
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIAL PRIVACY OF CROSS-ATTENTION WITH
PROVABLE GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-attention has become a fundamental module nowadays in many important
artificial intelligence applications, e.g., retrieval-augmented generation (RAG),
system prompt, guided stable diffusion, and many more. Ensuring cross-attention
privacy is crucial and urgently needed because its key and value matrices may
contain sensitive information about model providers and their users. In this work,
we design a novel differential privacy (DP) data structure to address the privacy
security of cross-attention with a theoretical guarantee. In detail, let n be the input
token length of system prompt/RAG data, d be the feature dimension, R be the
maximum value of the query and key matrices, Rw be the maximum value of the
value matrix, and r, s, ϵs be parameters of polynomial kernel methods. Then, our
data structure requires Õ(ndr2) memory consumption with Õ(ndr2) initializa-
tion time complexity and Õ(dr2) query time complexity for a single token query.
In addition, our data structure can guarantee that the process of answering user
query satisfies (ϵ, δ)-DP with Õ((1 − ϵs)

−1n−1ϵ−1R2sRwr
2) additive error and

2ϵs/(1− ϵs) relative error between our output and the true answer. Furthermore,
our result is robust to adaptive queries in which users can intentionally attack the
cross-attention system. To our knowledge, this is the first work to provide DP for
cross-attention and is promising to inspire more privacy algorithm design in large
generative models (LGMs).

1 INTRODUCTION

The development of Artificial Intelligence (AI) has four stages: (1) prediction AI, e.g., ResNet
(He et al., 2016) in image classification; (2) generation AI, e.g., ChatGPT (Achiam et al., 2023) in
language generation; (3) autonomous agent AI, Voyager (Wang et al., 2023a) autonomously plays
Minecraft game (Fan et al., 2022); (4) Artificial Generalization Intelligence (AGI). Humans have
made rapid progress in generative AI, and we are excitingly heading to the third stage, the era of AI
agent (Liu et al., 2023). One prevalent application of AI agents is customized large generative mod-
els (LGMs) agents (OpenAI, 2024a), e.g., AgentGPT (GitHub, 2024a), SuperAGI (GitHub, 2024d),
MetaGPT (Hong et al., 2024b;a), GPT Researcher (GitHub, 2024c) and many so on. In particular,
recently, Apple Inc. introduced Apple Intelligence (Apple, 2024), signaling the integration of LGMs
into physical devices. This innovation allows devices to use personal information for real-life as-
sistance, such as entering passport numbers when booking flights or informing users of their latest
meetings. With increased AI capabilities, privacy concerns become significant, as the more personal
information devices handle, the greater the potential privacy risks.

One fundamental technique used in LGMs is cross-attention (Vaswani et al., 2017), which is an
essential module in retrieval-augmented generation (RAG) (Lewis et al., 2020), system prompt,
guided stable diffusion, and many so on. In RAG, to be more professional, the LGMs answer
user input queries by using a domain-specific database under cross-attention, which may contain
specific privacy data and knowledge so that the LGMs gain additional power. For system prompts,
based on cross-attention, some customized long prompts, e.g., user information or concrete rules,
are concatenated before user input to follow human instructions better, which are commonly used in
ChatGPT (GitHub, 2024b), Claude3 (Anthropic, 2024) and other commercial LGMs.

Consequently, protecting the privacy of domain-specific data in RAG or system prompts is crucial
as they contain sensitive information about users and companies. These data and prompts are the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

core assets of many start-ups. However, these data and prompts can be easily recovered (Li et al.,
2023b), jailbroken (Jin et al., 2024), and released (Li et al., 2023a) by user adversarial attack (Yu
et al., 2024), e.g., there are 1700 tokens in ChatGPT system prompts (Patel, 2024). These findings
highlight the critical importance of robust privacy protections in LGMs, making privacy not just
essential but an urgent issue that demands immediate attention.

