
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIAL PRIVACY OF CROSS-ATTENTION WITH
PROVABLE GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-attention has become a fundamental module nowadays in many important
artificial intelligence applications, e.g., retrieval-augmented generation (RAG),
system prompt, guided stable diffusion, and many more. Ensuring cross-attention
privacy is crucial and urgently needed because its key and value matrices may
contain sensitive information about model providers and their users. In this work,
we design a novel differential privacy (DP) data structure to address the privacy
security of cross-attention with a theoretical guarantee. In detail, let n be the input
token length of system prompt/RAG data, d be the feature dimension, R be the
maximum value of the query and key matrices, Rw be the maximum value of the
value matrix, and r, s, ϵs be parameters of polynomial kernel methods. Then, our
data structure requires Õ(ndr2) memory consumption with Õ(ndr2) initializa-
tion time complexity and Õ(dr2) query time complexity for a single token query.
In addition, our data structure can guarantee that the process of answering user
query satisfies (ϵ, δ)-DP with Õ((1 − ϵs)

−1n−1ϵ−1R2sRwr
2) additive error and

2ϵs/(1− ϵs) relative error between our output and the true answer. Furthermore,
our result is robust to adaptive queries in which users can intentionally attack the
cross-attention system. To our knowledge, this is the first work to provide DP for
cross-attention and is promising to inspire more privacy algorithm design in large
generative models (LGMs).

1 INTRODUCTION

The development of Artificial Intelligence (AI) has four stages: (1) prediction AI, e.g., ResNet
(He et al., 2016) in image classification; (2) generation AI, e.g., ChatGPT (Achiam et al., 2023) in
language generation; (3) autonomous agent AI, Voyager (Wang et al., 2023a) autonomously plays
Minecraft game (Fan et al., 2022); (4) Artificial Generalization Intelligence (AGI). Humans have
made rapid progress in generative AI, and we are excitingly heading to the third stage, the era of AI
agent (Liu et al., 2023). One prevalent application of AI agents is customized large generative mod-
els (LGMs) agents (OpenAI, 2024a), e.g., AgentGPT (GitHub, 2024a), SuperAGI (GitHub, 2024d),
MetaGPT (Hong et al., 2024b;a), GPT Researcher (GitHub, 2024c) and many so on. In particular,
recently, Apple Inc. introduced Apple Intelligence (Apple, 2024), signaling the integration of LGMs
into physical devices. This innovation allows devices to use personal information for real-life as-
sistance, such as entering passport numbers when booking flights or informing users of their latest
meetings. With increased AI capabilities, privacy concerns become significant, as the more personal
information devices handle, the greater the potential privacy risks.

One fundamental technique used in LGMs is cross-attention (Vaswani et al., 2017), which is an
essential module in retrieval-augmented generation (RAG) (Lewis et al., 2020), system prompt,
guided stable diffusion, and many so on. In RAG, to be more professional, the LGMs answer
user input queries by using a domain-specific database under cross-attention, which may contain
specific privacy data and knowledge so that the LGMs gain additional power. For system prompts,
based on cross-attention, some customized long prompts, e.g., user information or concrete rules,
are concatenated before user input to follow human instructions better, which are commonly used in
ChatGPT (GitHub, 2024b), Claude3 (Anthropic, 2024) and other commercial LGMs.

Consequently, protecting the privacy of domain-specific data in RAG or system prompts is crucial
as they contain sensitive information about users and companies. These data and prompts are the
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core assets of many start-ups. However, these data and prompts can be easily recovered (Li et al.,
2023b), jailbroken (Jin et al., 2024), and released (Li et al., 2023a) by user adversarial attack (Yu
et al., 2024), e.g., there are 1700 tokens in ChatGPT system prompts (Patel, 2024). These findings
highlight the critical importance of robust privacy protections in LGMs, making privacy not just
essential but an urgent issue that demands immediate attention.

To fundamentally preserve cross-attention privacy, we borrow the powerful tools from differential
privacy (DP) (Dwork et al., 2006), which provides measurable privacy and combines with statistical
machine learning seamlessly (Ponomareva et al., 2023). Thus, in this work, we would like to ask
and answer the following question,

How can we use differential privacy to protect the security of cross-attention in LGMs?

Our work demonstrates that the Softmax cross-attention computation is equivalent to computing the
weighted distance problem.
Definition 1.1 (Softmax cross-attention). Let n and m be the token length of the data and input
query, respectively. Let d be the feature dimension. Given fixed key matrix K ∈ [0, R]n×d and fixed
value matrix V ∈ [−Rw, Rw]

n×d, Rw ≥ 1, for any input query matrix Q ∈ [0, R]m×d, the goal of
the Softmax Cross-Attention Computation is to get the matrix Attn(Q,K, V ) ∈ Rm×d, which is

Attn(Q,K, V ) := D−1AV,

where A ∈ Rm×n satisfies Ai,j := exp(⟨Qi,Kj⟩/d) for any i ∈ [m], j ∈ [n] (Qi and Kj denote the
i-th and j-th rows of Q and K, respectively) and D := diag(A1n) ∈ Rm×m is a diagonal matrix.

Note that Softmax(QK⊤/d) = D−1A ∈ Rm×n in Definition 1.1, which is the standard function
used in transformers, and usually, we call it as attention matrix. Our main theorem, presented below,
provides a robust solution of cross-attention, ensuring privacy and accuracy guarantees.
Theorem 1.2 (Main result; Informal version of Theorem 3.1). Let Q,K, V,Attn be defined in
Definition 1.1. Let pf be the probability of failure parameter. Let r, s, ϵs be the parameters of the
polynomial kernel methods (Lemma H.6). Then, our Algorithm 1 requires Õ(ndr2) memory with
Õ(ndr2) initialization time and Õ(dr2) query time, such that with probability 1 − pf , the output
process of cross-attention satisfies (ϵ, δ)-DP and is robust to adaptive query with relative error
2ϵs/(1− ϵs) and additive error Õ((1− ϵs)

−1n−1ϵ−1R2sRwr
2).

Our main technique in Theorem 1.2 ensures that cross-attention is differentially private by using the
polynomial kernel approximation method and transforming it into a weighted distance problem. We
then solve the problem by summing over weighted distances (depending on the value embedding)
between the query embedding and the key embedding. We build a data structure for weighted
Softmax queries in Section 4.3, and we extend this data structure to handle adaptive queries using
the ϵ0-net/metric entropy argument in Section 4.4. Furthermore, our additive error decreases as the
input token length grows, diminishing to zero.

Our contributions are as follows:

• We demonstrate that cross-attention computations are equivalent to the weighted distance
problem (Section 3).

• We design a novel algorithm (Algorithm 3) that privately answers weighted Softmax
queries with high probability and a concrete accuracy bound.

• Our algorithm (Algorithm 1) handles multiple cross-attention queries and is robust against
adaptive query attacks (Theorem 3.1), meaning that potential attackers cannot intentionally
extract information of system prompts/RAG data.

To our knowledge, this is the first work to utilize DP to protect prompts in LGMs with theoretically
provable guarantees. While some have explored protecting user/system prompts with DP (Edemacu
& Wu, 2024; Mai et al., 2023), they are primarily empirical and lack theoretical guarantees. Addi-
tionally, many others are working on protecting private datasets by applying DP to the fine-tuning
stage of LGMs (Behnia et al., 2022; Singh et al., 2024; Liu et al., 2024b; Yu et al., 2021; Li et al.,
2021; Shi et al., 2022a), which diverges from our work. The strength of DP lies in its strong, unam-
biguous, and concrete definition of privacy, enabling algorithm designs with provable privacy and
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accuracy analysis. Therefore, we believe that the theoretical aspects of DP applications in LGMs
remain a highly impactful direction, and we aim to pave the way for further exploration in this area.

1.1 RELATED WORK

Differential Privacy in Data Structure and Attention. Differential privacy (DP) is a flourishing
and powerful technique that has enormous applications in the topic of private machine learning.
In the era of Large Generative Models (LGMs), there are three primary approaches to ensuring
privacy: (1) during the pre-training stage: to protect training data (Abadi et al., 2016; Ponomareva
et al., 2023), (2) during the adaptation stage: to protect target data (Behnia et al., 2022; Singh et al.,
2024; Liu et al., 2024b; Yu et al., 2021; Li et al., 2021; Shi et al., 2022a; Huang et al., 2024),
(3) during the inference stage: to protect user/system prompts (Edemacu & Wu, 2024) and RAG
data (Lewis et al., 2020). To protect training data, DP-SGD (Abadi et al., 2016) uses DP optimizer
to ensure data privacy, severing as the traditional baseline method. Recently, numerous works have
aimed to improve this method by integrating DP in both the pre-training and fine-tuning stages
of LGMs (Yu et al., 2021; Li et al., 2021; Golatkar et al., 2022; Behnia et al., 2022; Shi et al.,
2022a; Mattern et al., 2022; Singh et al., 2024; Zheng et al., 2024; Liu et al., 2024b). However, DP-
SGD confines differential privacy to the optimizer. In contrast, we propose a novel approach that
integrates DP directly into the attention mechanism, supported by strong theoretical analysis and
guarantees. Given the resource-intensive nature of training LGMs, our technique offers a practical
alternative for models trained with standard SGD, which lack inherent privacy guarantees. In such
cases, applying DP-SGD would require retraining the models, which is computationally expensive,
whereas our method avoids this additional cost.

To protect user/system prompts, Edemacu & Wu (2024) provides a survey on both DP and non-
DP methods. In the use of LGMs, prompting methods almost become a standard way for infer-
ence (Schulhoff et al., 2024). Given the billions of prompt interactions daily, ensuring privacy is
essential (Mai et al., 2023). We refer readers to Appendix A for more related works.

Roadmap. In Section 2, we present the preliminary of differential privacy (DP) and cross-attention.
In Section 3, we present the main result of our cross-attention theorem (Theorem 3.1). In Sec-
tion 4, we outline the main results of our algorithms. In Section 5, we discuss DP-related topics and
potential extensions. In Section 6, we conclude our paper.

2 PRELIMINARY

In this section, we give the preliminary of differential privacy (DP) and cross-attention. In Sec-
tion 2.1, we describe the notations. In Section 2.2, we give definitions related to DP.

2.1 NOTATIONS

We use Pr[] to denote the probability. We use E[] to denote the expectation. We use Var[] to denote
the variance. For two vectors x ∈ Rd and y ∈ Rd, we use ⟨x, y⟩ to denote the inner product between
x, y, i.e., ⟨x, y⟩ = ∑d

i=1 xiyi. We use X ⊂ Rd and |X| = n to mean the same thing as X ∈ Rn×d.
Also, we denote x⊤

i as the i-th row of X . We use xi,j to denote the j-th coordinate of xi ∈ Rn. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e., ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i )

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
We denote polynomial time complexity with respect to n as poly(n). For a function f , we use Õ(f)
to represent f multiplied by a polylogarithmic factor, i.e., f · poly(log f). This notation, known
as soft-O or tilde notation, simplifies expressions by omitting logarithmic factors, focusing on the
dominant term’s growth rate.

