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ABSTRACT

Neural scaling laws are widely used for performance projection and resource
planning, yet their sensitivity to data quality interventions remains poorly un-
derstood. We present the first large-scale empirical study of how interven-
tions—deduplication, heuristic filtering, and LLM-guided rewriting—reshape
scaling behavior in large language model training. Using QualityPajama, a suite
of 23 systematically curated datasets, we train over 2,000 models (100M–8B pa-
rameters, 100M–200B tokens) to measure how text quality interventions affects
scaling-law parameters and compute-optimal design decisions. While prior stud-
ies have shown that model architecture primarily shifts coefficients, we demon-
strate that data interventions shift both coefficients and exponents, fundamentally
changing the fitted scaling laws in ways not anticipated by existing theory. We
show that data quality ranking is scale and resource-dependent. Compute-optimal
token–to-parameter ratios vary by orders of magnitude across interventions, re-
vealing a fundamental data quality–quantity trade-off in scaling. These find-
ings pave the way for deeper theoretical understanding of scaling laws, establish
scaling-law analysis as a principled framework for data strategy evaluation and
ranking, and motivate a data-quality–aware approach to scaling next-generation
LLMs.

1 INTRODUCTION

While nearly all large language models are trained on similar sources of text—web data— the key
differentiating factor among state-of-the-art models lies in the quality of their pre-training and post-
training data. However, data quality itself remains an elusive and context-dependent concept—
what constitutes “high quality” can vary with downstream use case, compute scale, and resource
constraints. This raises the question: can neural scaling laws offer a principled framework for
ranking data quality across scales?

Neural scaling laws are empirical relationships that describe how model performance improves as a
function of resource investment - typically the number of parameters and training tokens. A growing
body of empirical Hestness et al. (2017); Johnson & Nguyen (2017); Rosenfeld et al. (2019); Kaplan
et al. (2020); Hernandez et al. (2021); Ghorbani et al. (2021); Ardalani et al. (2022); Hoffmann et al.
(2022); Alabdulmohsin et al. (2022); Aghajanyan et al. (2023); Isik et al. (2024); Zhang et al. (2024)
and theoretical Sharma & Kaplan (2022); Bahri et al. (2024); Brill (2024); Hutter (2021); Michaud
et al. (2023); Dohmatob et al. (2024b); Dębowski (2023); Dohmatob et al. (2024a) work has shown
that pre-training loss follows a power-law trend with respect to these axes. Neural scaling laws
have been central to the development of large language models (LLMs), informing decisions about
model scaling, data scaling, and compute allocation, while also serving as a key tool for return-on-
investment (ROI) analysis and capability forecasting Hestness et al. (2019); Hoiem et al. (2021);
Mahmood et al. (2022); Alabdulmohsin et al. (2022). However, despite their widespread adoption,
the impact of data quality on scaling laws remains poorly understood.

A prominent example of this uncertainty is the ongoing debate over the discrepancy between Ka-
plan’s Kaplan et al. (2020) and Hoffman’s Hoffmann et al. (2022) prediction of the compute-optimal
token-to-parameter ratio (21 vs. 1) Porian et al. (2024); Pearce & Song (2024); Bi et al. (2024). Re-
cent work speculates that differences in training data may have played a role in this divergence Bi
et al. (2024). While prior theoretical works Sharma & Kaplan (2022); Bahri et al. (2024); Brill
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(2024); Hutter (2021); Michaud et al. (2023); Dohmatob et al. (2024b); Dębowski (2023); Dohmatob
et al. (2024a) have linked the power-law exponents to properties of the data manifold and the Zipfian
distribution of input tokens, the impact of text quality interventions on these underlying structures
remains poorly understood. Furthermore, prior work overlooks how data quality influences other
components of the scaling law—namely, the coefficients and asymptotic loss terms—which, as we
will show, play a critical role in shaping loss behavior at today’s compute scales. Moreover, most
theoretical predictions isolate a single exponent (either model or data) while holding the other in the
infinite limit. As we demonstrate, understanding the joint fit is essential, as the components often
move in opposing directions to control loss trajectory, revealing important trade-offs induced by data
quality shifts. Although prior empirical work has explored the effects of synthetic noise, data source
composition, and filtering algorithms in domains such as machine translation Bansal et al. (2022)
and image classification Bahri et al. (2024), to the best of our knowledge, there is no systematic study
examining how text-specific interventions—such as filtering, deduplication, rephrasing and mixing
synthetic and natural data—impact the components of neural scaling laws in LLM pretraining.

Our work bridges this gap by conducting a large-scale empirical analysis of diverse data quality in-
terventions for pretraining large scale language models and study how they influence all components
of the scaling law. We introduce a benchmark of 23 curated datasets, each representing a different
quality intervention, and train over 100 language models per dataset, totaling more than 2000 model
training runs. This extensive experimental design enables us to disentangle the effects of data quality
on scaling law components and loss behavior, and propose how to design an effective data quality
strategy as we scale.

1.1 OUR CONTRIBUTIONS

• QualityPajama Benchmark: We introduce QualityPajama, a benchmark suite of 23
datasets designed to systematically evaluate the impact of diverse text quality interventions
on neural scaling behavior in LLMs. (Section 3)

• Full Scaling Law Decomposition: We provide the first systematic analysis of how text-
quality interventions affect all components of the joint scaling law—not only the exponents.
Our results show that stronger filtering does not consistently push components toward more
favorable regimes, but instead produces conflicting shifts across parameters. (Section 4)

• Data-Aware Scaling Strategies: We show that designing compute-optimal scaling strate-
gies requires careful accounting for data quality, as variation in quality could shift
the optimal number of parameters, tokens, and their ratio by couple orders of magni-
tude.(Section 4.1)

• Scale- and Resource-Dependent Rankings: Data quality rankings are not uniform across
scales or resource regimes. Strategies that excel at small scales may underperform at larger
ones, and the optimal choice depends critically on the constraint (e.g., fixed compute vs.
fixed data). Moreover, “scale” can refer to model size, dataset size, or compute budget,
and the best intervention differs across these regimes. We recommend using scaling-law
curves to rank data quality strategies across different scales and resource constraints, rather
than relying on small-scale experiments, which often lead to misleading conclusions. (Sec-
tion 4.1)

• Deduplication Efficiency: We demonstrate that deduplication yields large compute sav-
ings that far exceed reductions in data volume (Section 5)

• PageRank Signals: While PageRank scores correlate with improved quality, filtering
based solely on PageRank does not outperform the unfiltered baseline. (Section 5)

• Synthetic–Natural Data Mixing: We show that mixing synthetic and natural data consis-
tently outperforms using either alone, but the optimal mixing ratio evolves as the model
and compute scale. (Section 5)

2 BACKGROUND AND RELATED WORK

The study of scaling laws in deep learning has a rich history, with numerous empirical Hestness
et al. (2017); Johnson & Nguyen (2017); Rosenfeld et al. (2019); Kaplan et al. (2020); Hernandez
et al. (2021); Ghorbani et al. (2021); Ardalani et al. (2022); Hoffmann et al. (2022); Alabdulmohsin
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et al. (2022); Aghajanyan et al. (2023); Isik et al. (2024); Zhang et al. (2024) and theoretical Sharma
& Kaplan (2022); Bahri et al. (2024); Brill (2024); Hutter (2021); Michaud et al. (2023); Dohmatob
et al. (2024b); Dębowski (2023); Dohmatob et al. (2024a) investigations into their components. A
commonly used form of the scaling law is given by:

Loss(N,D) ∼ AD−α +BN−β + E

where Loss typically represents cross-entropy loss, D denotes data size in tokens, N represents
model size in parameters, and α, β, A, B, and E are constants. The terms in this equation cap-
ture the effects of finite data, limited model capacity, and the inherent entropy of the underlying
phenomenon, respectively.