To fundamentally preserve cross-attention privacy, we borrow the powerful tools from differential
privacy (DP) (Dwork et al., 2006), which provides measurable privacy and combines with statistical
machine learning seamlessly (Ponomareva et al., 2023). Thus, in this work, we would like to ask
and answer the following question,

How can we use differential privacy to protect the security of cross-attention in LGMs?

Our work demonstrates that the Softmax cross-attention computation is equivalent to computing the
weighted distance problem.
Definition 1.1 (Softmax cross-attention). Let n and m be the token length of the data and input
query, respectively. Let d be the feature dimension. Given fixed key matrix K ∈ [0, R]n×d and fixed
value matrix V ∈ [−Rw, Rw]

n×d, Rw ≥ 1, for any input query matrix Q ∈ [0, R]m×d, the goal of
the Softmax Cross-Attention Computation is to get the matrix Attn(Q,K, V) ∈ Rm×d, which is

Attn(Q,K, V) := D−1AV,

where A ∈ Rm×n satisfies Ai,j := exp(⟨Qi,Kj⟩/d) for any i ∈ [m], j ∈ [n] (Qi and Kj denote the
i-th and j-th rows of Q and K, respectively) and D := diag(A1n) ∈ Rm×m is a diagonal matrix.

Note that Softmax(QK⊤/d) = D−1A ∈ Rm×n in Definition 1.1, which is the standard function
used in transformers, and usually, we call it as attention matrix. Our main theorem, presented below,
provides a robust solution of cross-attention, ensuring privacy and accuracy guarantees.
Theorem 1.2 (Main result; Informal version of Theorem 3.1). Let Q,K, V,Attn be defined in
Definition 1.1. Let pf be the probability of failure parameter. Let r, s, ϵs be the parameters of the
polynomial kernel methods (Lemma H.6). Then, our Algorithm 1 requires Õ(ndr2) memory with
Õ(ndr2) initialization time and Õ(dr2) query time, such that with probability 1 − pf , the output
process of cross-attention satisfies (ϵ, δ)-DP and is robust to adaptive query with relative error
2ϵs/(1− ϵs) and additive error Õ((1− ϵs)

−1n−1ϵ−1R2sRwr
2).

Our main technique in Theorem 1.2 ensures that cross-attention is differentially private by using the
polynomial kernel approximation method and transforming it into a weighted distance problem. We
then solve the problem by summing over weighted distances (depending on the value embedding)
between the query embedding and the key embedding. We build a data structure for weighted
Softmax queries in Section 4.3, and we extend this data structure to handle adaptive queries using
the ϵ0-net/metric entropy argument in Section 4.4. Furthermore, our additive error decreases as the
input token length grows, diminishing to zero.

Our contributions are as follows:

• We demonstrate that cross-attention computations are equivalent to the weighted distance
problem (Section 3).

• We design a novel algorithm (Algorithm 3) that privately answers weighted Softmax
queries with high probability and a concrete accuracy bound.

• Our algorithm (Algorithm 1) handles multiple cross-attention queries and is robust against
adaptive query attacks (Theorem 3.1), meaning that potential attackers cannot intentionally
extract information of system prompts/RAG data.

To our knowledge, this is the first work to utilize DP to protect prompts in LGMs with theoretically
provable guarantees. While some have explored protecting user/system prompts with DP (Edemacu
& Wu, 2024; Mai et al., 2023), they are primarily empirical and lack theoretical guarantees. Addi-
tionally, many others are working on protecting private datasets by applying DP to the fine-tuning
stage of LGMs (Behnia et al., 2022; Singh et al., 2024; Liu et al., 2024b; Yu et al., 2021; Li et al.,
2021; Shi et al., 2022a), which diverges from our work. The strength of DP lies in its strong, unam-
biguous, and concrete definition of privacy, enabling algorithm designs with provable privacy and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

accuracy analysis. Therefore, we believe that the theoretical aspects of DP applications in LGMs
remain a highly impactful direction, and we aim to pave the way for further exploration in this area.