2.2 DIFFERENTIAL PRIVACY DEFINITIONS

In this section, we give several definitions related to differential privacy (DP). We refer the reader to
Dwork & Roth (2014) for more background and details on DP.
Definition 2.1 (Neighboring dataset). Two datasets X,X ′ ∈ [0, R]n×d are neighboring if they differ
in exactly one row, i.e., there exists i ∈ [n] such that Xi,∗ ̸= X ′

i,∗ and Xj,∗ = X ′
j,∗ for all j ̸= i.
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Definition 2.2 (Sensitivity). The sensitivity of a function f : Rn×d → Rn×d′
is: ∆ :=

maxX,X′∈Rn×d ∥f(X)−f(X ′)∥1, where X,X ′ are neighboring datasets and ∥·∥1 is the entry-wise
ℓ1-norm.

Definition 2.3 ((ϵ, δ)-DP). For ϵ > 0, δ ≥ 0, a randomized algorithm A is (ϵ, δ)-DP, if for all
S ⊆ Range(A) and for all neighboring datasets X,X ′ such that ∥X −X ′∥1 ≤ 1:

Pr[A(X) ∈ S] ≤ exp(ϵ) Pr[A(X ′) ∈ S] + δ.

When δ = 0, the algorithm is said to have pure differential privacy.

We mainly use the truncated Laplace mechanism, which has the following definitions.
Definition 2.4 (Truncated Laplace distribution). We use TLap(∆, ϵ, δ) to denote the Truncated
Laplace distribution with pdf proportional to exp(−ϵ|z|/∆) on the region [−B,B], where B =
∆
ϵ · log(1 +

exp(ϵ)−1
2δ ).

Fact 2.5 (Theorem 3 in Geng et al. (2020)). Let z denote a TLap(∆, ϵ, δ) random variable. Then
we have E[z] = 0, and

Var[z] =
2∆2

ϵ2
(1− δ · log

2(1 + eϵ−1
2δ ) + 2 log(1 + eϵ−1

2δ )

eϵ − 1
).

Furthermore, if δ = 0, we have Var[z] = 2∆2/ϵ2, meaning truncated Laplacian mechanism will be
reduced to the standard Laplacian mechanism.

Lemma 2.6 (Laplace mechanism, (Dwork & Roth, 2014; Geng et al., 2020), see Lemma 2.2 in
Andoni et al. (2023)). Given a numeric function f that takes a dataset X as the input, and has
sensitivity ∆, the mechanism that outputs f(X) + z where z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition,
if ϵ, δ ∈ (0, 0.5), f(X)+ z, where z ∼ TLap(∆, ϵ, δ) is (ϵ, δ)-DP. Moreover, the truncated Laplace
mechanism is always accuracy up to error B.

Algorithm 1 DP cross-attention algorithm

1: datastrucutre DPCROSSATTENTION ▷ Theorem 3.1
2: members
3: D0,D1, . . . ,Dd : DPTREESOFTMAXADAPTIVE ▷ Algorithm 7
4: end members
5: procedure INIT(K ∈ [0, R]n×d, V ∈ [−Rw, Rw]

n×d, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)) ▷ n = |K|

6: for k = 1→ d do
7: Dk.INIT(K,n, V:,k, ϵ/2, δ/2, δ

′/2, c, ϵs, pf ) ▷ Compute AV
8: end for
9: D0.INIT(K,n,1n, ϵ/2, δ/2, δ

′/2, c, ϵs, pf ) ▷ Compute D
10: end procedure
11: procedure QUERY(Qi ∈ [0, R]d)
12: O ← 0d

13: D ←D0.DISTANCEQUERY(Qi)
14: for k = 1→ d do
15: Ok ← D−1 · Dk.DISTANCEQUERY(Qi)
16: end for
17: return O
18: end procedure
19: end datastrucutre

3 MAIN RESULTS: CROSS-ATTENTION

In this section, we show our main result for cross-attention. Theorem 3.1 states that we can ensure
the entire cross-attention module satisfies DP and is robust to adaptive queries. Our high-level idea
is based on the similarity between weighted distance problem and cross-attention. For a typical
weighted distance problem, we define the following: Let w ∈ Rn be the weights, X ∈ Rn×d be the

4
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data matrix, where x⊤
i is the i-th row of X for i ∈ [n], and let y ∈ Rd be the query. Suppose we

need to answer ℓ1 distance query. We have∑
i∈[n]

wi︸︷︷︸
weight

∥ y︸︷︷︸
query

− xi︸︷︷︸
data

∥1.

Now we introduce cross-attention. Let Q,K, V,Attn be defined in Definition 1.1. In a standard
cross-attention process, K and V are accessible before inference, while the user input Q becomes
available only when the user provides it. Here, K and V represent values stored in memory or disks
and are considered private assets protected within the model, whereas Q is treated as public.

For the cross-attention mechanism Attn (Definition 1.1), we aim to ensure that the matrix AV
satisfies DP guarantee. Let Ai,j = exp(⟨Qi,Kj⟩/d) for i ∈ [m], j ∈ [n]. Let Vj,k ∈ R be the
(j, k)-th entry of V , for j ∈ [n], k ∈ [d]. Let D = diag(A1n), acting as a normalizing factor that
aggregates all the information. We store both K and its corresponding noises. For computing AV ,
we use the perturbed K, whereas for computing D, we rely on the original, unperturbed K. By
post-processing property (Fact B.7), to ensure that the forward output Attn(Q,K, V ) = D−1AV
(Definition 1.1) satisfies DP, we only need to ensure the DP of its component AV .

The (i, k)-th entry of AV for each i ∈ [m], k ∈ [d] is computed by

(AV )i,k =

n∑
j=1

Vj,k︸︷︷︸
weight

exp(⟨ Qi︸︷︷︸
query

, Kj︸︷︷︸
data

⟩/d), (1)

which can be viewed as a weighted Softmax problem, where V provides the weights, Q is the query,
and K is the dataset. Thus, we choose to add noise to K and V based on the similarity between the
weighted distance problem and cross-attention. Furthermore, we find that we can only handle one
column of V , i.e., V∗,k ∈ Rn, in a single data structure. Therefore, we need to initialize a total of d
different data structures, each with weights V∗,k for k ∈ [d]. For computing D, we treat V = 1n,
which can be interpreted as an weighted Softmax problem with weight 1n.

Here, we present our main result below.
Theorem 3.1 (Softmax cross-attention, informal version of Theorem H.11). Let Q,K, V,Attn be
defined in Definition 1.1. Assume the input context length n is large enough. Let pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma H.6). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let l = O(r log(dR/(ϵspf ))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ [0, R]d, to QUERY(Qi) (Algorithm 1) for each i ∈ [m]. It takes O(ldr log n)
time to output an entry z in Attn(Q,K, V ) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error 2ϵs/(1 − ϵs) and additive error O((1 −
ϵs)

−1n−1ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 3.2. Notice in Theorem 3.1 that we ensure the process of computing each entry is (ϵ, δ+δ′)-
DP. To guarantee that the overall output vector of length d is DP, we initialize each Di for i ∈
{0, 1, 2, . . . , d} with parameters scaled from ϵ/2, δ/2, δ′/2 to ϵ/(d + 1), δ/(d + 1), δ′/(d + 1).
Then, by the basic composition property (Fact B.8), the output vector is (ϵ, δ + δ′)-DP, with the
additive error increasing by a factor of Õ(d).

In Theorem 3.1, we use our DPTREECROSSATTENTION (Algorithm 1) and guarantee that, for each
query token of cross-attention, the output process satisfies (ϵ, δ + δ′)-DP with 2ϵs/(1− ϵs) relative

5
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error and O((1 − ϵs)
−1n−1ϵ−1lΓ2

R,sRwr
√
log(l/δ′) · log3/2 n) additive error, and O(ldr log n)

running time under adaptive query. More specifically, the algorithm creates d + 1 DPTREESOFT-
MAXADAPTIVE (Algorithm 7) data structures, each requiring O(lnr) memory consumption and
O(lnr) initialization time. Notably, our additive error is inversely proportional to n, meaning that
as the input token length increases, the additive error approaches zero. This is achieved by the
normalizing matrix D (Definition 1.1). We refer the reader to Section H for proof details.

Thus, our algorithm theoretically protects system prompts/RAG data in cross-attention as discussed
in Section 1. In Section 4, we provide a detailed technical overview, and in Section 5, we will present
self-attention and DP-related discussion.

Algorithm 2 DPTree initialization and query

1: datastructure DPTREE ▷ Theorem C.1
2: members
3: c : R2n−1

4: end members
5: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ R, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma C.4, Lemma C.3
6: b[n, 2n− 1]← a
7: for i = n→ 2n− 1 do
8: c[i]← b[i] + TLap(∆, ϵ/ log n, δ/ log n)
9: end for

10: for i = (log n)→ 1 do
11: for j = 1→ 2i−1 do
12: k ← 2i−1 + j − 1
13: b[k]← b[2k] + b[2k + 1]
14: c[k]← b[k] + TLap(∆, ϵ/ log n, δ/ log n)
15: end for
16: end for
17: end procedure
18: procedure QUERY(y ∈ [0, R])
19: cleft, cright ← 0, 0
20: for i = 1→ log n do
21: Let node j ∈ [2i] of layer i denotes the integer such that y ∈ [(j − 1)R/2i, jR/2i)
22: if j is even then ▷ Node j is the right child of its parent
23: cleft ← cleft + c[2i + j − 2] ▷ Add the value of left sibling node
24: else ▷ Node j is the left child of its parent
25: cright ← cright + c[2i + j] ▷ Add the value of right sibling node
26: end if
27: end for
28: return cleft, cright
29: end procedure
30: end datastructure

4 KEY DATA STRUCTURE: DPTREE

This section provides our key data structures: DPTREE (Algorithm 2), DPTREEDISTANCE (Al-
gorithm 4 and 5), DPTREEHIGHDIM (Algorithm 6), DPTREESOFTMAX (Algorithm 3), and DP-
TREESOFTMAXADAPTIVE (Algorithm 7).

In Section 4.1, we provide our high-level proof insights. In Section 4.2, we give our basic build-
ing block algorithms DPTREE, DPTREEDISTANCE and DPTREEHIGHDIM. In Section 4.3, we
present our DPTREESOFTMAX algorithm that solves the weighted Softmax problem. In Section 4.4,
we present our DPTREESOFTMAXADAPTIVE algorithm that enables DPTREESOFTMAX to handle
adaptive query problem.
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4.1 TECHNIQUE OVERVIEW

Notice that Eq. (1) is not a typical distance measure like ℓ1 or ℓ2, but by using polynomial kernel
method techniques, we transform it into a distance measure. Alman & Song (2023) states that the
exponential inner product can be approximated by polynomial kernel function P (·) : Rd → Rr,
i.e., P (x)⊤P (y) ≈ exp(x⊤y/d) for two vector x, y ∈ Rd, with a relative error. Then, by the Law
of Cosines, we transform the inner product of polynomial kernel functions into a distance measure,
i.e.,

2P (x)⊤P (y) = − ∥P (x)− P (y)∥22 + ∥P (x)∥22 + ∥P (y)∥22. (2)

After transforming Eq. (1) into a distance measure, we design the DPTREE series data structures to
provide cross-attention DP guarantee.

