t-SNE visualization of the trained features from the topology-aware attention module on
(a) Ego-small and (b) ADNI dataset. Colors denote the t-SNE results from trained features under
different model settings; Blue: baseline, Orange: TAGG without ji¢,, Green: TAGG without Lpp s,
and Red: TAGG.

In order to investigate the effect of the topology-aware learning framework, Fig. [TT|demonstrates
the t-SNE visualization of the trained features from the topology-aware attention module on
different datasets. Specifically, the hidden features from the final layer of the attention module
were extracted and projected onto a 2-dimensional plane using t-SNE, providing a visual
representation of the trained hidden features in the latent space. To evaluate the individual
contributions of the topology-aware attention module and the PDM loss of TAGG, t-SNE results
were obtained using the same models from the ablation study, along with a baseline model that
excludes both pg, and Lppys. Noteably, incorporating either the homological feature fig,,,
the PDM loss, or both consistently improved performance across all datasets. In line with the
enhanced quantitative results, the visualization reveals differences in the latent space between
the cases where neither method was applied and where both were utilized, indicating that the
graph features were optimized into a more desirable latent space.
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