1.1 RELATED WORK

Differential Privacy in Data Structure and Attention. Differential privacy (DP) is a flourishing
and powerful technique that has enormous applications in the topic of private machine learning.
In the era of Large Generative Models (LGMs), there are three primary approaches to ensuring
privacy: (1) during the pre-training stage: to protect training data (Abadi et al., 2016; Ponomareva
et al., 2023), (2) during the adaptation stage: to protect target data (Behnia et al., 2022; Singh et al.,
2024; Liu et al., 2024b; Yu et al., 2021; Li et al., 2021; Shi et al., 2022a; Huang et al., 2024),
(3) during the inference stage: to protect user/system prompts (Edemacu & Wu, 2024) and RAG
data (Lewis et al., 2020). To protect training data, DP-SGD (Abadi et al., 2016) uses DP optimizer
to ensure data privacy, severing as the traditional baseline method. Recently, numerous works have
aimed to improve this method by integrating DP in both the pre-training and fine-tuning stages
of LGMs (Yu et al., 2021; Li et al., 2021; Golatkar et al., 2022; Behnia et al., 2022; Shi et al.,
2022a; Mattern et al., 2022; Singh et al., 2024; Zheng et al., 2024; Liu et al., 2024b). However, DP-
SGD confines differential privacy to the optimizer. In contrast, we propose a novel approach that
integrates DP directly into the attention mechanism, supported by strong theoretical analysis and
guarantees. Given the resource-intensive nature of training LGMs, our technique offers a practical
alternative for models trained with standard SGD, which lack inherent privacy guarantees. In such
cases, applying DP-SGD would require retraining the models, which is computationally expensive,
whereas our method avoids this additional cost.

To protect user/system prompts, Edemacu & Wu (2024) provides a survey on both DP and non-
DP methods. In the use of LGMs, prompting methods almost become a standard way for infer-
ence (Schulhoff et al., 2024). Given the billions of prompt interactions daily, ensuring privacy is
essential (Mai et al., 2023). We refer readers to Appendix A for more related works.

Roadmap. In Section 2, we present the preliminary of differential privacy (DP) and cross-attention.
In Section 3, we present the main result of our cross-attention theorem (Theorem 3.1). In Sec-
tion 4, we outline the main results of our algorithms. In Section 5, we discuss DP-related topics and
potential extensions. In Section 6, we conclude our paper.

2 PRELIMINARY

In this section, we give the preliminary of differential privacy (DP) and cross-attention. In Sec-
tion 2.1, we describe the notations. In Section 2.2, we give definitions related to DP.

2.1 NOTATIONS

We use Pr[] to denote the probability. We use E[] to denote the expectation. We use Var[] to denote
the variance. For two vectors x ∈ Rd and y ∈ Rd, we use ⟨x, y⟩ to denote the inner product between
x, y, i.e., ⟨x, y⟩ = ∑d

i=1 xiyi. We use X ⊂ Rd and |X| = n to mean the same thing as X ∈ Rn×d.
Also, we denote x⊤

i as the i-th row of X . We use xi,j to denote the j-th coordinate of xi ∈ Rn. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e., ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
We denote polynomial time complexity with respect to n as poly(n). For a function f , we use Õ(f)
to represent f multiplied by a polylogarithmic factor, i.e., f · poly(log f). This notation, known
as soft-O or tilde notation, simplifies expressions by omitting logarithmic factors, focusing on the
dominant term’s growth rate.

2.2 DIFFERENTIAL PRIVACY DEFINITIONS

In this section, we give several definitions related to differential privacy (DP). We refer the reader to
Dwork & Roth (2014) for more background and details on DP.
Definition 2.1 (Neighboring dataset). Two datasets X,X ′ ∈ [0, R]n×d are neighboring if they differ
in exactly one row, i.e., there exists i ∈ [n] such that Xi,∗ ̸= X ′

i,∗ and Xj,∗ = X ′
j,∗ for all j ̸= i.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 2.2 (Sensitivity). The sensitivity of a function f : Rn×d → Rn×d′
is: ∆ :=

maxX,X′∈Rn×d ∥f(X)−f(X ′)∥1, where X,X ′ are neighboring datasets and ∥·∥1 is the entry-wise
ℓ1-norm.