Although prior work has empirically explored the impact of model architecture Tay et al. (2022),
vocabulary size and tokenizer on the components of scaling law Hestness et al. (2017); Kaplan et al.
(2020), the impact of data quality on all components of scaling law remains poorly understood.
Prior theoretical works on the origin of the power law and its relation to the dimensionality of data
manifold Sharma & Kaplan (2022); Bahri et al. (2024) and Zipfian distribution of input data Hutter
(2021); Michaud et al. (2023) are perhaps closest to our own. usually under some simplifying
assumptions like infinite data size or model size. They particularly make predictions about the
exponents of power law but remain silent about other components.

Data Manifold Theory: Data manifold refers to the low-dimensional structure that higher dimen-
sional data lies on. Data manifold theory predicts that exponents of power law are inversely pro-
portional to the data manifold dimension Sharma & Kaplan (2022); Bahri et al. (2024). However,
the impact of data quality on data manifold itself is poorly understood. Data quality, particularly
text quality, can be characterized across various axes: diversity of topics, grammar complexity, for-
matting artifacts, information density, factuality, fairness, safety, etc. While prior theoretical work
do not discuss the impact of data quality explicitly, their machinery is powerful enough to make
predictions. Take removing unstructured noise, like garbled text, it could ostensibly decrease the
apparent dimensionality. On the other hand, deduplication could expand the data manifold. While
both are different text interventions towards improving quality, one seems to improve the exponent,
while the other decreases.

Zipfian Distribution Theory: Zipf’s law is another empirical observation that explains word fre-
quencies follow a power-law in their rank. It shows up not only in word frequencies, but also in
n-gram distributions Ha et al. (2009), sentence structures, and higher-level concepts Michaud et al.
(2023). Prior work conjectures that if input data follows a Zipfian distribution, the Zipf’s exponent
correlates with the power law exponent Hutter (2021); Michaud et al. (2023). However, much like
data manifold theory, the impact of data quality interventions on Zipfian distribution are not quite
predictable. While some data intervention techniques, like synthetic data generation cuts off the
heavy tail of the input distribution, other intervention techniques like deduplication flattens the head
of the curve. This implies that Zipfian slope gets steeper for synthetic data but flatter for dedupli-
cated data. We will see later in Section 4, these predictions are not always consistent with empirical
observations as it is not easy to predict how data quality interventions influence distribution.

Effective Tokens and Utility-Based Scaling Laws: Prior work has examined how to incorporate
data quality into scaling law formulations. Chang et al. (2024) focus only on the data axis, propos-
ing to replace dataset size D with an effective variant, but leaving other components of the law
unchanged. Muennighoff et al. (2023) extend this idea to both model size and dataset size, intro-
ducing effective formulations N ′ and D′, though their analysis is tailored to the setting of repeated
epoching rather than data interventions. Goyal et al. (2024) similarly reinterpret the data exponent
β in terms of effective utility. These approaches capture aspects of data efficiency but treat quality
as primarily modifying D or β, overlooking its broader influence on parameter coefficient and ex-
ponents, or irreducible loss. By contrast, we show that data interventions perturb all components of
the joint scaling law fit. Most recently, Shukor et al. (2025) proposed a “full” scaling law for data
mixtures, which is closest in spirit to our work. Their focus is on mixture composition as the inter-
vention, whereas we analyze heuristic filtering and synthetic data rewrites, broadening the range of
data-centric interventions studied under scaling laws. Overall, our work is the first to demonstrate
that text quality interventions affect all components of the scaling law, not just the data dimension,
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providing a more complete picture of how quality reshapes scaling dynamics and offering practical
guidance for data-centric scaling strategies.

Synthetic Data Scaling Laws Fan et al. (2024) studied the impact of synthetic images on scaling
laws, particularly on data exponent. Qin et al. (2025) examined how generator model size influences
scaling laws on downstream tasks for LLMs. In contrast, we study upstream loss and investigate
how mixing synthetic and natural data shapes scaling behavior in LLM.

Dynamic Data Intervention and Non-Power-Law Scaling Sorscher et al. (2022) show that,
with adaptive data pruning during training, it is possible to surpass standard power-law scaling and
approach exponential improvements. In contrast, our work assumes interventions are applied once
prior to pre-training, rather than adaptively adjusting throughout training.

Post-Training Data Quality Recent work has investigated the role of data quality over quantity in
post-training alignment, showing that even small high-quality datasets improve performance (Zhou
et al., 2023; Xia et al., 2024).

Text Quality Interventions can be characterized across multiple axes, including information en-
tropy, topical diversity, grammar complexity, formatting artifacts, factuality, fairness, and safety.
The exact definition of text quality typically varies by downstream usecase. In this work, we focus
on the impact of text quality on upstream loss. Broadly, data quality can be manipulated through
three strategies: filtering, which removes low-quality or undesired content using heuristic or model-
based approaches Raffel et al. (2020); Lee et al. (2021); mixing, which rebalances data distributions
or adds high-quality subsets Li et al. (2024); Shukor et al. (2025); and synthetic generation, which
uses LLMs to clean or augment existing content. These approaches have informed the design of
many recent LLM training corpora, including RedPajama AI (2023), Dolma Soldaini et al. (2024),
RefinedWeb Penedo et al. (2023), FineWeb Penedo et al. (2024), DCLM Li et al. (2024).

3 QUALITYPAJAMA

We introduce QualityPajama, a benchmark suite of 23 datasets derived from Common Crawl, each
reflecting a distinct level of data quality and intervention. The suite spans a broad spectrum of data
quality techniques, including 14 filtered datasets and 9 synthetically curated datasets, for training
large language models. Table 1 summarizes the interventions used in each category. Additional
details regarding dataset construction and design choices can be found in Appendix.

4 IMPACT OF DATA QUALITY ON SCALING LAW COMPONENTS

We aim to understand how data quality affects scaling law components, whether predictable patterns
emerge under quality interventions, and how these insights can guide effective data curation.

Figure 1 visualize the impact of text quality interventions, particularly heuristic-based filtering and
synthetic data generation, on components of neural scaling laws, namely α, β, A, B and E. Each line
in the radial plot represents a different training set, while the radial axis displays various validation
sets. It is apparent from these results that all components are sensitive to training set quality as well
as validation set quality.

Sequential Application of Data Filters and Effects on Scaling Components We apply a series
of data filters sequentially and extract intermediate datasets at each stage to conduct scaling law
analysis. The order in which filters are applied is indicated in the legend. Interestingly, the trajectory
of changes in scaling law components does not necessarily follow the order of interventions. Take α
for example: it increases after removing NSFW content (red to green), but decreases after filtering
garbled text (green to yellow). It decreases further after removing pages with low PageRank scores
(yellow to blue), but then increases again after deduplication (blue to orange). As shown in Appendix
A, these dynamics are not always consistent with predictions from Zipf’s law or the data manifold
hypothesis, showcasing the limitations of the current theory.

Component-Wise Correlations We examine whether scaling law components exhibit consistent
patterns under data quality changes—for example, whether improving quality increases the model

4
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Figure 1: How Data Filtering Affects Scaling Law Components. Different colored lines repre-
sent different data-quality interventions, while the radial axes show results across different validation
sets. Stronger filtering does not uniformly improve scaling-law components: while some parame-
ters move toward more favorable regimes, others degrade, highlighting tensions between different
components of scaling law.
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Table 1: Summary of QualityPajama dataset interventions.

