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ABSTRACT

Detecting missing persons in forest environments remains a challenge, as dense
canopy cover often conceals individuals from detection in top-down or oblique
aerial imagery typically captured by Unmanned Aerial Vehicles (UAVs). While
UAVs are effective for covering large, inaccessible areas, their aerial perspectives
often miss critical visual cues beneath the forest canopy. This limitation under-
scores the need for under-canopy perspectives better suited for detecting missing
persons in such environments. To address this gap, we introduce ForestPersons,
a novel large-scale dataset specifically designed for under-canopy person detec-
tion. ForestPersons contains 96,482 images and 204,078 annotations collected
under diverse environmental and temporal conditions. Each annotation includes
a bounding box, pose, and visibility label for occlusion-aware analysis. Forest-
Persons provides ground-level and low-altitude perspectives that closely reflect
the visual conditions encountered by Micro Aerial Vehicles (MAVs) during forest
Search and Rescue (SAR) missions. Our baseline evaluations reveal that standard
object detection models, trained on prior large-scale object detection datasets or
SAR-oriented datasets, show limited performance on ForestPersons. This indi-
cates that prior benchmarks are not well aligned with the challenges of missing
person detection under the forest canopy. We offer this benchmark to support
advanced person detection capabilities in real-world SAR scenarios. The dataset
is publicly available at https://huggingface.co/datasets/anonreviewer2026/under-
canopy-benchmark-anon.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been widely used in Search and Rescue (SAR) missions
because they can quickly cover large open areas. While early UAVs relied on manual operation,
advances in navigation, path planning, and flight control technologies have enabled fully autonomous
missions. Furthermore, hardware miniaturization has led to the development of Micro Aerial Vehicles
(MAVs), and improvements in Simultaneous Localization and Mapping (SLAM) technologies have
made GPS-denied navigation possible (Liu et al., 2022; Bachrach et al., 2010). These developments
have extended UAV operations to challenging forest environments with dense and scattered obstacles.
Recent studies have demonstrated that UAVs can perform safe navigation (Laina et al., 2024; Hong
et al., 2024), rapid path planning for exploration (Ren et al., 2025; Jarin-Lipschitz et al., 2022; Zhou
et al., 2021), and mapping tasks (Lin & Sto, 2022; Kwon et al., 2024). Despite the growing feasibility
of deploying MAVs in forested environments, detecting missing persons under dense canopies
remains a fundamental challenge. Forests are environments where people are not typically present,
and the abundance of vegetation causes significant and often unpredictable occlusions. Moreover,
there is a lack of dedicated datasets targeting such under-canopy scenarios, limiting the ability of
detection models to learn and generalize to these challenging conditions.

While several UAV-based datasets (Kundid Vasić & Papić, 2022; Broyles et al., 2022; Sambolek
& Ivasic-Kos, 2021; Zhang et al., 2025) have been introduced to support SAR applications, most
prior benchmarks are collected from high altitudes, typically using top-down or oblique perspectives.
Although such aerial viewpoints provide broad coverage and are effective for detecting objects in
open areas, they are less suitable for locating missing persons concealed beneath dense forest canopy.
At high altitudes, individuals often appear as only a few pixels in the image. Dense foliage and
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(a) High-altitude aerial UAV perspective: wide-area coverage but limited visibility under forest canopy.

(b) Low-altitude MAV perspective: ground-level view under canopy with improved visibility of missing persons.

Figure 1: Comparison of two UAV-based person search scenarios. (a) High-altitude views offer
wide-area coverage but often fail to detect targets due to canopy occlusion. (b) Low-altitude MAVs
provide closer, ground-level views beneath the canopy, improving the chances of spotting missing
persons despite vegetation occlusion.

uneven terrain further obstruct visibility, making reliable detection extremely challenging. Moreover,
occlusions caused by vegetation are pervasive and vary unpredictably across different forest structures,
exacerbating the difficulty of identifying partially visible or collapsed individuals.

To address this challenge, we introduce ForestPersons, a large-scale dataset specifically designed
to support the training of models for detecting missing persons under forest canopies, where dense
vegetation often causes severe occlusion and obstructs the visibility of human bodies. The dataset
consists of 96,482 images and 204,078 annotated instances, collected across varying seasonal,
weather, and lighting conditions, reflecting real-world under-canopy scenarios. Each person instance
is annotated with bounding boxes and additional attributes including pose and visibility, which are
particularly relevant to SAR applications. To the best of our knowledge, ForestPersons is the first
benchmark explicitly designed for detecting persons under forest canopies, providing a foundation for
developing and evaluating models in realistic SAR scenarios, and is expected to improve the chances
of successful rescue of missing persons in real-world SAR missions.

2 RELATED WORK

2.1 UAV-BASED PERSON DETECTION DATASETS

Most prior UAV-based datasets capture people from top-down or oblique perspective at high altitudes
as illustrated in Figure 1a. Over the past several years, large-scale datasets (Zhu et al., 2021; Speth
et al., 2022; Barekatain et al., 2017; Du et al., 2018; Zhu et al., 2022; Liu et al., 2023) containing
high-resolution aerial imagery have been developed to support computer vision tasks such as ob-
ject detection, tracking, and person recognition from aerial perspectives. Among these, VisDrone
dataset (Zhu et al., 2021) stands out as a comprehensive resource for drone-based computer vision
applications, offering data captured using various drone-mounted cameras across diverse urban and
country environments, locations, object types, and scene densities. Other notable general-purpose
aerial datasets include NII-CU (Speth et al., 2022), which contains well-aligned RGB and thermal
images with occlusion labels, and Okutama-Action (Barekatain et al., 2017), which provides aerial
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Table 1: ForestPersons vs. Others. Comparison of ForestPersons with existing UAV-based datasets
containing person class annotations.

Dataset Configuration Data Volume Attributes
Scenario Environments View Point #Images #Annotations Occlusion Pose

HERIDAL (Kundid Vasić & Papić, 2022) SAR Forest Top-down 1,600 3,194 ✗ ✗

WiSARD (Broyles et al., 2022) SAR Forest, Maritime Oblique 44,588 74,204 ✗ ✗

SARD (Sambolek & Ivasic-Kos, 2021) SAR Forest Oblique 1,981 6,532 ✗ ✓

VTSaR (Zhang et al., 2025) SAR Urban, Maritime, Forest Top-down 12,465 19,956 ✗ ✗

Visdrone (Zhu et al., 2021) Surveillance Urban Oblique 10,209 147,747 ✓ ✗

NII-CU (Speth et al., 2022) Detection Urban Oblique 5,880 18,736 ✓ ✗

Okutama-Action (Barekatain et al., 2017) Detection Urban Oblique 77,365 524,649 ✗ ✓

ForestPersons SAR Forest Ground-level 96,482 204,078 ✓ ✓

video for human action detection with bounding boxes and 12 action classes such as standing, sitting,
and lying.

Several datasets have been proposed for various SAR applications. HERIDAL (Kundid Vasić & Papić,
2022) provides high-resolution imagery from mountainous regions, while WiSARD (Broyles et al.,
2022) offers synchronized RGB and thermal data across diverse terrains and weather conditions.
SARD (Sambolek & Ivasic-Kos, 2021) and the recently proposed VTSaR (Zhang et al., 2025) extend
multimodal capabilities by incorporating real and synthetic RGB-thermal image pairs. Most UAV-
based SAR datasets, however, are collected from high altitudes and primarily offer top-down or
oblique viewpoints. While such perspectives are advantageous for efficiently covering wide areas,
they are less effective in real SAR scenarios where missing persons are often located beneath dense
foliage. In these environments, visibility is severely limited and occlusions caused by vegetation are
frequent. As a result, this reduces the chances of successfully detecting missing persons in aerial
imagery. Table 1 summarizes the key attributes of representative UAV-based detection datasets.

2.2 GROUND-LEVEL PERSON DETECTION DATASETS

As illustrated in Figure 1b, MAVs typically operate at low altitudes close to ground-level view. Given
the similarity in viewpoints, ground-level person detection datasets are suitable training resources for
under-canopy missing person detection models. Representative prior works include COCO Lin et al.
(2014), CrowdHuman (Shao et al., 2018), CityPersons (Zhang et al., 2017), KITTI (Geiger et al.,
2012), and JRDB (Martin-Martin et al., 2021), which are widely used as benchmarks for developing
and evaluating person detection models. These datasets provide high-resolution images captured in
everyday environments, including annotations for bounding boxes, body joints, and occlusion states.
They have supported the development of person detection models that are robust to partial occlusion
and variations in human pose.

Nevertheless, most existing datasets primarily depict standing or walking individuals in typical indoor
and outdoor environments where people are commonly found. These conditions differ substantially
from those encountered in SAR missions conducted in forested environments. In real SAR scenarios,
missing persons are often partially occluded by vegetation, sitting or lying beneath canopy cover, and
subject to highly variable lighting and visibility conditions. Such characteristics are rarely captured in
prior benchmarks, making existing datasets less suitable for training missing person detection models
intended for under-canopy search operations.

3 FORESTPERSONS

ForestPersons is a large-scale image dataset specifically developed for missing person detection in
under-canopy forest environments, a key task in autonomous SAR missions. The dataset captures
conditions that are common in under-canopy forest searches, where people may be partially or fully
hidden by vegetation and can appear in various poses such as lying down, sitting, or standing. Unlike
conventional person detection datasets that focus on images collected in places where people are
typically found, ForestPersons targets under-canopy forest scenes, where dense foliage, seasonal
shifts, and weather variability significantly impact visibility and scene appearance.
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Lying
Visible Ratio 40%

Sitting
Visible Ratio 70%

Standing
Visible Ratio 100%

Flight Altitude of MAVs

• Diversity : Season / Environment / Time of the Day

• Labels : Bounding box / Occlusion / Pose

1.5 ~ 2m

Frame Sampling

Bounding Box Annotation

Data Collection

Dataset Composition
Train / Validation / Test Splits

Video 046 - Easy (Test) Video 225 - Hard (Test)

Video 070 - Hard (Train) Video 094 - Medium (Val)

Figure 2: Overview of ForestPersons composition pipeline. The full process from data collection in
forest environments to frame sampling from video sequences, bounding boxes annotation of missing
persons, and difficulty-aware dataset splitting.