In summary, we first design the data structure DPTREE (Algorithm 2) that builds a binary segment
tree with truncated Laplace noise added in the nodes to ensure DP guarantee. Then, based on
this data structure, we design DPTREEDISTANCE (Algorithm 4 and 5) to answer one dimensional
weighted ℓpp distance queries

∑n
i=1 wi·|y−xi|p. We further decompose high dimensional ℓpp distance

problem into one dimensional ℓpp distance problems using

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p. (3)

Based on this decomposition, we design DPTREEHIGHDIM (Algorithm 6) which is capable of
answering high dimension queries. Then, using Eq. (2) and DPTREEHIGHDIM, we design DP-
TREESOFTMAX (Algorithm 3) to answer Softmax queries. By building multiple copies of this data
structure, we boost the success probability such that it can answer any query (including adaptive
query) with an additive error, establishing the final data structure DPTREECROSSATTENTION (Al-
gorithm 1).

4.2 DPTREE, DPTREEDISTANCE, AND DPTREEHIGHDIM

The unweighted distance query has been explored in prior works (Huang & Roth, 2014; Backurs
et al., 2024; Liu et al., 2024a). Specifically, Huang & Roth (2014) leverages online learning tech-
niques to approximate the sum of distances, while Backurs et al. (2024) introduces a DP data struc-
ture based on a node-contaminated balanced binary tree. Furthermore, Liu et al. (2024a) presents a
new data representation in tree nodes, where each node stores the sum of distances from one point
to multiple points. In contrast, we focus on the weighted distance query, generalizing their results.

We design a basic data structure DPTREE (Algorithm 2) that answers summation queries by a sum-
mation segment tree with truncated Laplace noise (Definition 2.4). The algorithm first builds a
binary summation tree in an array and then adds truncated Laplace noises to each node. During a
query, the algorithm traverses each layer of the binary structure based on the input y, aggregating
values from sibling nodes by accessing at most O(log n) nodes along the path. It then returns the
accumulated left and right sums as the query result (Algorithm 2). See more details in Section C.

We then design DPTREEDISTANCE, a one-dimensional weighted ℓpp distance data structure detailed
in Algorithm 4 and 5. Initialization involves assigning each data point to the nearest bin and aggre-
gating their weighted polynomial terms into multiple arrays (illustrated in Figure 1), which are then
used to initialize several instances of our DPTREE. At query time, the algorithm retrieves aggregated
weights from each DPTREE corresponding to the query point and combines them using binomial
coefficients and distance powers to compute the one-dimensional weighted ℓpp distance. Guided by
Eq. (3), we design DPTREEHIGHDIM (Algorithm 6), which extends DPTREEDISTANCE to higher
dimension by constructing independent data structures for each coordinate. See details in Section E
and F.

4.3 SOFTMAX ACTIVATION

In this section, we present DPTREESOFTMAX (Algorithm 3) that answers the weighted Softmax
query (Definition 4.1) and is further used to design DP cross-attention. First, we introduce the
definition of weighted Softmax query, an abstraction for the problem described in Eq. (1).
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Algorithm 3 Softmax query

1: datastrucutre DPTREESOFTMAX ▷ Theorem 4.2
2: members
3: D0,D1, . . . ,Dr : DPTREEDISTANCE ▷ Algorithm 4, Theorem E.1
4: P : [0,ΓR,s]

n×r ▷ Definition H.3 for ΓR,s, Eq. (9) for s, Eq. (10) for r
5: w : [−Rw, Rw]

n

6: Pwx, sw, ϵs : R
7: end members
8: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1)) ▷ Lemma H.6

9: ϵs, w, P, Pwx, sw ← ϵs, w, 0
n×r, 0, 0

10: for j = 1→ n do
11: Compute P (xj) ▷ Polynomial kernel function P (·), Lemma H.5
12: Compute wj∥P (xj)∥22
13: Pwx ← Pwx + wj∥P (xj)∥22
14: sw ← sw + wj

15: Pj,: ← P (xj)
16: end for
17: for i = 1→ r do
18: Di.INIT(P:,i, n, w, cϵ

3
√

r log(2/δ′)
, δ
3r ) ▷ ALGORITHM 4

19: Pwx ← Pwx +Di.DISTANCEQUERY(0)
20: end for
21: D0.INIT(1n, n, w, ϵ/3, δ/3)
22: sw ← sw +D0.DISTANCEQUERY(0)
23: end procedure
24: procedure DISTANCEQUERY(y ∈ [0, R]d) ▷ Lemma H.6
25: Value← 0
26: Compute P (y)
27: Compute ∥P (y)∥22
28: for i = 1→ r do
29: Value← Value + Di.DISTANCEQUERY(P (y)i) ▷ Algorithm 5
30: end for
31: Value← 0.5 · (Pwx + sw∥P (y)∥22 − Value)
32: return Value
33: end procedure
34: end datastrucutre

Definition 4.1 (Weighted Softmax query (without normalization)). For the dataset X ∈ [0, R]n×d

where x⊤
i is the i-th row of X and query y ∈ [0, R]d, we define the weighted exponential inner

product/Softmax query to be:∑
i∈[n]

wi exp(⟨xi, y⟩/d) = w⊤ exp(Xy/d).

Building on Definition 4.1, we develop a novel algorithm to answer differentially private weighted
Softmax queries using the polynomial kernel method from Alman & Song (2023). Specifically, in
Eq.(2), the three terms compute the weighted ℓ22 distance, which we calculate using DPTREEHIGH-
DIM. By summing these terms with a controlled error, we extend DPTREEHIGHDIM to answer the
Softmax query efficiently. More details can be found in Section H.

Theorem 4.2 (Softmax query, informal version of Theorem H.7). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition H.3). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Our data structure DPTREESOFTMAX (Algorithm 3) uses O(nr)
spaces to solve Softmax query problem for dataset X ⊂ [0, R]d and support following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.
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• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 3) It takes O(r log n) time to output a number z such
that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ |ϵs · w⊤ exp(Xy/d)|+O(ϵ−1Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

– it holds with probability at least 0.99.

Remark 4.3. In Theorem 4.2, the parameter ϵs is the accuracy parameter for polynomial kernel
approximation described in Section H. Besides, note that the error bound in Theorem 4.2 does not
depend on δ but depends on δ′. The role of δ is to control a hidden constant term in the big O
notation, i.e., increasing δ reduces the error by a small constant (Fact 2.5). In practice, we set δ as
a small positive constant close to 0. Please refer to the Lemma C.7 for more details.

4.4 ADAPTIVE QUERY DATA STRUCTURE

We adapt our DPTREESOFTMAX to DPTREESOFTMAXADAPTIVE (Algorithm 7) to solve the
adaptive query problem. By proving it can handle any query within the query space with a cer-
tain error, we ensure it effectively processes adaptive queries. We first boost the constant probability
to high probability using the Chernoff bound (Lemma B.2). Employing an ϵ0-net argument and the
union bound, we bound all query points within the net. Finally, we use the Lipschitz property of the
weighted Softmax distance function with an additive error to bound all points in the query space.
The corresponding proofs can be found in Section G and Section H.

Theorem 4.4 (Adaptive query Softmax data structure, informal version of Theorem H.10). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let the accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, and pf be the failure probability pa-
rameter. Let l = O(r log(dR/(ϵspf ))). There is a data structure DPTREESOFTMAXADAPTIVE
(Algorithm 7) that uses O(lnr) spaces to solve the weighted Softmax query problem for the dataset
X ⊂ [0, R]d and supports the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). It takes O(lnr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). It takes O(lr log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ |ϵs · w⊤ exp(Xy/d)|+O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability at least 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 4.5. We describe the parallelization of our algorithms. In the second for loop of INIT
and the for loop of DISTANCEQUERY in Algorithm 3, the r DPTREEDISTANCE data structures
instantiated for each coordinate are independent of each other. In addition, the for loops in Algo-
rithm 7 are also parallelizable since the l = O(r log(dR/(ϵspf ))) copies are independent. After
parallelization, we have the final time complexity of INIT to be O(nr) and DISTANCEQUERY to be
O(log n) in Algorithm 7 with O(lr) GPU process.

5 DISCUSSION

How do we extend to self-attention and other data structures? As self-attention is a more
fundamental module in LGMs, we would like to extend our data structure to this setting. However,
the challenge we faced was the dynamic update in tree nodes for each query for self-attention, which
our current analysis does not support. How we can solve this challenge is crucial, and we leave it as
our future direction.

Moreover, we observe that Li et al. (2015) introduces the DP matrix mechanism, which offers an
alternative to our currently used binary tree data structure. A preliminary idea for extending this
is as follows: consider A = exp(QK⊤/d) as defined in Definition 1.1, where Q of size m × d

9
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represents the query matrix with m linear queries, and K serves as the database. Leveraging the
results from Li et al. (2015), we could design an alternative algorithm to enhance the current binary
tree data structure, DPTREE. We leave this exploration for future work.

Why not add noise to some other places? Where and how to add DP noises is an impor-
tant problem to ask during the DP algorithm design. In this paper, we consider the problem of∑n

i=1 wi exp(⟨xi, y⟩/d) where y, xi ∈ [0, R]d and w ∈ [−Rw, Rw]
n (Definition 4.1). Notice that

the only place where we add noises is in the most basic building block data structure DPTREE (Al-
gorihtm 2). From Lemma C.3 and the way we initialize DPTREE in Algorithm 4, we see that the
sensitivity ∆ of this problem is 2Rw.

A simple method for adding noise involves adding n noises to a length n array, with each item
wi exp(⟨xi, y⟩/d) for i ∈ [n]. However, this approach increases the error by a factor of n by basic
composition (Fact B.8) and also makes the model dependent on the number of queries. Besides,
it only supports a single query and requires rebuilding the tree for each new query, rendering it
impractical. In contrast, our current noise-adding technique (Lines 8 and 14 of Algorithm 2) utilizes
a summation tree such that the error only increases by a factor of poly log n. This method also
supports multiple queries, eliminating the need to rebuild the tree each time.

How to remove the relative error parameter α? The relative error parameter α in Theorem 3.1
appears because of the (1 + α)-approximation introduced in Algorithm 4 to reduce the number of
required iterations from naive O(n) to O(log(n)/α). However, we notice that a recent work (Liu
et al., 2024a) does not utilize (1 + α)-approximation and still achieves O(log n) iteration number.
They introduce a new tree node representation where each node stores the sum of distances from one
point to multiple points, enabling the answer to be divided into only log n values, each combining
two distance values, two count values, and y itself. Our DPTREE algorithms can be integrated with
their method, thus removing parameter α.

