

000 001 002 003 004 005 FORESTPERSONS: A LARGE-SCALE DATASET FOR 006 UNDER-CANOPY MISSING PERSON DETECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Detecting missing persons in forest environments remains a challenge, as dense
032 canopy cover often conceals individuals from detection in top-down or oblique
033 aerial imagery typically captured by Unmanned Aerial Vehicles (UAVs). While
034 UAVs are effective for covering large, inaccessible areas, their aerial perspectives
035 often miss critical visual cues beneath the forest canopy. This limitation under-
036 scores the need for under-canopy perspectives better suited for detecting missing
037 persons in such environments. To address this gap, we introduce ForestPersons,
038 a novel large-scale dataset specifically designed for under-canopy person detec-
039 tion. ForestPersons contains 96,482 images and 204,078 annotations collected
040 under diverse environmental and temporal conditions. Each annotation includes
041 a bounding box, pose, and visibility label for occlusion-aware analysis. Forest-
042 Persons provides ground-level and low-altitude perspectives that closely reflect
043 the visual conditions encountered by Micro Aerial Vehicles (MAVs) during forest
044 Search and Rescue (SAR) missions. Our baseline evaluations reveal that standard
045 object detection models, trained on prior large-scale object detection datasets or
046 SAR-oriented datasets, show limited performance on ForestPersons. This indi-
047 cates that prior benchmarks are not well aligned with the challenges of missing
048 person detection under the forest canopy. We offer this benchmark to support
049 advanced person detection capabilities in real-world SAR scenarios. The dataset
050 is publicly available at [https://huggingface.co/datasets/anonreviewer2026/under-](https://huggingface.co/datasets/anonreviewer2026/under-canopy-benchmark-anon)
051 [canopy-benchmark-anon](https://huggingface.co/datasets/anonreviewer2026/under-canopy-benchmark-anon).
052
053

1 INTRODUCTION

034 Unmanned Aerial Vehicles (UAVs) have been widely used in Search and Rescue (SAR) missions
035 because they can quickly cover large open areas. While early UAVs relied on manual operation,
036 advances in navigation, path planning, and flight control technologies have enabled fully autonomous
037 missions. Furthermore, hardware miniaturization has led to the development of Micro Aerial Vehicles
038 (MAVs), and improvements in Simultaneous Localization and Mapping (SLAM) technologies have
039 made GPS-denied navigation possible (Liu et al., 2022; Bachrach et al., 2010). These developments
040 have extended UAV operations to challenging forest environments with dense and scattered obstacles.
041 Recent studies have demonstrated that UAVs can perform safe navigation (Laina et al., 2024; Hong
042 et al., 2024), rapid path planning for exploration (Ren et al., 2025; Jarin-Lipschitz et al., 2022; Zhou
043 et al., 2021), and mapping tasks (Lin & Sto, 2022; Kwon et al., 2024). Despite the growing feasibility
044 of deploying MAVs in forested environments, detecting missing persons under dense canopies
045 remains a fundamental challenge. Forests are environments where people are not typically present,
046 and the abundance of vegetation causes significant and often unpredictable occlusions. Moreover,
047 there is a lack of dedicated datasets targeting such under-canopy scenarios, limiting the ability of
048 detection models to learn and generalize to these challenging conditions.
049

050 While several UAV-based datasets (Kundid Vasić & Papić, 2022; Broyles et al., 2022; Sambolek
051 & Ivasic-Kos, 2021; Zhang et al., 2025) have been introduced to support SAR applications, most
052 prior benchmarks are collected from high altitudes, typically using top-down or oblique perspectives.
053 Although such aerial viewpoints provide broad coverage and are effective for detecting objects in
open areas, they are less suitable for locating missing persons concealed beneath dense forest canopy.
At high altitudes, individuals often appear as only a few pixels in the image. Dense foliage and

054
055
056
057
058
059
060
061
062
063
064

065 (a) High-altitude aerial UAV perspective: wide-area coverage but limited visibility under forest canopy.

066
067
068
069
070
071
072
073
074

075 (b) Low-altitude MAV perspective: ground-level view under canopy with improved visibility of missing persons.

076
077
078
079
080

Figure 1: **Comparison of two UAV-based person search scenarios.** (a) High-altitude views offer wide-area coverage but often fail to detect targets due to canopy occlusion. (b) Low-altitude MAVs provide closer, ground-level views beneath the canopy, improving the chances of spotting missing persons despite vegetation occlusion.

081
082
083
084

uneven terrain further obstruct visibility, making reliable detection extremely challenging. Moreover, occlusions caused by vegetation are pervasive and vary unpredictably across different forest structures, exacerbating the difficulty of identifying partially visible or collapsed individuals.

085
086
087
088
089
090
091
092
093
094

To address this challenge, we introduce **ForestPersons**, a large-scale dataset specifically designed to support the training of models for detecting missing persons under forest canopies, where dense vegetation often causes severe occlusion and obstructs the visibility of human bodies. The dataset consists of 96,482 images and 204,078 annotated instances, collected across varying seasonal, weather, and lighting conditions, reflecting real-world under-canopy scenarios. Each person instance is annotated with bounding boxes and additional attributes including pose and visibility, which are particularly relevant to SAR applications. To the best of our knowledge, ForestPersons is the first benchmark explicitly designed for detecting persons under forest canopies, providing a foundation for developing and evaluating models in realistic SAR scenarios, and is expected to improve the chances of successful rescue of missing persons in real-world SAR missions.

095
096

2 RELATED WORK

097
098

2.1 UAV-BASED PERSON DETECTION DATASETS

100
101
102
103
104
105
106
107

Most prior UAV-based datasets capture people from top-down or oblique perspective at high altitudes as illustrated in Figure 1a. Over the past several years, large-scale datasets (Zhu et al., 2021; Speth et al., 2022; Barekatain et al., 2017; Du et al., 2018; Zhu et al., 2022; Liu et al., 2023) containing high-resolution aerial imagery have been developed to support computer vision tasks such as object detection, tracking, and person recognition from aerial perspectives. Among these, VisDrone dataset (Zhu et al., 2021) stands out as a comprehensive resource for drone-based computer vision applications, offering data captured using various drone-mounted cameras across diverse urban and country environments, locations, object types, and scene densities. Other notable general-purpose aerial datasets include NII-CU (Speth et al., 2022), which contains well-aligned RGB and thermal images with occlusion labels, and Okutama-Action (Barekatain et al., 2017), which provides aerial

108
109
110
111 Table 1: **ForestPersons vs. Others.** Comparison of ForestPersons with existing UAV-based datasets
112 containing person class annotations.

113 Dataset	114 Scenario	115 Configuration	116 #Images	117 #Annotations	118 Occlusion	119 Pose
113 HERIDAL (Kundid Vasić & Papić, 2022)	114 SAR	115 Forest	116 1,600	117 3,194	118 ✕	119 ✕
113 WiSARD (Broyles et al., 2022)	114 SAR	115 Forest, Maritime	116 Oblique	117 44,588	118 74,204	119 ✕ ✕
113 SARD (Sambolek & Ivasic-Kos, 2021)	114 SAR	115 Forest	116 Oblique	117 1,981	118 6,532	119 ✕ ✓
113 VTSAr (Zhang et al., 2025)	114 SAR	115 Urban, Maritime, Forest	116 Top-down	117 12,465	118 19,956	119 ✕ ✕
113 Visdrone (Zhu et al., 2021)	114 Surveillance	115 Urban	116 Oblique	117 10,209	118 147,747	119 ✓ ✕
113 NII-CU (Speth et al., 2022)	114 Detection	115 Urban	116 Oblique	117 5,880	118 18,736	119 ✓ ✕
113 Okutama-Action (Barekatain et al., 2017)	114 Detection	115 Urban	116 Oblique	117 77,365	118 524,649	119 ✕ ✓
113 ForestPersons		114 SAR	115 Forest	116 Ground-level	117 96,482	118 204,078
					✓	✓

120
121 video for human action detection with bounding boxes and 12 action classes such as standing, sitting,
122 and lying.

123 Several datasets have been proposed for various SAR applications. HERIDAL (Kundid Vasić & Papić,
124 2022) provides high-resolution imagery from mountainous regions, while WiSARD (Broyles et al.,
125 2022) offers synchronized RGB and thermal data across diverse terrains and weather conditions.
126 SARD (Sambolek & Ivasic-Kos, 2021) and the recently proposed VTSAr (Zhang et al., 2025) extend
127 multimodal capabilities by incorporating real and synthetic RGB-thermal image pairs. Most UAV-
128 based SAR datasets, however, are collected from high altitudes and primarily offer top-down or
129 oblique viewpoints. While such perspectives are advantageous for efficiently covering wide areas,
130 they are less effective in real SAR scenarios where missing persons are often located beneath dense
131 foliage. In these environments, visibility is severely limited and occlusions caused by vegetation are
132 frequent. As a result, this reduces the chances of successfully detecting missing persons in aerial
133 imagery. Table 1 summarizes the key attributes of representative UAV-based detection datasets.
134

135 2.2 GROUND-LEVEL PERSON DETECTION DATASETS

136 As illustrated in Figure 1b, MAVs typically operate at low altitudes close to ground-level view. Given
137 the similarity in viewpoints, ground-level person detection datasets are suitable training resources for
138 under-canopy missing person detection models. Representative prior works include COCO Lin et al.
139 (2014), CrowdHuman (Shao et al., 2018), CityPersons (Zhang et al., 2017), KITTI (Geiger et al.,
140 2012), and JRDB (Martin-Martin et al., 2021), which are widely used as benchmarks for developing
141 and evaluating person detection models. These datasets provide high-resolution images captured in
142 everyday environments, including annotations for bounding boxes, body joints, and occlusion states.
143 They have supported the development of person detection models that are robust to partial occlusion
144 and variations in human pose.

145 Nevertheless, most existing datasets primarily depict standing or walking individuals in typical indoor
146 and outdoor environments where people are commonly found. These conditions differ substantially
147 from those encountered in SAR missions conducted in forested environments. In real SAR scenarios,
148 missing persons are often partially occluded by vegetation, sitting or lying beneath canopy cover, and
149 subject to highly variable lighting and visibility conditions. Such characteristics are rarely captured in
150 prior benchmarks, making existing datasets less suitable for training missing person detection models
151 intended for under-canopy search operations.

152 3 FORESTPERSONS

153
154 ForestPersons is a large-scale image dataset specifically developed for missing person detection in
155 under-canopy forest environments, a key task in autonomous SAR missions. The dataset captures
156 conditions that are common in under-canopy forest searches, where people may be partially or fully
157 hidden by vegetation and can appear in various poses such as lying down, sitting, or standing. Unlike
158 conventional person detection datasets that focus on images collected in places where people are
159 typically found, ForestPersons targets under-canopy forest scenes, where dense foliage, seasonal
160 shifts, and weather variability significantly impact visibility and scene appearance.
161

Figure 2: **Overview of ForestPersons composition pipeline.** The full process from data collection in forest environments to frame sampling from video sequences, bounding boxes annotation of missing persons, and difficulty-aware dataset splitting.

3.1 DATA COLLECTION AND FRAME SAMPLING

The ForestPersons dataset was constructed to simulate realistic SAR scenarios occurring under forest canopy conditions. As shown in Figure 2, videos were collected across diverse forest environments by simulating missing person situations that reflect plausible outcomes of fatigue or disorientation. Individuals were positioned in different postures such as lying on the ground, sitting, or standing. In these settings, they were naturally partially occluded by vegetation, branches, or uneven terrain. To emulate the viewpoints typically encountered by MAVs during under-canopy missions, handheld or tripod-mounted cameras were positioned at altitudes between 1.5 and 2.0 meters, approximating the expected flight height of MAVs.