Category Description Abbrev./Variants

Heuristic-based Filters (14 variants)

NSFW Filtering Removes documents containing offensive or inappropriate content. nsfw

Aesthetic Filters Filters out text with undesirable patterns (e.g., "lorem ipsum", in-
line code, or high alphanumeric ratios > 0.8).

aesthetic

PageRank Filtering Partitions pages into low/medium/high/unknown based on PageR-
ank score. Thresholds are set to the 33rd and 67th percentiles of
the score distribution of all pages in the PageRank table. Page et al.
(1999).

high_pr,
med_pr,
low_pr, no_pr

Deduplication Fuzzy deduplication using MinHashLSH Leskovec et al. (2020)
with different similarity thresholds; selects lowest perplexity doc-
ument from near-duplicate clusters.

deduped_0.7,
deduped_0.8,
deduped_0.9,
deduped_1.0

Grammar Complexity Filters based on average sentence length as a proxy for syntactic
richness, with thresholds at 10 tokens for short text and 25 tokens
for medium text

short_text,
medium_text,
long_text

Synthetic Curation (9 variants)

High Quality Rephras-
ing (HQ)

LLM rewrites documents to be clearer and more coherent Maini
et al. (2024). Mixtures denote the percentage of synthetic vs. natu-
ral data (CC).

HQ100,
HQ67-CC33,
HQ33-CC67.

Question Answering
Rephrasing (QA)

LLM converts documents into conversational QA pairs. QA100,
QA67-CC33,
QA33-CC67

Textbook-style
Rephrasing (TB)

Converts documents into textbook-style chapters using structured
prompting (inspired by Phi models Li et al. (2023); Javaheripi et al.
(2023); Abdin et al. (2024)).

TB100,
TB67-CC33,TB33-CC67

Table 2: Can Scaling Components Reliably Rank Data Interventions? We report average Spear-
man correlations across validation sets for each scaling law component. Moderate values (0.3–0.5)
suggest that component-based rankings are only partially preserved across validation sets; higher
values suggest reliable ordering. Results suggest that such metrics may not reliably rank natural
data interventions. In contrast, rankings for synthetically curated datasets show strong consistency,
suggesting scaling components are more reliable for evaluating synthetic data strategies.

Data Interventions A B α β E
All heuristic filters 0.45 0.34 0.46 0.32 0.34
All synthetic data 0.81 0.91 0.76 0.91 0.54

exponent (α) and decreases the data exponent (β). While Figure 1 suggests such trends qualita-
tively, we quantify them via Spearman correlations (Figures 2a and 2b). The strongest, most stable
correlations across all validation sets are: A ∝ α and B ∝ β.

Sensitivity to Validation Sets We examine whether data intervention rankings are consistent across
validation sets. Table 2 reports average Spearman correlations per component. While filters in
Figure 1 show high consistency, rankings across all 14 heuristic filters exhibit only moderate cor-
relation (0.3–0.5), suggesting that filter rankings are only partially preserved across validation sets.
This indicates that scaling law behavior is not independent of the validation set for naturally
curated datasets. On the contrary, for synthetically curated datasets, we see a strong correlation
across validation sets. This indicates that scaling law behavior is less sensitive to validation set
for synthetically curated datasets.

4.1 INTERPRETATIONS

Designing Compute-Optimal Scaling Strategy Requires Accounting for Data Quality: Prior
work has shown that compute-optimal design decisions depend on the scaling law components: α,
β, A, and B. Since data quality influences these parameters, it directly affects compute-optimal
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(b) Synthetically curated

Figure 2: How Scaling Law Components Co-Vary with Data Quality Intervention?. We observe
strong monotonic correlations between A and α, and between B and β. For synthetic data, there are
also notable negative correlations between α and β, and between A and B.
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Figure 3: How Data Quality Influences Scaling Strategy? Given Nopt ∝ Ca, Dopt ∝ Cb, and
Dopt/Nopt ∝ Cb−a, where a = β/(α + β) and b = α/(α + β). (Left) shows how optimal
model size scales with compute. At today’s compute budget (dashed line), the best and worst data
interventions differ by over an order of magnitude in optimal model size. (Right) shows the variation
in token-to-parameter ratio, where interventions differ by up to two orders of magnitude at the same
compute scale.

choices. Figure 3 illustrates how the compute-optimal number of tokens, number of parameters, and
their respective ratio (a proxy for sample efficiency) scale with available compute and vary with data
quality intervention. Notably, at today’s compute scale (indicated by the dashed line), the optimal
design point can differ significantly across—by up to 14× for the number of parameters, 13× for the
number of tokens, and an astonishing 182× for the token-to-parameter ratio. These results highlight
the critical role of data quality in determining efficient scaling strategies, underscoring the need to
account for quality variations when designing large-scale training runs.

Tension Among Scaling Law Components: Data interventions do not uniformly shift all com-
ponents of the scaling law in a direction that reduces loss. We observe that the coefficients A and
B are positively correlated with their corresponding exponents α and β, respectively. This coupling
creates a tension in how different components influence performance. While increasing the expo-
nents α and β typically leads to improved scaling and lower loss, increases in the coefficients A and
B have the opposite effect, raising the loss. As a result, interventions that improve one component
may simultaneously degrade another.

One may argue that in the trade-off between exponent and coefficient, the exponent should domi-
nate, since its effect is exponential while the coefficient scales only linearly. While this may hold

7
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Figure 4: How Does the Optimal Data Quality Strategy Change with Scale and Resource Con-
straints? Compute-scaling law (left), data-scaling law (middle), and model-scaling law (right)
curves show that no single data strategy remains optimal across all scales. The optimal choice
shifts as the resource scale changes and also depends on which resource is constrained: model size,
data size, or compute budget.

asymptotically at extremely large scale, Figure 4 shows that the tension persists even at today’s com-
pute scale (e.g., 1024 FLOPs). This persistence may be due to the fact that the coefficients A and
B vary across several orders of magnitude, while the exponents α and β remain relatively small,
limiting their ability to compensate.

Notably, in synthetically curated datasets, we observe a negative correlation between α and β, sug-
gesting that improvements in model scaling efficiency may come at the expense of data scaling
efficiency. Such opposing forces highlight the complex and sometimes counteractive nature of data
quality interventions on loss behavior. This underscores the need to analyze all components of the
scaling law jointly, rather than relying on any single metric to assess data quality improvements.

Data Quality Rankings Vary with Scale We observe frequent crossovers between scaling curves
for different data interventions (Figure 4), indicating that a dataset which minimizes loss at small
scale may be outperformed by another at larger scale. This shift in relative performance highlights
the risk of extrapolating small-scale experimental results to large-scale settings. Consequently, con-
clusions drawn from limited-scale experiments may not generalize to high-compute regimes, and
data quality strategies should be validated at or near the intended scale of deployment to ensure their
effectiveness holds under real-world training budgets.

The Best Data Quality Strategy Depends on Your Resource Constraint In addition to being
scale-dependent, the “best” data quality strategy depends on the specific resource constraint, as
shown in Figure 4. For instance, if the goal is to identify the most efficient dataset under a fixed
compute budget, compute scaling provides the most relevant lens. However, if the constraint lies in
model size or available training tokens, the conclusions may differ. Therefore, practitioners should
be mindful of their primary resource constraint when evaluating or selecting data quality strategies,
as the optimal choice is inherently constraint-dependent.