6 CONCLUSION

To our knowledge, we are the first work to provide differential privacy for cross-attention. This
paper presents the DPTREE data structures, which provide a differential privacy guarantee for the
cross-attention module in large generative models. This is achieved by transforming the cross-
attention mechanism into a weighted distance problem. Furthermore, our algorithm is robust to
adaptive queries, allowing users to interact with the model arbitrarily without extracting sensitive
information from the system prompts or RAG data. Our results may inspire more privacy algorithm
design in large generative models.
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Roadmap. The appendix is organized as follows. In Section A, we provide more related works.
In Section B, we give the preliminary of our paper. In Section C, we give the analysis of the data
structure DPTREE that can solve summation problem with DP and accuracy guarantee. In Section D,
we show how to solve weighted distance problem. In Section E, we give our DPTREEDISTANCE
data structure that can solve one dimensional ℓpp distance problem with DP and accuracy guaran-
tee. In Section F, we present the analysis of our DPTREEHIGHDIM (Algorithm 6) data structure,
which can address the high-dimensional ℓpp distance problem while ensuring differential privacy and
accuracy guarantees. In Section G, we show how we can handle adaptive query. In Section H, we
show how to extend our algorithm to Softmax activation and give the analysis of DPTREESOFTMAX
(Algorithm 3) and DPTREESOFTMAXADAPTIVE (Algorithm 7).

A MORE RELATED WORK

Differential Privacy Guarantee Analysis. Ever since Dwork et al. (2006) proposes the notion of
differential privacy (DP), it has become one of the most essential standards of privacy protection in
both theoretical and empirical ways (Dwork, 2008; Li et al., 2017; Zhao & Chen, 2022; Ponomareva
et al., 2023; Yang et al., 2023). DP provides a powerful, robust, and quantifiable privacy definition,
allowing algorithm design with concrete privacy and accuracy guarantee (Hay et al., 2009; Esfandiari
et al., 2022; Andoni et al., 2023; Li & Li, 2023b; Huang & Yi, 2021; Ghazi et al., 2023; Backurs
et al., 2024; Cohen-Addad et al., 2022a; Epasto et al., 2024; Chen et al., 2022; Hopkins et al., 2023;
Narayanan, 2022; 2023; Jung et al., 2019; Li & Li, 2024; Fan & Li, 2022; Fan et al., 2024; Li & Li,
2023a; Cherapanamjeri et al., 2023; Cohen-Addad et al., 2022b; Dong et al., 2024; Farhadi et al.,
2022; Gopi et al., 2021; 2023; Li et al., 2022; Gopi et al., 2022; Eliáš et al., 2020; Song et al., 2023b;
Dinur et al., 2023; Woodruff et al., 2023; Song et al., 2023a; Gao et al., 2024; Liang et al., 2024a; Li
et al., 2024b). Additionally, new mechanisms have been proposed beyond the traditional Laplace,
Gaussian, and Exponential mechanisms (Dwork & Roth, 2014). For example, truncated Laplace
mechanism (Geng et al., 2020) is proved to be the current tightest the lower and upper bounds on
the minimum noise amplitude and power cross all (ϵ, δ)-DP distributions.

Cross-Attention in System Prompt, RAG, Stable Diffusion and More. Cross-attention
(Vaswani et al., 2017), first introduced in language translation, is a widely used technique in many
advanced AI systems. For example, Stable Diffusion (Rombach et al., 2022; Liang et al., 2024d;
Wang et al., 2023b;c; 2024b) and SORA (OpenAI, 2024b) employ cross-attention as a core module
for a text-to-image conditional generation. This technique is also utilized by other multimodal mod-
els (Liang et al., 2024e), including Imagen (Saharia et al., 2022) and Diffusion Transformer (Peebles
& Xie, 2023). In the realm of text-to-image editing, Hertz et al. (2022) analyzes and controls the
cross-attention module to enable editing without requiring additional training. Furthermore, Yang
et al. (2024) tackles the issue of inaccurate cross-attention maps, enhancing fine-grained control
over edited regions while preventing unintended changes to other areas. In addition, Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020; Borgeaud et al., 2022; Gao et al., 2023), a technique
that improves model responses by retrieving information from a knowledge base or external doc-
uments, extensively uses cross-attention as its core design module. Cross-attention also has other
applications. Oymak et al. (2023) demonstrates that the prompt-tuning (Liang et al., 2024c) task can
be formulated as cross-attention, while Chen et al. (2021) uses cross-attention to fuse multi-scale
features in vision transformers, thereby reducing computation. Moreover, attention-based Trans-
former architecture makes LGMs equipping many emergent ability (Wei et al., 2022), such as spa-
tial reasoning (Wang et al., 2024a), mathematical reasoning (Li et al., 2024a), in-context learning
ability (Shi et al., 2024), compositional ability (Xu et al., 2024b), few-shot adaptation ability (Shi
et al., 2022b; Xu et al., 2023), and so on. There are some other works that used cross attention in
Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al., 2024c; Xu et al., 2024a; Wu et al.,
2024a; Hu et al., 2024a;b).

B MORE PRELIMINARY

In Section B.1, we give the probability tools we use in the paper. In Section B.2, we provide the
algebraic facts we use. In Section B.3, we give the DP facts we use in the paper. In Section B.4, we
compare between popular DP mechanisms.
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B.1 PROBABILITY TOOLS

In this section, we give several probability lemmas.
Lemma B.1 (Markov’s inequality). If x is a nonnegative random variable and t > 0, we have

Pr[x ≥ t] ≤ E[x]
t

.

Lemma B.2 (Chernoff bound, (Chernoff, 1952)). Let xi be a Bernoulli random variable with prob-
ability pi of being equal to 1 and 1− pi of being equal to 0, and all xi for i ∈ [n] are independent.
Let x =

∑n
i=1 xi. Let µ = E[x] =

∑n
i=1 pi. Then, for all δ > 0 we have

Pr[x ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),
and for all 0 < δ < 1

Pr[x ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
Lemma B.3 (Chebyshev’s inequality). Let x (integrable) be a random variable with finite non-zero
variance σ2 (and thus finite expected value µ). Then for any real number k > 0,

Pr[|x− µ| ≥ kσ] ≤ 1

k2
.

B.2 ALGEBRAIC FACTS

Fact B.4 (Upper bound of exponential, Fact C.9 in Liang et al. (2024d)). For a ∈ R, b ∈ R,
a, b ≤ R, where R ≥ 0, we have

| exp(a)− exp(b)| ≤ exp(R)|a− b|.

B.3 DP FACTS

In this section, we present several facts about differential privacy (DP).

We first define vector neighboring dataset and sensitivity.
Definition B.5 (Vector neighboring dataset). We define the two neighboring datasets as X,X ′ ∈ Rn

such that ∥X −X ′∥1 ≤ 1, i.e., they differ on a single data point.
Definition B.6 (Vector sensitivity). The sensitivity of a function f : Rn → Rd is defined by: ∆ :=
maxX,X′∈Rn,∥X−X′∥1=1 ∥f(X)− f(X ′)∥1.
We state the post-processing property, which means, in an algorithm, if one step is DP, all the
following steps are DP.
Fact B.7 (Post-processing, see Fact 2.1 in Ghazi et al. (2023)). Let A1 be an (ϵ, δ)-DP algorithm
and A2 be a (randomized) post-processing algorithm. Then the algorithm A(X) = A2(A1(X)) is
still an (ϵ, δ)-DP algorithm.

If we have many DP algorithms, we need a composition rule. The most straightforward composition
is the basic/sequential composition rule.
Fact B.8 (Basic composition, see Fact 2.3 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP al-
gorithm and A2 be an (ϵ2, δ2)-DP algorithm. Then A(X) = (A1(X),A2(A1(X), X)) is an
(ϵ1 + ϵ2, δ1 + δ2)-DP algorithm.

We can do much better if we know that the inputs are disjoint.
Fact B.9 (Parallel composition, see Fact 2.4 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP
algorithm and A2 be an (ϵ2, δ2)-DP algorithm. Assume A1 and A2 depend on disjoint subsets
of input coordinates. Then the algorithm A(X) = (A1(X),A2(A1(X), X)) is a (max{ϵ1, ϵ2},
max{δ1, δ2})-DP algorithm.

In addition, we have the advanced composition, which improves the dependence of the number of
DP algorithms to square root but compromises the term δ′.
Theorem B.10 (Advanced composition, see Theorem 3.20 in Dwork & Roth (2014)). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential
privacy under k-fold adaptive composition for:

ϵ′ = kϵ(eϵ − 1) + ϵ
√
2k log(1/δ′).
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B.4 COMPARISON OF TRUNCATED LAPLACE, GAUSSIAN, AND LAPLACE MECHANISMS

We first define the Laplace mechanism as below:

Definition B.11 (Laplace distribution). We use Lap(b) to denote the pdf: p(z) = 1
2b exp(−

|z|
b ).

Fact B.12. For z ∼ Lap(b), E[z] = 0, and Var[z] = 2b2. Furthermore, if b = ∆/ϵ, we have
Var[z] = 2∆2/ϵ2.

In this paper, we use the Chebyshev inequality to bound the error, and from Geng et al. (2020), we
know that the truncated Laplace mechanism has the current minimum variance across all (ϵ, δ)-DP
distributions.

The variance of Gaussian mechanism in Theorem 3.22 in Dwork & Roth (2014):

Var =
2∆2 log(1.25/δ)

ϵ2
.

The variance of Laplace mechanism in Fact B.12:

Var =
2∆2

ϵ2
.

The variance of truncated Laplace mechanism in Fact 2.5, for c ∈ (0, 1]:

Var =
2∆2c

ϵ2
.

Thus, since it has the minimum variance, we choose the truncated Laplace mechanism to design our
algorithms among these popular mechanisms.

C DPTREE ALGORITHM

In this section, we give the analysis of privacy, accuracy and runtime of our DPTREE (Algorithm 2).

C.1 SINGLE DATA STRUCTURE

We give the theorem of our DPTREE data structure that can answer the summation problem with
DP, accuracy, runtime guarantee.
Theorem C.1 (DPTREE data structure ). There is a data structure (see DPTREE in Algorithm 2)
that uses O(n) spaces to support the following operations:

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(y ∈ [0, R]). It takes O(log n) time to output two numbers z1 and z2 such that

– the process satisfies (ϵ, δ)-DP,
– |z1 −

∑
{k|xk≤y} ak| ≤ O(ϵ−1∆ log3/2 n) and |z2 −

∑
{k|xk≥y} ak| ≤

O(ϵ−1∆ log3/2 n),
– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma C.4 (running time of initialization), Lemma C.5
(running time of query), Lemma C.6 (DP of query), and Lemma C.7 (error of query) together.

C.2 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

By applying the Chernoff bound, we can increase the probability of obtaining a correct result. This
is achieved by replicating the data structure multiple times, generating several independent results,
and then reporting the median of these results. Taking the median helps mitigate the effect of outliers
and ensures that the final answer is reliable with high probability.
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Theorem C.2 (High-probability). There is a data structure that uses O(n log(1/δfail)) spaces to
support the following operations

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01)). It takes
O(n log(1/δfail)) time to initialize the data structure.

• QUERY(y ∈ [0, R]). It takes O(log(n) · log(1/δfail)) time to two numbers z1 and z2 such
that

– the process satisfies (ϵ, δ)-DP,

– |z1−
∑

{k|xk≤y} ak| ≤ O(ϵ−1∆ log3/2(n) · log(1/δfail)) and |z2−
∑

{k|xk≥y} ak| ≤
O(ϵ−1∆ log3/2(n) · log(1/δfail)),

– it holds with probability 1− δfail for failure probability δfail ∈ (0, 0.01).