The videos include scenes from different seasons, such as dense summer foliage that increases occlusion and winter settings with leafless trees and snow-covered terrain. Variations in weather, including clear skies, overcast conditions, and light rain, were incorporated to introduce changes in visibility and lighting. Temporal diversity was also considered by capturing footage at different times of day, primarily in the afternoon and at dusk. We deliberately included seasonal and temporal conditions in the videos to support the development of detection models that are robust to real-world SAR scenarios. Frames were extracted from the 377 video sequences collected as described above.

3.2 ANNOTATION

Bounding boxes were annotated using the open-source COCO Annotator (Brooks, 2019), following shared guidelines that required labeling only the visible portions of each individual. Given the dense vegetation and complex terrain characteristic of under-canopy environments, annotators were instructed to carefully delineate the visible contours of partially occluded individuals to ensure precise and consistent annotations.

In addition to bounding boxes, each person instance was annotated with two semantic attributes, pose and visibility level, to capture information relevant to practical SAR operations. The pose attribute provides cues about the physical state of an individual, while visibility level quantifies the degree of visual difficulty caused by environmental occlusions. These interpretable categories are designed to reflect the visual conditions commonly encountered in real-world forest search scenarios.

Poses were categorized into three classes: standing, sitting, and lying. In cases where the posture of a person was ambiguous due to occlusion or background clutter, annotators referred to adjacent video

Figure 3: **Visual samples from ForestPersons.** Images depicting individuals in diverse poses, occlusion levels, seasons, and forest environments.

frames to make informed decisions based on shared annotation guidelines. Visibility levels were categorized into four levels based on the degree of occlusion caused by vegetation or terrain: a value of 20 indicates heavy occlusion where the individual is almost unrecognizable, 40 corresponds to partial occlusion with the person still identifiable, 70 denotes minor occlusion with most of the body clearly visible, and 100 represents full visibility without any occlusion. Representative examples of each visibility level and pose category under realistic forest conditions are presented in Figure 3.

Following the annotation of bounding box and semantic attributes, an automated and manual anonymization protocol was applied to remove personally identifiable facial information. Specifically, a face detector (López, 2024) was used to identify facial regions in all images, which were then blurred accordingly. Subsequently, a manual review was conducted to identify any remaining visible faces, and additional blurring was applied as needed to ensure complete anonymization.

3.3 DATASET SPLIT AND STATISTICS

With the data collection and annotation processes described above, ForestPersons comprises 96,482 images and 204,078 annotated person instances, each instance labeled with a bounding box, pose, and visibility level. To reduce annotator bias and mitigate the effects of human error, we designed a model-driven difficulty-aware dataset splitting strategy. In particular, to prevent overlap between temporally adjacent frames and to account for task difficulty, we split the dataset at the video sequence level. Each sequence was assigned a difficulty score based on the detection performance of a COCO-pretrained Faster R-CNN (Ren et al., 2015) implemented in Detectron2 (Wu et al., 2019), computed as $1 - AP_{50}$. Sequences were then grouped such that easy, medium, and hard samples were proportionally distributed across the training, validation, and test splits, as detailed in Appendix E.

Figure 4: **Annotation statistics of ForestPersons.** Instance-level distribution for pose and visibility (Top) and image-level distribution for season, place, and weather (Bottom).

Figure 5: **ForestPersons samples by difficulty level.** Shown are representative video sequences from the easy, medium, and hard groups. Predicted boxes are shown with confidence scores, and ground-truth boxes are labeled as $\{\text{pose}\}_{\{\text{visibility level}\}}$.

As shown in Figure 4, the training, validation, and test splits exhibit comparable distributions across seasons, location types, and weathers for images, as well as visibility levels and poses for the missing person instances. These distributions reflect biases from the image collection process, despite efforts to ensure scenario diversity. Nevertheless, each split maintains sufficient diversity to reflect real-world variability. To better simulate realistic SAR situations near forest entrances, a small number of videos recorded at forest edges (labeled as "Road") were also included in the dataset.

Representative examples from each difficulty group are shown in Figure 5, with one sample per row corresponding to easy (difficulty score < 0.45), medium ($0.45 \leq \text{score} < 0.75$), and hard ($\text{score} \geq 0.75$) levels, respectively. The final split consists of 67,686 images and 145,816 annotations for training, 18,243 images and 37,395 annotations for validation, and 10,553 images and 20,867 annotations for testing.

324

4 EXPERIMENTS

325

4.1 EXPERIMENT SETTING

326 **Training object detection models.** We evaluate a diverse set of widely adopted and representative
 327 object detection models. Specifically, we train models with YOLO-based (Redmon et al., 2016) back-
 328 bones (YOLOv3 (Redmon & Farhadi, 2018), YOLOX (Ge et al., 2021)) and YOLOv11 (Jocher & Qiu,
 329 2024), ResNet-50-based (He et al., 2016) backbones (RetinaNet (Lin et al., 2017), Faster R-CNN (Ren
 330 et al., 2015)) and deformable Faster R-CNN (Dai et al., 2017), a MobileNetV2-based (Sandler et al.,
 331 2018) backbone (SSD (Liu et al., 2016)), and transformer-based (Vaswani et al., 2017) backbones
 332 (DETR (Carion et al., 2020) and DINO (Caron et al., 2021)). We also evaluate CZ Det (Meethal et al.,
 333 2023), a model designed for UAV imagery that utilizes a cascaded zoom-in mechanism. All models,
 334 except for YOLOv11, DINO, and CZ Det, are implemented using `MMDetection` framework (Chen
 335 et al., 2019). The YOLOv11, DINO and CZ Det is implemented using `ultralytics` (Jocher &
 336 Qiu, 2024), `detrex` (Ren et al., 2023), and `detectron2` framework (Wu et al., 2019), respectively.
 337 The training hyperparameters for each model are detailed in Table 5, Appendix B. We conduct all
 338 experiments on NVIDIA RTX 3090 GPUs, except for DETR models, which were trained on NVIDIA
 339 A100 and A6000 GPUs.
 340

341 **Evaluation.** We use Average Precision (AP) and Average Recall (AR) as the primary evaluation
 342 metrics. Specifically, both are computed across Intersection over Union (IoU) thresholds ranging
 343 from 0.5 to 0.95 at intervals of 0.05. We report $AP_{50:95}$ as the main metric, along with AP_{50} and
 344 AP_{75} , which correspond to IoU thresholds of 0.5 and 0.75, respectively. In SAR missions, where
 345 false negatives (i.e., missed detections of actual persons) can critically impact mission success, recall
 346 is especially important. We therefore report $AR_{50:95}$ to provide a complementary view of detection
 347 performance. We refer to $AP_{50:95}$ and $AR_{50:95}$ simply as AP and AR throughout the paper.
 348

349

350 4.2 LIMITATIONS OF PRIOR DATASETS IN UNDER-CANOPY ENVIRONMENTS

351 Prior SAR datasets, which are composed of aerial imagery, present challenges for detecting per-
 352 sons under-canopy due to the difference in viewpoint and limited visibility caused by vegetation.
 353 Meanwhile, publicly available ground-level person datasets do not adequately account for occlusions
 354 caused by dense vegetation, making them less suitable for these tasks. To demonstrate this limitation,
 355 we conduct experiments to assess the generalization capability of models trained on these prior
 356 datasets when applied to our proposed dataset. Specifically, we train object detection models using
 357 existing SAR datasets and conventional ground-level person datasets, and evaluate their performance
 358 on the test split of ForestPersons.
 359

360 **Table 2: Adaptation of prior datasets to under-canopy SAR tasks.** Performance comparison of
 361 Faster R-CNN (Ren et al., 2015) trained and tested on combinations of datasets: (Left) prior UAV-
 362 based SAR datasets and ForestPersons; (Right) prior ground-level person datasets and ForestPersons.
 363

UAV-based SAR dataset					Ground-level person dataset				
Train	Test	AP	AP_{50}	AP_{75}	Train	Test	AP	AP_{50}	AP_{75}
SARD Sambolek & Ivisic-Kos (2021)	SARD Ours	58.6 3.0	90.8 7.8	68.4 1.6	COCOPerson Lin et al. (2014)	COCOPerson Ours	54.0 40.8	82.5 66.9	58.2 45.2
HERIDAL Kundid Vasić & Papić (2022)	HERIDAL Ours	35.0 0.2	70.8 0.3	29.3 0.2	CrowdHuman Shao et al. (2018)	CrowdHuman Ours	39.4 31.9	74.8 58.8	37.3 31.0
WiSARD Broyles et al. (2022)	WiSARD Ours	18.5 11.3	51.7 29.0	7.9 6.4	CityPersons Zhang et al. (2017)	CityPersons Ours	38.7 5.9	62.5 15.1	42.1 3.7

370 The results, summarized in Table 2, indicate that models trained on SAR data performed poorly
 371 on ForestPersons, and those trained on ground-level data also showed significant performance
 372 degradation due to occlusions from natural elements in the forest, such as branches and foliage, and
 373 viewpoint differences, especially the aerial perspective common in SAR data. Meanwhile, models
 374 trained on ground-level person datasets struggle with individuals who are partially occluded by
 375 vegetation or in non-standing poses such as sitting or lying. These findings highlight the limitations of
 376 relying solely on existing SAR and ground-level datasets for under-canopy SAR applications, thereby
 377 underscoring the necessity and relevance of our proposed dataset. The examples of failure cases of
 the object detection models trained with existing datasets are depicted in Figure 9 in the Appendix.
 378

378 4.3 DATASET BENCHMARK PERFORMANCE
379380 Table 3: **ForestPersons benchmark results.** Object detection model performance on validation and
381 test splits of ForestPersons.
382

383 384 385 386 387 388 389 390 391 392 393	384 385 386 387 388 389 390 391 392 393	Validation Split				Test Split			
		384 385 386 387 388 389 390 391 392 393							
YOLOv3 (Redmon & Farhadi, 2018)	55.6	91.7	63.2	63.1	50.2	86.5	53.9	58.6	
YOLOX (Ge et al., 2021)	56.8	92.9	65.2	62.5	51.0	89.0	54.4	58.2	
YOLOv11n (Jocher & Qiu, 2024)	65.3	95.4	76.6	71.5	65.6	93.4	75.6	71.7	
RetinaNet (Lin et al., 2017)	64.1	96.0	75.8	70.4	64.2	93.9	74.4	70.9	
Faster R-CNN (Ren et al., 2015)	64.2	95.6	76.5	69.6	64.4	92.7	75.4	70.0	
Deformable R-CNN (Dai et al., 2017)	65.0	94.7	78.5	70.0	66.3	93.4	77.5	71.3	
SSD (Liu et al., 2016)	48.9	88.5	49.4	57.8	45.0	83.6	43.1	53.7	
DETR (Carion et al., 2020)	55.3	93.0	59.9	68.0	53.9	88.7	59.4	67.9	
DINO (Caron et al., 2021)	59.9	91.7	69.1	70.1	65.3	94.0	76.2	77.7	
CZ Det (Meethal et al., 2023)	69.9	98.1	83.4	76.8	65.6	96.1	77.9	71.6	

394
395 We evaluated the baseline object detection models on ForestPersons, as summarized in Table 3.
396 Our results show that YOLO-based models (YOLOv3, YOLOX, YOLOv11n) achieve APs of 50.2,
397 51.0, and 65.6, respectively; ResNet-50-based detectors (RetinaNet, Faster R-CNN, Deformable
398 R-CNN) obtain 64.2, 64.4, and 66.3; the MobileNetV2-based SSD records 45.0; Transformer-based
399 models (DETR and DINO) reach 53.9 and 65.3; and CZ Det, incorporating a cascaded zoom-in
400 mechanism for UAV imagery, achieves 65.6. While Deformable R-CNN attained the highest AP of
401 66.3, other models excelled in different key metrics. Specifically, DINO led in AR with 77.7, and CZ
402 Det achieved the best scores for both AP₅₀ and AP₇₅, at 96.1 and 77.9, respectively. These results
403 suggest that, for evaluating object detectors in SAR missions, ForestPersons highlights how different
404 models excel under different evaluation criteria, making it possible to select methods according to
405 mission-specific requirements.