Definition 2.3 ((ϵ, δ)-DP). For ϵ > 0, δ ≥ 0, a randomized algorithm A is (ϵ, δ)-DP, if for all
S ⊆ Range(A) and for all neighboring datasets X,X ′ such that ∥X −X ′∥1 ≤ 1:

Pr[A(X) ∈ S] ≤ exp(ϵ) Pr[A(X ′) ∈ S] + δ.

When δ = 0, the algorithm is said to have pure differential privacy.

We mainly use the truncated Laplace mechanism, which has the following definitions.
Definition 2.4 (Truncated Laplace distribution). We use TLap(∆, ϵ, δ) to denote the Truncated
Laplace distribution with pdf proportional to exp(−ϵ|z|/∆) on the region [−B,B], where B =
∆
ϵ · log(1 +

exp(ϵ)−1
2δ).

Fact 2.5 (Theorem 3 in Geng et al. (2020)). Let z denote a TLap(∆, ϵ, δ) random variable. Then
we have E[z] = 0, and

Var[z] =
2∆2

ϵ2
(1− δ · log

2(1 + eϵ−1
2δ) + 2 log(1 + eϵ−1

2δ)

eϵ − 1
).

Furthermore, if δ = 0, we have Var[z] = 2∆2/ϵ2, meaning truncated Laplacian mechanism will be
reduced to the standard Laplacian mechanism.

Lemma 2.6 (Laplace mechanism, (Dwork & Roth, 2014; Geng et al., 2020), see Lemma 2.2 in
Andoni et al. (2023)). Given a numeric function f that takes a dataset X as the input, and has
sensitivity ∆, the mechanism that outputs f(X) + z where z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition,
if ϵ, δ ∈ (0, 0.5), f(X)+ z, where z ∼ TLap(∆, ϵ, δ) is (ϵ, δ)-DP. Moreover, the truncated Laplace
mechanism is always accuracy up to error B.

Algorithm 1 DP cross-attention algorithm

1: datastrucutre DPCROSSATTENTION ▷ Theorem 3.1
2: members
3: D0,D1, . . . ,Dd : DPTREESOFTMAXADAPTIVE ▷ Algorithm 7
4: end members
5: procedure INIT(K ∈ [0, R]n×d, V ∈ [−Rw, Rw]

n×d, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)) ▷ n = |K|

6: for k = 1→ d do
7: Dk.INIT(K,n, V:,k, ϵ/2, δ/2, δ

′/2, c, ϵs, pf) ▷ Compute AV
8: end for
9: D0.INIT(K,n,1n, ϵ/2, δ/2, δ

′/2, c, ϵs, pf) ▷ Compute D
10: end procedure
11: procedure QUERY(Qi ∈ [0, R]d)
12: O ← 0d

13: D ←D0.DISTANCEQUERY(Qi)
14: for k = 1→ d do
15: Ok ← D−1 · Dk.DISTANCEQUERY(Qi)
16: end for
17: return O
18: end procedure
19: end datastrucutre

3 MAIN RESULTS: CROSS-ATTENTION

In this section, we show our main result for cross-attention. Theorem 3.1 states that we can ensure
the entire cross-attention module satisfies DP and is robust to adaptive queries. Our high-level idea
is based on the similarity between weighted distance problem and cross-attention. For a typical
weighted distance problem, we define the following: Let w ∈ Rn be the weights, X ∈ Rn×d be the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

data matrix, where x⊤
i is the i-th row of X for i ∈ [n], and let y ∈ Rd be the query. Suppose we

need to answer ℓ1 distance query. We have∑
i∈[n]

wi︸︷︷︸
weight

∥ y︸︷︷︸
query

− xi︸︷︷︸
data

∥1.

Now we introduce cross-attention. Let Q,K, V,Attn be defined in Definition 1.1. In a standard
cross-attention process, K and V are accessible before inference, while the user input Q becomes
available only when the user provides it. Here, K and V represent values stored in memory or disks
and are considered private assets protected within the model, whereas Q is treated as public.