5 DATA QUALITY INTERVENTION COMPARISONS THROUGH
COMPUTE-EFFICIENCY LENS

How aggressive should deduplication be? Is there a diminishing return in compute efficiency as we
dudupe more aggressively? Is PageRank a useful signal for filtering? Is it more or less compute effi-
cient to train with synthetic data? Do improvements in compute-efficiency merely reflect reductions
in data volume, or can they go further? To address these questions, we analyze compute scaling laws
under various data quality interventions in Figure 5.

• Deduplication: Fuzzy deduplication offers substantial compute savings that far exceed
reductions in dataset size. For example, exact deduplication reduces data volume to 83% of
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(d) Synthetic–Natural Mixing

Figure 5: Compute scaling law results for various data quality interventions.

its original size yet yields a 100× gain in compute efficiency. Fuzzier approaches perform
even better: dedupe_0.7 requires approximately 3× less compute than dedupe_0.9,
10× less than exact deduplication, and 300× less than no deduplication (Figure 5a).

• PageRank Filtering: While a higher PageRank correlates with improved quality
(high_pr > med_pr > low_pr), filtering strictly by high PageRank does not outper-
form the baseline. In contrast, including pages not found in the ranking table (no_pr) re-
sults in significantly greater compute efficiency—likely due to recency effects (Figure 5b).

• Synthetic–Natural Mixing: Mixing synthetic and natural data consistently outperforms
using either alone, but the optimal mixing ratio evolves with compute scale (Figure 5d).

6 DISCUSSION

Summary: We set out to analyze the impact of text quality interventions, particularly heuristic-
based filtering and LLM-guided data rewrite, on the components of neural scaling laws in training
large language models. To enable this study, we developed QualityPajama, a benchmark suite of 23
systematically constructed text datasets spanning a range of quality levels and interventions, from
filtering to deduplication to paraphrasing and synthetic curation built on top of Common Crawl
dataset. We found that: (1) all components of the scaling law are sensitive to data quality (2) data
intervention rankings are not preserved across scales; (3) the decision on how to scale model size and
data size with increased compute budget is heavily influenced by data quality; (4) data intervention
impact on compute saving goes far beyond the reduction in data volume; and (5) mixing synthetic
and natural data outperforms using either alone, though the optimal ratio is scale dependent.

Ethical Considerations A potential negative societal impact of this work is that data interventions
may unintentionally amplify biases or lead to unfair outcomes for certain groups. While our analysis
shows how interventions affect scaling-law parameters, scaling laws alone should not be treated as a
sufficient basis for data strategy decisions. Broader evaluations—including fairness, representational
balance, and downstream task impacts—are necessary to ensure that improvements in efficiency do
not come at the cost of equity or inclusiveness.
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Łukasz Dębowski. A simplistic model of neural scaling laws: Multiperiodic santa fe processes.
arXiv preprint arXiv:2302.09049, 2023.

Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse.
arXiv preprint arXiv:2410.04840, 2024a.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
collapse as a change of scaling laws. arXiv preprint arXiv:2402.07043, 2024b.

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling
laws of synthetic images for model training... for now. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 7382–7392, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

10

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2208.08489
https://arxiv.org/abs/2208.08489


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. arXiv preprint
arXiv:2109.07740, 2021.

Sachin Goyal, Pratyush Maini, Zachary C Lipton, Aditi Raghunathan, and J Zico Kolter. Scaling
laws for data filtering–data curation cannot be compute agnostic. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 22702–22711, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Le Quan Ha, Philip Hanna, Ji Ming, and Francis Jack Smith. Extending zipf’s law to n-grams for
large corpora. Artificial Intelligence Review, 32:101–113, 2009.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Joel Hestness, Newsha Ardalani, and Gregory Diamos. Beyond human-level accuracy: Compu-
tational challenges in deep learning. In Proceedings of the 24th symposium on principles and
practice of parallel programming, pp. 1–14, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Derek Hoiem, Tanmay Gupta, Zhizhong Li, and Michal Shlapentokh-Rothman. Learning curves
for analysis of deep networks. In International conference on machine learning, pp. 4287–4296.
PMLR, 2021.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In ICLR
2024 Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 1(3):3, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Mark Johnson and Dat Quoc Nguyen. How much data is enough? predicting how accuracy
varies with training data size, 2017. https://web.science.mq.edu.au/~mjohnson/
papers/Johnson17Power-talk.pdf.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
preprint arXiv:2107.06499, 2021.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://web.science.mq.edu.au/~mjohnson/papers/Johnson17Power-talk.pdf
https://web.science.mq.edu.au/~mjohnson/papers/Johnson17Power-talk.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets. Cam-
bridge university press, 2020.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Kumar Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muen-
nighoff, Reinhard Heckel, Jean Mercat, Mayee F Chen, Suchin Gururangan, Mitchell Wortsman,
Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Kamal Mohamed Abbas, Cheng-Yu
Hsieh, Dhruba Ghosh, Joshua P Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M
Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu
Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham M. Kakade, Shuran Song, Sujay
Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi
Pouransari, Alexander T Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei
Koh, Jenia Jitsev, Thomas Kollar, Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and
Vaishaal Shankar. Datacomp-LM: In search of the next generation of training sets for language
models. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=CNWdWn47IE.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Rafid Mahmood, James Lucas, David Acuna, Daiqing Li, Jonah Philion, Jose M Alvarez, Zhiding
Yu, Sanja Fidler, and Marc T Law. How much more data do i need? estimating requirements for
downstream tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 275–284, 2022.

Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephras-
ing the web: A recipe for compute and data-efficient language modeling. arXiv preprint
arXiv:2401.16380, 2024.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
Advances in Neural Information Processing Systems, 36:28699–28722, 2023.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford infolab, 1999.

Tim Pearce and Jinyeop Song. Reconciling kaplan and chinchilla scaling laws. arXiv preprint
arXiv:2406.12907, 2024.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023. URL https://arxiv.org/abs/2306.01116.
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A TRAINING DATASET

A.1 BASELINE DATASET CHOICE

We build QualityPajama on top of CommonCrawl dataset assembled by RedPajama-v2 AI (2023),
which includes 84 Common Crawl snapshots from 2014 to 2023. RedPajama shares raw Common-
Crawl dataset along with quality signals for each document but does not filter out any data from the
mix. There is roughly 0.5 TB or 100 B tokens per snapshot per partition. We focus on the English
subset from 34 snapshots and head partition, totaling approximately 15 TB of data (or 3 T tokens).
This choice is motivated by three key considerations:

• Minimal Pre-processing: To be able to evaluate the impact of data quality interventions,
we require a dataset that is minimally processed. RedPajama’s CommonCrawl is preserving
much of its original form while offering a clean interface.

• Scale: A dataset of substantial size is necessary to support scaling law analyses across
multiple orders of magnitude—even after aggressive filtering. RedPajama-v2, is well suited
in terms of both volume and temporal coverage. Given that our final dataset is ≈ 1% of the
original dataset, to enable an equal scaling range for all datasets, say upto 30B tokens, the
original dataset should be in 3T tokens/15TB range.

• URL Availability: The presence of a URL for each document allows us to explore
PageRank-based filtering techniques. This is particularly useful given that crawling al-
gorithms like Hyper Centrality (used by Common Crawl) already introduce implicit biases
that we can now systematically study.

Figure 6: QualityPajama data pipeline. We show the filtering rate next to each filter. Given that
our final dataset is ≈ 1% of the original dataset in volume, to enable an equal scaling range for all
datasets, say upto 30B tokens, the original dataset should be in 3T tokens/15TB range.