406 4.4 IMPACT OF DIFFERENT ATTRIBUTES ON DETECTION PERFORMANCE
407421 Figure 6: **Effect of visibility level on detection performance.** Detection precision improves as the
422 visibility level increases across pose attributes.
423

424 **Visibility diversity reflecting real-world SAR conditions.** In under-canopy SAR tasks, it is natural
425 that the difficulty of person detection increases as the degree of occlusion caused by surroundings
426 becomes more severe. To simulate this challenge, ForestPersons includes human instances with
427 varying levels of occlusion, which are carefully annotated with corresponding visibility level. Figure 6
428 shows that the performance of models trained on ForestPersons increases with the visibility level.
429 The correlation between AP and visibility level empirically demonstrates the inherent difficulty of
430 detecting heavily occluded individuals in under-canopy SAR tasks. The explicit annotation of pose
431 and visibility level in ForestPersons enables systematic evaluation and facilitates the development of
432 robust object detection models better suited for real-world SAR scenarios.

432 **Table 4: Impact of various attributes on detection performance in ForestPersons.** Each object
 433 detection model was trained and evaluated using subsets of train and test data with unique attributes.
 434

Train Attributes	(a) Pose						(b) Season								
	Standing			All Poses			Summer			Winter			All Seasons		
	Standing	Sitting	Lying	Standing	Sitting	Lying	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall	Winter
YOLOv3 (Redmon & Farhadi, 2018)	45.3	30.0	32.1	49.3	51.5	47.5	49.7	53.7	25.7	4.5	1.4	54.0	51.1	58.2	50.7
YOLOX (Ge et al., 2021)	47.3	30.3	31.7	52.2	50.6	47.9	56.8	57.1	17.2	5.5	1.5	60.0	50.0	53.6	56.5
YOLOv1 In (Jocher & Qiu, 2024)	60.1	44.5	46.0	65.5	65.7	65.1	65.4	65.4	21.6	6.3	1.6	66.9	65.3	72.8	68.0
RetinaNet (Lin et al., 2017)	57.5	47.2	43.8	62.3	66.3	60.3	63.4	66.3	43.8	14.6	4.7	63.4	66.0	73.2	63.1
Faster R-CNN (Ren et al., 2015)	58.0	47.0	42.2	63.1	66.1	61.0	65.7	66.9	34.6	18.7	11.7	61.5	65.9	71.6	64.0
Deformable R-CNN (Dai et al., 2017)	59.4	48.2	45.0	65.2	66.3	65.4	66.4	68.7	34.1	15.7	6.7	63.3	66.8	72.3	66.3
SSD (Liu et al., 2016)	39.3	22.3	22.8	46.1	43.7	45.1	44.2	49.0	21.9	5.2	1.9	50.1	42.5	55.2	50.6
DETR (Carion et al., 2020)	43.2	29.4	26.2	54.1	54.3	48.4	31.9	41.9	22.0	8.4	3.3	54.8	53.2	63.8	57.1
DINO (Caron et al., 2021)	59.9	50.3	46.3	64.2	67.6	64.1	51.3	48.9	32.0	17.6	7.1	57.0	68.0	74.9	64.6
CZ Det (Meethal et al., 2023)	50.7	30.6	33.8	67.5	62.5	66.8	56.9	52.5	13.0	7.3	0.2	61.8	60.5	69.7	72.6

445
 446 **Effect of pose diversity on generalizability.** In SAR tasks, it is important to collect data of
 447 individuals in a variety of poses since missing persons in forest environments may be found in diverse
 448 postures. However, most existing public person datasets predominantly consist of upright individuals,
 449 with standing poses comprising the vast majority. We hypothesize that this imbalance limits the
 450 generalizability of person detection models for SAR applications. To validate this hypothesis, we
 451 conduct an experiment using pose annotations in ForestPersons. Specifically, we trained object
 452 detection models using only samples labeled with standing poses and evaluated their performance on
 453 test samples categorized into standing, sitting, and lying poses, respectively.

454 The results are presented in the Table 4a. Specifically, models trained solely on standing attribute
 455 exhibited significantly lower performance in detecting sitting and lying poses across all evaluated
 456 models. In contrast, models trained on the dataset with comprehensive pose annotations, achieved
 457 improved detection performance across all pose categories. These findings highlight the importance
 458 of collecting diverse human poses for SAR tasks. ForestPersons addresses this need by including
 459 underrepresented poses such as sitting and lying, which are often absent from conventional public
 460 datasets, making it more suitable for under-canopy person detection in SAR scenarios.

461
 462 **Effect of season diversity on generalizability.** The visual appearance of forest environments can
 463 vary across seasons due to changes in under-canopy vegetation density, foliage, and lighting conditions.
 464 These seasonal differences directly affect the visibility and occlusion patterns of individuals, which
 465 in turn influence detection difficulty. We assume that insufficient seasonal diversity in training data
 466 constrains the generalization capability of detection models under diverse environmental conditions.
 467 To demonstrate this, we conduct a controlled experiment using ForestPersons with explicit season
 468 labels, comparing models trained on a specific season and tested on different seasons.

469 The results on the Table 4b show a clear asymmetry in cross-season performance. Models trained
 470 on only summer images exhibited performance degradation when tested on winter images but
 471 maintained a relatively stable level of AP. In contrast, models trained solely on winter images showed
 472 a significant drop in performance when evaluated on summer and fall images. Notably, when models
 473 were trained on images from all seasons, they achieved consistent performance across all seasonal
 474 conditions. These findings highlight the importance of seasonally diverse training data for robust
 475 SAR performance, which our dataset fulfills by including images captured across different seasons.

477 5 DISCUSSION AND CONCLUSION

478
 479 ForestPersons is the first large-scale dataset designed to detect missing persons in under-canopy
 480 forest environments. Unlike previous SAR benchmarks that focus on UAV-based aerial imagery,
 481 ForestPersons provides ground-level views from the perspective of MAVs, which are more suitable for
 482 detecting partially occluded individuals beneath forest canopies. The dataset includes annotations for
 483 various attributes, such as season, location type, weather, human pose, and visibility level, providing
 484 a basis for training and evaluating models under diverse and realistic SAR scenarios. We anticipate
 485 that ForestPersons can contribute to autonomous SAR efforts using ground-based robotic platforms
 486 such as unmanned ground vehicles.

486 **Ethics Statement.** All scenes in ForestPersons consist of staged missing person scenarios with
487 voluntary participants, ensuring safety and ethical compliance. No real missing person cases are
488 included. Face anonymization was applied as described in Section 3.2, ensuring that no personal
489 or identifiable information remains. The dataset will be released under a research-only license,
490 and responsible and transparent use is strongly encouraged; **any harmful or military use is strictly**
491 **prohibited.**

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Abraham Bachrach, Anton de Winter, Ruijie He, Garrett Hemann, Samuel Prentice, and Nicholas Roy.
543 Range- robust autonomous navigation in gps-denied environments. In *2010 IEEE International*
544 *Conference on Robotics and Automation*, Anchorage, Alaska, US, 2010. IEEE. doi: 10.1109/
545 ROBOT.2010.5509990.

546 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
547 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

548

549 Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel Murray, Kotaro Nakayama, Yu-
550 taka Matsuo, and Helmut Prendinger. Okutama-action: An aerial view video dataset for concurrent
551 human action detection. In *Proceedings of the IEEE conference on computer vision and pattern*
552 *recognition workshops (CVPRW)*, pp. 28–35, 2017. doi: 10.1109/CVPRW.2017.267.

553 Justin Brooks. Coco annotator. <https://github.com/jsbroks/coco-annotator/>,
554 2019.

555

556 Daniel Broyles, Christopher R Hayner, and Karen Leung. Wisard: A labeled visual and thermal image
557 dataset for wilderness search and rescue. In *2022 IEEE/RSJ International Conference on Intelligent*
558 *Robots and Systems (IROS)*, pp. 9467–9474. IEEE, 2022. doi: 10.1109/IROS47612.2022.9981298.

559 Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin,
560 and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmentations. *Information*,
561 11(2), 2020. ISSN 2078-2489. doi: 10.3390/info11020125. URL <https://www.mdpi.com/2078-2489/11/2/125>.

563

564 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
565 Sergey Zagoruyko. End-to-end object detection with transformers. In *Proceedings of the*
566 *European Conference on Computer Vision (ECCV)*, 2020. URL <https://github.com/facebookresearch/detr>.

567

568 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
569 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
570 *International Conference on Computer Vision (ICCV)*, 2021.

571

572 Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
573 Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
574 Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
575 Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
576 *arXiv preprint arXiv:1906.07155*, 2019.

577

578 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and Psychological*
579 *Measurement*, 20(1):37–46, 1960. doi: 10.1177/001316446002000104.

580

581 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
582 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
583 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
584 *arXiv preprint arXiv:2507.06261*, 2025.

585

586 Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
587 convolutional networks. *2017 IEEE International Conference on Computer Vision (ICCV)*, 2017.

588

589 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
590 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
591 weights and open data for state-of-the-art vision-language models. In *Proceedings of the Computer*
592 *Vision and Pattern Recognition Conference*, pp. 91–104, 2025.

593

594 Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang Zhang,
595 Qingming Huang, and Qi Tian. The unmanned aerial vehicle benchmark: Object detection and
596 tracking. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 370–386,
597 2018.

594 Joseph L. Fleiss. Measuring nominal scale agreement among many raters. *Psychological Bulletin*, 76
 595 (5):378–382, 1971. doi: 10.1037/h0031619.

596

597 Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, and Wei-Shi
 598 Zheng. Llmdet: Learning strong open-vocabulary object detectors under the supervision of large
 599 language models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 600 14987–14997, 2025.

601 Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021.
 602 *arXiv preprint arXiv:2107.08430*, 2021.

603

604 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
 605 vision benchmark suite. In *2012 IEEE conference on computer vision and pattern recognition*
 606 (CVPR), pp. 3354–3361. IEEE, 2012.

607

608 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 609 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 610 pp. 770–778, 2016.

611 Youkyung Hong, Suseong Kim, Youngsun Kwon, Sanghyouk Choi, and Jihun Cha. Safe and efficient
 612 exploration path planning for unmanned aerial vehicle in forest environments. *Aerospace*, 11(7):
 613 598, 2024.

614

615 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 616 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 617 *arXiv:2410.21276*, 2024.

618

619 Laura Jarin-Lipschitz, Xu Liu, Yuezhan Tao, and Vijay Kumar. Experiments in adaptive replanning
 620 for fast autonomous flight in forests. In *2022 IEEE International Conference on Robotics and*
 621 *Automation (ICRA)*. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9812235.

622

623 Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024. URL <https://github.com/ultralytics/ultralytics>.

624

625 Mirela Kundid Vasić and Vladan Papić. Improving the model for person detection in aerial image
 626 sequences using the displacement vector: A search and rescue scenario. *Drones*, 6(1):19, 2022.