3.1 DATA COLLECTION AND FRAME SAMPLING

The ForestPersons dataset was constructed to simulate realistic SAR scenarios occurring under forest
canopy conditions. As shown in Figure 2, videos were collected across diverse forest environments
by simulating missing person situations that reflect plausible outcomes of fatigue or disorientation.
Individuals were positioned in different postures such as lying on the ground, sitting, or standing. In
these settings, they were naturally partially occluded by vegetation, branches, or uneven terrain. To
emulate the viewpoints typically encountered by MAVs during under-canopy missions, handheld or
tripod-mounted cameras were positioned at altitudes between 1.5 and 2.0 meters, approximating the
expected flight height of MAVs.

The videos include scenes from different seasons, such as dense summer foliage that increases
occlusion and winter settings with leafless trees and snow-covered terrain. Variations in weather,
including clear skies, overcast conditions, and light rain, were incorporated to introduce changes
in visibility and lighting. Temporal diversity was also considered by capturing footage at different
times of day, primarily in the afternoon and at dusk. We deliberately included seasonal and temporal
conditions in the videos to support the development of detection models that are robust to real-world
SAR scenarios. Frames were extracted from the 377 video sequences collected as described above.

3.2 ANNOTATION

Bounding boxes were annotated using the open-source COCO Annotator (Brooks, 2019), following
shared guidelines that required labeling only the visible portions of each individual. Given the
dense vegetation and complex terrain characteristic of under-canopy environments, annotators were
instructed to carefully delineate the visible contours of partially occluded individuals to ensure precise
and consistent annotations.

In addition to bounding boxes, each person instance was annotated with two semantic attributes, pose
and visibility level, to capture information relevant to practical SAR operations. The pose attribute
provides cues about the physical state of an individual, while visibility level quantifies the degree of
visual difficulty caused by environmental occlusions. These interpretable categories are designed to
reflect the visual conditions commonly encountered in real-world forest search scenarios.

Poses were categorized into three classes: standing, sitting, and lying. In cases where the posture of a
person was ambiguous due to occlusion or background clutter, annotators referred to adjacent video
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Figure 3: Visual samples from ForestPersons. Images depicting individuals in diverse poses,
occlusion levels, seasons, and forest environments.

frames to make informed decisions based on shared annotation guidelines. Visibility levels were
categorized into four levels based on the degree of occlusion caused by vegetation or terrain: a value
of 20 indicates heavy occlusion where the individual is almost unrecognizable, 40 corresponds to
partial occlusion with the person still identifiable, 70 denotes minor occlusion with most of the body
clearly visible, and 100 represents full visibility without any occlusion. Representative examples of
each visibility level and pose category under realistic forest conditions are presented in Figure 3.

Following the annotation of bounding box and semantic attributes, an automated and manual
anonymization protocol was applied to remove personally identifiable facial information. Specifically,
a face detector (López, 2024) was used to identify facial regions in all images, which were then
blurred accordingly. Subsequently, a manual review was conducted to identify any remaining visible
faces, and additional blurring was applied as needed to ensure complete anonymization.

3.3 DATASET SPLIT AND STATISTICS

With the data collection and annotation processes described above, ForestPersons comprises 96,482
images and 204,078 annotated person instances, each instance labeled with a bounding box, pose,
and visibility level. To reduce annotator bias and mitigate the effects of human error, we designed
a model-driven difficulty-aware dataset splitting strategy. In particular, to prevent overlap between
temporally adjacent frames and to account for task difficulty, we split the dataset at the video
sequence level. Each sequence was assigned a difficulty score based on the detection performance of
a COCO-pretrained Faster R-CNN (Ren et al., 2015) implemented in Detectron2 (Wu et al., 2019),
computed as 1−AP50. Sequences were then grouped such that easy, medium, and hard samples were
proportionally distributed across the training, validation, and test splits, as detailed in Appendix E.
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Figure 4: Annotation statistics of ForestPersons. Instance-level distribution for pose and visibility
(Top) and image-level distribution for season, place, and weather (Bottom).

Figure 5: ForestPersons samples by difficulty level. Shown are representative video sequences
from the easy, medium, and hard groups. Predicted boxes are shown with confidence scores, and
ground-truth boxes are labeled as {pose} {visibility level}.

As shown in Figure 4, the training, validation, and test splits exhibit comparable distributions across
seasons, location types, and weathers for images, as well as visibility levels and poses for the missing
person instances. These distributions reflect biases from the image collection process, despite efforts
to ensure scenario diversity. Nevertheless, each split maintains sufficient diversity to reflect real-world
variability. To better simulate realistic SAR situations near forest entrances, a small number of videos
recorded at forest edges (labeled as ”Road”) were also included in the dataset.

Representative examples from each difficulty group are shown in Figure 5, with one sample per
row corresponding to easy (difficulty score < 0.45), medium (0.45 ≤ score < 0.75), and hard
(score ≥ 0.75) levels, respectively. The final split consists of 67,686 images and 145,816 annotations
for training, 18,243 images and 37,395 annotations for validation, and 10,553 images and 20,867
annotations for testing.
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4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Training object detection models. We evaluate a diverse set of widely adopted and representative
object detection models. Specifically, we train models with YOLO-based (Redmon et al., 2016) back-
bones (YOLOv3 (Redmon & Farhadi, 2018), YOLOX (Ge et al., 2021)) and YOLOv11 (Jocher & Qiu,
2024), ResNet-50-based (He et al., 2016) backbones (RetinaNet (Lin et al., 2017), Faster R-CNN (Ren
et al., 2015)) and deformable Faster R-CNN (Dai et al., 2017), a MobileNetV2-based (Sandler et al.,
2018) backbone (SSD (Liu et al., 2016)), and transformer-based (Vaswani et al., 2017) backbones
(DETR (Carion et al., 2020) and DINO (Caron et al., 2021)). We also evaluate CZ Det (Meethal et al.,
2023), a model designed for UAV imagery that utilizes a cascaded zoom-in mechanism. All models,
except for YOLOv11, DINO, and CZ Det, are implemented using MMDetection framework (Chen
et al., 2019). The YOLOv11, DINO and CZ Det is implemented using ultralytics (Jocher &
Qiu, 2024), detrex (Ren et al., 2023), and detectron2 framework (Wu et al., 2019), respectively.
The training hyperparameters for each model are detailed in Table 5, Appendix B. We conduct all
experiments on NVIDIA RTX 3090 GPUs, except for DETR models, which were trained on NVIDIA
A100 and A6000 GPUs.

Evaluation. We use Average Precision (AP) and Average Recall (AR) as the primary evaluation
metrics. Specifically, both are computed across Intersection over Union (IoU) thresholds ranging
from 0.5 to 0.95 at intervals of 0.05. We report AP50:95 as the main metric, along with AP50 and
AP75, which correspond to IoU thresholds of 0.5 and 0.75, respectively. In SAR missions, where
false negatives (i.e., missed detections of actual persons) can critically impact mission success, recall
is especially important. We therefore report AR50:95 to provide a complementary view of detection
performance. We refer to AP50:95 and AR50:95 simply as AP and AR throughout the paper.

4.2 LIMITATIONS OF PRIOR DATASETS IN UNDER-CANOPY ENVIRONMENTS

Prior SAR datasets, which are composed of aerial imagery, present challenges for detecting per-
sons under-canopy due to the difference in viewpoint and limited visibility caused by vegetation.
Meanwhile, publicly available ground-level person datasets do not adequately account for occlusions
caused by dense vegetation, making them less suitable for these tasks. To demonstrate this limitation,
we conduct experiments to assess the generalization capability of models trained on these prior
datasets when applied to our proposed dataset. Specifically, we train object detection models using
existing SAR datasets and conventional ground-level person datasets, and evaluate their performance
on the test split of ForestPersons.

Table 2: Adaptation of prior datasets to under-canopy SAR tasks. Performance comparison of
Faster R-CNN (Ren et al., 2015) trained and tested on combinations of datasets: (Left) prior UAV-
based SAR datasets and ForestPersons; (Right) prior ground-level person datasets and ForestPersons.

UAV-based SAR dataset

Train Test AP AP50 AP75

SARD Sambolek & Ivasic-Kos (2021) SARD 58.6 90.8 68.4
Ours 3.0 7.8 1.6

HERIDAL Kundid Vasić & Papić (2022) HERIDAL 35.0 70.8 29.3
Ours 0.2 0.3 0.2

WiSARD Broyles et al. (2022) WiSARD 18.5 51.7 7.9
Ours 11.3 29.0 6.4

Ground-level person dataset

Train Test AP AP50 AP75

COCOPerson Lin et al. (2014) COCOPerson 54.0 82.5 58.2
Ours 40.8 66.9 45.2

CrowdHuman Shao et al. (2018) CrowdHuman 39.4 74.8 37.3
Ours 31.9 58.8 31.0

CityPersons Zhang et al. (2017) CityPersons 38.7 62.5 42.1
Ours 5.9 15.1 3.7

The results, summarized in Table 2, indicate that models trained on SAR data performed poorly
on ForestPersons, and those trained on ground-level data also showed significant performance
degradation due to occlusions from natural elements in the forest, such as branches and foliage, and
viewpoint differences, especially the aerial perspective common in SAR data. Meanwhile, models
trained on ground-level person datasets struggle with individuals who are partially occluded by
vegetation or in non-standing poses such as sitting or lying. These findings highlight the limitations of
relying solely on existing SAR and ground-level datasets for under-canopy SAR applications, thereby
underscoring the necessity and relevance of our proposed dataset. The examples of failure cases of
the object detection models trained with existing datasets are depicted in Figure 9 in the Appendix.
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4.3 DATASET BENCHMARK PERFORMANCE

Table 3: ForestPersons benchmark results. Object detection model performance on validation and
test splits of ForestPersons.