Proof. Note that our data structure (Theorem C.1) succeeds with probability 0.99. The success of
the algorithm (Theorem C.1) can be viewed as a Bernoulli random variable, to which we apply the
Chernoff bound (Lemma B.2). By repeating the data structure O(log(1/δfail)) times and taking the
median of the outputs, we boost the success probability. The details are following.

To boost the success probability, we assume the query is repeated l times. Let i ∈ [l], and let zi
denote the indicator random variable for the success of the i-th instance of the data structure for a
single query. Let z =

∑l
i=1 zi be the total success times. Since p = Pr[zi = 1] = 0.99, we can

have µ = E[z] =
∑l

i=1 p = lp. Note that p = 0.99. By setting δ = 0.1 and using Chernoff bound
from Lemma B.2, we can show

Pr[z ≤ l/2] ≤ Pr[z ≤ (1− δ)lp] ≤ exp(−δ2lp/2).
Note that we want z > l/2 (since we want at least half to succeed so we could take the median),

Pr[z > l/2] ≥ 1− exp(−δ2lp/2).

To ensure that failure probability is δfail, we have

exp(−δ2lp/2) = δfail.

We can make this hold by choosing l = O(log(1/δfail)).

By the DP basic composition rule (Fact B.8), we need to choose ϵ = ϵ′/O(log(1/δfail)) and δ =
δ′/O(log(1/δfail)) where ϵ′, δ′ are the ϵ, δ in Theorem C.1.

C.3 SENSITIVITY FOR SUMMATION PROBLEM

Our DP summation tree data structure DPTREE (Algorithm 2) requires sensitivity parameter ∆. In
this section, we show that for the summation problem, we have the sensitivity ∆ = 2R if the input
X ∈ [−R,R]n.
Lemma C.3 (Sensitivity of summation). Let X ∈ [−R,R]n. We have the sensitivity ∆ = 2R for
DPTREE.INIT in Algorithm 2.

Proof. Let’s say two neighboring datasets X and X ′ differ in xi and x′
i for some i in the array X .

Then for a summation problem, i.e. f(X) :=
∑n

i=1 xi, we have

∆ = max
X,X′

|f(X)− f(X ′)| = max
X,X′

|xi − x′
i| = 2R.

where the first step follows from Definition B.6, the second step follows from X,X ′ differ in xi, x
′
i,

and the last step follows from each coordinate of the dataset is bounded in [−R,R].

C.4 ALGORITHM OF DATA STRUCTURE

In this section, we analyze the accuracy, DP, and runtime of Algorithm 2.

We first analyze the runtime.
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Lemma C.4 (Runtime of initialization, Algorithm 2). For the initialization, we have the time com-
plexity of Algorithm 2 is O(n).

Proof. All the computations are dominated by O(n) time.

Lemma C.5 (Runtime of query, Algorithm 2). For each query, we have the time complexity of
Algorithm 2 is O(log n).

Proof. Due to the property of tree, we will use at most 2 log n nodes in the tree, thus the running
time is O(log n).

We now analyze the DP.

Lemma C.6 (Privacy of query, Algorithm 2). The output process of QUERY (see Algorithm 2) is
(ϵ, δ)-DP.

Proof. Suppose that our dataset is X ∈ [−R,R]n. Note that we only add noise in the pre-processing
stage. There is no noise in the query stage. Since the problem we care about is summation, if we
change one leaf node, the sensitivity ∆ = 2R (see Lemma C.3). Since we add noise to each node
in the tree, and each leaf node count will contribute to log n nodes, it is equivalent to our output
function being in log n dimension. We will then blow up the DP parameter by log n factor. Thus,
using the basic composition rule (Fact B.8), the DP guarantee for the whole tree data structure is
((ϵ/ log n) · log n, (δ/ log n) · log n) which is (ϵ, δ)-DP.

We now analyze the accuracy.

Lemma C.7 (Accuracy of query, Algorithm 2). Let ϵ ∈ (0, 1) and δ ∈ (0, 1). Then, using Cheby-
shev’s inequality and Fact 2.5, we have the error of QUERY(see Algorithm 2) output is upper
bounded by:

O(ϵ−1∆ log3/2 n).

with probability 0.99.

Proof. Let y ∈ [0, R] be the query. Let A1, A2 = QUERY(y) denote the noised query answers
returned by DPTREE.QUERY in Algorithm 2. Let A∗

1, A
∗
2 be the true query answers without noise.

Let z := A1 − A∗
1 + A2 − A∗

2, which from Algorithm 2 we can see this is the sum of O(log n)
independent truncated Laplace random variables each with parameter TLap(∆, ϵ/ log n, δ/ log n).
Thus,

z =

O(logn)∑
i=1

zi

where zi ∼ TLap(∆, ϵ/ log n, δ/ log n), and every zi are independent to each other.

We know µ = E[z] = 0 since E[zi] = 0. From Fact 2.5, we know the variance for each zi is
Var[zi] = cϵ−2∆2 log2 n where 0 < c ≤ 2 and c = 2 when δ = 0.

Therefore, we can show

Var[z] = Var[

O(logn)∑
i=1

zi]

=

O(logn)∑
i=1

Var[zi]

= O(cϵ−2∆2 log3 n) (4)

where the first step follows from definition of z, the second step follows from every zi are indepen-
dent to each other, and the last step follows from Var[zi] = O(cϵ−2∆2 log2 n).
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Figure 1: The visualization of how to compute the weighted ℓ1 distance for rounded dataset X ∈
[0, 1]10. The number above each xi is wi. See Algorithm 4 for details. Suppose y = 0. Then∑n

i=1 wi|y − xi| = 0.1 · 2.2 + 0.3 · 3.1 + 0.3 · (−2) + 0.3 · (−3) + 0.4 · 2 + 0.6 · 6 + 0.7 · 0.5 +
0.9 · (−1) + 0.9 · 1 = 4.4. See more details in Lemma D.1.

Note that we wish to bound |z| as our error.

Using Lemma B.3, we can have

Pr[|z| ≥ kσ] ≤ 1

k2
.

We know that σ =
√
Var[z] = O(c1/2ϵ−1∆ log3/2 n). Picking k = 10, we have

Pr[|z| < 10σ] ≥ 0.99.

Thus, we conclude that error is bounded by O(c1/2ϵ−1∆ log3/2 n) = O(ϵ−1∆ log3/2 n) (since
c ∈ (0, 2]) with probability 0.99.

D WEIGHTED ℓpp DISTANCE

In this section, we introduce how to handle weighted ℓpp distance problem in the high level idea. We
can solve high dimensional weighted problem by decomposing each coordinate of the high dimen-
sional dataset. Thus, we only need to show how to solve the one-dimensional weighted problem.

For data in d-dimension, due to the decomposability of ℓpp distance, our problem will be: given
xi ∈ [0, R]d and wi ∈ R for i ∈ [n], and y ∈ [0, R]d, we can compute

n∑
i=1

wi · ∥y − xi∥pp =
d∑

j=1

n∑
i=1

wi · |yj − xi,j |p

where xi,j , yj means the j-th coordinates of xi, y for j ∈ [d].

Now we can give the lemma for weighted distance of dataset.

Lemma D.1 (Weighted distance one dimension). For a collection of numbers {x1, x2, · · · , xn} ⊂ R
and corresponding weights {w1, w2, · · · , wn} ⊂ R, and a number y ∈ R. We define two sets

S+ := {k ∈ [n] : xk > y}
S− := {k ∈ [n] : xk < y},

It holds
n∑

k=1

wk|xk − y|p =

p∑
j=0

(
p

j

)
yp−j((−1)p−j

∑
k∈S+

wkx
j
k + (−1)j

∑
k∈S−

wkx
j
k),

where
(
p
j

)
denotes the binomial coefficient that

(
p
j

)
= p!

j!(p−j)! .
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Proof. We show that
n∑

k=1

wk|xk − y|p =
∑

xk∈S+

wk(xk − y)p +
∑

xk∈S−

wk(y − xk)
p

= (
∑

xk∈S+

wk

p∑
j=0

(−1)p−j

(
p

j

)
xj
ky

p−j) + (
∑

xk∈S−

wk

p∑
j=0

(−1)j
(
p

j

)
xj
ky

p−j)

=

p∑
j=0

(

(
p

j

)
(−1)p−jyp−j

∑
k∈S+

wkx
j
k) +

p∑
j=0

(

(
p

j

)
(−1)jyp−j

∑
k∈S−

wkx
j
k)

=

p∑
j=0

(
p

j

)
yp−j((−1)p−j

∑
k∈S+

wkx
j
k + (−1)j

∑
k∈S−

wkx
j
k).

Thus, we complete the proof.

E ONE-DIMENSIONAL WEIGHTED ℓpp DISTANCE QUERY

In this section, we generalize the algorithms in Backurs et al. (2024) and Liu et al. (2024a) to
weighted distance. Here, we compute the problem of one-dimensional weighted ℓpp distance query
i.e.

∑
i∈[n] wi|y−xi| for a given query y ∈ [0, R], weights w ∈ [−Rw, Rw]

n and dataset X ⊂ [0, R]

and n = |X|. In this section, we give the theorem for our DPTREEDISTANCE data structure.

Algorithm 4 Pre-processing data structure

1: datastructure DPTREEDISTANCE ▷ Theorem E.1
2: members
3: D0, . . . ,Dp : DPTREE ▷ Alg. 2
4: X : [0, R]n

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1) ) ▷ Lemma D.1
8: X,w, a← X,w, 0n×(p+1)

9: for i = 1→ n do ▷ xi ∈ X for i ∈ [n]
10: Let j ∈ [n] denotes the integer such that xi ∈ [(j − 1)R/n, jR/n)
11: for q = 0→ p do
12: aj,q ← aj,q + wix

q
i

13: end for
14: end for
15: for q = 0→ p do
16: Dq .INIT(a:,q, n, 2RwR

q, ϵ/(p+ 1), δ/(p+ 1)) ▷ Alg. 2, Lemma C.3
17: end for
18: end procedure
19: end datastructure

Algorithm 5 One dimensional weighted ℓpp distance query

1: datastructure DPTREEDISTANCE ▷ Theorem E.1
2: procedure DISTANCEQUERY(y ∈ [0, R])
3: for q = 0→ p do
4: cleft,q, cright,q ←Dq.QUERY(y)
5: end for
6: return

∑p
q=0

(
p
q

)
yp−q((−1)p−qcright,q + (−1)qcleft,q)

7: end procedure
8: end datastructure
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Theorem E.1 (DPTREEDISTANCE data structure ). There is a data structure DPTREEDISTANCE
(Algorithm 4,5) that uses O(np) spaces to solve weighted ℓpp distance query problem for dataset
X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 4) It takes

O(np) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]). (Algorithm 5) It takes O(p log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y− xi|,
– |z −∑

i∈[n] wi|y − xi|| ≤ O(ϵ−1pRw(2R)p log3/2 n),
– it holds with probability 0.99.

Proof. We set the total layers of one tree L = (log n). There are p+ 1 trees.

Init Time and Space. The total number of nodes on one tree is O(n). There are total O(pn)
values stored for p + 1 trees. Adding the time of iterating all data points, initializing these values
takes O(pn) time.