627

628 Youngsun Kwon, Suseong Kim, Youkyung Hong, Sanghyouk Choi, and Jihun Cha. Online terrain
 629 mapping for exploring dense forests on unmanned aerial vehicles. In *2024 15th International*
 630 *Conference on Information and Communication Technology Convergence (ICTC)*, pp. 1676–1680.
 631 IEEE, 2024.

632

633 Sebastián Barbas Laina, Simon Boche, Sotiris Papatheodorou, Dimos Tzoumanikas, Simon Schaefer,
 634 Hanzhi Chen, and Stefan Leutenegger. Scalable autonomous drone flight in the forest with
 635 visual-inertial slam and dense submaps built without lidar. *arXiv preprint arXiv:2403.09596*, 2024.

636

637 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 638 and Yong Jae Lee. Glingen: Open-set grounded text-to-image generation. In *Proceedings of the*
 639 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22511–22521,
 640 June 2023.

641

642 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 643 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 644 *Conference on Computer Vision*, pp. 740–755. Springer, 2014.

645

646 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 647 detection. In *Proceedings of the IEEE international conference on computer vision (ICCV)*, pp.
 648 2980–2988, 2017.

649

650 Tzu-Jui Lin and Karl A. Sto. Autonomous surveying of plantation forests using multi-rotor uavs.
 651 *Drones*, 6(9):256, 2022. doi: 10.3390/drones6090256.

648 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 649 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 650 open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024.
 651

652 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
 653 Alexander C. Berg. Ssd: Single shot multibox detector. In *Proceedings of the European conference*
 654 *on computer vision (ECCV)*, pp. 21–37, 2016.

655 Xu Liu, Guilherme V Nardari, Fernando Cladera, Yuezhan Tao, Alex Zhou, Thomas Donnelly, Chao
 656 Qu, Steven W Chen, Roseli AF Romero, Camillo J Taylor, et al. Large-scale autonomous flight
 657 with real-time semantic slam under dense forest canopy. *IEEE Robotics and Automation Letters*, 7
 658 (2):5512–5519, 2022.

659

660 Yingying Liu, Fengqin Yao, Laihui Ding, Zhiwei Xu, Xiaogang Yang, and Shengke Wang. An
 661 image segmentation method based on transformer and multi-scale feature fusion for uav marine
 662 environment monitoring. In *2023 8th International Conference on Image, Vision and Computing*
 663 (*ICIVC*), pp. 328–336. IEEE, 2023.

664 Josep López. YOLOv8-Face: A yolov8-based face detection implementation. <https://github.com/Yusepp/YOLOv8-Face>, 2024.

665

666 Roberto Martin-Martin, Mihir Patel, Hamid Rezatofighi, Abhijeet Shenoi, Jun Young Gwak, Eric
 667 Frankel, Amir Sadeghian, and Silvio Savarese. Jrdb: A dataset and benchmark of egocentric robot
 668 visual perception of humans in built environments. *IEEE transactions on pattern analysis and*
 669 *machine intelligence*, 45(6):6748–6765, 2021.

670

671 Akhil Meethal, Eric Granger, and Marco Pedersoli. Cascaded zoom-in detector for high resolution
 672 aerial images. *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*
 673 (*CVPRW*), 2023.

674

675 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
 676 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
 677 open-vocabulary object detection. In *European conference on computer vision*, pp. 728–755.
 678 Springer, 2022.

679

680 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
 681 *Advances in Neural Information Processing Systems*, 36:72983–73007, 2023.

682

683 OpenAI. Gpt-5 system card. Technical report, OpenAI, August 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. [PDF].

684

685 Chenbin Pan, Wenbin He, Zhengzhong Tu, and Liu Ren. Dino-r1: Incentivizing reasoning capability
 686 in vision foundation models. *arXiv preprint arXiv:2505.24025*, 2025.

687

688 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 689 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 690 *intelligence*, 2018.

691

692 Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge Belongie, Alan Yuille,
 693 Philip Torr, and Song Bai. Occluded video instance segmentation: A benchmark. *International*
 694 *Journal of Computer Vision*, 130(8):2023–2042, 2022. doi: 10.1007/s11263-022-01594-0.

695

696 Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. *arXiv preprint*
 697 *arXiv:1804.02767*, 2018.

698

699 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 700 real-time object detection. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*
 701 (*CVPR*), pp. 779–788, 2016. doi: 10.1109/CVPR.2016.91.

702

703 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 704 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 705 2015.

702 Tianhe Ren, Shilong Liu, Feng Li, Hao Zhang, Ailing Zeng, Jie Yang, Xingyu Liao, Ding Jia,
 703 Hongyang Li, He Cao, Jianan Wang, Zhaoyang Zeng, Xianbiao Qi, Yuhui Yuan, Jianwei Yang,
 704 and Lei Zhang. detrex: Benchmarking detection transformers, 2023.

705

706 Yunfan Ren, Fangcheng Zhu, Guozheng Lu, Yixi Cai, Longji Yin, Fanze Kong, Jiarong Lin, Nan
 707 Chen, and Fu Zhang. Safety-assured high-speed navigation for mavs. *Science Robotics*, 10(98):
 708 eado6187, 2025.

709

710 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 711 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 712 22500–22510, June 2023.

713

714 Gozede Sahin and Laurent Itti. Hoot: Heavy occlusions in object tracking benchmark. In *Proceedings
 715 of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 1236–1245,
 716 2023.

717

718 Sasa Sambolek and Marina Iasic-Kos. Search and rescue image dataset for person detection (sard).
 719 *IEEE Dataport*, 2021. doi: 10.21227/ahxm-k331. URL <https://doi.org/10.21227/ahxm-k331>.

720

721 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 722 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE Conference on
 723 Computer Vision and Pattern Recognition (CVPR)*, June 2018.

724

725 Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian Sun. Crowdhuman:
 726 A benchmark for detecting human in a crowd. *arXiv preprint arXiv:1805.00123*, 2018. URL
 727 <https://arxiv.org/abs/1805.00123>.

728

729 Simon Speth, Artur Gonçalves, Bastien Rigault, Satoshi Suzuki, Mondher Bouazizi, Yutaka Matsuo,
 730 and Helmut Prendinger. Deep learning with rgb and thermal images onboard a drone for monitoring
 731 operations. *Journal of Field Robotics*, 39(6):840–868, 2022.

732

733 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 734 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 735 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 736 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 737 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

738

739 Wenbo Wei, Jun Wang, and Abhir Bhale. Coco-olac: A benchmark for occluded panoptic segmenta-
 740 tion and image understanding. In *Proceedings of the IEEE International Conference on Acoustics,
 741 Speech and Signal Processing (ICASSP)*, 2025.

742

743 Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
 744 <https://github.com/facebookresearch/detectron2>, 2019.

745

746 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 747 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
 748 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 749 4818–4829, 2024.

750

751 Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. Citypersons: A diverse dataset for pedestrian
 752 detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition
 753 (CVPR)*, pp. 3213–3221, 2017.

754

755 Xiangqing Zhang, Yan Feng, Nan Wang, Guohua Lu, and Shaohui Mei. Aerial person detection for
 756 search and rescue: Survey and benchmarks. *Journal of Remote Sensing*, 5, 2025.

757

758 Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, and Haian Huang.
 759 An open and comprehensive pipeline for unified object grounding and detection. *arXiv preprint
 760 arXiv:2401.02361*, 2024.

756 Boyu Zhou, Yichen Zhang, Xinyi Chen, and Shaojie Shen. Fuel: Fast uav exploration using in-
757 cre-
758 mental frontier structure and hierarchical planning. *IEEE Robotics and Automation Letters*, 6(2):
779–786, 2021. doi: 10.1109/LRA.2021.3051563.

760 Jingru Zhu, Xiandong Wang, Yi Liu, Qianwei Ji, Zhao Zhao, and Shengke Wang. Uavtinydet:
761 Tiny object detection in uav scenes. In *2022 7th International conference on image, vision and*
762 *computing (ICIVC)*, pp. 195–200. IEEE, 2022.

763 Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. De-
764 tection and tracking meet drones challenge. *IEEE transactions on pattern analysis and machine*
765 *intelligence*, 44(11):7380–7399, 2021.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
A MISSING PERSON DETECTION IN AUTONOMOUS SAR SYSTEM

Figure 7: **Missing person detection inference in autonomous SAR systems** (a) Autonomous Flight: A MAV performs a search mission under the forest canopy. (b) Onboard Inference: Frames captured by the onboard camera are processed locally on the MAV in real time using a lightweight detection model. (c) Edge Server Inference: Frames are transmitted via a commercial 5G network to a remote edge server, where inference is performed using a higher-capacity model.

As a future direction and an ongoing application of ForestPersons, we configured a missing person detection pipeline for autonomous Search and Rescue (SAR) missions. In this setup, frames captured by the onboard camera of a Micro Aerial Vehicle (MAV) flying under forest canopy conditions are processed by detection models trained on ForestPersons, which are deployed either onboard the MAV or on a remote edge server depending on mission requirements.

These two inference paths are selected based on the trade-off between latency, bandwidth, and model complexity. For onboard inference, lightweight object detection models such as variants of YOLO (Redmon et al., 2016) are optimized using tools such as NVIDIA TensorRT or Intel OpenVINO to meet real-time constraints on resource-limited hardware, which is particularly useful when low-latency response and independence from network connectivity are critical. In contrast, edge inference allows the use of more advanced models such as transformer-based state-of-the-art architectures like DINO (Caron et al., 2021). In this case, video streams are transmitted over a high-bandwidth wireless communication system, such as 5G, to a remote server with greater computational resources. This enables the use of advanced detection algorithms that leverage greater computational resources to achieve improved performance compared to what is feasible on resource-constrained onboard systems.

Figure 7 illustrates this architecture: (a) The MAV autonomously performs a low-altitude search mission under the forest canopy. (b) Each captured frame is processed in real time onboard using an optimized lightweight detection model. (c) Alternatively, the video stream is transmitted over a commercial 5G network to a remote edge server, where inference is performed by a more powerful model.

Field experiments were conducted under canopy conditions using both mannequins and human actors to simulate missing persons. In these trials, both onboard and edge inference modes successfully detected targets in realistic environments, demonstrating the effectiveness of our SAR system and the applicability of ForestPersons to real-world scenarios.