A.2 DERIVATIVE DATASETS

Figure 6 illustrates the pipeline used to construct the QualityPajama benchmark suite. To sup-
port this, we developed a scalable Spark-based Zaharia et al. (2010) data processing frame-
work—PajamaKit—that enables rapid experimentation with filtering, deduplication, and other data
curation strategies.
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A.2.1 HEURISTIC-BASED DATA QUALITY FILTERS

We carefully hand-pick a set of filters that are deemed to improve quality to the extent that they
are included in many data recipes used for curating well-known datasets such as C4 Raffel et al.
(2020), Dolma Soldaini et al. (2024), RedPajama Weber et al. (2024), RefinedWeb Penedo et al.
(2023) and FineWeb Penedo et al. (2024). These include NSFW filtering, format-based filtering,
grammar-based filtering, deduplication, etc. We also include some less explored filters, like PageR-
anking score to study their effectiveness. We apply these filters sequentially and extract intermediate
datasets after each stage. Heuristic filters usually are accompanied with some knobs to control their
filtering degree. For instance, deduplication has a similarity threshold for deeming two samples du-
plicate and we are curious to understand: how does this knob controls quality? Where applicable,
we experiment with multiple thresholds and retain only the “best” filtered dataset for downstream
filtering. The filtering pipeline includes:

• NSFW Filtering: We remove all pages containing inappropriate or offensive language.

• Aesthetic Filters: We exclude documents containing undesirable patterns such as “lorem
ipsum,” inline code (e.g., “{”, “javascript”), and those with a high alphanumeric character
ratio (above 0.8).

• PageRank Filtering: We partition documents into four groups—low, medium, high, and
not-found—based on their PageRank scores Page et al. (1999). Since Common Crawl
sampling is biased towards high Hyper Centrality (correlated with PageRank), our analysis
exposes implicit biases in many web-derived corpora. The thresholds are chosen to split
the PageRank score distribution in our reference table into three equal parts.

• Deduplication: We apply deduplication at page granularity within each snapshot. For
fuzzy deduplication, we use MinHashLSH Leskovec et al. (2020) at different Jaccard simi-
larity thresholds (0.7, 0.8, 0.9, 1.0). We build MinHash signatures on top of pre-processed
lower-cased bi-grams with 256 permutations. We use signature to build a similarity graph,
from which connected components (clusters of near-duplicates) are identified. Within each
cluster, the document with lowest perplexity score is retained.

• Grammar Complexity: We use average sentence length as a simple first-order proxy for
syntactic complexity. Using NLTK for sentence and token segmentation, we bin documents
into categories of short, medium, long, and very long sentences.

A.2.2 SYNTHETIC CURATION TECHNIQUES

While the literature on synthetic data generation is very rich, only a few have been proposed and
deployed for pretraining large language models Li et al. (2023); Javaheripi et al. (2023); Abdin et al.
(2024); Maini et al. (2024). Our goal here is not to generate new content but to clean up the existing
content through careful prompting. We use three techniques proposed in the literature. All synthetic
data was generated using a Mistral-Instruct-7b-v0.1 model with the following sampling parameters:

• Temperature: 0.7

• Top-p (nucleus sampling): 0.95

These parameters were chosen to balance creativity and coherence in the generated text.

We implemented distinct pipelines that represent leading methodologies in synthetic data generation.
We modified the prompts from the original work (if available) to promote better format-following
and encourage longer, high-quality text. Generation procedures are detailed below with full prompts
provided in boxes A.2.2.1-A.2.2.4.

• High Quality Rephrasing (HQ) Inspired by WRAP Maini et al. (2024), we prompt LLM
to rewrite source documents into clear, coherent, and well-structured text.

• Question Answering Rephrasing (QA) Inspired by WRAP Maini et al. (2024), we prompt
LLM to convert source document into a conversational QA format.

• Textbook-style Rephrasing (TB) Inspired by family of Phi models Li et al. (2023); Java-
heripi et al. (2023); Abdin et al. (2024), we first convert text into book chapter titles and
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then prompt the LLM to generate new content for each chapter, with variations in prompts
for different target audiences (grade school, college, expert, general).

Light heuristic post-filtering was applied to all generated synthetic datar, removing documents that
were excessively short (e.g., less than 50 tokens) or excessively long relative to the target length for
that generation type, if such outputs occurred despite prompt length guidance. The goal of this light
filtering was to remove egregious generation errors without overly sanitizing the data or significantly
altering its distribution.

A.2.2.1 Prompt Template HQ Rephrasing

• System Prompt: Provide direct and detailed response to the instructions without adding
additional notes.

• [USER]: For the following document, regardless of its original content or formatting, write
a full article of the same content in high quality English language as in texts on Wikipedia:
[xxxx]. Provide the rephrased article without any additional notes. Long article with full
length and complete details. Rephrased article:

A.2.2.2 Prompt Template QA Rephrasing

• System Prompt: Provide direct and detailed response to the instructions without adding
additional notes.

• [USER]: For the following document, regardless of its original content or formatting, con-
vert it into a comprehensive list of question-answer pairs with multiple tags of “Question:”
followed by “Answer:”, where questions and answers cover complete information of the
original document. Document: [xxxx]. Provide the converted question-answer pairs without
any additional notes. Question-answer pairs with corresponding tags (“Question:”, “An-
swer:”):

A.2.2.3 Prompt Template for Generating Textbook-style Synthetic Data: Step 1, Outline Generation

• Step 1: generate an outline based on input text.
• System Prompt: Provide direct and detailed response to the instructions without adding

additional notes.

• [USER] <4 versions>: Imagine you are a prolific author tasked with writing a textbook.
You are working on writing a textbook involving the knowledge and information of the
following text. Text: [xxxx]\n Your task is to write an outline for the textbook. Your target
audiences are <grade school students/college students/field experts/general public>. The
textbook has 10 chapters in total plus title, introduction, and appendices. Textbook outline:

A.2.2.4 Prompt Template for Generating Textbook-style Synthetic Data: Step 2, Chapter Generation

• Step 2: generate each section based on outline.
• System Prompt: Provide a direct and detailed response to the instructions without adding

additional notes.

• [USER]: Imagine you are a prolific author tasked with writing a textbook. You are working
on writing a textbook with the following outline.\n Outline: [xxxx] \n Your task is to write
Chapter x of the textbook. Your target audiences are grade school students. Include exercises
at the end of the chapter to test the reader’s knowledge of the chapter and then provide
reference answers to each question.

B EVALUATION DATASET

Unlike prior scaling law works that report training loss Hestness et al. (2017); Hoffmann et al. (2022)
or test loss on a held-out validation set Kaplan et al. (2020) from training distribution, we measure
upstream loss on a held-out test set from original CC as well as a diverse set of 16 non-code/math
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Table 3: Model configuration parameters for different scale sizes.

Model Hidden Dim #Layers #Heads Batch Size Grad Acc DP TP #Params

100m 576 7 9 4 8 1 1 175,628,736
200m 832 10 13 4 8 1 1 298,632,256
500m 1280 16 20 4 8 1 1 653,436,160
1b 1792 22 28 4 8 1 1 1,317,616,384
2b 2240 28 35 4 8 1 1 2,292,740,800
3b 2624 32 41 2 8 2 1 3,360,234,048
4b 2816 34 44 1 8 4 1 4,103,539,968
6b 3200 40 50 1 1 32 1 5,801,833,600
8b 3648 45 57 1 1 32 1 8,122,355,904
11b 4096 51 64 2 1 16 2 11,372,228,608

English text domains from The Pile (Gao et al., 2020). Because we use scaling laws for comparative
analysis across data interventions, it is critical to assess model performance on external validation
sets to enable fair and meaningful comparisons across different training datasets.