Query Time. Each query iterates through all layers. On each layer it takes O(1) time to calculate
cleft,q and cright,q . There are (log n) layers, and p+ 1 trees, so the total query time is O(p log n).

Privacy Guarantees. For each Dq for q ∈ {0, 1, . . . , p}, we input a:,q . Since X ∈ [0, R]n and
w ∈ [−Rw, Rw]

n, the input range for a:,q is [−RwR
q, RwR

q]. Then from Lemma C.3, sensitivity
is 2RwR

q .

From Lemma C.6, we know each Dq query is (ϵ/(p + 1), δ/(p + 1))-DP. By basic composition
Fact B.8, the total differential privacy parameter is (ϵ, δ). This completes the proof.

Error Guarantees. The additive error consists of two parts.

The first part is from the data in the leaf node which contains query y. The error is∑
xk∈[(j−1)·R/2L,j·R/2L)

|xk − y|p ≤ n · ( R
2L

)p.

When L = log n, this error is O(Rp/np−1).

The second part is the Truncated Laplace noise. From the proof of Lemma C.7, we have each Dq

for q ∈ {0, 1, . . . , p} has O(L) independent TLap(∆q, ϵq/L, δq/L) noises for L = log n layers.

Let A be the noisy output of DISTANCEQUERY in Algorithm 5 and A∗ =
∑

k∈[n] wk|y−xk| be the
true output. Then, for our Algorithm 4 and 5, the variance is

Var[

L∑
i

TLap(∆q, ϵq/L, δq/L)] =

L∑
i

Var[TLap(∆q, ϵq/L, δq/L)]

= O(L3ϵ−2
q ∆2

q)

Replacing ∆q = O(RqRw) and ϵq = O(ϵ/p), using Lemma B.3, with high probability 0.99, we
have

|
L∑
i

TLap(∆q, ϵq/L, δq/L)| ≤ O(pRwR
qL3/2/ϵ). (5)

Then we bound the error with this inequality:

|A−A′| ≤ |
p∑

q=0

(
p

q

)
yp−q

L∑
i=1

((−1)p−qTLap(∆q, ϵq/L, δq/L) + (−1)qTLap(∆q, ϵq/L, δq/L))|
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≤
p∑

q=0

(
p

q

)
yp−q|

L∑
i=1

(TLap(∆q, ϵq/L, δq/L) + TLap(∆q, ϵq/L, δq/L))|

=

p∑
q=0

(
p

q

)
yp−q ·O(pRwR

qL3/2/ϵ)

= O(ϵ−1pRwL
3/2

p∑
q=0

(
p

q

)
yp−qRq)

= O(ϵ−1pRwL
3/2(y +R)p)

= O(ϵ−1pRw(2R)p log3/2 n),

where the third step follows from Eq. (5), and the last step is from L = log n and y ∈ [0, R].

Therefore, by triangle inequality and two parts of error, the total error is

O(Rp/np−1) +O(ϵ−1pRw(2R)p log3/2 n) ≤ O(ϵ−1pRw(2R)p log3/2 n),

since p ≥ 1 and n ∈ N+. This completes the proof.

F HIGH-DIMENSIONAL WEIGHTED ℓpp QUERY

In this section, we show how we can solve the high dimensional weighted ℓpp distance problem,
generalizing results from Backurs et al. (2024) and Liu et al. (2024a). In Section F.1, we give
the analysis of Algorithm 6. In Section F.2, we give the theorem of our DPTREEHIGHDIM data
structure.

Algorithm 4,5 can be naturally extended to higher dimensions because of the decomposability of the
ℓpp distance function. We construct d separate one-dimensional distance query data structures, each
corresponding to a coordinate projection of the dataset.

F.1 PRIVACY AND ACCURACY ANALYSIS FOR HIGH DIMENSIONAL WEIGHTED DISTANCE

We now give the analysis of our Algorithm 6 for high dimensional weighted ℓpp distance query.

Algorithm 6 High-dimensional weighted ℓpp distance query

1: datastrucutre DPTREEHIGHDIM ▷ Theorem F.3
2: members
3: D1, . . . ,Dd : DPTREEDISTANCE ▷ Alg. 4
4: X : [0, R]n×d

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1))

8: X ← X
9: w ← w

10: for i = 1→ d do
11: Di.INIT(X:,i, n, w, cϵ/

√
d log(1/δ′), δ/d) ▷ Alg. 4

12: end for
13: end procedure
14: procedure DISTANCEQUERY(y ∈ [0, R]d) ▷ Lemma F.1, Lemma F.2
15: Value← 0
16: for i = 1→ d do
17: Value← Value + Di.DISTANCEQUERY(yi) ▷ Alg. 5
18: end for
19: return Value
20: end procedure
21: end datastrucutre
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Lemma F.1 (Privacy of DISTANCEQUERY, Algorithm 6). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
6, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥pp represent the true distance query value.

• Let ϵ = O(log(1/δ′)).

Then, we have the output process of DISTANCEQUERY (Algorithm 6) is (ϵ, δ + δ′)-DP.

Proof. The (ϵ, δ + δ′)-DP guarantee follows from the approximate DP advanced composi-
tion result Theorem B.10. Our algorithm instantiate each one-dimensional data structure with
(cϵ/

√
d log(1/δ′), δ/d)-DP total d times.

From advanced composition in Theorem B.10, for a sufficient small parameter ϵ and constant c, we
have the final privacy loss parameter be:

O(cϵ
√
2d log(1/δ′)/

√
d log(1/δ′)) = O(ϵ)

and the final failure probability parameter be:

dδ/d+ δ′ = δ + δ′.

Lemma F.2 (Accuracy of DISTANCEQUERY, Algorithm 6). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
6, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥pp represent the true distance query value.

With probability 0.99, we have

|A−A∗| ≤ O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n).

Proof. Let Ai be the i-th dimension output returned by Di in Algorithm 6. Let A∗,i be the true
distance query value in the i-th dimension. Observe that A∗ =

∑d
i=1 A∗,i and A =

∑d
i=1 Ai.

We follow the similar idea in the proof of Theorem E.1. With ϵ scaled down by cϵ/
√
d log(1/δ′)

and δ scaled down by δ/d, the variance of each individual dimension is given by (see proof of
Theorem E.1)

O(ϵ−2dp2(2R)2pR2
w log(1/δ′) log3 n).

Thus, the total variance for d instantiated data structures is then

O(ϵ−2d2p2(2R)2pR2
w log(1/δ′) log3 n).

Finally, from Lemma B.3, we have the additive error given by

O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n).
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F.2 HIGH DIMENSION SINGLE DATA STRUCTURE

We have the data structure that can solve weighted ℓpp distance problem in d-dimensional data.

Theorem F.3 (DPTREEHIGHDIM data structure). There is a data structure DPTREEHIGHDIM
(Algorithm 6) that uses O(npd) spaces to solve weighted ℓpp distance query problem for dataset
X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1)). (Algorithm 6) It takes O(npd) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 6) It takes O(dp log n) time to output a num-
ber z such that

– the process of output z satisfies is (ϵ, δ + δ′)-DP private, which computes∑
i∈[n] wi∥y − xi∥pp,

– |z −∑
i∈[n] wi∥y − xi∥1| ≤ O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n),

– it holds with probability 0.99.

Proof. For the runtime analysis, since we loop data structure DPTREEDISTANCE d times, an addi-
tional d factor will appear for both initialization and query time complexity. The DP is proved by
Lemma F.1. The accuracy is proved by Lemma F.2.

G ADAPTIVE QUERY

In this section, we introduce how we can solve the adaptive query problem by our algorithm, using
some tools from Qin et al. (2022). Our idea is that, if we can prove that our algorithm can solve any
query in the query space with certain error. Then, since adaptive query must lie in this space, we can
handle adaptive query. In Section G.1, we show how we can boost the constant probability of our
algorithm to high probability. In Section G.2, we show how we can apply the notion of ϵ0-net and
bound all query points in net. In Section G.3, we show how we can bound all points in the query
space by introducing an additive error.

First, from Theorem F.3, given query y ∈ [0, R]d we have DISTANCEQUERY(y) that can solve
d-dimension weighted ℓpp distance problem with constant probability 0.99. Now we show how to
improve it to solve adaptive query problem. Here, we focus on the case when p = 1.

G.1 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

We can repeat the data structure multiple times and take the median to boost the constant probability
using Chernoff bound from Lemma B.2.

Lemma G.1 (Using Chernoff bound to boost the probability). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log(1/pf )) independent copies of data structure DPTREEHIGHDIM and
take the median of the outputs with each data structure instantiated with (ϵ/l, (δ + δ′)/l)-
DP.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then for each fixed query point y, we can have the process of outputting the median of l responses
is (ϵ, δ + δ′)-DP and the error is upper bounded by B with probability 1− pf .

Proof. By basic composition Fact B.8, we prove the DP. Similar to the proof of Theorem C.2, we
prove the error by Chernoff bound (Lemma B.2).
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G.2 FROM EACH FIXED QUERY POINT TO ALL ON-NET POINTS

In this section, we build ϵ0-net and generalize from each fixed query point to all on-net points.
Definition G.2 (ℓp ϵ0-net, see Definition 4.2.1 in Vershynin (2017)). We define N be ℓp ϵ0-net of
B := {q ∈ [0, R]d} such that, for every point q in B, there exists y ∈ N satisfying ∥y − q∥p ≤ ϵ0.
Fact G.3 (ℓ∞ ϵ0-net). Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N . We have |N | ≤
(5R/ϵ0)

d.
Fact G.4 (ℓ2 ϵ0-net, see Lemma 5 in Woodruff (2014)). Let N be the ℓ2 ϵ0-net of B, and |N | be the
size of net N . We have |N | ≤ (5R/ϵ0)

d.
Fact G.5 (ℓ1 ϵ0-net, see Theorem 2 in Guntuboyina & Sen (2012)). Let N be the ℓ1 ϵ0-net of B, and
|N | be the size of net N . We have |N | ≤ (5R

√
d/ϵ0)

d.
Lemma G.6 (From for each query point to for all points in net). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log(|N |/pf )) independent copies of data structure DPTREEHIGHDIM
and take the median of the outputs with each data structure instantiated with (ϵ/l, (δ +
δ′)/l)-DP.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1− pf , for all query points y ∈ N , we can have the process of outputting the
median of l responses is (ϵ, δ + δ′)-DP and the error is upper bounded by B.

Proof. By basic composition Fact B.8, we prove the DP. From Lemma G.1, we know for each
y ∈ N , the error is upper bounded by B with probability 1− pf/|N |.
Then, by union bound, with probability 1− pf , the error of all |N | query points in the net y ∈ N is
upper bounded by B.

G.3 FROM NET POINTS TO ALL POINTS

In this section, we show how to generalize points from net to all points in the query space. Since
adaptive query must lie in this space, we complete the proof of adaptive query.
Lemma G.7 (Lipschitz of query function). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1.

• Let L = nRw.