855
856
857
858
859
860
861
862
863

864 **B BENCHMARK MODELS**
865866 **B.1 IMPLEMENTATION DETAILS**
867868 **Table 5: Hyperparameter settings for training object detections.** Most configurations follow the
869 default setting of MMDetection and detrex.
870

871 Methods	Optimizer	Learning rate	Batch size	Weight decay	Epoch
872 YOLOv3 (Redmon & Farhadi, 2018)	SGD	1×10^{-3}	64	5×10^{-4}	273
873 YOLOX (Ge et al., 2021)	SGD	1×10^{-2}	64	5×10^{-4}	300
874 YOLOv11 (Jocher & Qiu, 2024)	SGD	1×10^{-2}	16	5×10^{-4}	100
875 RetinaNet (Lin et al., 2017)	SGD	5×10^{-3}	16	1×10^{-4}	12
876 Faster R-CNN (Ren et al., 2015)	SGD	2×10^{-2}	16	1×10^{-4}	12
877 Deformable Faster R-CNN (Jocher & Qiu, 2024)	SGD	2×10^{-2}	16	1×10^{-4}	12
878 SSD (Liu et al., 2016)	SGD	1.5×10^{-2}	192	4×10^{-5}	120
879 DETR (Carion et al., 2020)	AdamW	1×10^{-4}	16	1×10^{-4}	150
880 DINO (Caron et al., 2021)	AdamW	1×10^{-4}	16	1×10^{-4}	12
881 CZ Det (Meethal et al., 2023)	SGD	1×10^{-2}	32	1×10^{-4}	30

882 In this section, we describe the hyperparameter settings used to train each object detection model for
883 benchmarking purposes. Table 5 summarizes the configurations for all models. Most hyperparameters
884 follow the default settings provided by the MMDetection (Chen et al., 2019), detrex (Ren et al., 2023)
885 and detectron2 (Wu et al., 2019) frameworks, except RetinaNet, for which we reduced the learning
886 rate compared to the default setting to prevent training instability observed with higher values.
887

888 **B.2 ANALYSIS OF BENCHMARK MODELS**
889

890 Given the critical nature of SAR missions, achieving high
891 recall is a primary requirement, necessitating a more de-
892 liberate examination of the precision-recall trade-off com-
893 pared to conventional object detection tasks. To investigate
894 this aspect, we present the precision-recall curve at an IoU
895 threshold of 0.5, as illustrated in Figure 8. The precision-
896 recall curve is constructed by sorting predicted bounding
897 boxes in descending order of confidence scores, with in-
898 creasing confidence thresholds prioritizing precision over
899 recall, while lower thresholds capture more true positives
900 at the cost of introducing false positives. The resulting
901 shape of the curve characterizes how each model behaves
902 under varying confidence thresholds, offering insight into
903 its sensitivity to recall-focused operating points.

904 In Figure 8, CZ Det (Meethal et al., 2023) (cyan) con-
905 sistently maintains high recall even at low confidence thresholds, whereas SSD (Liu et al., 2016) (pink)
906 exhibits a clear limitation in its recall capacity. Specifically, even when all predicted bounding boxes
907 are treated as true positives, its curve saturates below the recall levels reached by DINO. This indicates
908 a structural limitation in SSD’s detection capability that cannot be overcome by threshold tuning
909 alone. Such findings indicate that, particularly in SAR contexts, the upper bound of recall achievable
910 by a model constitutes an essential metric in itself, complementing traditional aggregate measures
911 such as mAP.

912 In practice, the confidence threshold is often selected based on the point that maximizes the F1-score,
913 calculated on a validation or a test set. However, in recall-sensitive domains such as SAR, it may be
914 more appropriate to deliberately reduce the threshold to prioritize recall, even at the expense of an
915 increased false positive rate. This strategy aligns with real-world operational considerations, wherein
916 human operators may prefer investigating more candidate detections rather than risking failure to
917 detect actual missing persons. Therefore, we argue that the development and evaluation of object
918 detectors for SAR applications should incorporate not only AP but also (1) the maximum attainable
919 recall and (2) the recall level at which precision begins to decline sharply. These indicators are closely

Figure 8: **Precision-Recall curves of baseline object detection models.**

918 tied to the likelihood of successfully locating and rescuing missing persons, and thus serve as critical
 919 performance criteria in SAR applications.
 920

921 C CASE STUDY: SUCCESSES, FAILURES, AND FUTURE DIRECTIONS

922 C.1 LIMITATIONS OF GENERALIZATION FROM PRIOR BENCHMARKS

939 **Figure 9: Failure cases of object detection models trained on prior UAV-based SAR and Ground-
 940 level Person datasets.** Green boxes indicate ground-truth bounding boxes, and red boxes represent
 941 model predictions. These examples illustrate the limitations of existing datasets in handling under-
 942 canopy SAR scenarios.

943
 944 ForestPersons differs from conventional detection benchmarks in several key aspects, including
 945 viewpoint, environmental complexity, and the conditions of human targets. To assess generaliz-
 946 ability, we evaluated models trained on existing SAR datasets and ground-level person datasets
 947 using the ForestPersons test split. Specifically, we selected SARD (Sambolek & Ivisic-Kos, 2021),
 948 HERIDAL (Kundid Vasić & Papić, 2022), and WiSARD (Broyles et al., 2022) as representative
 949 UAV-based SAR datasets, and COCOPersons Lin et al. (2014), CrowdHuman (Shao et al., 2018), and
 950 CityPersons (Zhang et al., 2017) as representative ground-level person datasets. For all experiments,
 951 we used Faster R-CNN (Ren et al., 2015) as the object detection model.

952 As illustrated in Figure 9, models trained on these existing datasets exhibit limited generalizability
 953 when applied to under-canopy SAR scenarios. This outcome is expected: prior UAV-based SAR
 954 datasets primarily contain aerial images, which differ significantly from the ground-level perspectives
 955 that are characteristic of under-canopy tasks. While ground-level datasets more closely reflect the
 956 viewpoint of MAV flights compared to conventional UAV-based SAR datasets, they still predominantly
 957 feature upright and fully visible individuals. Consequently, they fall short in representing challenging
 958 cases such as non-standing or heavily occluded persons, which are common in forest search scenarios.

960 C.2 EVALUATION ON FORESTPERSONS

961 We then evaluated a model trained on the ForestPersons training split
 962 to assess the detection performance gains from using data specifically
 963 designed to reflect under-canopy SAR conditions. As shown in Figure 10,
 964 the Faster R-CNN model trained on ForestPersons successfully detects
 965 missing persons that were not captured by models trained on prior UAV-
 966 based or ground-level dataset. This provides qualitative evidence that our
 967 dataset better suits SAR tasks in under-canopy environments.

968 We further investigated the factors contributing to prediction failures on
 969 the ForestPersons test set, even when using models trained on ForestPer-
 970 sons. Specifically, we analyzed the prediction results of a Faster R-CNN
 971 model trained on ForestPersons by visualizing the confusion matrix, as

GT: Positive	TP: 19794 (74.8%)	FN: 1073 (4.1%)
	FP: 5579 (21.1%)	
GT: Negative		TN: N/A
	Pred: Positive	Pred: Negative

972 **Figure 11: Confusion
 973 matrix of the object de-
 974 tection model trained
 975 with ForestPersons.**

985 **Figure 10: Success cases of object detection models trained on ForestPersons.** Green boxes
986 indicate ground-truth bounding boxes, and red boxes represent model predictions. The models trained
987 with ForestPersons detect the failure case of the models trained with the existing dataset.

1003 **Figure 12: Failure cases of object detection models trained on ForestPersons.** Green boxes indicate
1004 ground-truth bounding boxes, and red boxes represent model predictions. Ground-truth instances
1005 with high occlusion or small bounding box size tend to be frequently missed by the detection model.

1010 shown in Figure 11. The confusion matrix summarizes all predictions on the test set and reveals that
1011 false positives significantly outnumber false negatives.

1012 However, given the critical nature of SAR tasks, where false negatives are significantly more detri-
1013 mental than false positives, we focused our analysis on ground-truth instances that were classified as
1014 false negatives. Figure 12 presents visual examples of these cases. As expected, the model struggled
1015 to detect individuals with small bounding boxes or under heavy occlusion by natural obstacles.

1016 Interestingly, the winter subset yields noticeably fewer false negatives, suggesting that winter images
1017 are generally less challenging for the detection model. A plausible explanation is that individuals
1018 in winter scenes are more visually salient due to the higher contrast between individuals and the
1019 snow-covered background, which facilitates easier detection. This explanation is supported by the
1020 experiment in Table 4b, where a model trained exclusively on winter images generalized worse
1021 to the test set than a model trained only on summer images. This indicates that winter images
1022 may lack sufficient variability to support effective generalization, which is why they are easier for
1023 missing person detection, ultimately reducing the likelihood of false negatives. In contrast, summer
1024 images, which often contain dense vegetation leading to various occlusions, contribute more to the
1025 generalization ability of the model. These qualitative and quantitative findings help us understand the
exceptionally low incidence of false negatives in winter images.

Figure 13: **Detection cases for models trained with data labeled by specific poses.** Green boxes indicate ground-truth bounding boxes, and red boxes represent model predictions. Each row corresponds to a model, and each column corresponds to the ground truth pose in the test image. Models trained on a specific pose often fail to detect individuals in other poses and sometimes identify incorrect regions as humans.

Figure 14: **Detection cases for models trained with seasonal data.** Green boxes indicate ground-truth bounding boxes, and red boxes represent model predictions. Each row shows detection from a model trained on data from a specific season, while each column represents test data from a particular season. Models trained on limited seasonal data show clear seasonal bias when applied to scenes from different seasons, such as failing to detect people or generating inaccurate bounding boxes.

C.3 GENERALIZATION FAILURES FROM LIMITED ATTRIBUTE TRAINING

Extending the results shown in Table 4, we further analyzed how restricting training data to specific attributes, such as pose or season, affects the performance of Faster R-CNN. In Figure 13, models trained only on standing poses perform poorly when detecting people in other postures, such as sitting or lying. These models mainly respond to upright shapes, often mistaking vertical objects like tree trunks for people, and failing to detect people who are lying on the ground. This indicates that the model has become overly reliant on shape cues associated with upright postures observed during training, and consequently fails to generalize to sitting or lying poses.

Figure 15: **Confusion matrices of object detection models trained on summer and winter datasets.** (Left) Summer-trained model; (Right) Winter-trained model.

A similar pattern is seen in the seasonal experiments in Figure 14. Models trained only on summer images, which contain more vegetation and frequent occlusion, show slightly better generalization to other seasons. The presence of dense vegetation and natural occlusion in summer scenes appears to help the model learn features that generalize better to different seasonal environments. However, these models still produce many errors in winter scenes, such as false positives caused by mistaking snow-covered terrain for people. In contrast, models trained only on winter images perform significantly worse in other seasons. Winter scenes usually lack vegetation and have fewer occluding elements, which limits the diversity of visual cues the model can learn from. As a result, these models often fail to detect people in summer scenes with dense foliage and complex backgrounds, leading to frequent false negatives. This tendency is reflected in the confusion matrices shown in Figure 15. These findings indicate that the visual properties of each season shape how the model learns and where it tends to fail, and that training on a single season is not sufficient to ensure robustness across seasonal conditions.

Unlike models trained on a single season or pose, the model trained on the complete dataset, which includes a full range of poses and seasonal conditions, performs more reliably, as shown in the last rows of Figure 13 and Figure 14. These results demonstrate the effectiveness of ForestPersons as a benchmark that reflects the diversity and complexity of real-world SAR conditions. By providing extensive variation in human pose, occlusion, and environmental factors, ForestPersons supports the development of more generalizable models and serves as a solid foundation for advancing robust missing person detection in challenging under-canopy search tasks.

C.4 LIMITATIONS EXPOSED AND DIRECTIONS FOR FUTURE SAR DETECTION

Our qualitative analysis highlights the utility of ForestPersons in diagnosing the generalization and structural limitations of representative detection models in the context of SAR missions. ForestPersons introduces new challenges by incorporating vegetation-rich environments that frequently cause occlusion, diverse human poses including non-upright postures, and seasonal conditions such as snow that are often absent in prior datasets. These findings show that models trained on narrow visual patterns may seem reliable in simplified test environments but fail to maintain the same level of reliability when applied to real-world conditions. While ForestPersons was carefully designed to cover a wide range of poses, occlusion levels, and seasonal conditions, our analysis suggests that some failure cases may still remain undetected. Dataset diversity is therefore critical for revealing model limitations, but it alone may not be sufficient.