For the cross-attention mechanism Attn (Definition 1.1), we aim to ensure that the matrix AV
satisfies DP guarantee. Let Ai,j = exp(⟨Qi,Kj⟩/d) for i ∈ [m], j ∈ [n]. Let Vj,k ∈ R be the
(j, k)-th entry of V , for j ∈ [n], k ∈ [d]. Let D = diag(A1n), acting as a normalizing factor that
aggregates all the information. We store both K and its corresponding noises. For computing AV ,
we use the perturbed K, whereas for computing D, we rely on the original, unperturbed K. By
post-processing property (Fact B.7), to ensure that the forward output Attn(Q,K, V) = D−1AV
(Definition 1.1) satisfies DP, we only need to ensure the DP of its component AV .

The (i, k)-th entry of AV for each i ∈ [m], k ∈ [d] is computed by

(AV)i,k =

n∑
j=1

Vj,k︸︷︷︸
weight

exp(⟨ Qi︸︷︷︸
query

, Kj︸︷︷︸
data

⟩/d), (1)

which can be viewed as a weighted Softmax problem, where V provides the weights, Q is the query,
and K is the dataset. Thus, we choose to add noise to K and V based on the similarity between the
weighted distance problem and cross-attention. Furthermore, we find that we can only handle one
column of V , i.e., V∗,k ∈ Rn, in a single data structure. Therefore, we need to initialize a total of d
different data structures, each with weights V∗,k for k ∈ [d]. For computing D, we treat V = 1n,
which can be interpreted as an weighted Softmax problem with weight 1n.

Here, we present our main result below.
Theorem 3.1 (Softmax cross-attention, informal version of Theorem H.11). Let Q,K, V,Attn be
defined in Definition 1.1. Assume the input context length n is large enough. Let pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma H.6). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ [0, R]d, to QUERY(Qi) (Algorithm 1) for each i ∈ [m]. It takes O(ldr log n)
time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error 2ϵs/(1 − ϵs) and additive error O((1 −
ϵs)

−1n−1ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 3.2. Notice in Theorem 3.1 that we ensure the process of computing each entry is (ϵ, δ+δ′)-
DP. To guarantee that the overall output vector of length d is DP, we initialize each Di for i ∈
{0, 1, 2, . . . , d} with parameters scaled from ϵ/2, δ/2, δ′/2 to ϵ/(d + 1), δ/(d + 1), δ′/(d + 1).
Then, by the basic composition property (Fact B.8), the output vector is (ϵ, δ + δ′)-DP, with the
additive error increasing by a factor of Õ(d).

In Theorem 3.1, we use our DPTREECROSSATTENTION (Algorithm 1) and guarantee that, for each
query token of cross-attention, the output process satisfies (ϵ, δ + δ′)-DP with 2ϵs/(1− ϵs) relative

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

error and O((1 − ϵs)
−1n−1ϵ−1lΓ2

R,sRwr
√
log(l/δ′) · log3/2 n) additive error, and O(ldr log n)

running time under adaptive query. More specifically, the algorithm creates d + 1 DPTREESOFT-
MAXADAPTIVE (Algorithm 7) data structures, each requiring O(lnr) memory consumption and
O(lnr) initialization time. Notably, our additive error is inversely proportional to n, meaning that
as the input token length increases, the additive error approaches zero. This is achieved by the
normalizing matrix D (Definition 1.1). We refer the reader to Section H for proof details.

Thus, our algorithm theoretically protects system prompts/RAG data in cross-attention as discussed
in Section 1. In Section 4, we provide a detailed technical overview, and in Section 5, we will present
self-attention and DP-related discussion.