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi∥y − xi∥1 −
∑
i∈[n]

wi∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · |∥y − xi∥1 − ∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · ∥y − ỹ∥1

= nRw · ∥y − ỹ∥1
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where the first step follows from definition of Z(y), the second step follows from triangular in-
equality, the third step follows from reverse triangular inequality, the fourth step follows from
w ∈ [−Rw, Rw]

n.

Lemma G.8 (From points in net to all points in query space). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
d/pf )) independent copies of data structure

{DPTREEHIGHDIMj}lj=1 and take the median of the outputs with each data struc-
ture instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREEHIGHDIMj .DISTANCEQUERY(y)}lj=1).

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1, where Z(y) is L-Lipschitz with L = nRw.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfy

|f(y)− Z(q)| ≤ B + Ldϵ0.

Proof. By basic composition Fact B.8, we prove the DP.

We define an event E such that:

∀y ∈ N

|f(y)− Z(y)| ≤ B.

From Lemma G.1, with l = O(log(|N |/pf )) we know

Pr[event E holds] ≥ 1− pf

We can show

l = O(log(|N |/pf )
= O(log((R/ϵ0)

d/pf )

where the first step follows from definition of l, the second step follows from Fact G.3.

We condition on event E to be held. Then, by definition of ℓ∞ ϵ0-net (see Definition G.2), for each
q /∈ N , there exists y ∈ N such that

∥y − q∥∞ ≤ ϵ0 (6)

We know

|Z(y)− Z(q)| ≤ L · ∥y − q∥1
≤ L · d∥y − q∥∞
≤ L · dϵ0 (7)

where the first step follows from Lemma G.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from Eq. (6).

Using the on-net query y to answer the off-net query q, for any q /∈ N , we have

|f(y)− Z(q)| ≤ |f(y)− Z(y)|+ |Z(q)− Z(y)|
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≤ |f(y)− Z(y)|+ L · d · ϵ0
≤ B + L · d · ϵ0 (8)

where the first step follows from triangular inequality, the second step follows from Eq. (7), the third
step follows from Lemma G.6.

Thus, we complete the proof.

Therefore, even adaptive queries can be answered accurately, since any adaptive query can be as-
sumed in B.

H SOFTMAX ACTIVATION

In this section, we introduce how we extend previous ℓpp distance results to the Softmax activation
function, which is the most widely used distance measure in attention mechanism based models.

In Section H.1, we show how to extend to the Softmax distance function in Lemma H.6. In Sec-
tion H.2, we show how to adjust our algorithms. In Section H.3, we extend our algorithm to be
robust to adaptive query. In Section H.4, we give the proof of our main result Theorem 3.1.

H.1 EXPONENTIAL INNER PRODUCT

In this section, we show how we obtain the Softmax distance using ℓ22 distance query. First, we
provide some helpful results from Alman & Song (2023).
Definition H.1 (Definition 3.1 in Alman & Song (2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma H.2 (Lemma 3.4 in Alman & Song (2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ R, and
∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 0.1), there is a
positive integer s bounded above by

s = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
, (9)

and a positive integer r bounded above by

r ≤
(
2s+ 2d

2s

)
(10)

such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition H.1) of A ∈
Rn×n. Furthermore, the matrices U1 and U2 defining Ã can be computed in O(n · r) time.

Here we consider the vector version of Lemma H.2.
Definition H.3. We define ΓR,s := maxj∈[s]

Rj
√
j!

.

Then, we have P (x) : [0, R]d → [0,ΓR,s]
r where P (·) is polynomial kernel function defined in

Alman & Song (2023).
Remark H.4. We use ΓR,s to denote the value range of our polynomial kernel methods function,
i.e., P (x) : [0, R]d → [0,ΓR,s]

r. The factorial term in ΓR,s comes from Taylor approximation
coefficients. We take the maximum overall s order approximation terms to get the upper bound of
our value range.

We use the polynomial approximation method, which has been applied to accelerate Transformer
model extensively Alman & Song (2023; 2024a;b); Liang et al. (2024e;b).
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Lemma H.5 (Polynomial approximation). For any accuracy parameter ϵs ∈ (0, 0.1), let R ≥ 1,
and let P (x) : [0, R]d → [0,ΓR,s]

r be the s-th order polynomial kernel function defined in Alman
& Song (2023) where r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Then, for any x, y ∈

[0, R]d, we have

|P (x)⊤P (y)− exp(x⊤y/d)| ≤ ϵs ·min{exp(x⊤y/d), P (x)⊤P (y)}
Furthermore, the vectors P (x) and P (y) can be computed in O(r) time.

Proof. Let n = 1. The proof follows from directly applying Lemma H.2.

Using the results from Alman & Song (2023) above, we can extend our results to Softmax activation.

Lemma H.6 (Weighted Softmax approximation ). Let accuracy parameter be ϵs ∈ (0, 0.1). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let P (x) : [0, R]d → [0,ΓR,s]

r

be the s-th order polynomial kernel function defined in Lemma H.5. Then we can approximate
exponential inner product using polynomial kernel function:

| − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)− w⊤ exp(Xy/d)|

= O(|w⊤ exp(Xy/d) · ϵs|)
Moreover, the vectors P (·) can be computed in O(r) time.

Proof. From Lemma H.5, we can use a polynomial kernel to approximate the Softmax function:

|
∑
i∈[n]

wiP (xi)
⊤P (y)− w⊤ exp(Xy/d)| =O(|w⊤ exp(Xy/d) · ϵs|).

The proof of approximation error and time complexity of constructing P (·) follows from
Lemma H.5.

Then, we can show

2
∑
i∈[n]

wiP (xi)
⊤P (y) = −

∑
i∈[n]

wi∥P (xi)− P (y)∥22 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

= −
∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

where the first step follows from ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩, and the second step follows
∥x∥22 =

∑d
j=1 |xj |2 for x ∈ Rd.

H.2 ALGORITHM MODIFICATIONS

Based on Lemma H.6, we can now extend our DP algorithms to handle Softmax activation. First,
we need to construct P (y) and P (xi) for i ∈ [n], each costing O(r) time. Then, for the second
term in Lemma H.6, i.e. 1

2

∑
i∈[n] wi(∥P (xi)∥22 + ∥P (y)∥22), we don’t need to add DP noises in it;

instead, we calculate this term exactly, preprocess it, and store the results in the algorithm. For the
first term,− 1

2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−P (y)j |2, we can adjust our high dimensional DP distance

query algorithm to solve it. For the second term in Lemma H.6, i.e., 1
2

∑
i∈[n] wi(∥P (xi)∥22 +

∥P (y)∥22), it can be expressed as 1
2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−0|2 and 1

2

∑
i∈[n] wi(

∑
j∈[r] P (y)2j ).

The former can be computed using query 0, while the latter can be solved using the precomputed
value

∑
i∈[n] wi, which can be obtained from the data 1n and query 0. Thus, we only need to

consider the case p = 2 in weighted ℓpp distance algorithms.

Now we can give our result that can answer Softmax query.
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Theorem H.7 (Softmax query, formal version of Theorem 4.2). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s be defined in Definition H.3. Let accuracy parameter
be ϵs ∈ (0, 0.1). There is a data structure DPTREESOFTMAX (Algorithm 3) that uses O(nr) spaces
to solve Softmax query problem for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 3) It takes O(r log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z−w⊤ exp(Xy/d)| ≤ |ϵs ·w⊤ exp(Xy/d)|+O(ϵ−1Γ2
R,sRwr

√
log(1/δ′)·log3/2 n),

– it holds with probability 0.99.

Proof. Let Pwx :=
∑

i∈[n] wi∥P (xi)∥22 and sw :=
∑

i∈[n] wi. Observe that Pwx =∑
i∈[n] wi∥P (xi) − 0∥22, meaning we can calculating Pwx using query 0. Similarly, sw =∑
i∈[n] wi∥1n− 0∥22, meaning we can calculating sw using data 1n and query 0. Thus, we compute

Pwx, sw in Line 19 and 22 in Algorithm 3 in this way.

From the privacy proof of Lemma F.1 and the way we choose privacy parameters, similarly we get
the output process of calculating Pwx and Value is (ϵ/3, δ/3 + δ′/2)-DP. Also, the output process
of calculating sw is (ϵ/3, δ/3)-DP. Then, by Fact B.8, overall process is (ϵ, δ+ δ′)-DP in Line 31 of
Algorithm 3.

We then show the time complexity. From Lemma H.6, we know that constructing P (·) requires
O(r) time. In the first for loop of INIT, the dominating time consumption is O(nr). The second for
loop also has a time complexity of O(nr). Therefore, the total time complexity for INIT is O(nr). In
the DISTANCEQUERY function, constructing P (y) takes O(r) time. Within the for loop, it requires
O(r log n). Thus, the total time complexity for DISTANCEQUERY is O(r log n).

The space complexity is O(nr), since storing the n× r matrix P is the dominating factor.

The proof of the error follows from the triangle inequality by combining the errors in Lemma H.6
and Theorem F.3. Here, we omit the constant factors of 2 and 3 used for the privacy guarantee in
Algorithm 3, incorporating it into the big-O notation for the error analysis. To be more specific, in
Line 31 of Algorithm 3, we have 3 terms to bound the error, namely Pwx, sw∥P (y)∥22 and Value.
From Lemma H.6, the first source of error comes from the approximation error introduced by poly-
nomial kernel method, i.e.,

|w⊤ exp(Xy/d)− 1

2
(
∑
i∈[n]

wi∥P (xi)∥22︸ ︷︷ ︸
Pwx

+
∑
i∈[n]

wi︸ ︷︷ ︸
sw

∥P (y)∥22 −
∑
i∈[n]

wi∥P (xi)− P (y)∥22︸ ︷︷ ︸
Value

)|

= O(|ϵs · w⊤ exp(Xy/d)|).
Then, the second source of error comes from the DP noises in Theorem F.3, where we use Algo-
rithm 4 to compute the three terms.

The two terms Pwx and Value have additive error O(ϵ−1Γ2
R,sRwr

√
log(1/δ′) · log3/2 n) (Theo-

rem F.3) due to to the way we choose the DP parameters, the application of advanced composition
(Theorem B.10), and the transformation of the value range from [0, R] to [0,ΓR,s] by the polynomial
kernel. See more details in the proof of Lemma F.2.

As for the term sw∥P (y)∥22, the addtive error of sw is O(ϵ−1Rw log3/2 n). But since ∥P (y)∥22 ≤
rΓ2

R,s, we have the addtive error is O(ϵ−1Γ2
R,sRwr log

3/2 n) which is smaller than other two terms.
We ignore the constant 3 introduced by summing three terms by triangle inequality of absolute
function, i.e., | − t1 + t2 + t3| ≤ |t1|+ |t2|+ |t3|.
Finally, summing the two sources of error by triangle inequality, we finish the proof.
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H.3 ADAPTIVE SOFTMAX

In this section, we show how to make Algorithm 3 robust to adaptive query. We follow the
same idea from Section G. We notice that, in the Softmax activation, we have query function
Z(y) := w⊤ exp(Xy/d) different from the ℓ1 distance in Section G. Therefore, we need to re-
calculate Lipschitz constant first.
Lemma H.8 (Lipschitz of weighted Softmax). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) := w⊤ exp(Xy/d).

• Let L = nd−1/2RRw exp(R2).