To address this, complementary approaches such as optimizing viewpoint and trajectory design can further reduce the inherent difficulty of the detection task and enhance practical performance in the field. One such approach is viewpoint-aware flight planning, which can support vision models by improving the visibility of missing persons. By explicitly accounting for the MAV’s camera field of view, such planning can help ensure that individuals are captured from favorable angles and

Figure 16: **Examples of false positive cases in person-absent situations.** Red boxes represent model predictions.

distances. In contrast, coarse trajectories that simply follow major roads may expose the model to less informative and more occluded perspectives. Therefore, alongside the use of diverse datasets like ForestPersons, flight strategies that structurally facilitate detection should be explored as a complementary direction, particularly in the context of autonomous SAR missions.

C.5 EVALUATION ON PERSON-ABSENT SITUATIONS

ForestPersons was primarily designed to capture realistic SAR scenarios in which a missing person is present. Such data is significantly more difficult and costly to collect and annotate than person-absent forest imagery, which is comparatively easier to obtain. Our initial focus was therefore on ensuring high-quality coverage of person-present situations.

To examine model behavior in person-absent settings, we curated a separate set of 193 images without humans and evaluated a model trained solely on ForestPersons. The model produced 13 false detections, corresponding to a false positive rate (FPR) of approximately 6.7%. This negative set is publicly released in a separate directory, `379_FPV_No_Person_summer_forest`, so that researchers can directly benchmark false positive performance under person-absent conditions. Representative false positive cases are shown in Fig. 16.

Looking forward, we plan to extend ForestPersons by systematically including additional person-absent imagery using our MAV-based collection system (Fig. 7). This expansion will provide more balanced coverage of positive and negative cases, enabling comprehensive training and benchmarking of models under realistic SAR conditions.

D DATA COLLECTION GUIDELINES

ForestPersons was constructed to reflect realistic search scenarios for missing persons in forested environments. All video sequences were recorded using handheld or tripod-mounted cameras, including GoPro HERO 9 Black, Sony SLT-A57, and See3CAM 24CUG models. The cameras were positioned to simulate the typical flight altitudes and viewing angles of low-altitude MAVs operating under forest canopy, capturing slightly downward-facing perspectives similar to those used in actual search operations. All recordings were captured at a frame rate of at least 20 FPS, with resolution settings adjusted depending on the camera model used.

D.1 LOCATIONS: FOREST ENVIRONMENTS RELEVANT TO SAR MISSIONS

All data were collected in forested regions where real-world missing person incidents are likely to occur. We selected diverse environments including dense forest interiors, valleys, and forest entrances to reflect typical terrain encountered during SAR missions. These locations span a range of vegetation density and visibility conditions, from heavily occluded forest interiors to forest edge regions with sparse vegetation.

Figure 17: **Examples across various visibility levels and poses.** Images are grouped by visibility level (rows) and pose (columns), each drawn from distinct scene contexts.

Each environment includes natural sources of visual occlusion such as tree branches, underbrush, uneven terrain, and varying vegetation density. We aimed to incorporate diverse spatial layouts that challenge missing person detection, including not only typical forest trails but also rocky valleys and steep slopes covered with dense foliage. This diversity enables the dataset to capture a broad range of search scenarios encountered in SAR missions.

D.2 WEATHER AND TIME OF DAY

To reflect the environmental diversity encountered in real-world search operations, data were collected under various weather and lighting conditions. All video sequences were captured during daytime or twilight hours before sunset, when there was sufficient natural light. Night time scenes were excluded due to safety concerns during field deployment and the limited effectiveness of RGB-based detection in low-light conditions.

Weather and seasonal conditions included sunny, overcast, and snow-covered winter environments. These variations allowed us to capture diverse visual appearances, including strong shadows under direct sunlight, diffuse lighting on cloudy days, and high reflectance and severe occlusion in snowy terrain. Each sequence is accompanied by metadata describing both the season and weather, enabling evaluations under specific environmental contexts.

D.3 SUBJECT BEHAVIOR AND CAPTURE STRATEGY

To simulate realistic SAR scenarios, actors in the ForestPersons performed a wide range of behaviors, including standing, sitting, lying down, and natural transitions between these states. Transitional poses (e.g., moving from a seated to a standing position) were annotated with the nearest posture

1242 label, typically sitting or standing. Although this labeling may involve some degree of annotator
 1243 subjectivity, its impact on the overall data quality is minimal. These behavioral variations reflect the
 1244 diversity of human configurations encountered in SAR operations.

1245 Camera platforms included handheld rigs and tripods. To emulate the viewpoint of MAVs operating
 1246 under canopy, operators followed movement paths consistent with low-altitude MAV trajectories.
 1247 Camera height, angle, and distance were varied within and across sequences to simulate oblique
 1248 and horizontal viewpoints. This variation allowed us to capture human subjects from perspectives
 1249 representative of realistic aerial search conditions.

1250 A key aspect of our strategy was the active creation of natural occlusion. Rather than using fixed oc-
 1251 clusion setups, camera operators navigated around tree branches, bushes, or through dense vegetation
 1252 to partially obscure subjects in dynamic and realistic ways. In difficult environments such as snowy
 1253 or rainy terrain, where operator movement posed safety risks, the camera was fixed and actors moved
 1254 within the frame to simulate occlusion safely.

1256 E VIDEO SEQUENCE-LEVEL DIFFICULTY ESTIMATION

1258 ForestPersons was collected as a set of video sequences, from which image frames were extracted to
 1259 construct the final dataset. In this setup, if frames from the same sequence are split across training,
 1260 validation, and test splits, it can lead to overestimated model performance. This is because detection
 1261 models may implicitly learn scene-specific backgrounds or appearances during training, and then
 1262 encounter similar contexts during evaluation, resulting in inflated accuracy that does not reflect true
 1263 generalization. To avoid such overlap, we split the dataset at the sequence level, ensuring that each
 1264 video sequence appears in only one of the train, validation, or test splits.

1266 E.1 NECESSITY OF DIFFICULTY-AWARE DATA SPLITTING

1268 A naive approach such as randomly assigning sequences to each split, or manually selecting them
 1269 based on subjective judgment (e.g., "easy-looking" or "challenging" scenes), can lead to distributional
 1270 bias across splits. For example, one split might inadvertently contain mostly clear and well-lit
 1271 scenarios, while another might be dominated by occluded or low-visibility scenes. Such imbalance
 1272 can undermine the fairness and interpretability of model comparisons.

1273 To mitigate this issue, we introduced a model-based method for estimating sequence-level difficulty,
 1274 providing a principled way to assess and distribute difficulty across the dataset.

1276 E.2 MODEL-BASED DIFFICULTY ESTIMATION

1278 We employed a Faster R-CNN (Ren et al., 2015) object detector pretrained on the COCO (Lin et al.,
 1279 2014) dataset to estimate the detection difficulty of each sequence. For each sequence, we applied the
 1280 detector to all images and computed the Average Precision (AP). The difficulty score for a sequence
 1281 s is then defined as:

$$1282 \text{Difficulty}(s) = 1 - \text{AP}_{50}(s) \quad (1)$$

1284 Here, $\text{AP}_{50}(s)$ denotes the performance of the detector model on sequence s , averaged over all
 1285 annotated frames. Higher AP values indicate that the sequence is easier to detect, while a lower AP
 1286 corresponds to more challenging scenes. This formulation provides an objective difficulty measure,
 1287 independent of annotator intuition or handcrafted heuristics.

1289 E.3 DIFFICULTY-AWARE DATASET SPLITTING

1291 Based on the estimated difficulty scores, we sorted all video sequences in ascending order of AP
 1292 (i.e., increasing difficulty) and allocated them to train, validation, and test splits to ensure balanced
 1293 difficulty distribution. For example, sequences were interleaved across splits so that each contained a
 1294 diverse mixture of easy, medium, and hard samples.

1295 As shown in Figure 18, the difficulty curve of ForestPersons illustrates that each sequence spans a
 1296 range of detection difficulty. Each point corresponds to a video sequence, sorted by its model-based

Figure 18: Difficulty Curve across Train, Validation, and Test Splits

difficulty score $1 - AP_{50}(s)$. The plot illustrates that the dataset spans a broad range of difficulty levels, ensuring balanced evaluation across splits.

F QUANTITATIVE ANALYSIS OF ANNOTATION QUALITY

To evaluate the consistency and reliability of our annotations, we conducted a controlled user study with six independent annotators who were not involved in the original labeling process. Each annotator was provided with our annotation guideline (Section 3.2) but had no access to the original labels. We randomly sampled 241 images, covering 12 combinations of pose and visibility attributes and including a total of 525 bounding boxes.

Table 6 reports performance metrics with respect to the ground-truth boxes, where a user annotation was considered correct if the IoU exceeded 0.5. Annotators generally achieved high precision, recall, and F1 scores, indicating reliable bounding box quality.

Table 6: Bounding Box Inter-Annotator Agreements.

	Annotator A	Annotator B	Annotator C	Annotator D	Annotator E	Annotator F
mean IoU	0.8112	0.7936	0.8249	0.8047	0.7749	0.7975
Precision	0.9432	0.9226	0.9298	0.9374	0.8643	0.9366
Recall	0.9181	0.9086	0.9333	0.8552	0.8495	0.8438
F1 Score	0.9305	0.9155	0.9316	0.8944	0.8569	0.8878
True Positive	482	477	490	449	446	443
False Positive	29	40	40	37	70	30
False Negative	43	48	35	76	79	82

Table 7 reports the overall inter-annotator agreements for pose and visibility attributes, while Table 8 presents Cohen's κ values across annotators for each attribute. Pose labels achieved high agreement (Percent Agreement ≈ 0.89 , Cohen's $\kappa > 0.83$ Cohen (1960), and Fleiss' $\kappa = 0.7414$ Fleiss (1971)), indicating that annotators could reliably distinguish between different human poses. By conventional interpretation of Cohen's κ , values above 0.81 are regarded as *almost perfect* agreement. In contrast, visibility attributes showed relatively lower agreement (Percent Agreement ≈ 0.62 , Cohen's $\kappa \approx 0.45$, Fleiss' $\kappa = 0.5048$), corresponding to the *moderate* agreement range (0.41–0.60).

We note that these challenges are not unique to ForestPersons. The difficulty of consistently labeling occlusion has been widely reported across benchmarks involving partially visible humans. For example, in the CrowdHuman dataset (Shao et al., 2018), annotators are instructed to complete the full-body bounding box even when the person is partially hidden, which often introduces variance due to differing subjective interpretations. Similarly, COCO-OLAC (Wei et al., 2025) defines occlusion levels using estimated occlusion ratios, requiring annotators to mentally reconstruct invisible body

1350

Table 7: Attributes Inter-Annotator Agreements.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

parts from context. The HOOT (Sahin & Itti, 2023) explicitly draws occlusion masks and categorizes occlusion types, while OVIS (Qi et al., 2022) adopts bounding-box occlusion rates (BOR) derived from overlaps. Even in OVIS, where IoU-based measures provide more objective criteria, some degree of subjectivity remains unavoidable in the initial classification process. In summary, although recent benchmarks attempt to quantify occlusion with numerical ratios or overlap measures, the process of determining visibility levels cannot be fully disentangled from heuristic estimation.

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

G INFRARED DATASET FOR MISSING PERSON DETECTION

1383

1384

1385

1386

1387

1388

1389

1390

Although ForestPersons is composed exclusively of RGB imagery to focus on research challenges central to computer vision, such as complex canopy occlusion patterns, illumination variability, and the visual intricacies of forested environments, infrared (IR) sensing can be highly advantageous in real-world Search and Rescue (SAR) operations. IR sensors offer robustness to such visual complexities, enabling reliable detection of thermal signatures even under severe vegetation occlusion or low-visibility conditions. To reflect this practical relevance, we additionally constructed a dedicated IR dataset tailored for missing-person detection missions.