C MODEL DESIGN

C.1 LIST OF TRAINED MODELS

We adopt a standard transformer-based model architecture based on LLaMA3 Grattafiori et al.
(2024) for all of our scaling analysis. In Table 3 we list the model size and configuration of all
models used in this study.

C.1.1 TRAINING AND EVALUATION HYPERPARAMETERS

We trained all models from scratch using the Meta Lingua library (Videau et al., 2024) across one
or multiple nodes depending on model size. We use AdamW (Kingma & Ba, 2014) optimizer
with β1 = 0.9, β2 = 0.95, and a weight decay of 0.1, paired with a cosine schedule and 10%
linear warmup. All runs used a 4096-token context length, a 1M-token effective batch size, and
the Llama 3 TikToken tokenizer (128k vocab) (Grattafiori et al., 2024). Table 4 and Table 5 list
hyperparameters for training and evaluation. Table 3 lists local batch size, gradient accumulation,
data parallelism (DP) and tensor parallelism (TP) employed for each model size. These parameters
are chosen such that global batch size remains at 1M token across all experiments.

Table 4: Training Hyperparameters

Hyperparameter Value

Optimizer AdamW
Peak Learning Rate 3e− 4
Min. LR Ratio 1e− 6
Warmup Steps 10%
Gradient Clipping 1.0
Sequence Length 4096
Effective Batch Size 1M tokens
Prefetch Size 1024
Add BOS token True
Add EOS token True
Model Data Type bf16
Epochs 1
GPU Hardware NVIDIA A100 80GB

18
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Table 5: Hyperparameters for Perplexity Evaluation

Hyperparameter Value

Max Tokens to Generate 1024
Generator Data Type (dtype) bf16

D DETAILS ON SCALING ANALYSIS SETUP

We perform a joint scaling law fit using the following parametric form:

L(N,D) = A ·N−α +B ·D−β + E

We empirically estimate the parameters by fitting this function to the validation loss of over 100
models, ranging from 100M to 8B (3B) parameters and trained on 100M to 40B (200B) tokens for
filtering (synthetic) interventions. We use the scipy.optimize.curve_fit Virtanen et al.
(2020) function in Python, specifically the Trust Region Reflective (‘trf’) optimizer Branch et al.
(1999), which supports bounded, nonlinear least squares. Each datapoint is visited only once during
training, consistent with standard scaling law methodology. This avoids confounding effects from
data repetition and ensures fair comparison across datasets.

Curve-fitting and Initialization: The initial conditions are drawn from previous work Besiroglu
et al. (2024) that challenged the assumptions used in the original Chinchilla paper Hoffmann et al.
(2022). Specifically, we initialize the parameters as:

[A,B, α, β,E] = [482, 2085, 0.3478, 0.3658, 1.8]

Parameter Count Definition: There exists inconsistency in prior work regarding whether to in-
clude embedding parameters in the total parameter count N . OpenAI’s scaling law analysis Kaplan
et al. (2020) excludes embedding parameters, while the Chinchilla analysis Hoffmann et al. (2022)
includes them. We examined both conventions and found that the qualitative trends and conclu-
sions remain consistent. For consistency, here we report the results using the total parameter count
including embeddings.

E SCALING LAW FIT STATISTICS

Table 6 reports the relative uncertainty of each scaling law parameter, computed as the ratio of
the standard error to the estimated value (std/mean) using scipy.optimize.curve_fit.
This metric reflects how confidently each parameter is identified by the fit: lower values indicate
more stable and well-constrained estimates. Across datasets, most parameters exhibit reasonable
uncertainty—typically below 0.5—suggesting that the scaling law fits are generally robust.

F SCALING LAW COMPONENT ANALYSIS

In Section 4, Figure 1, we showed the impact of a handful of data quality interventions on compo-
nents of scaling law. Here we show the impact of all 23 datasets from QualityPajama benchmark
suite. We group the results based on the type of interventions. We also compare the best from each
group.

F.1 HEURISTIC FILTERS

To study the effect of heuristic-based data quality interventions on scaling behavior, we apply a
sequence of commonly used filters, including NSFW removal, aesthetic filtering, PageRank-based
filtering, deduplication at varying similarity thresholds, and grammar-based filtering via average
sentence length. These filters are chosen based on their frequent use in high-quality dataset pipelines
such as C4 Raffel et al. (2020), Dolma Soldaini et al. (2024), and FineWeb Penedo et al. (2024). For
each filter, we evaluate its impact on the scaling law parameters by comparing the fitted values
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Table 6: Normalized variability (std/mean) of scaling law components across different data inter-
ventions. Values for α and β are shown in absolute terms.

Dataset α (std/mean) β (std/mean) A (std/mean) B (std/mean)

Heuristic Filters

orig 0.29 0.14 1.60 0.51
deduped_0.7 0.37 0.19 2.10 0.56
deduped_0.9 0.33 0.16 1.71 0.53
deduped_1.0 0.38 0.21 1.99 0.59
high_pr 0.57 0.62 2.81 1.29
long_text 0.46 0.54 2.97 1.22
low_pr 0.33 0.52 1.92 0.94
med_pr 0.38 0.49 2.45 1.02
medium_text 0.42 0.52 2.52 1.19
no_pr 0.41 0.47 2.46 1.06
nsfw 0.41 0.43 2.99 1.14
short_text 0.40 0.45 2.31 1.09
aesthetic 0.48 0.58 3.18 1.33

High-Quality Synthetic Variants (HQ / QA / CC)

CC100 0.63 0.14 4.51 0.80
HQ100 0.63 0.16 4.93 0.79
HQ33-CC67 0.65 0.13 4.60 0.78
HQ67-CC33 0.60 0.14 4.65 0.77
QA-100 0.52 0.16 4.58 0.81
QA-33-CC67 0.58 0.12 4.54 0.77
QA-67-CC33 0.51 0.12 4.52 0.75

Textbook-style Synthetic Variants (TB)

TB100 0.24 0.09 1.85 0.33
TB33-CC67 0.28 0.08 2.40 0.41
TB67-CC33 0.26 0.08 2.15 0.36

before and after its application, as well as across different configurations (e.g., similarity thresholds
for deduplication or percentile cutoffs for PageRank). Detailed analyses are shown in Figures 7, 8,
and 9.

F.2 SYNTHETIC DATA GENERATION

To evaluate the impact of synthetic data interventions on scaling behavior, we curate datasets using
three prompting strategies: high-quality rephrasing (HQ), question-answer transformation (QA),
and textbook-style rewriting (TB). These methods draw inspiration from prior work on synthetic
pretraining data Maini et al. (2024); Li et al. (2023); Javaheripi et al. (2023); Abdin et al. (2024),
and are applied using the Mistral-Instruct-7B model Jiang et al. (2023). We mix synthetic data with
natural data at different ratios (e.g., 33% synthetic, 67% original). We fit scaling laws on these
synthetic variants to analyze how text rewriting influences parameter stability and scaling behavior.
Detailed results are shown in Figure 10, 11, 12, and 13.