Validation Split Test Split

Detection Model AP AP50 AP75 AR AP AP50 AP75 AR

YOLOv3 (Redmon & Farhadi, 2018) 55.6 91.7 63.2 63.1 50.2 86.5 53.9 58.6
YOLOX (Ge et al., 2021) 56.8 92.9 65.2 62.5 51.0 89.0 54.4 58.2

YOLOv11n (Jocher & Qiu, 2024) 65.3 95.4 76.6 71.5 65.6 93.4 75.6 71.7

RetinaNet (Lin et al., 2017) 64.1 96.0 75.8 70.4 64.2 93.9 74.4 70.9
Faster R-CNN (Ren et al., 2015) 64.2 95.6 76.5 69.6 64.4 92.7 75.4 70.0

Deformable R-CNN (Dai et al., 2017) 65.0 94.7 78.5 70.0 66.3 93.4 77.5 71.3

SSD (Liu et al., 2016) 48.9 88.5 49.4 57.8 45.0 83.6 43.1 53.7

DETR (Carion et al., 2020) 55.3 93.0 59.9 68.0 53.9 88.7 59.4 67.9
DINO (Caron et al., 2021) 59.9 91.7 69.1 70.1 65.3 94.0 76.2 77.7

CZ Det (Meethal et al., 2023) 69.9 98.1 83.4 76.8 65.6 96.1 77.9 71.6

We evaluated the baseline object detection models on ForestPersons, as summarized in Table 3.
Our results show that YOLO-based models (YOLOv3, YOLOX, YOLOv11n) achieve APs of 50.2,
51.0, and 65.6, respectively; ResNet-50-based detectors (RetinaNet, Faster R-CNN, Deformable
R-CNN) obtain 64.2, 64.4, and 66.3; the MobileNetV2-based SSD records 45.0; Transformer-based
models (DETR and DINO) reach 53.9 and 65.3; and CZ Det, incorporating a cascaded zoom-in
mechanism for UAV imagery, achieves 65.6. While Deformable R-CNN attained the highest AP of
66.3, other models excelled in different key metrics. Specifically, DINO led in AR with 77.7, and CZ
Det achieved the best scores for both AP50 and AP75, at 96.1 and 77.9, respectively. These results
suggest that, for evaluating object detectors in SAR missions, ForestPersons highlights how different
models excel under different evaluation criteria, making it possible to select methods according to
mission-specific requirements.

4.4 IMPACT OF DIFFERENT ATTRIBUTES ON DETECTION PERFORMANCE

20 40 70 100
Visibility Level (%)

20

30

40

50

60

70

AP
 (%

)

Standing

20 40 70 100
Visibility Level (%)

20

30

40

50

60

70

AP
 (%

)

Sitting

20 40 70 100
Visibility Level (%)

20

30

40

50

60

70

AP
 (%

)

Lying

YOLOv3
YOLOX

YOLOv11
RetinaNet

Faster R-CNN
Deformable R-CNN

SSD
DETR

DINO
CZ Det

Figure 6: Effect of visibility level on detection performance. Detection precision improves as the
visibility level increases across pose attributes.

Visibility diversity reflecting real-world SAR conditions. In under-canopy SAR tasks, it is natural
that the difficulty of person detection increases as the degree of occlusion caused by surroundings
becomes more severe. To simulate this challenge, ForestPersons includes human instances with
varying levels of occlusion, which are carefully annotated with corresponding visibility level. Figure 6
shows that the performance of models trained on ForestPersons increases with the visibility level.
The correlation between AP and visibility level empirically demonstrates the inherent difficulty of
detecting heavily occluded individuals in under-canopy SAR tasks. The explicit annotation of pose
and visibility level in ForestPersons enables systematic evaluation and facilitates the development of
robust object detection models better suited for real-world SAR scenarios.
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Table 4: Impact of various attributes on detection performance in ForestPersons. Each object
detection model was trained and evaluated using subsets of train and test data with unique attributes.

(a) Pose (b) Season
Train Attributes Standing All Poses Summer Winter All Seasons

Test Attributes Standing Sitting Lying Standing Sitting Lying Summer Fall Winter Summer Fall Winter Summer Fall Winter

YOLOv3 (Redmon & Farhadi, 2018) 45.3 30.0 32.1 49.3 51.5 47.5 49.7 53.7 25.7 4.5 1.4 54.0 51.1 58.2 50.7
YOLOX (Ge et al., 2021) 47.3 30.3 31.7 52.2 50.6 47.9 56.8 57.1 17.2 5.5 1.5 60.0 50.0 53.6 56.5
YOLOv11n (Jocher & Qiu, 2024) 60.1 44.5 46.0 65.5 65.7 65.1 65.4 65.4 21.6 6.3 1.6 66.9 65.3 72.8 68.0
RetinaNet (Lin et al., 2017) 57.5 47.2 43.8 62.3 66.3 60.3 63.4 66.3 43.8 14.6 4.7 63.4 66.0 73.2 63.1
Faster R-CNN (Ren et al., 2015) 58.0 47.0 42.2 63.1 66.1 61.0 65.7 66.9 34.6 18.7 11.7 61.5 65.9 71.6 64.0
Deformable R-CNN (Dai et al., 2017) 59.4 48.2 45.0 65.2 66.3 65.4 66.4 68.7 34.1 15.7 6.7 63.3 66.8 72.3 66.3
SSD (Liu et al., 2016) 39.3 22.3 22.8 46.1 43.7 45.1 44.2 49.0 21.9 5.2 1.9 50.1 42.5 55.2 50.6
DETR (Carion et al., 2020) 43.2 29.4 26.2 54.1 54.3 48.4 31.9 41.9 22.0 8.4 3.3 54.8 53.2 63.8 57.1
DINO (Caron et al., 2021) 59.9 50.3 46.3 64.2 67.6 64.1 51.3 48.9 32.0 17.6 7.1 57.0 68.0 74.9 64.6
CZ Det (Meethal et al., 2023) 50.7 30.6 33.8 67.5 62.5 66.8 56.9 52.5 13.0 7.3 0.2 61.8 60.5 69.7 72.6

Effect of pose diversity on generalizability. In SAR tasks, it is important to collect data of
individuals in a variety of poses since missing persons in forest environments may be found in diverse
postures. However, most existing public person datasets predominantly consist of upright individuals,
with standing poses comprising the vast majority. We hypothesize that this imbalance limits the
generalizability of person detection models for SAR applications. To validate this hypothesis, we
conduct an experiment using pose annotations in ForestPersons. Specifically, we trained object
detection models using only samples labeled with standing poses and evaluated their performance on
test samples categorized into standing, sitting, and lying poses, respectively.

The results are presented in the Table 4a. Specifically, models trained solely on standing attribute
exhibited significantly lower performance in detecting sitting and lying poses across all evaluated
models. In contrast, models trained on the dataset with comprehensive pose annotations, achieved
improved detection performance across all pose categories. These findings highlight the importance
of collecting diverse human poses for SAR tasks. ForestPersons addresses this need by including
underrepresented poses such as sitting and lying, which are often absent from conventional public
datasets, making it more suitable for under-canopy person detection in SAR scenarios.

Effect of season diversity on generalizability. The visual appearance of forest environments can
vary across seasons due to changes in under-canopy vegetation density, foliage, and lighting conditions.
These seasonal differences directly affect the visibility and occlusion patterns of individuals, which
in turn influence detection difficulty. We assume that insufficient seasonal diversity in training data
constrains the generalization capability of detection models under diverse environmental conditions.
To demonstrate this, we conduct a controlled experiment using ForestPersons with explicit season
labels, comparing models trained on a specific season and tested on different seasons.

The results on the Table 4b show a clear asymmetry in cross-season performance. Models trained
on only summer images exhibited performance degradation when tested on winter images but
maintained a relatively stable level of AP. In contrast, models trained solely on winter images showed
a significant drop in performance when evaluated on summer and fall images. Notably, when models
were trained on images from all seasons, they achieved consistent performance across all seasonal
conditions. These findings highlight the importance of seasonally diverse training data for robust
SAR performance, which our dataset fulfills by including images captured across different seasons.

5 DISCUSSION AND CONCLUSION

ForestPersons is the first large-scale dataset designed to detect missing persons in under-canopy
forest environments. Unlike previous SAR benchmarks that focus on UAV-based aerial imagery,
ForestPersons provides ground-level views from the perspective of MAVs, which are more suitable for
detecting partially occluded individuals beneath forest canopies. The dataset includes annotations for
various attributes, such as season, location type, weather, human pose, and visibility level, providing
a basis for training and evaluating models under diverse and realistic SAR scenarios. We anticipate
that ForestPersons can contribute to autonomous SAR efforts using ground-based robotic platforms
such as unmanned ground vehicles.
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Ethics Statement. All scenes in ForestPersons consist of staged missing person scenarios with
voluntary participants, ensuring safety and ethical compliance. No real missing person cases are
included. Face anonymization was applied as described in Section 3.2, ensuring that no personal
or identifiable information remains. The dataset will be released under a research-only license,
and responsible and transparent use is strongly encouraged; any harmful or military use is strictly
prohibited.
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A MISSING PERSON DETECTION IN AUTONOMOUS SAR SYSTEM

Figure 7: Missing person detection inference in autonomous SAR systems (a) Autonomous Flight:
A MAV performs a search mission under the forest canopy. (b) Onboard Inference: Frames captured
by the onboard camera are processed locally on the MAV in real time using a lightweight detection
model. (c) Edge Server Inference: Frames are transmitted via a commercial 5G network to a remote
edge server, where inference is performed using a higher-capacity model.