1391

1392

1393

1394

1395

1396

1397

1398

H ZERO-SHOT EVALUATION WITH VISION-LANGUAGE MODELS

1399

1400

1401

1402

1403

To address the rapid advancements in multimodal AI, we expanded our evaluation to include state-of-the-art Vision-Language Models (VLMs). While our primary benchmark focuses on domain-specific object detectors, evaluating modern VLMs provides insight into whether their generalized knowledge can bridge the performance gap in the specific context of under-canopy person detection without fine-tuning.

Figure 19: **Examples of thermal IR missing person images.** Compared to the RGB images shown in Fig. 3, thermal IR imagery simplifies complex visual patterns and reveals clearer cues for detecting missing persons.

Experimental Setup. We categorized the evaluated models into three distinct groups to ensure a comprehensive landscape analysis:

1. **Proprietary MLLMs (Commercial SOTA):** High-performing closed-source models accessed via APIs, known for massive scale and reasoning capabilities. We evaluated Google’s Gemini 2.5 series (Comanici et al., 2025) and OpenAI’s GPT-4o (Hurst et al., 2024) and GPT-5 OpenAI (2025).
2. **Open-weight MLLMs:** Leading open-source models that allow transparent inference. We selected the Molmo series (Deitke et al., 2025), known for efficient visual grounding, and the Qwen3-VL series (Bai et al., 2025).
3. **Open-vocabulary Object Detectors:** Unlike generative MLLMs, these models are architecturally designed for localization tasks using vision-language alignment. We tested a wide range of models including OWL-ViT (Minderer et al., 2022), OWL-ViT (Minderer et al., 2023), Florence-2 (Xiao et al., 2024), Grounding DINO (Liu et al., 2024), MM-Grounding-DINO (Zhao et al., 2024), and LLMDet (Fu et al., 2025).

Prompt Engineering for Generative Models. Since generative MLLMs (Groups 1 and 2) lack explicit object detection heads, we designed a structured prompt to enforce a strictly formatted bounding box output. As illustrated in Figure 20, the prompt instructs the model to act as a detection assistant and return normalized coordinates in a strict JSON format. Responses failing to parse into this schema were discarded as invalid predictions.

Evaluation Results. The zero-shot evaluation results on the ForestPersons test set are summarized in Table 9. The experiments reveal a distinct performance divide between generative MLLMs and specialized open-vocabulary detectors.