G LIMITATION OF ZIPFIAN DISTRIBUTION THEORY

While prior work has suggested that token distribution characteristics—such as Zipfian structure
could explain power law exponent’s behavior, our empirical findings show that this theory may not
be sufficient to explain the variation in power-law exponents. We analyzed token frequency dis-
tributions across our filtered datasets (Figure 14) and found that the Zipfian exponents are weakly
negatively correlated with the model size exponent α (correlation = −0.37), and show little to no
correlation with the data size exponent β (correlation = −0.005). Table 7 shows scaling exponents
across datasets. In several cases, datasets with nearly identical token distributions exhibit substan-
tially different scaling behavior. This suggests that simple distributional statistics, such as Zipfian

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.10
0.20

0.30
0.40

0.50
0.60

 (higher is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.05
0.10

0.15
0.20

0.25
0.300.35

 (higher is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

A (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5

B (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

-35
-30

-25
-20

-15
-10

-5
0

E (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5

/

Aesthetic Filters
Exact Deduplication

Fuzzy Deduplication (Jaccard Similarity > 0.9)
Fuzzy Deduplication (Jaccard Similarity > 0.7)

Figure 7: How does deduplication affect scaling law components? The red line marks the dataset
before any deduplication is applied. Other lines represent deduplicated variants using different sim-
ilarity thresholds.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.10
0.20

0.30
0.40

0.50
0.60

 (higher is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.05
0.10

0.15
0.20

0.25
0.300.35

 (higher is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

A (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5

B (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

-40
-35

-30
-25

-20
-15

-10
-5

0

E (log10-scale) (lower is better)

FreeLaw

NIH_ExPorter

OpenWebText2

USPTO_Backgrounds

Wikipedia_en
PhilPapers

PubMed_Abstracts

PubMed_Central

Gutenberg_PG-19

Books3

Enron_Emails

YoutubeSubtitles

OpenSubtitles
BookCorpus2

Pile-CC

QP

HackerNews

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

/

Aesthetic Filters
High PageRank Score
Medium PageRank Score

Low PageRank Score
PageRank Score Not Found

Figure 8: How does PageRank-based filtering affect scaling law components? The red line de-
notes the dataset before applying any PageRank filters. Other lines correspond to thresholds applied
to the PageRank score. Low PageRank retains pages with scores below X , High PageRank
retains those above Y , and Medium PageRank keeps pages between X and Y . PageRank Not
Found includes pages missing from the reference PageRank table. Thresholds X and Y are set to
the 33rd and 67th percentiles of the score distribution of pages in the PageRank table.
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Figure 9: How does grammar complexity (average sentence length) affect scaling law compo-
nents? The red line indicates the dataset before applying any sentence length filters. Datasets are
filtered based on average sentence length, with thresholds set at 10 tokens for short text and 25
tokens for medium text.
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Figure 10: How does synthetic data influence scaling law components? Different lines show
different synthetic data generation techniques and mixing ratio, and along the radial axis we have
the validation set.
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Figure 11: How does HQ synthetic data generation influence data quality? HQ refers to high-
quality rephrasing, and CC refers to the raw natural Common Crawl dataset. HQ[N]-CC[M] refers
to the mixture of synthetic and natural and N and M captures the percentage.
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Figure 12: How does QA synthetic data generation influence data quality? QA refers to
Question-Answering rephrasing, and CC refers to the raw natural Common Crawl dataset. QA[N]-
CC[M] refers to the mixture of synthetic and natural and N and M captures the percentage.
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Figure 13: How does TB synthetic data generation influence data quality? TB refers to
Textbook-style rephrasing, and CC refers to the raw natural Common Crawl dataset. TB[N]-CC[M]
refers to the mixture of synthetic and natural and N and M captures the percentage.
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Figure 14: Token distribution across different QualityPajama datasets

exponents, fail to capture the deeper structural or semantic properties that influence scaling dy-
namics. It is possible that higher-order n-gram patterns or conceptual structures provide a more
explanatory signal.

Filter Zipf Exponent (z) Scaling Exponent (α) Scaling Exponent (β)
high_perplexity 1.1820 0.3509 0.2536
nsfw 1.0950 0.4341 0.1982
aesthetic 1.0907 0.4097 0.1946
deduped_0.7 1.3898 0.3633 0.2173
deduped_0.9 1.3938 0.3392 0.2393
deduped_1.0 1.1638 0.3499 0.2093
no_pr 1.0599 0.3884 0.1855
low_pr 1.3943 0.3772 0.1805
med_pr 1.3744 0.4157 0.1982
high_pr 1.2625 0.3499 0.1826
medium_text 1.3541 0.3740 0.1885
long_text 1.2944 0.4106 0.1833

Table 7: Zipf exponent z and scaling law exponents α and β across different data filters.

H VALIDATING SCALING LAW FITS

Hoffmann et al. Hoffmann et al. (2022) propose three distinct approaches for estimating scaling law
components. The first approach holds model size constant while varying the number of training
tokens. The second approach uses isoFLOP curves to identify the compute-optimal design point—
that is, the configuration within each isoFLOP family that minimizes loss. The third approach
involves fitting a parametric loss function to observed data.

In this work, we primarily use the parametric loss function throughout our analysis. However, we
also conduct a limited set of experiments to generate isoFLOP curves for a subset of our datasets,

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

enabling a comparative evaluation. To validate our parametric fits, we compare them against the
predictions obtained from the isoFLOP profiles.

The isoFLOP approach predicts scaling exponents a and b, where N∗ = A·Ca and D∗ = B·Cb, and
connects to the parametric loss function components via the relationships a = β

α+β and b = α
α+β .

Figures 15–17 show isoFLOP curve fittings against validation loss for several validation sets, each
corresponding to a different dataset. In each figure, the parametric form estimates of the scaling law
components are reported in the caption for comparison. The average absolute relative error between
isoFLOP curve vs. parametric fit estimation of a and b is 0.21 and 0.24.
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Figure 15: IsoFLOP Curve Approach applied across different training sets. Validation loss is
evaluated on the ArXiv subset from the Pile dataset. The parametric (vs. isoFLOP) estimates of the
exponent a are 0.3322 (vs. 0.3532), 0.3738 (vs. 0.3516), and 0.3561 (vs. 0.3779) for (a), (b), and
(c), respectively.
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Figure 16: IsoFLOP Curve Approach applied across different training sets. Validation loss is
evaluated on the FreeLaw subset from the Pile dataset. The parametric (vs. isoFLOP) estimates of
the exponent a are 0.3213 (vs. 0.4432), 0.3623 (vs. 0.4323), and 0.3175 (vs. 0.4709) for (a), (b),
and (c), respectively.
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Figure 17: IsoFLOP Curve Approach applied across different training sets. Validation loss is
evaluated on the CC held-out test set. The parametric (vs. isoFLOP) estimates of the exponent a are
0.429507 (vs. 0.401894), 0.471800 (vs. 0.394094), and 0.424924 (vs. 0.492310) for (a), (b), and
(c), respectively.
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I BEYOND CHINCHILLA: STEP-BY-STEP EXPLORATION TOWARDS A CHEAP,
ROBUST SCALING-LAW FORM

Classical neural scaling-law formulations implicitly assume that the training and evaluation data
are drawn from the same underlying distribution. In practice, however, scaling laws are most often
used in settings where the train and test distributions differ—sometimes greatly. As data curation
pipelines evolve or filtering strategies become more aggressive, the training distribution can drift
substantially away from the downstream evaluation distributions for which we ultimately make pre-
dictions. This mismatch violates the assumptions of standard scaling-law forms and directly impacts
parameter identifiability.

A second major pain-point arises from the requirement of observing high-compute datapoints in
order to accurately estimate the irreducible loss floor E. When the data does not extend far enough
into the large-N /large-D regime, the asymptotic term becomes weakly identified. In these regimes,
the optimizer often compensates by pushing E toward zero and allowing the amplitude terms A and
B to absorb what should be the irreducible component.

In this report, we document our step-by-step journey toward discovering a more robust scaling-law
form with limited datapoints, beginning with failure modes in the baseline Chinchilla formulation
and describing the empirical insights that guided each modification.