As a future direction and an ongoing application of ForestPersons, we configured a missing person
detection pipeline for autonomous Search and Rescue (SAR) missions. In this setup, frames captured
by the onboard camera of a Micro Aerial Vehicle (MAV) flying under forest canopy conditions are
processed by detection models trained on ForestPersons, which are deployed either onboard the MAV
or on a remote edge server depending on mission requirements.

These two inference paths are selected based on the trade-off between latency, bandwidth, and
model complexity. For onboard inference, lightweight object detection models such as variants
of YOLO (Redmon et al., 2016) are optimized using tools such as NVIDIA TensorRT or Intel
OpenVINO to meet real-time constraints on resource-limited hardware, which is particularly useful
when low-latency response and independence from network connectivity are critical. In contrast,
edge inference allows the use of more advanced models such as transformer-based state-of-the-art
architectures like DINO (Caron et al., 2021). In this case, video streams are transmitted over a high-
bandwidth wireless communication system, such as 5G, to a remote server with greater computational
resources. This enables the use of advanced detection algorithms that leverage greater computational
resources to achieve improved performance compared to what is feasible on resource-constrained
onboard systems.

Figure 7 illustrates this architecture: (a) The MAV autonomously performs a low-altitude search
mission under the forest canopy. (b) Each captured frame is processed in real time onboard using
an optimized lightweight detection model. (c) Alternatively, the video stream is transmitted over a
commercial 5G network to a remote edge server, where inference is performed by a more powerful
model.

Field experiments were conducted under canopy conditions using both mannequins and human actors
to simulate missing persons. In these trials, both onboard and edge inference modes successfully
detected targets in realistic environments, demonstrating the effectiveness of our SAR system and the
applicability of ForestPersons to real-world scenarios.
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B BENCHMARK MODELS

B.1 IMPLEMENTATION DETAILS

Table 5: Hyperparameter settings for training object detections. Most configurations follow the
default setting of MMDetection and detrex.

Methods Optimizer Learning rate Batch size Weight decay Epoch

YOLOv3 (Redmon & Farhadi, 2018) SGD 1× 10−3 64 5× 10−4 273
YOLOX (Ge et al., 2021) SGD 1× 10−2 64 5× 10−4 300

YOLOv11 (Jocher & Qiu, 2024) SGD 1× 10−2 16 5× 10−4 100

RetinaNet (Lin et al., 2017) SGD 5× 10−3 16 1× 10−4 12
Faster R-CNN (Ren et al., 2015) SGD 2× 10−2 16 1× 10−4 12

Deformable Faster R-CNN (Jocher & Qiu, 2024) SGD 2× 10−2 16 1× 10−4 12

SSD (Liu et al., 2016) SGD 1.5× 10−2 192 4× 10−5 120

DETR (Carion et al., 2020) AdamW 1× 10−4 16 1× 10−4 150
DINO (Caron et al., 2021) AdamW 1× 10−4 16 1× 10−4 12

CZ Det (Meethal et al., 2023) SGD 1× 10−2 32 1× 10−4 30

In this section, we describe the hyperparameter settings used to train each object detection model for
benchmarking purposes. Table 5 summarizes the configurations for all models. Most hyperparameters
follow the default settings provided by the MMDetection (Chen et al., 2019), detrex (Ren et al., 2023)
and detectron2 (Wu et al., 2019) frameworks, except RetinaNet, for which we reduced the learning
rate compared to the default setting to prevent training instability observed with higher values.

B.2 ANALYSIS OF BENCHMARK MODELS

Figure 8: Precision-Recall curves of
baseline object detection models.

Given the critical nature of SAR missions, achieving high
recall is a primary requirement, necessitating a more de-
liberate examination of the precision-recall trade-off com-
pared to conventional object detection tasks. To investigate
this aspect, we present the precision-recall curve at an IoU
threshold of 0.5, as illustrated in Figure 8. The precision-
recall curve is constructed by sorting predicted bounding
boxes in descending order of confidence scores , with in-
creasing confidence thresholds prioritizing precision over
recall, while lower thresholds capture more true positives
at the cost of introducing false positives. The resulting
shape of the curve characterizes how each model behaves
under varying confidence thresholds, offering insight into
its sensitivity to recall-focused operating points.

In Figure 8, CZ Det (Meethal et al., 2023) (cyan) consis-
tently maintains high recall even at low confidence thresholds, whereas SSD (Liu et al., 2016) (pink)
exhibits a clear limitation in its recall capacity. Specifically, even when all predicted bounding boxes
are treated as true positives, its curve saturates below the recall levels reached by DINO. This indicates
a structural limitation in SSD’s detection capability that cannot be overcome by threshold tuning
alone. Such findings indicate that, particularly in SAR contexts, the upper bound of recall achievable
by a model constitutes an essential metric in itself, complementing traditional aggregate measures
such as mAP.

In practice, the confidence threshold is often selected based on the point that maximizes the F1-score,
calculated on a validation or a test set. However, in recall-sensitive domains such as SAR, it may be
more appropriate to deliberately reduce the threshold to prioritize recall, even at the expense of an
increased false positive rate. This strategy aligns with real-world operational considerations, wherein
human operators may prefer investigating more candidate detections rather than risking failure to
detect actual missing persons. Therefore, we argue that the development and evaluation of object
detectors for SAR applications should incorporate not only AP but also (1) the maximum attainable
recall and (2) the recall level at which precision begins to decline sharply. These indicators are closely
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tied to the likelihood of successfully locating and rescuing missing persons, and thus serve as critical
performance criteria in SAR applications.

C CASE STUDY: SUCCESSES, FAILURES, AND FUTURE DIRECTIONS

C.1 LIMITATIONS OF GENERALIZATION FROM PRIOR BENCHMARKS

Figure 9: Failure cases of object detection models trained on prior UAV-based SAR and Ground-
level Person datasets. Green boxes indicate ground-truth bounding boxes, and red boxes represent
model predictions. These examples illustrate the limitations of existing datasets in handling under-
canopy SAR scenarios.

ForestPersons differs from conventional detection benchmarks in several key aspects, including
viewpoint, environmental complexity, and the conditions of human targets. To assess generaliz-
ability, we evaluated models trained on existing SAR datasets and ground-level person datasets
using the ForestPersons test split. Specifically, we selected SARD (Sambolek & Ivasic-Kos, 2021),
HERIDAL (Kundid Vasić & Papić, 2022), and WiSARD (Broyles et al., 2022) as representative
UAV-based SAR datasets, and COCOPersons Lin et al. (2014), CrowdHuman (Shao et al., 2018), and
CityPersons (Zhang et al., 2017) as representative ground-level person datasets. For all experiments,
we used Faster R-CNN (Ren et al., 2015) as the object detection model.

As illustrated in Figure 9, models trained on these existing datasets exhibit limited generalizability
when applied to under-canopy SAR scenarios. This outcome is expected: prior UAV-based SAR
datasets primarily contain aerial images, which differ significantly from the ground-level perspectives
that are characteristic of under-canopy tasks. While ground-level datasets more closely reflect the
viewpoint of MAV flights compared to conventional UAV-based SAR datasets, they still predominantly
feature upright and fully visible individuals. Consequently, they fall short in representing challenging
cases such as non-standing or heavily occluded persons, which are common in forest search scenarios.

C.2 EVALUATION ON FORESTPERSONS

Figure 11: Confusion
matrix of the object de-
tection model trained
with ForestPersons.

We then evaluated a model trained on the ForestPersons training split
to assess the detection performance gains from using data specifically
designed to reflect under-canopy SAR conditions. As shown in Figure 10,
the Faster R-CNN model trained on ForestPersons successfully detects
missing persons that were not captured by models trained on prior UAV-
based or ground-level dataset. This provides qualitative evidence that our
dataset better suits SAR tasks in under-canopy environments.

We further investigated the factors contributing to prediction failures on
the ForestPersons test set, even when using models trained on ForestPer-
sons. Specifically, we analyzed the prediction results of a Faster R-CNN
model trained on ForestPersons by visualizing the confusion matrix, as
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Figure 10: Success cases of object detection models trained on ForestPersons. Green boxes
indicate ground-truth bounding boxes, and red boxes represent model predictions. The models trained
with ForestPersons detect the failure case of the models trained with the existing dataset.

Figure 12: Failure cases of object detection models trained on ForestPersons. Green boxes indicate
ground-truth bounding boxes, and red boxes represent model predictions. Ground-truth instances
with high occlusion or small bounding box size tend to be frequently missed by the detection model.

shown in Figure 11. The confusion matrix summarizes all predictions on the test set and reveals that
false positives significantly outnumber false negatives.

However, given the critical nature of SAR tasks, where false negatives are significantly more detri-
mental than false positives, we focused our analysis on ground-truth instances that were classified as
false negatives. Figure 12 presents visual examples of these cases. As expected, the model struggled
to detect individuals with small bounding boxes or under heavy occlusion by natural obstacles.