Generative MLLMs, despite their strong reasoning capabilities, generally struggled with precise localization tasks. Most proprietary models, including GPT-4o, GPT-5 and Gemini 2.5 Flash, exhibited

```

1458
1459 Object detection prompt for multimodal large language models
1460 You are an object detection assistant for missing person detection
1461 in forest scenes.
1462 Detect all visible persons in the image.
1463 Return STRICT JSON ONLY. No explanations, no markdown, no comments.
1464 Output format:
1465 {
1466     "detections": [
1467         {
1468             "bbox": [x_min, y_min, width, height]
1469         }
1470     ]
1471 }
1472 Rules:
1473 - bbox is in COCO style: [x_min, y_min, width, height].
1474 - All coordinates are normalized floats in [0, 1]
1475     relative to the full image width/height.
1476 - Ensure:
1477     0 <= x_min <= 1,
1478     0 <= y_min <= 1,
1479     0 < width <= 1,
1480     0 < height <= 1,
1481     x_min + width <= 1,
1482     y_min + height <= 1.
1483 - If there is no person, return "detections": [].
1484 - Do NOT include any other keys.
1485 - Do NOT wrap the JSON in code fences.
1486 - Do NOT add trailing commas or extra whitespace.
1487 Your output must be valid JSON parsable by Python json.loads.
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```

Figure 20: Prompt template used to enforce structured bounding box outputs from generative MLLMs.

negligible performance. This underperformance stems largely from the architectural discrepancy between their autoregressive text-generation objectives and the precise coordinate regression required for detection, compounded by a lack of domain-specific supervision. An exception was Gemini 2.5 Pro, which demonstrated limited localization capability with an AP_{50} of 11.5%, yet it still fell significantly short of specialized detectors. Nevertheless, this emerging capability suggests that future general-purpose VLMs, with improved spatial alignment, hold the potential to bridge this gap.

A similar trend was observed in open-weight models. The Molmo series failed to produce valid detections, likely due to its training objective on the Pixmo dataset (Deitke et al., 2025), which emphasizes pointing and counting rather than explicit bounding box regression. Furthermore, within the Qwen series, the massive 235B model performed worse than the smaller 8B model. This suggests that scaling up parameters improves semantic generation but does not necessarily translate to better spatial precision or adherence to strict coordinate formatting constraints.

In contrast, open-vocabulary detectors designed explicitly for localization demonstrated significantly better performance. Grounding DINO and OWL-ViT achieved respectable zero-shot scores with an AP_{50} of 77.8% and 77.2%, respectively. However, even the best-performing zero-shot models still lag behind the domain-specific baseline established in our work (Faster R-CNN trained on ForestPersons achieves an AP_{50} of 92.7%). This gap confirms that while modern VLMs offer impressive generalization, domain-specific training remains essential for reliable person detection in complex, occluded forest environments.

I EVALUATING SAR-TRAINED MODELS ON A REAL MAV DATASET

ForestPersons was constructed in a controlled environment using both handheld and tripod-mounted setups to ensure high quality and diversity. Given that the images were not acquired through UAVs

1512 Table 9: **VLM detection results on ForestPersons.** Evaluation of vision–language models (VLMs),
 1513 including closed-weight, open-weight, and open-vocabulary variants, on the ForestPersons test split.
 1514

1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	Test Split			
																1515	1516	1517	1518
Proprietary MLLMs																			
				GPT-4o (Hurst et al., 2024)												0.0	0.2	0.0	0.6
				GPT-5 (OpenAI, 2025)												0.1	0.7	0.0	1.4
				Gemini 2.5 Flash (Comanici et al., 2025)												0.0	0.2	0.0	0.6
				Gemini 2.5 Pro (Comanici et al., 2025)												2.2	11.5	0.1	8.1
Open-weight MLLMs																			
				Molmo 7B-O (Deitke et al., 2025)												0.0	0.0	0.0	0.0
				Molmo 7B-D (Deitke et al., 2025)												0.0	0.0	0.0	0.0
				Molmo 72B (Deitke et al., 2025)												0.0	0.0	0.0	0.1
				Qwen3-VL 8B (Bai et al., 2025)												5.0	21.4	0.6	14.2
				Qwen3-VL 235B (Bai et al., 2025)												0.0	0.1	0.0	0.7
Open-vocabulary Object Detectors																			
				OWL-ViT (Minderer et al., 2022)												49.2	77.2	56.8	54.8
				OWLv2 (Minderer et al., 2023)												42.3	67.9	47.9	49.5
				Florence2 (Xiao et al., 2024)												27.3	44.0	30.2	43.9
				Grounding-DINO (Liu et al., 2024)												52.4	77.8	58.8	58.9
				MM-Grounding-DINO (Zhao et al., 2024)												46.1	66.4	53.5	52.1
				LLMDet (Fu et al., 2025)												26.3	42.5	28.4	68.7

1539 or MAVs, verifying the existence of a domain gap with real-world drone footage is essential. For
 1540 instance, imagery captured via UAVs or MAVs typically exhibits specific artifacts, such as motion
 1541 blur or sensor noise resulting from abrupt changes in illumination. These characteristics may not be
 1542 fully represented in our dataset, which was acquired by human operators in a controlled setting.

1543 To address this empirically, we conducted additional experiments by collecting a new test dataset of
 1544 24,209 images using an actual MAV, as shown in Fig. 7 (a), operating in SAR-relevant forest
 1545 environments. This new dataset inherently contains potential real-world visual artifacts (e.g., occasional
 1546 motion blur, sensor noise). We recorded two individuals in standing, sitting, and lying postures across
 1547 multiple background settings.

1548 Upon qualitative inspection, we observed that the acquired images were predominantly clean, with
 1549 drone-induced artifacts such as motion blur and vibrations (i.e., motor wash) being rarely present.
 1550 This suggests that the ForestPersons remains robust when evaluated against data collected by actual
 1551 drones.

1552 To quantitatively validate the observation that the actual MAV data consists mostly of clean images,
 1553 we created an “augmented” version of the ForestPersons training set. We applied transformations
 1554 simulating MAV-specific artifacts (e.g., motion blur, sensor noise) using the Albumentations li-
 1555 brary (Buslaev et al., 2020). Specifically, we use motion blur augmentation with blur limit be [3,
 1556 30], and ISO noise with color shift be [0.01, 0.05], and intensity be [0.1, 0.3]. All augmentations are
 1557 applied with probability 1 since we assume that these artifact are consistently applied when capturing
 1558 images with drones. Visual examples of these augmented images are provided in Fig. 22.

1559 Subsequently, we evaluated two models on the real-world drone test set: one trained on the original
 1560 ForestPersons (referred to as “artifact-free” data) and the other trained on the augmented ForestPersons
 1561 (referred to as “augmented” data). In this experiment, the Faster R-CNN model is used.

1562 The results are depicted in Table 10. Specifically, the model trained on our original, artifact-free
 1563 ForestPersons data achieved a high AP of 0.614 on the new real-world MAV test set. This performance
 1564 is robust and demonstrates that our handheld data collection method generalizes well to the actual
 1565 drone domain. Our qualitative analysis of the MAV dataset confirms this, showing that the vast

1566 Table 10: Model performance comparison between the Faster-RCNN model trained with motion-blur
 1567 augmented data, and the model trained with original data with respect to real MAV dataset.

Train dataset	AP	AP ₅₀	AP ₇₅
ForestPersons (artifact-free)	61.4	88.4	76.6
ForestPersons (augmented)	35.8	64.7	33.9
SARD Sambolek & Ivasic-Kos (2021)	23.2	53.5	18.5
HERIDAL Kundid Vasić & Papić (2022)	0.0	0.0	0.0
WiSARD Broyles et al. (2022)	40.2	75.2	35.0

1575
 1576 majority of frames are artifact-free, with significant motion artifacts appearing only infrequently
 1577 during rapid maneuvers.

1578
 1579 Conversely, the model trained on the augmented data suffered a severe performance drop (35.8 mAP).
 1580 This strongly suggests that training on data with artificial motion artifacts, when such artifacts are
 1581 rare in the true target domain, is detrimental. It likely causes the model to overfit to the artifacts
 1582 themselves rather than the underlying object features, thus harming generalization.

1583
 1584 Moreover, we showed that the model trained with existing SAR datasets (SARD, HERIDAL, WiS-
 1585 ARD) have lower performance on the MAV test dataset compared to ForestPersons. This is due to the
 1586 significant domain gap between the high-altitude viewpoint and the low-altitude viewpoint of the
 1587 dataset, despite the fact that these datasets are captured using MAVs or UAVs. This result validates
 1588 the effectiveness of our dataset for robust SAR operations in low-altitude, under-canopy situations.
 1589 Overall prediction for each models are respresented in Fig. 23.

1590
 1591 These experiments validate that the high-quality, artifact-free images from our handheld collection
 1592 method are not a limitation. Instead, they serve as a robust and effective proxy for training models
 1593 for real-world MAV deployment, proving to be a more effective training source than data artificially
 1594 degraded with motion artifacts.

1595 J TRAINING GENERATIVE MODELS TO CREATE EXTREME SAR SITUATION

1596
 1597 We constructed the ForestPersons by capturing volunteers in a controlled environment to simulate
 1598 missing person scenarios, thereby securing a diverse range of poses and visibility levels. However, due
 1599 to ethical constraints, collecting data on extreme conditions often encountered in real-world Search
 1600 and Rescue (SAR) missions (e.g., subjects who are injured, buried, or suffering from hypothermia)
 1601 remains a challenge.

1602
 1603 To address this limitation, our future work involves training generative models based on the Forest-
 1604 Persons to synthesize missing persons in extreme situations for data augmentation. The objective is
 1605 to generate high-fidelity synthetic data depicting these atypical distress scenarios to enhance training.
 1606 We propose this as a practical and scalable approach to bridge the gap between staged data and the
 1607 stochastic nature of real-world incidents.

1608
 1609 Figure 24 presents preliminary examples of synthetic images generated using GLIGEN (Li et al.,
 1610 2023) finetuned via Dreambooth (Ruiz et al., 2023), demonstrating the feasibility of this proposed
 1611 direction. The generative model without finetuning produces images that do not fit SAR tasks or in an
 1612 under-canopy situation, while the generative model finetuned with ForestPersons can produce more
 1613 realistic images which is fit to SAR tasks in an under-canopy situation.

1614 K ELUCIDATING THE EFFECT OF VIDEO CLIP LENGTH

1615
 1616 ForestPersons clips were not designed as fixed-length video units; rather, they reflect natural observational
 1617 opportunities encountered by MAVs operating in dense under-canopy environments. During
 1618 data collection, factors such as terrain irregularities, heavy vegetation, limited lines of sight, obstacle
 1619 avoidance, and safety constraints imposed practical limitations on how long continuous sequences
 1620 could be recorded. Consequently, clip-length variability emerges as a natural characteristic of realistic
 1621 under-canopy exploration rather than a byproduct of uncontrolled dataset collection.

1620
1621

K.1 EFFECT OF THE NUMBER OF FRAMES ON DETECTION ACCURACY

1622
1623
1624
1625
1626
1627
1628

To investigate the impact of available temporal information, we conducted an additional analysis by systematically reducing the number of frames sampled from each clip. Faster R-CNN were trained on subsets created by uniformly decreasing the proportion of frames in each sequence, ranging from 100% down to 10%. The results, summarized in Table 11, show that detection accuracy decreases consistently and monotonically as fewer frames are used. This trend indicates that under-canopy environments exhibit substantial variability in visibility, pose, occlusion, and background complexity, and that a richer set of frames provides essential visual diversity for training robust detectors.

1629
1630
1631

Table 11: Performance of Faster R-CNN trained on subsets of frames sampled at different ratios from each clip.

1632
1633
1634

Ratio of Train Set	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
AP (Test Split)	65.3	65.3	64.4	64.9	64.2	64.2	63.6	62.5	61.6	60.8

1635

K.2 IMPACT OF VIEWPOINT DIVERSITY ON DETECTION PERFORMANCE

1636
1637
1638
1639
1640
1641
1642
1643

Dense under-canopy environments inherently restrict the ability to isolate viewpoint as an independent experimental variable, due to constraints related to terrain, vegetation density, visibility, and MAV safety. As a partial proxy for evaluating viewpoint diversity, we conducted an experiment in which the number of training clips was progressively reduced from 100% to 10%. This reduction naturally decreases viewpoint variability as well as scene diversity, such as background structure and occlusion patterns.

1644
1645
1646
1647

As shown in Table 12, detection accuracy drops consistently as clip diversity decreases. Although this experiment does not constitute a controlled multi-view analysis, it provides indirect but meaningful evidence that viewpoint and scene diversity positively influence detection performance in under-canopy conditions.

1648
1649

Table 12: Performance of Faster R-CNN trained on decreasing numbers of training clips.

1650
1651
1652

Ratio of Train Set	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
AP (Test Split)	65.3	65.1	63.7	63.2	62.6	62.0	60.2	59.7	56.2	53.5

1653
1654
1655

K.3 PERFORMANCE SATURATION WITH RESPECT TO THE NUMBER OF TRAINING FRAMES

1656
1657
1658
1659
1660
1661
1662

We further examined whether performance saturates as more frames are used during training. In our dataset, detection accuracy began to plateau when approximately 90% of the available frames were used (roughly 61,000 out of 67,000 images). This behavior reflects the specific environmental and visual characteristics present in the ForestPersons test set. It should not be interpreted as a universal saturation point for all under-canopy scenarios, particularly those involving environmental conditions not represented in the dataset. Thus, the observed 90% saturation is a dataset-specific empirical observation rather than a general claim about optimal training data volume.

1663
1664
1665

L REAL-TIME PERFORMANCE ON VARIOUS HARDWARE SPECIFICATIONS

1666
1667
1668
1669
1670
1671

We provide real-time inference performance measurements of representative object detection models across different hardware platforms. To evaluate edge-device feasibility, experiments were conducted on Jetson Orin Nano and Jetson Orin AGX, both configured in MAXN power mode. Among the detectors capable of achieving real-time throughput on these devices, the YOLOv1n model—identified as the best-performing option for onboard deployment—was evaluated at an input resolution of 640×480 over a continuous 5-minute run.

1672
1673

On the Jetson Orin Nano, the PyTorch implementation achieved 32.92 FPS, which increased to 38.44 FPS after TensorRT conversion. On the Jetson Orin AGX, the corresponding values were 35.75 FPS and 31.27 FPS, respectively.

1674
1675
1676
1677
1678 Table 13: FPS for each object detection model
1679 measured with AMD EPYC 7413 at 640×480
1680 resolution.

Model	FPS
YOLOv3 Redmon & Farhadi (2018)	6.68
YOLOX Ge et al. (2021)	13.55
YOLOv11 Jocher & Qiu (2024)	11.32
RetinaNet Lin et al. (2017)	1.59
Faster R-CNN Ren et al. (2015)	0.73
Deformable Faster R-CNN Dai et al. (2017)	0.31
SSD Liu et al. (2016)	17.90
DETR Carion et al. (2020)	2.29
DINO Pan et al. (2025)	1.06
CZ Det Meethal et al. (2023)	0.77

1681
1682
1683
1684
1685
1686
1687
1688 Table 14: FPS for each object detection model
1689 measured with RTX 3090 at 640×480 resolu-
1690 tion.

Model	FPS
YOLOv3 Redmon & Farhadi (2018)	118.00
YOLOX Ge et al. (2021)	115.86
YOLOv11 Jocher & Qiu (2024)	104.81
RetinaNet Lin et al. (2017)	38.12
Faster-RCNN Ren et al. (2015)	35.02
Deformable Faster-RCNN Dai et al. (2017)	31.81
SSD Liu et al. (2016)	76.29
DETR Carion et al. (2020)	44.17
DINO Pan et al. (2025)	13.95
CZ Det Meethal et al. (2023)	16.30

1687
1688 To provide a reference for server-side computation, we conducted additional inference performance
1689 tests on both an AMD EPYC 7413 CPU and an RTX 3090 GPU, representing a practical edge-server
1690 configuration. Tables 13 and 14 summarize the measured throughput for each evaluated object
1691 detection model. As illustrated in Fig. 21, a distinct trade-off between speed (FPS) and accuracy (AP)
1692 is evident across most models. Notably, YOLOv11 stands out as an exception, achieving both high
1693 accuracy and reasonable inference speeds.

1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710 Figure 21: **Speed-accuracy trade-off comparison of various object detection models on the**
1711 **ForestPersons.** The x-axis represents the inference speed in Frames Per Second (FPS), and the y-axis
1712 represents the Average Precision (AP).

M EXPERIMENTS ON FORESTPERSONS ATTRIBUTES

M.1 MULTI-CLASS MISSING PERSON DETECTION ON FORESTPERSONS

1713
1714
1715
1716
1717 ForestPersons includes annotations of the missing person’s pose, serving as a proxy for their current
1718 physical condition. We anticipate that enabling the automatic assessment of urgency levels, in addition
1719 to detecting the presence of missing persons, will significantly advance autonomous SAR operations.
1720

1721
1722 To this end, we extended the object detection task to include pose classification using our collected
1723 dataset. Specifically, we trained a Faster R-CNN model to predict the specific posture of the subject
1724 (i.e., standing, sitting, or lying). The experimental results are presented in Table 15.

1725
1726 Our experimental analysis shows that training the model for simultaneous person detection and
1727 multi-class pose classification leads to decline in average detection precision compared to training
1728 solely for binary person detection (person vs. background). This performance trade-off suggests
1729 that the additional complexity and classification difficulty introduced by the pose attribute require

1728 Table 15: The performance of Faster RCNN models for pose classification tasks.
1729

1730	Dataset split	mAP	mAP ₅₀	mAP ₇₅
1731	Validation	0.620	0.908	0.747
1732	Test	0.567	0.846	0.665

1733
1734 the model to allocate significant capacity, which can compromise the fundamental bounding box
1735 localization performance. This highlights an important area for future multi-task architecture design
1736 within the SAR domain.
1737

1738 M.2 FEATURE FUSION USING CONTEXTUAL INFORMATION 1739

1740 ForestPersons includes not only annotations for the presence of missing persons but also environmental
1741 metadata such as season and location. We hypothesize that a detection model aware of these
1742 contextual priors could achieve improved performance in SAR scenarios.
1743

1744 Therefore, We have investigated the potential of incorporating conditional information (Weather,
1745 Place) as additional context via the simple FiLM structure (Perez et al., 2018) to fuse the context
1746 features and the visual features.
1747

1748 Specifically, we integrated this fusion mechanism immediately preceding the detection head. In our
1749 design, discrete context labels are first projected into a latent space via an embedding layer. These
1750 context embeddings are then used to modulate the visual features through the FiLM layer before they
1751 are fed into the detection head for final prediction.
1752

Table 16: Performance of Faster R-CNN models with different contextual inputs using FiLM.

1753	Model (context)	1754 Validation Split			1755 Test Split		
		1756 AP	1757 AP ₅₀	1758 AP ₇₅	1759 AP	1760 AP ₅₀	1761 AP ₇₅
1762	Original (no additional context)	64.2	95.6	76.5	64.4	92.7	75.4
1763	Weather (FiLM)	64.4	94.6	77.0	65.2	92.9	77.4
1764	Place (FiLM)	64.1	94.6	76.2	65.2	93.0	76.8

1765 The results are shown in Table 16. Note that the validation AP slightly improves upon the test
1766 AP compared to the Faster R-CNN performance reported in Table 3. These findings indicate that
1767 incorporating additional metadata from the dataset can enhance the performance of object detection
1768 models, even when using simple feature fusion methods. Moreover, the results demonstrate that the
1769 metadata provided by ForestPersons can contribute to performance improvement when effectively
1770 integrated into the model.
1771

1772 N USE OF LLMs 1773

1774 We employed large language models (LLMs) solely for polishing the writing. In addition, during
1775 the experimental evaluation, we utilized Vision-Language Models specifically to assess zero-shot
1776 performance.
1777

1778
1779
1780
1781

1831 **Figure 22: Examples of ForestPersons augmented by motion blur and sensor noise.** The motion-
 1832 blur augmentation has the potential to approximate artifacts caused by MAV maneuvers, exposing
 1833 the model to more realistic motion-induced artifacts.
 1834
 1835

Figure 23: **Predictions of the trained models on the test dataset collected with real MAV.** Faster R-CNN trained on existing SAR datasets exhibit inferior detection performance compared to model trained on ForestPersons, primarily due to the domain gap arising from differences in altitude.

Figure 24: **Synthetic data to depict the extreme situation in the SAR task using generative models.** The red box indicates the bounding box conditioned on the generative model. (Left) The generated images created by generative models finetuned by ForestPersons. (Right) The generated images created by non-finetuned generative models.

1943