Methodology: We evaluate scaling law forms across 299 train-validation pairs, formed by the Carte-
sian product of 23 training sets from QualityPajama and 13 validation sets from the Pile. For each
train-validation pair, we have around ∼40 datapoints with ∼9×14 N×D coverage, with model sizes
ranging from 20M–3B parameters (∼2 orders of magnitude) and data sizes ranging from 100M–38B
tokens (2.6 orders of magnitude).

Measure of Success: We define a composite quality score (0–100 points) that evaluates each
scaling-law model across four key dimensions: (1) Parameter Stability (40 points) measures the
fraction of train-validation pairs where each parameter’s coefficient of variation (CV) is below 1.0,
ensuring reliable parameter estimates; for 7-parameter models, the 8 points normally assigned to
A and B are split evenly between their amplitude (A0, B0) and exponent (γ) components. (2) E-
Collapse Avoidance (20 points) rewards models whose irreducible error satisfies E ≥ 0.1, penal-
izing the pathological E → 0 solutions that affects standard chinchilla formulation. (3) R2 Perfor-
mance (20 points) scores out-of-bag predictive accuracy on a linear scale, with R2 = 1.0 receiving
full credit. (4) RMSE Performance (20 points) evaluates absolute prediction error, normalized be-
tween the best and worst RMSE observed across all models to reward lower error. This balanced
rubric ensures that scaling-law models achieve stable parameter estimates, avoid degenerate solu-
tions, and maintain strong predictive accuracy. Underperformance in any dimension substantially
reduces the overall score.

Table 8: Step-by-step exploration toward a more robust scaling law. The table reports the catas-
trophic failure rate for each parameter under different fitting techniques. For all parameters except
E, catastrophic failure is defined as the fraction of train-validation pairs whose coefficient of varia-
tion exceeds 1 (CV > 1). For E, catastrophic failure is defined as the fraction of pairs with E < 0.1.
The blue column corresponds to the original Chinchilla-style approach, and the green column high-
lights our final winning recipe. * in-sample results for MCMC.

Parameter MLE bootstrap MCMC MLE + E MLE + ER + AB MLE + ER + AB
(Baseline) Regularization (ER) scale dependent Distance-Modulated)

A 14% 95% 66% 1% 3%
B 9% 41% 11% 0% 0.7%
α 7% 0% 0% 0% 0%
β 0% 0% 0% 0% 0%
γA — — — 15% 16%
γB — — — 3% 3%
E 59% 30% 3% 0% 0%
OOB R2 0.86 −27* 0.90 0.97 0.97
OOB RMSE 0.37 5.3* 0.39 0.20 0.20
Quality Score 64 −482 71 98 97
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STEP 1. CHINCHILLA BASELINE FAILURE: ASYMPTOTIC FLOOR COLLAPSE IN THE
CHINCHILLA FORM

Using the standard 5-parameter Chinchilla model, we observe that 59% of train-validation pairs
produce near-zero asymptotes (i.e., E < 0.1). This is incompatible with theory. We expect that
when train and test distributions diverge, the asymptotic floor be strictly positive and approximated
by E = Hval + KL(val∥train).

This collapse indicates that, without additional information, the model prefers to “explain away” the
asymptote by reallocating mass into A and B. The failure is most severe when train and validation
distributions diverge and we lack high-compute datapoints to anchor the asymptote.

STEP 1.1 EXPLORING ALTERNATIVE BASELINE: MCMC BAYESIAN INFERENCE

We also explored MCMC bayesian inference. While this approach eliminates the E collapse prob-
lem, we found it has markedly worse performance compared to the baseline MLE bootstrap approach
and it is very unstable estimates for A, B and E:

• 98% of train-validation pairs have catastrophic A failures (ACV > 1)

• 41% of train-validation pairs have catastrophic B failures (BCV > 1)

• 30% of train-validation pairs have catastrophic E failures (ECV > 1)

STEP 2. FIXING E: DISTANCE-DEPENDENT REGULARIZATION

To correct the asymptotic floor collapse, we introduce a distance-dependent regularization that an-
chors E toward the theoretical floor:

• When train and validation distributions are similar, we use weak regularization and trust
the data to identify E

• When the distributions diverge, regularization strength increases smoothly toward the the-
oretical floor.

This removes the asymptotic collapse:

• E-collapse reduces from 59% → 3%

However, it introduces a new and unexpected failure:

• Catastrophic A failures (CV > 1) jump from 14% → 66% (4.5× worse)

This reveals a key insight: Forcing E to stay non-zero shifts the burden of explaining curvature onto
A and B, causing them to deform unnaturally. This tells us the Chinchilla form lacks sufficient
flexibility to balance the interaction between E, A, and B under distribution shift.

For brevity, we only describe the final winning approach here, though we explored several alterna-
tives for regularizing E, including hard constraints, regularization around different targets (e.g., the
E estimated via our MCMC fits), and variants with fixed regularization strength.

STEP 3. 1D SLICED FITS SHOW THAT A AND B ARE SCALE-DEPENDENT

Inspired by observations in prior work, we revisited 1D sliced scaling-law fit dynamics. For each
train-validation pair:

• We fit L(N) at fixed D to estimate A and α.

• We fit L(D) at fixed N to estimate B and β.

These sliced fits revealed that the Chinchilla functional form is too rigid over the N -D plane. Within
a single train-validation pair, where the model assumes that parameters are constant across all values
of model size and data size, we observe systematic drift:
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• A and α vary consistently as D changes (R2 ≈ 0.5).
• B and β vary consistently as N changes (R2 ≈ 0.3).

We also found clear correlations between train-validation distance and parameter instability:

• BCV correlates with distance (ρ = −0.34, p = 10−9), suggesting that reliability of B
declines as distributions diverge.

• Similarly αCV and βCV correlate with distance (ρ ≈ −0.40, p < 10−12), suggestion that
overall calibration worsens under domain shift.

These diagnostics suggested that the empirical loss surface contains scale-dependent curvature and
the rigid Chinchilla structure is not sufficient once the distribution shift becomes moderate or large.

Guided by these observations, we explored two families of extensions:

1. Fully scale-dependent parameters:
• A(D), α(D)

• B(N), β(N)

2. Distance-modulated scale dependence:
• A(D, s), α(D, s)

• B(N, s), β(N, s)

• with s derived from JS divergence

However, we found that allowing the exponents to become scale-dependent resulted in unstable fits:
each train-validation slice contains only ∼30–50 points, which is insufficient to reliably estimate 9+
parameters. Moreover, our E-regularized approach already yields stable estimates for α and β. We
also observed that incorporating distance into A(D, s) and B(N, s) provided no measurable benefit
and only increased the complexity of the formulation. For these reasons, we revert to the simpler
A(D) and B(N) parameterization.

In contrast, allowing only the amplitude terms to depend on scale is well supported by the data. The
simplest and most stable choice is:

• A(D) varies with D

• B(N) varies with N

• α and β remain constant within each pair

This preserves identifiability and uses only 7 parameters.

The resulting model is:

L(N,D) = A0 ·Dγ1 ·N−α +B0 ·Nγ2 ·D−β + E (1)

where:

A(D) = A0 ·Dγ1 # amplitude changes with D

B(N) = B0 ·Nγ2 # amplitude changes with N

α and β remain constant within each pair

Parameters (7 total): A0, γ1, α, B0, γ2, β, E

This minimal extension captures the scale-dependent behavior observed in the 1D sliced fits while
staying within the parameter budget supported by the available datapoints. Results are listed in
Table 8.
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