Interestingly, the winter subset yields noticeably fewer false negatives, suggesting that winter images
are generally less challenging for the detection model. A plausible explanation is that individuals
in winter scenes are more visually salient due to the higher contrast between individuals and the
snow-covered background, which facilitates easier detection. This explanation is supported by the
experiment in Table 4b, where a model trained exclusively on winter images generalized worse
to the test set than a model trained only on summer images. This indicates that winter images
may lack sufficient variability to support effective generalization, which is why they are easier for
missing person detection, ultimately reducing the likelihood of false negatives. In contrast, summer
images, which often contain dense vegetation leading to various occlusions, contribute more to the
generalization ability of the model. These qualitative and quantitative findings help us understand the
exceptionally low incidence of false negatives in winter images.
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Figure 13: Detection cases for models trained with data labeled by specific poses. Green boxes
indicate ground-truth bounding boxes, and red boxes represent model predictions. Each row corre-
sponds to a model, and each column corresponds to the ground truth pose in the test image. Models
trained on a specific pose often fail to detect individuals in other poses and sometimes identify
incorrect regions as humans.

Figure 14: Detection cases for models trained with seasonal data. Green boxes indicate ground-
truth bounding boxes, and red boxes represent model predictions. Each row shows detection from a
model trained on data from a specific season, while each column represents test data from a particular
season. Models trained on limited seasonal data show clear seasonal bias when applied to scenes
from different seasons, such as failing to detect people or generating inaccurate bounding boxes.

C.3 GENERALIZATION FAILURES FROM LIMITED ATTRIBUTE TRAINING

Extending the results shown in Table 4, we further analyzed how restricting training data to specific
attributes, such as pose or season, affects the performance of Faster R-CNN. In Figure 13, models
trained only on standing poses perform poorly when detecting people in other postures, such as sitting
or lying. These models mainly respond to upright shapes, often mistaking vertical objects like tree
trunks for people, and failing to detect people who are lying on the ground. This indicates that the
model has become overly reliant on shape cues associated with upright postures observed during
training, and consequently fails to generalize to sitting or lying poses.
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Figure 15: Confusion matrices of object detection models trained on summer and winter datasets.
(Left) Summer-trained model; (Right) Winter-trained model.

A similar pattern is seen in the seasonal experiments in Figure 14. Models trained only on summer
images, which contain more vegetation and frequent occlusion, show slightly better generalization to
other seasons. The presence of dense vegetation and natural occlusion in summer scenes appears to
help the model learn features that generalize better to different seasonal environments. However, these
models still produce many errors in winter scenes, such as false positives caused by mistaking snow-
covered terrain for people. In contrast, models trained only on winter images perform significantly
worse in other seasons. Winter scenes usually lack vegetation and have fewer occluding elements,
which limits the diversity of visual cues the model can learn from. As a result, these models often
fail to detect people in summer scenes with dense foliage and complex backgrounds, leading to
frequent false negatives. This tendency is reflected in the confusion matrices shown in Figure 15.
These findings indicate that the visual properties of each season shape how the model learns and
where it tends to fail, and that training on a single season is not sufficient to ensure robustness across
seasonal conditions.

Unlike models trained on a single season or pose, the model trained on the complete dataset, which
includes a full range of poses and seasonal conditions, performs more reliably, as shown in the last
rows of Figure 13 and Figure 14. These results demonstrate the effectiveness of ForestPersons as a
benchmark that reflects the diversity and complexity of real-world SAR conditions. By providing
extensive variation in human pose, occlusion, and environmental factors, ForestPersons supports the
development of more generalizable models and serves as a solid foundation for advancing robust
missing person detection in challenging under-canopy search tasks.

C.4 LIMITATIONS EXPOSED AND DIRECTIONS FOR FUTURE SAR DETECTION

Our qualitative analysis highlights the utility of ForestPersons in diagnosing the generalization and
structural limitations of representative detection models in the context of SAR missions. ForestPersons
introduces new challenges by incorporating vegetation-rich environments that frequently cause
occlusion, diverse human poses including non-upright postures, and seasonal conditions such as snow
that are often absent in prior datasets. These findings show that models trained on narrow visual
patterns may seem reliable in simplified test environments but fail to maintain the same level of
reliability when applied to real-world conditions. While ForestPersons was carefully designed to
cover a wide range of poses, occlusion levels, and seasonal conditions, our analysis suggests that
some failure cases may still remain undetected. Dataset diversity is therefore critical for revealing
model limitations, but it alone may not be sufficient.

To address this, complementary approaches such as optimizing viewpoint and trajectory design can
further reduce the inherent difficulty of the detection task and enhance practical performance in
the field. One such approach is viewpoint-aware flight planning, which can support vision models
by improving the visibility of missing persons. By explicitly accounting for the MAV’s camera
field of view, such planning can help ensure that individuals are captured from favorable angles and
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Figure 16: Examples of false positive cases in person-absent situations. Red boxes represent model
predictions.

distances. In contrast, coarse trajectories that simply follow major roads may expose the model to
less informative and more occluded perspectives. Therefore, alongside the use of diverse datasets
like ForestPersons, flight strategies that structurally facilitate detection should be explored as a
complementary direction, particularly in the context of autonomous SAR missions.

C.5 EVALUATION ON PERSON-ABSENT SITUATIONS

ForestPersons was primarily designed to capture realistic SAR scenarios in which a missing person is
present. Such data is significantly more difficult and costly to collect and annotate than person-absent
forest imagery, which is comparatively easier to obtain. Our initial focus was therefore on ensuring
high-quality coverage of person-present situations.

To examine model behavior in person-absent settings, we curated a separate set of 193 images
without humans and evaluated a model trained solely on ForestPersons. The model produced 13
false detections, corresponding to a false positive rate (FPR) of approximately 6.7%. This negative
set is publicly released in a separate directory, 379 FPV No Person summer forest, so that
researchers can directly benchmark false positive performance under person-absent conditions.
Representative false positive cases are shown in Fig. 16.

Looking forward, we plan to extend ForestPersons by systematically including additional person-
absent imagery using our MAV-based collection system (Fig. 7). This expansion will provide more
balanced coverage of positive and negative cases, enabling comprehensive training and benchmarking
of models under realistic SAR conditions.

D DATA COLLECTION GUIDELINES

ForestPersons was constructed to reflect realistic search scenarios for missing persons in forested
environments. All video sequences were recorded using handheld or tripod-mounted cameras, in-
cluding GoPro HERO 9 Black, Sony SLT-A57, and See3CAM 24CUG models. The cameras were
positioned to simulate the typical flight altitudes and viewing angles of low-altitude MAVs operating
under forest canopy, capturing slightly downward-facing perspectives similar to those used in actual
search operations. All recordings were captured at a frame rate of at least 20 FPS, with resolution
settings adjusted depending on the camera model used.

D.1 LOCATIONS: FOREST ENVIRONMENTS RELEVANT TO SAR MISSIONS

All data were collected in forested regions where real-world missing person incidents are likely to
occur. We selected diverse environments including dense forest interiors, valleys, and forest entrances
to reflect typical terrain encountered during SAR missions. These locations span a range of vegetation
density and visibility conditions, from heavily occluded forest interiors to forest edge regions with
sparse vegetation.
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Figure 17: Examples across various visibility levels and poses. Images are grouped by visibility
level (rows) and pose (columns), each drawn from distinct scene contexts.

Each environment includes natural sources of visual occlusion such as tree branches, underbrush,
uneven terrain, and varying vegetation density. We aimed to incorporate diverse spatial layouts that
challenge missing person detection, including not only typical forest trails but also rocky valleys and
steep slopes covered with dense foliage. This diversity enables the dataset to capture a broad range of
search scenarios encountered in SAR missions.

D.2 WEATHER AND TIME OF DAY

To reflect the environmental diversity encountered in real-world search operations, data were collected
under various weather and lighting conditions. All video sequences were captured during daytime or
twilight hours before sunset, when there was sufficient natural light. Night time scenes were excluded
due to safety concerns during field deployment and the limited effectiveness of RGB-based detection
in low-light conditions.

Weather and seasonal conditions included sunny, overcast, and snow-covered winter environments.
These variations allowed us to capture diverse visual appearances, including strong shadows under
direct sunlight, diffuse lighting on cloudy days, and high reflectance and severe occlusion in snowy
terrain. Each sequence is accompanied by metadata describing both the season and weather, enabling
evaluations under specific environmental contexts.

D.3 SUBJECT BEHAVIOR AND CAPTURE STRATEGY

To simulate realistic SAR scenarios, actors in the ForestPersons performed a wide range of behaviors,
including standing, sitting, lying down, and natural transitions between these states. Transitional
poses (e.g., moving from a seated to a standing position) were annotated with the nearest posture
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label, typically sitting or standing. Although this labeling may involve some degree of annotator
subjectivity, its impact on the overall data quality is minimal. These behavioral variations reflect the
diversity of human configurations encountered in SAR operations.

Camera platforms included handheld rigs and tripods. To emulate the viewpoint of MAVs operating
under canopy, operators followed movement paths consistent with low-altitude MAV trajectories.
Camera height, angle, and distance were varied within and across sequences to simulate oblique
and horizontal viewpoints. This variation allowed us to capture human subjects from perspectives
representative of realistic aerial search conditions.

A key aspect of our strategy was the active creation of natural occlusion. Rather than using fixed oc-
clusion setups, camera operators navigated around tree branches, bushes, or through dense vegetation
to partially obscure subjects in dynamic and realistic ways. In difficult environments such as snowy
or rainy terrain, where operator movement posed safety risks, the camera was fixed and actors moved
within the frame to simulate occlusion safely.