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi exp(x
⊤
i y/d)−

∑
i∈[n]

wi exp(x
⊤
i ỹ/d)|

≤
∑
i∈[n]

|wi| · | exp(x⊤
i y/d)− exp(x⊤

i ỹ/d)|

≤
∑
i∈[n]

|wi| exp(R2)|x⊤
i y/d− x⊤

i ỹ/d|

≤
∑
i∈[n]

|wi| exp(R2)∥xi∥2 · ∥y − ỹ∥2/d

≤ nRw exp(R2)
√
dR · ∥y − ỹ∥2/d

≤ nd−1/2RRw exp(R2)∥y − ỹ∥1
where the first step follows from definition of Z(y), Z(ỹ), the second step follows from triangu-
lar inequality, the third step follows from Fact B.4, the fourth step follows from Cauchy–Schwarz
inequality |u⊤v| ≤ ∥u∥2 · ∥v∥2 for u, v ∈ Rd, the fifth step follows from wi ∈ [−Rw, Rw] and
xi ∈ [0, R]d, and the last step follows from ∥u∥2 ≤ ∥u∥1 for u ∈ Rd.

Then we can show how to extend our algorithm to be robust to adaptive query.
Lemma H.9 (Adaptive Softmax ). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
r/pf )) independent copies of data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 3) and take the median of the outputs with
each data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d), where Z(y) is L-Lipschitz with L = nd−1/2RRw exp(R2).

• Let B = O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfies

|f(y)− Z(q)| ≤ |ϵsZ(q)|+B +O(n
√
dRRw exp(R2)ϵ0).
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Proof. The proof follows from the same idea as the proof of Lemma G.8, except that we use Theo-
rem H.7 and the Lipschitz in Lemma H.8.

Algorithm 7 Adaptive query data structure

1: datastructure DPTREESOFTMAXADAPTIVE ▷ Theorem 4.4
2: members
3: D1, . . . ,DO(r log(dR/(ϵspf ))) : DPTREESOFTMAX ▷ Algorithm 3
4: end members
5: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈
(0, 1), c ∈ (0, 0.1)), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))

6: l← O(r log(dR/(ϵspf )))
7: for i = 1→ l do
8: Di.INIT(X,n,w, ϵ/l, δ/l, δ′/l, c, ϵs)
9: end for

10: end procedure
11: procedure DISTANCEQUERY(y ∈ [0, R]d)
12: l← O(r log(dR/(ϵspf )))
13: r ← 0l

14: for i = 1→ l do
15: ri ← Di.DISTANCEQUERY(y)
16: end for
17: return Median of r
18: end procedure
19: end datastructure

Theorem H.10 (Adaptive query Softmax data structure, formal version of Theorem 4.4). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s be defined in

Definition H.3. Let accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, and pf be the failure probability parameter.
Let l = O(r log(dR/(ϵspf ))). There is a data structure DPTREESOFTMAXADAPTIVE (Algo-
rithm 7) that uses O(lnr) spaces to solve weighted Softmax query problem for dataset X ⊂ [0, R]d

and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). (Algorithm 7) It takes O(lnr) time to initialize the
data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 7) It takes O(lr log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z−w⊤ exp(Xy/d)| ≤ |ϵs·w⊤ exp(Xy/d)|+O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′)·log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We only need to show how to pick ϵ0 in the parameter l, because everything else is
the same as Lemma H.9. We know the additive error introduced by adaptive query is Ea :=
O(n
√
dRRw exp(R2)ϵ0) and the relative error introduced by polynomial kernel approximation is

Ep := w⊤ exp(Xy/d) · ϵs. It can be shown that:

Ep := w⊤ exp(Xy/d) · ϵs
≤ ϵs∥w∥2 · ∥ exp(Xy/d)∥2
= O(nRwϵs exp(R

2))

where the first step follows from definition of Ep, the second step follows from Cauchy–Schwarz
inequality, and the last step follows from w ∈ [−Rw, Rw]

n, X ∈ [0, R]n×d, and y ∈ [0, R]d.
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Picking ϵ0 = Θ( ϵs√
dR

), we can hide the error of adaptive query Ea in Ep. Thus, we have

l = O(log((R/ϵ0)
r/pf ))

= O(log((
√
dR2/ϵs)

r/pf ))

= O(r log(dR/(ϵspf )))

where the first step comes from the definition of l, the second step comes from picking ϵ0 =
Θ( ϵs√

dR
), and the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b <

1, d > 1.

H.4 PROOF OF MAIN RESULT

In this section, we give the proof of our main result of Theorem 3.1.
Theorem H.11 (Softmax cross-attention, formal version of Theorem 3.1). Let Q,K, V,Attn be
defined in Definition 1.1. Assume the input context length n is large enough. Let pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma H.6). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let l = O(r log(dR/(ϵspf ))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ [0, R]d, to QUERY(Qi) (Algorithm 1) for each i ∈ [m]. It takes O(ldr log n)
time to output an entry z in Attn(Q,K, V ) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error 2ϵs/(1− ϵs),
– the process of output z has additive error O((1−ϵs)

−1n−1ϵ−1lΓ2
R,sRwr

√
log(l/δ′) ·

log3/2 n),
– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We first prove the privacy and then prove error for each coordinate of the output O of Algo-
rithm 1.

Proof of Privacy:

From Theorem H.10, Dk.DISTANCEQUERY for k ∈ {0, 1, . . . , d} in Algorithm 1 answer
(ϵ/2, δ/2 + δ′/2)-DP queries that are robust to adpative queries. By Fact B.8, the procedure for
calculating each coordinate of vector O is (ϵ, δ + δ′)-DP in Line 15 of Algorithm 1.

Proof of Error:

We prove the error bound of the cross-atteniton module. We omit the constant factor of 2 used for
the privacy guarantee in Algorithm 1, incorporating it into the big-O notation for the error analysis.
Let AV be the true value and ÃV be the noisy value. Let D be the true value and D̃ be the noisy
value. First, we use triangular inequality to decompose the error:

|(D−1AV )i,k − (D̃−1ÃV )i,k|
≤ |(D−1AV )i,k − (D−1ÃV )i,k|+ |(D−1ÃV )i,k − (D̃−1ÃV )i,k| (11)

We now prove for each term.

Part 1: Error bound for AV

From Section 3, we know that we can ensure matrix AV in cross-attention computation satisfies DP.
Next, from Theorem 4.4, for i ∈ [m], j ∈ [n], k ∈ [d], we have (AV )i,k is (ϵ, δ + δ′)-DP and also
robust to adaptive query.
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Let ζ := ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n denote the additive error. Then, from Theorem H.10,

we have

|(AV )i,k − (̃AV )i,k| ≤ |ϵs · (AV )i,k|+O(ζ) (12)

For Di,i, we can show

Di,i = (A · 1n)i =

n∑
j=1

exp(⟨Qi,Kj⟩/d) ≥ n (13)

because ⟨Qi,Kj⟩ ≥ 0 for bounded Q,K.

Finally, we can show the error of first term in Eq. (11) is bounded by

|(D−1AV )i,k − (D−1ÃV )i,k| = |D−1
i,i ((AV )i,k − (̃AV )i,k)|

= |D−1
i,i | · |((AV )i,k − (̃AV )i,k)|

≤ |ϵs ·D−1
i,i (AV )i,k|+O(n−1ζ)

where the first step follows from definition, the second step follows from simple algebra, and the
last step follows from Eq. (12) and (13).

Part 2: Error bound for D

We initialize one DPTREESOFTMAXADAPTIVE D0 with INIT(K,n,1n, ϵ, δ, δ
′, c, ϵs, pf ) in Algo-

rithm 1 to compute D. Notice that we input 1n as the third argument.

Recall that

Di,i =

n∑
i=1

exp(⟨Qi,Kj⟩/d)).

This can be viewed as the weighted Softmax problem but with weight 1n. To be more clear, let
us recall that Rw is the upper bound of the entries in V , and define R′

w as the upper bound of the
entries in 1n. Observe that we can reuse previous results in Theorem H.10 with adjustment only on
the value of R′

w (which is 1) in D0.

We wish to bound

|D−1
i,i − D̃−1

i,i | =
|Di,i − D̃i,i|
Di,i · D̃i,i

.

For the term |Di,i − D̃i,i|, similar to Eq. (12), from Theorem H.10, we have

|Di,i − D̃i,i| ≤ |ϵs ·Di,i|+O(ζ), (14)

where we assume Rw ≥ 1 = R′
w and loose the R′

w in additive error parameter in D0 from 1 to Rw.

Now we need the lower bound of D̃i,i. From Eq. (14), we have

D̃i,i ≥ Di,i − (|ϵs ·Di,i|+O(ζ)) ≥ |(1− ϵs) ·Di,i| −O(ζ).

Then, we have

|D−1
i,i − D̃−1

i,i | = D−1
i,i

|Di,i − D̃i,i|
D̃i,i

≤ D−1
i,i

|ϵs ·Di,i|+O(ζ)

|(1− ϵs) ·Di,i| −O(ζ)

We assume n is large enough and thus ignore other small factors. Observe that O(ζ) = O(log3/2 n),
and Di,i ≥ n = O(n) from Part 1. Thus, O(ζ) is a small order term compared to Di,i. As a
consequence, we get

|D−1
i,i − D̃−1

i,i | ≤ D−1
i,i

|ϵs ·Di,i|
|(1− ϵs) ·Di,i|

= D−1
i,i

ϵs
(1− ϵs)

, (15)

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

since ϵs ∈ (0, 0.1).

From Eq. (12), we have

|(̃AV )i,k| ≤ (1 + ϵs) · |(AV )i,k|+O(ζ)

We consider the second term in Eq.(11). Then,

|(D−1ÃV )i,k − (D̃−1ÃV )i,k|
= |D−1

i,i − D̃−1
i,i | · |(ÃV )i,k|

≤ D−1
i,i

ϵs
(1− ϵs)

((1 + ϵs) · |(AV )i,k|+O(ζ))

= ϵs
(1 + ϵs)

(1− ϵs)
·D−1

i,i |(AV )i,k|+O(
ϵs

(1− ϵs)
D−1

i,i ζ)

≤ ϵs
(1 + ϵs)

(1− ϵs)
· |D−1

i,i (AV )i,k|+O(
ϵs

(1− ϵs)
n−1ζ)

where the first step follows from simple algebra, the second step follows from the previous derived
upper bounds, the third step follows from simple algebra, and the last step follows from Eq.(13).

Part 3: Final error bound

Combining results from Part 1 and 2, the final error bound is

|(D−1AV )i,k − (D̃−1ÃV )i,k|
≤ |(D−1AV )i,k − (D−1ÃV )i,k|+ |(D−1ÃV )i,k − (D̃−1ÃV )i,k|

= ϵs · |D−1
i,i (AV )i,k|+O(n−1ζ) + ϵs

(1 + ϵs)

(1− ϵs)
· |D−1

i,i (AV )i,k|+O(
ϵs

(1− ϵs)
n−1ζ)

=
2ϵs

(1− ϵs)
· |(D−1AV )i,k|+O((1− ϵs)

−1n−1ζ)

Therefore, we prove the error bound.
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