E VIDEO SEQUENCE-LEVEL DIFFICULTY ESTIMATION

ForestPersons was collected as a set of video sequences, from which image frames were extracted to
construct the final dataset. In this setup, if frames from the same sequence are split across training,
validation, and test splits, it can lead to overestimated model performance. This is because detection
models may implicitly learn scene-specific backgrounds or appearances during training, and then
encounter similar contexts during evaluation, resulting in inflated accuracy that does not reflect true
generalization. To avoid such overlap, we split the dataset at the sequence level, ensuring that each
video sequence appears in only one of the train, validation, or test splits.

E.1 NECESSITY OF DIFFICULTY-AWARE DATA SPLITTING

A naive approach such as randomly assigning sequences to each split, or manually selecting them
based on subjective judgment (e.g., ”easy-looking” or ”challenging” scenes), can lead to distributional
bias across splits. For example, one split might inadvertently contain mostly clear and well-lit
scenarios, while another might be dominated by occluded or low-visibility scenes. Such imbalance
can undermine the fairness and interpretability of model comparisons.

To mitigate this issue, we introduced a model-based method for estimating sequence-level difficulty,
providing a principled way to assess and distribute difficulty across the dataset.

E.2 MODEL-BASED DIFFICULTY ESTIMATION

We employed a Faster R-CNN (Ren et al., 2015) object detector pretrained on the COCO (Lin et al.,
2014) dataset to estimate the detection difficulty of each sequence. For each sequence, we applied the
detector to all images and computed the Average Precision (AP). The difficulty score for a sequence
s is then defined as:

Difficulty(s) = 1− AP50(s) (1)

Here, AP50(s) denotes the performance of the detector model on sequence s, averaged over all
annotated frames. Higher AP values indicate that the sequence is easier to detect, while a lower AP
corresponds to more challenging scenes. This formulation provides an objective difficulty measure,
independent of annotator intuition or handcrafted heuristics.

E.3 DIFFICULTY-AWARE DATASET SPLITTING

Based on the estimated difficulty scores, we sorted all video sequences in ascending order of AP
(i.e., increasing difficulty) and allocated them to train, validation, and test splits to ensure balanced
difficulty distribution. For example, sequences were interleaved across splits so that each contained a
diverse mixture of easy, medium, and hard samples.

As shown in Figure 18, the difficulty curve of ForestPersons illustrates that each sequence spans a
range of detection difficulty. Each point corresponds to a video sequence, sorted by its model-based
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Figure 18: Difficulty Curve across Train, Validation, and Test Splits

difficulty score 1 − AP50(s). The plot illustrates that the dataset spans a broad range of difficulty
levels, ensuring balanced evaluation across splits.

F QUANTITATIVE ANALYSIS OF ANNOTATION QUALITY

To evaluate the consistency and reliability of our annotations, we conducted a controlled user study
with six independent annotators who were not involved in the original labeling process. Each annotator
was provided with our annotation guideline (Section 3.2) but had no access to the original labels.
We randomly sampled 241 images, covering 12 combinations of pose and visibility attributes and
including a total of 525 bounding boxes.

Table 6 reports performance metrics with respect to the ground-truth boxes, where a user annotation
was considered correct if the IoU exceeded 0.5. Annotators generally achieved high precision, recall,
and F1 scores, indicating reliable bounding box quality.

Table 6: Bounding Box Inter-Annotator Agreements.

Annotator A Annotator B Annotator C Annotator D Annotator E Annotator F

mean IoU 0.8112 0.7936 0.8249 0.8047 0.7749 0.7975
Precision 0.9432 0.9226 0.9298 0.9374 0.8643 0.9366
Recall 0.9181 0.9086 0.9333 0.8552 0.8495 0.8438
F1 Score 0.9305 0.9155 0.9316 0.8944 0.8569 0.8878
True Positive 482 477 490 449 446 443
False Positive 29 40 40 37 70 30
False Negative 43 48 35 76 79 82

Table 7 reports the overall inter-annotator agreements for pose and visibility attributes, while Table 8
presents Cohen’s κ values across annotators for each attribute. Pose labels achieved high agreement
(Percent Agreement ≈ 0.89, Cohen’s κ > 0.83 Cohen (1960), and Fleiss’ κ = 0.7414 Fleiss
(1971)), indicating that annotators could reliably distinguish between different human poses. By
conventional interpretation of Cohen’s κ, values above 0.81 are regarded as almost perfect agreement.
In contrast, visibility attributes showed relatively lower agreement (Percent Agreement ≈ 0.62,
Cohen’s κ ≈ 0.45, Fleiss’ κ = 0.5048), corresponding to the moderate agreement range (0.41–0.60).

We note that these challenges are not unique to ForestPersons. The difficulty of consistently labeling
occlusion has been widely reported across benchmarks involving partially visible humans. For
example, in the CrowdHuman dataset (Shao et al., 2018), annotators are instructed to complete the
full-body bounding box even when the person is partially hidden, which often introduces variance due
to differing subjective interpretations. Similarly, COCO-OLAC (Wei et al., 2025) defines occlusion
levels using estimated occlusion ratios, requiring annotators to mentally reconstruct invisible body
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Table 7: Attributes Inter-Annotator Agreements.

Annotator A Annotator B Annotator C Annotator D Annotator E Annotator F

Pose 0.8963 0.8952 0.8577 0.8976 0.8677 0.9142
Visibility levels 0.6183 0.6310 0.6163 0.6192 0.6188 0.6027

Table 8: Attributes Cohen’s κ across annotators.

Annotator A Annotator B Annotator C Annotator D Annotator E Annotator F

Pose 0.8396 0.8346 0.8577 0.8410 0.7952 0.8654
Visibility levels 0.4514 0.4588 0.4574 0.4537 0.4457 0.4271

parts from context. The HOOT (Sahin & Itti, 2023) explicitly draws occlusion masks and categorizes
occlusion types, while OVIS (Qi et al., 2022) adopts bounding-box occlusion rates (BOR) derived
from overlaps. Even in OVIS, where IoU-based measures provide more objective criteria, some
degree of subjectivity remains unavoidable in the initial classification process. In summary, although
recent benchmarks attempt to quantify occlusion with numerical ratios or overlap measures, the
process of determining visibility levels cannot be fully disentangled from heuristic estimation.

Collectively, these cases demonstrate that the subjectivity and ambiguity we encountered in visibility
labeling are not exceptions. Rather, they represent intrinsic and widely recognized challenges in
datasets involving occluded humans. Instead of claiming to eliminate this subjectivity, we explicitly
quantified it through a user study on inter-annotator agreement. The resulting agreement scores
provide a concrete indication of the level of uncertainty, allowing researchers who use ForestPersons
to be aware of the inherent ambiguity in visibility annotations.

In addition, the downstream analyses strongly support the practical utility of visibility labeling.
As illustrated in Fig. 6, detection performance consistently declines as visibility decreases. This
demonstrates that visibility annotations, despite their heuristic nature, capture systematic variations
in task difficulty. In the context of SAR applications where only partial body cues may be available,
these attributes provide an indispensable dimension for evaluating the robustness of detection models.

G INFRARED DATASET FOR MISSING PERSON DETECTION

Although ForestPersons is composed exclusively of RGB imagery to focus on research challenges
central to computer vision, such as complex canopy occlusion patterns, illumination variability, and
the visual intricacies of forested environments, infrared (IR) sensing can be highly advantageous
in real-world Search and Rescue (SAR) operations. IR sensors offer robustness to such visual
complexities, enabling reliable detection of thermal signatures even under severe vegetation occlusion
or low-visibility conditions. To reflect this practical relevance, we additionally constructed a dedicated
IR dataset tailored for missing-person detection missions.

The IR dataset was captured using a FLIR Boson thermal camera and contains a total of 64,142
images with 79,990 bounding-box annotations. An example of the IR imagery is shown in Fig. 19.
The dataset will be released on Hugging Face and provides temperature-based cues that are difficult to
obtain from visible-light imagery, thereby practically complementing the RGB-based ForestPersons
for missing-person search in forest environments.

H ZERO-SHOT EVALUATION WITH VISION-LANGUAGE MODELS

To address the rapid advancements in multimodal AI, we expanded our evaluation to include state-of-
the-art Vision-Language Models (VLMs). While our primary benchmark focuses on domain-specific
object detectors, evaluating modern VLMs provides insight into whether their generalized knowledge
can bridge the performance gap in the specific context of under-canopy person detection without
fine-tuning.
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Figure 19: Examples of thermal IR missing person images. Compared to the RGB images shown
in Fig. 3, thermal IR imagery simplifies complex visual patterns and reveals clearer cues for detecting
missing persons.

Experimental Setup. We categorized the evaluated models into three distinct groups to ensure a
comprehensive landscape analysis:

1. Proprietary MLLMs (Commercial SOTA): High-performing closed-source models ac-
cessed via APIs, known for massive scale and reasoning capabilities. We evaluated Google’s
Gemini 2.5 series (Comanici et al., 2025) and OpenAI’s GPT-4o (Hurst et al., 2024) and
GPT-5 OpenAI (2025).

2. Open-weight MLLMs: Leading open-source models that allow transparent inference. We
selected the Molmo series (Deitke et al., 2025), known for efficient visual grounding, and
the Qwen3-VL series (Bai et al., 2025).

3. Open-vocabulary Object Detectors: Unlike generative MLLMs, these models are architec-
turally designed for localization tasks using vision-language alignment. We tested a wide
range of models including OWL-ViT (Minderer et al., 2022), OWLv2 (Minderer et al.,
2023), Florence-2 (Xiao et al., 2024), Grounding DINO (Liu et al., 2024), MM-Grounding-
DINO (Zhao et al., 2024), and LLMDet (Fu et al., 2025).

Prompt Engineering for Generative Models. Since generative MLLMs (Groups 1 and 2) lack
explicit object detection heads, we designed a structured prompt to enforce a strictly formatted
bounding box output. As illustrated in Figure 20, the prompt instructs the model to act as a detection
assistant and return normalized coordinates in a strict JSON format. Responses failing to parse into
this schema were discarded as invalid predictions.

Evaluation Results. The zero-shot evaluation results on the ForestPersons test set are summarized
in Table 9. The experiments reveal a distinct performance divide between generative MLLMs and
specialized open-vocabulary detectors.

Generative MLLMs, despite their strong reasoning capabilities, generally struggled with precise
localization tasks. Most proprietary models, including GPT-4o, GPT-5 and Gemini 2.5 Flash, exhibited
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Object detection prompt for multimodal large language models

You are an object detection assistant for missing person detection
in forest scenes.
Detect all visible persons in the image.
Return STRICT JSON ONLY. No explanations, no markdown, no comments.
Output format:
{

"detections": [
{

{"bbox": [x min, y min, width, height]
}

]
}
Rules:
- bbox is in COCO style: [x min, y min, width, height].
- All coordinates are normalized floats in [0, 1]

relative to the full image width/height.
- Ensure:

0 <= x min <= 1,
0 <= y min <= 1,
0 < width <= 1,
0 < height <= 1,
x min + width <= 1,
y min + height <= 1.

- If there is no person, return "detections": [].
- Do NOT include any other keys.
- Do NOT wrap the JSON in code fences.
- Do NOT add trailing commas or extra whitespace.
Your output must be valid JSON parsable by Python json.loads.

Figure 20: Prompt template used to enforce structured bounding box outputs from generative MLLMs.

negligible performance, This underperformance stems largely from the architectural discrepancy
between their autoregressive text-generation objectives and the precise coordinate regression required
for detection, compounded by a lack of domain-specific supervision. An exception was Gemini
2.5 Pro, which demonstrated limited localization capability with an AP50 of 11.5%, yet it still fell
significantly short of specialized detectors. Nevertheless, this emerging capability suggests that future
general-purpose VLMs, with improved spatial alignment, hold the potential to bridge this gap.

A similar trend was observed in open-weight models. The Molmo series failed to produce valid
detections, likely due to its training objective on the Pixmo dataset (Deitke et al., 2025), which
emphasizes pointing and counting rather than explicit bounding box regression. Furthermore, within
the Qwen series, the massive 235B model performed worse than the smaller 8B model. This suggests
that scaling up parameters improves semantic generation but does not necessarily translate to better
spatial precision or adherence to strict coordinate formatting constraints.

In contrast, open-vocabulary detectors designed explicitly for localization demonstrated significantly
better performance. Grounding DINO and OWL-ViT achieved respectable zero-shot scores with
an AP50 of 77.8% and 77.2%, respectively. However, even the best-performing zero-shot models
still lag behind the domain-specific baseline established in our work (Faster R-CNN trained on
ForestPersons achieves an AP50 of 92.7%). This gap confirms that while modern VLMs offer
impressive generalization, domain-specific training remains essential for reliable person detection in
complex, occluded forest environments.

I EVALUATING SAR-TRAINED MODELS ON A REAL MAV DATASET

ForestPersons was constructed in a controlled environment using both handheld and tripod-mounted
setups to ensure high quality and diversity. Given that the images were not acquired through UAVs
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Table 9: VLM detection results on ForestPersons. Evaluation of vision–language models (VLMs),
including closed-weight, open-weight, and open-vocabulary variants, on the ForestPersons test split.

Detection Model Test Split

AP AP50 AP75 AR

Proprietary MLLMs

GPT-4o (Hurst et al., 2024) 0.0 0.2 0.0 0.6
GPT-5 (OpenAI, 2025) 0.1 0.7 0.0 1.4
Gemini 2.5 Flash (Comanici et al., 2025) 0.0 0.2 0.0 0.6
Gemini 2.5 Pro (Comanici et al., 2025) 2.2 11.5 0.1 8.1

Open-weight MLLMs

Molmo 7B-O (Deitke et al., 2025) 0.0 0.0 0.0 0.0
Molmo 7B-D (Deitke et al., 2025) 0.0 0.0 0.0 0.0
Molmo 72B (Deitke et al., 2025) 0.0 0.0 0.0 0.1
Qwen3-VL 8B (Bai et al., 2025) 5.0 21.4 0.6 14.2
Qwen3-VL 235B (Bai et al., 2025) 0.0 0.1 0.0 0.7

Open-vocabulary Object Detectors

OWL-ViT (Minderer et al., 2022) 49.2 77.2 56.8 54.8
OWLv2 (Minderer et al., 2023) 42.3 67.9 47.9 49.5
Florence2 (Xiao et al., 2024) 27.3 44.0 30.2 43.9
Grounding-DINO (Liu et al., 2024) 52.4 77.8 58.8 58.9
MM-Grounding-DINO (Zhao et al., 2024) 46.1 66.4 53.5 52.1
LLMDet (Fu et al., 2025) 26.3 42.5 28.4 68.7

or MAVs, verifying the existence of a domain gap with real-world drone footage is essential. For
instance, imagery captured via UAVs or MAVs typically exhibits specific artifacts, such as motion
blur or sensor noise resulting from abrupt changes in illumination. These characteristics may not be
fully represented in our dataset, which was acquired by human operators in a controlled setting.

To address this empirically, we conducted additional experiments by collecting a new test dataset of
24,209 images using an actual MAV, as shown in Fig. 7 (a), operating in SAR-relevant forest envi-
ronments. This new dataset inherently contains potential real-world visual artifacts (e.g., occasional
motion blur, sensor noise). We recorded two individuals in standing, sitting, and lying postures across
multiple background settings.

Upon qualitative inspection, we observed that the acquired images were predominantly clean, with
drone-induced artifacts such as motion blur and vibrations (i.e., motor wash) being rarely present.
This suggests that the ForestPersons remains robust when evaluated against data collected by actual
drones.

To quantitatively validate the observation that the actual MAV data consists mostly of clean images,
we created an ”augmented” version of the ForestPersons training set. We applied transformations
simulating MAV-specific artifacts (e.g., motion blur, sensor noise) using the Albumentations li-
brary (Buslaev et al., 2020). Specifically, we use motion blur augmentation with blur limit be [3,
30], and ISO noise with color shift be [0.01, 0.05], and intensity be [0.1, 0.3]. All augmentations are
applied with probability 1 since we assume that these artifact are consistently applied when capturing
images with drones. Visual examples of these augmented images are provided in Fig. 22.

Subsequently, we evaluated two models on the real-world drone test set: one trained on the original
ForestPersons (referred to as ”artifact-free” data) and the other trained on the augmented ForestPersons
(referred to as ”augmented” data). In this experiment, the Faster R-CNN model is used.

The results are depicted in Table 10. Specifically, the model trained on our original, artifact-free
ForestPersons data achieved a high AP of 0.614 on the new real-world MAV test set. This performance
is robust and demonstrates that our handheld data collection method generalizes well to the actual
drone domain. Our qualitative analysis of the MAV dataset confirms this, showing that the vast
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Table 10: Model performance comparison between the Faster-RCNN model trained with motion-blur
augmented data, and the model trained with original data with respect to real MAV dataset.

Train dataset AP AP50 AP75

ForestPersons (artifact-free) 61.4 88.4 76.6
ForestPersons (augmented) 35.8 64.7 33.9
SARD Sambolek & Ivasic-Kos (2021) 23.2 53.5 18.5
HERIDAL Kundid Vasić & Papić (2022) 0.0 0.0 0.0
WiSARD Broyles et al. (2022) 40.2 75.2 35.0

majority of frames are artifact-free, with significant motion artifacts appearing only infrequently
during rapid maneuvers.

Conversely, the model trained on the augmented data suffered a severe performance drop (35.8 mAP).
This strongly suggests that training on data with artificial motion artifacts, when such artifacts are
rare in the true target domain, is detrimental. It likely causes the model to overfit to the artifacts
themselves rather than the underlying object features, thus harming generalization.

Moreover, we showed that the model trained with existing SAR datasets (SARD, HERIDAL, WiS-
ARD) have lower performance on the MAV test dataset compared to ForestPersons. This is due to the
significant domain gap between the high-altitude viewpoint and the low-altitude viewpoint of the
dataset, despite the fact that these datasets are captured using MAVs or UAVs. This result validates
the effectiveness of our dataset for robust SAR operations in low-altitude, under-canopy situations.
Overall prediction for each models are respresented in Fig. 23.

These experiments validate that the high-quality, artifact-free images from our handheld collection
method are not a limitation. Instead, they serve as a robust and effective proxy for training models
for real-world MAV deployment, proving to be a more effective training source than data artificially
degraded with motion artifacts.

J TRAINING GENERATIVE MODELS TO CREATE EXTREME SAR SITUATION

We constructed the ForestPersons by capturing volunteers in a controlled environment to simulate
missing person scenarios, thereby securing a diverse range of poses and visibility levels. However, due
to ethical constraints, collecting data on extreme conditions often encountered in real-world Search
and Rescue (SAR) missions (e.g., subjects who are injured, buried, or suffering from hypothermia)
remains a challenge.

To address this limitation, our future work involves training generative models based on the Forest-
Persons to synthesize missing persons in extreme situations for data augmentation. The objective is
to generate high-fidelity synthetic data depicting these atypical distress scenarios to enhance training.
We propose this as a practical and scalable approach to bridge the gap between staged data and the
stochastic nature of real-world incidents.

Figure 24 presents preliminary examples of synthetic images generated using GLIGEN (Li et al.,
2023) finetuned via Dreambooth (Ruiz et al., 2023), demonstrating the feasibility of this proposed
direction. The generative model without finetuning produces images that do not fit SAR tasks or in an
under-canopy situation, while the generative model finetuned with ForestPersons can produce more
realistic images which is fit to SAR tasks in an under-canopy situation.

K ELUCIDATING THE EFFECT OF VIDEO CLIP LENGTH

ForestPersons clips were not designed as fixed-length video units; rather, they reflect natural observa-
tional opportunities encountered by MAVs operating in dense under-canopy environments. During
data collection, factors such as terrain irregularities, heavy vegetation, limited lines of sight, obstacle
avoidance, and safety constraints imposed practical limitations on how long continuous sequences
could be recorded. Consequently, clip-length variability emerges as a natural characteristic of realistic
under-canopy exploration rather than a byproduct of uncontrolled dataset collection.
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K.1 EFFECT OF THE NUMBER OF FRAMES ON DETECTION ACCURACY

To investigate the impact of available temporal information, we conducted an additional analysis by
systematically reducing the number of frames sampled from each clip. Faster R-CNN were trained
on subsets created by uniformly decreasing the proportion of frames in each sequence, ranging from
100% down to 10%. The results, summarized in Table 11, show that detection accuracy decreases
consistently and monotonically as fewer frames are used. This trend indicates that under-canopy
environments exhibit substantial variability in visibility, pose, occlusion, and background complexity,
and that a richer set of frames provides essential visual diversity for training robust detectors.

Table 11: Performance of Faster R-CNN trained on subsets of frames sampled at different ratios from
each clip.

Ratio of Train Set 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
AP (Test Split) 65.3 65.3 64.4 64.9 64.2 64.2 63.6 62.5 61.6 60.8

K.2 IMPACT OF VIEWPOINT DIVERSITY ON DETECTION PERFORMANCE

Dense under-canopy environments inherently restrict the ability to isolate viewpoint as an independent
experimental variable, due to constraints related to terrain, vegetation density, visibility, and MAV
safety. As a partial proxy for evaluating viewpoint diversity, we conducted an experiment in which
the number of training clips was progressively reduced from 100% to 10%. This reduction naturally
decreases viewpoint variability as well as scene diversity, such as background structure and occlusion
patterns.

As shown in Table 12, detection accuracy drops consistently as clip diversity decreases. Although this
experiment does not constitute a controlled multi-view analysis, it provides indirect but meaningful
evidence that viewpoint and scene diversity positively influence detection performance in under-
canopy conditions.

Table 12: Performance of Faster R-CNN trained on decreasing numbers of training clips.

Ratio of Train Set 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
AP (Test Split) 65.3 65.1 63.7 63.2 62.6 62.0 60.2 59.7 56.2 53.5

K.3 PERFORMANCE SATURATION WITH RESPECT TO THE NUMBER OF TRAINING FRAMES

We further examined whether performance saturates as more frames are used during training. In our
dataset, detection accuracy began to plateau when approximately 90% of the available frames were
used (roughly 61,000 out of 67,000 images). This behavior reflects the specific environmental and
visual characteristics present in the ForestPersons test set. It should not be interpreted as a universal
saturation point for all under-canopy scenarios, particularly those involving environmental conditions
not represented in the dataset. Thus, the observed 90% saturation is a dataset-specific empirical
observation rather than a general claim about optimal training data volume.

L REAL-TIME PERFORMANCE ON VARIOUS HARDWARE SPECIFICATIONS

We provide real-time inference performance measurements of representative object detection models
across different hardware platforms. To evaluate edge-device feasibility, experiments were conducted
on Jetson Orin Nano and Jetson Orin AGX, both configured in MAXN power mode. Among the de-
tectors capable of achieving real-time throughput on these devices, the YOLOv11n model—identified
as the best-performing option for onboard deployment—was evaluated at an input resolution of
640×480 over a continuous 5-minute run.

On the Jetson Orin Nano, the PyTorch implementation achieved 32.92 FPS, which increased to 38.44
FPS after TensorRT conversion. On the Jetson Orin AGX, the corresponding values were 35.75 FPS
and 31.27 FPS, respectively.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 13: FPS for each object detection model
measured with AMD EPYC 7413 at 640×480
resolution.

Model FPS

YOLOv3 Redmon & Farhadi (2018) 6.68
YOLOX Ge et al. (2021) 13.55
YOLOv11 Jocher & Qiu (2024) 11.32
RetinaNet Lin et al. (2017) 1.59
Faster R-CNN Ren et al. (2015) 0.73
Deformable Faster R-CNN Dai et al. (2017) 0.31
SSD Liu et al. (2016) 17.90
DETR Carion et al. (2020) 2.29
DINO Pan et al. (2025) 1.06
CZ Det Meethal et al. (2023) 0.77

Table 14: FPS for each object detection model
measured with RTX 3090 at 640×480 resolu-
tion.

Model FPS

YOLOv3 Redmon & Farhadi (2018) 118.00
YOLOX Ge et al. (2021) 115.86
YOLOv11 Jocher & Qiu (2024) 104.81
RetinaNet Lin et al. (2017) 38.12
Faster-RCNN Ren et al. (2015) 35.02
Deformable Faster-RCNN Dai et al. (2017) 31.81
SSD Liu et al. (2016) 76.29
DETR Carion et al. (2020) 44.17
DINO Pan et al. (2025) 13.95
CZ Det Meethal et al. (2023) 16.30

To provide a reference for server-side computation, we conducted additional inference performance
tests on both an AMD EPYC 7413 CPU and an RTX 3090 GPU, representing a practical edge-server
configuration. Tables 13 and 14 summarize the measured throughput for each evaluated object
detection model. As illustrated in Fig. 21, a distinct trade-off between speed (FPS) and accuracy (AP)
is evident across most models. Notably, YOLOv11 stands out as an exception, achieving both high
accuracy and reasonable inference speeds.
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Figure 21: Speed-accuracy trade-off comparison of various object detection models on the
ForestPersons. The x-axis represents the inference speed in Frames Per Second (FPS), and the y-axis
represents the Average Precision (AP).

M EXPERIMENTS ON FORESTPERSONS ATTRIBUTES

M.1 MULTI-CLASS MISSING PERSON DETECTION ON FORESTPERSONS

ForestPersons includes annotations of the missing person’s pose, serving as a proxy for their current
physical condition. We anticipate that enabling the automatic assessment of urgency levels, in addition
to detecting the presence of missing persons, will significantly advance autonomous SAR operations.

To this end, we extended the object detection task to include pose classification using our collected
dataset. Specifically, we trained a Faster R-CNN model to predict the specific posture of the subject
(i.e., standing, sitting, or lying). The experimental results are presented in Table 15.

Our experimental analysis shows that training the model for simultaneous person detection and
multi-class pose classification leads to decline in average detection precision compared to training
solely for binary person detection (person vs. background). This performance trade-off suggests
that the additional complexity and classification difficulty introduced by the pose attribute require
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Table 15: The performance of Faster RCNN models for pose classification tasks.

Dataset split mAP mAP50 mAP75

Validation 0.620 0.908 0.747
Test 0.567 0.846 0.665

the model to allocate significant capacity, which can compromise the fundamental bounding box
localization performance. This highlights an important area for future multi-task architecture design
within the SAR domain.

M.2 FEATURE FUSION USING CONTEXTUAL INFORMATION

ForestPersons includes not only annotations for the presence of missing persons but also environ-
mental metadata such as season and location. We hypothesize that a detection model aware of these
contextual priors could achieve improved performance in SAR scenarios.

Therefore, We have investigated the potential of incorporating conditional information (Weather,
Place) as additional context via the simple FiLM structure (Perez et al., 2018) to fuse the context
features and the visual features.

Specifically, we integrated this fusion mechanism immediately preceding the detection head. In our
design, discrete context labels are first projected into a latent space via an embedding layer. These
context embeddings are then used to modulate the visual features through the FiLM layer before they
are fed into the detection head for final prediction.

Table 16: Performance of Faster R-CNN models with different contextual inputs using FiLM.

Validation Split Test Split

Model (context) AP AP50 AP75 AP AP50 AP75

Original (no additional context) 64.2 95.6 76.5 64.4 92.7 75.4
Weather (FiLM) 64.4 94.6 77.0 65.2 92.9 77.4
Place (FiLM) 64.1 94.6 76.2 65.2 93.0 76.8

The results are shown in Table 16. Note that the validation AP slightly improves upon the test
AP compared to the Faster R-CNN performance reported in Table 3. These findings indicate that
incorporating additional metadata from the dataset can enhance the performance of object detection
models, even when using simple feature fusion methods. Moreover, the results demonstrate that the
metadata provided by ForestPersons can contribute to performance improvement when effectively
integrated into the model.

N USE OF LLMS

We employed large language models (LLMs) solely for polishing the writing. In addition, during
the experimental evaluation, we utilized Vision-Language Models specifically to assess zero-shot
performance.
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Figure 22: Examples of ForestPersons augmented by motion blur and sensor noise. The motion-
blur augmentation has the potential to approximate artifacts caused by MAV maneuvers, exposing
the model to more realistic motion-induced artifacts.
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Figure 23: Predictions of the trained models on the test dataset collected with real MAV. Faster
R-CNN trained on existing SAR datasets exhibit inferior detection performance compared to model
trained on ForestPersons, primarily due to the domain gap arising from differences in altitude.
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Figure 24: Synthetic data to depict the extreme situation in the SAR task using generative
models. The red box indicates the bounding box conditioned on the generative model. (Left) The
generated images created by generative models finetuned by ForestPersons. (Right) The generated
images created by non-finetuned generative models.
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