Algorithm 2 DPTree initialization and query

1: datastructure DPTREE ▷ Theorem C.1
2: members
3: c : R2n−1

4: end members
5: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ R, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma C.4, Lemma C.3
6: b[n, 2n− 1]← a
7: for i = n→ 2n− 1 do
8: c[i]← b[i] + TLap(∆, ϵ/ log n, δ/ log n)
9: end for

10: for i = (log n)→ 1 do
11: for j = 1→ 2i−1 do
12: k ← 2i−1 + j − 1
13: b[k]← b[2k] + b[2k + 1]
14: c[k]← b[k] + TLap(∆, ϵ/ log n, δ/ log n)
15: end for
16: end for
17: end procedure
18: procedure QUERY(y ∈ [0, R])
19: cleft, cright ← 0, 0
20: for i = 1→ log n do
21: Let node j ∈ [2i] of layer i denotes the integer such that y ∈ [(j − 1)R/2i, jR/2i)
22: if j is even then ▷ Node j is the right child of its parent
23: cleft ← cleft + c[2i + j − 2] ▷ Add the value of left sibling node
24: else ▷ Node j is the left child of its parent
25: cright ← cright + c[2i + j] ▷ Add the value of right sibling node
26: end if
27: end for
28: return cleft, cright
29: end procedure
30: end datastructure

4 KEY DATA STRUCTURE: DPTREE

This section provides our key data structures: DPTREE (Algorithm 2), DPTREEDISTANCE (Al-
gorithm 4 and 5), DPTREEHIGHDIM (Algorithm 6), DPTREESOFTMAX (Algorithm 3), and DP-
TREESOFTMAXADAPTIVE (Algorithm 7).

In Section 4.1, we provide our high-level proof insights. In Section 4.2, we give our basic build-
ing block algorithms DPTREE, DPTREEDISTANCE and DPTREEHIGHDIM. In Section 4.3, we
present our DPTREESOFTMAX algorithm that solves the weighted Softmax problem. In Section 4.4,
we present our DPTREESOFTMAXADAPTIVE algorithm that enables DPTREESOFTMAX to handle
adaptive query problem.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 TECHNIQUE OVERVIEW

Notice that Eq. (1) is not a typical distance measure like ℓ1 or ℓ2, but by using polynomial kernel
method techniques, we transform it into a distance measure. Alman & Song (2023) states that the
exponential inner product can be approximated by polynomial kernel function P (·) : Rd → Rr,
i.e., P (x)⊤P (y) ≈ exp(x⊤y/d) for two vector x, y ∈ Rd, with a relative error. Then, by the Law
of Cosines, we transform the inner product of polynomial kernel functions into a distance measure,
i.e.,

2P (x)⊤P (y) = − ∥P (x)− P (y)∥22 + ∥P (x)∥22 + ∥P (y)∥22. (2)

After transforming Eq. (1) into a distance measure, we design the DPTREE series data structures to
provide cross-attention DP guarantee.

In summary, we first design the data structure DPTREE (Algorithm 2) that builds a binary segment
tree with truncated Laplace noise added in the nodes to ensure DP guarantee. Then, based on
this data structure, we design DPTREEDISTANCE (Algorithm 4 and 5) to answer one dimensional
weighted ℓpp distance queries

∑n
i=1 wi·|y−xi|p. We further decompose high dimensional ℓpp distance

problem into one dimensional ℓpp distance problems using

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p. (3)

Based on this decomposition, we design DPTREEHIGHDIM (Algorithm 6) which is capable of
answering high dimension queries. Then, using Eq. (2) and DPTREEHIGHDIM, we design DP-
TREESOFTMAX (Algorithm 3) to answer Softmax queries. By building multiple copies of this data
structure, we boost the success probability such that it can answer any query (including adaptive
query) with an additive error, establishing the final data structure DPTREECROSSATTENTION (Al-
gorithm 1).

4.2 DPTREE, DPTREEDISTANCE, AND DPTREEHIGHDIM

The unweighted distance query has been explored in prior works (Huang & Roth, 2014; Backurs
et al., 2024; Liu et al., 2024a). Specifically, Huang & Roth (2014) leverages online learning tech-
niques to approximate the sum of distances, while Backurs et al. (2024) introduces a DP data struc-
ture based on a node-contaminated balanced binary tree. Furthermore, Liu et al. (2024a) presents a
new data representation in tree nodes, where each node stores the sum of distances from one point
to multiple points. In contrast, we focus on the weighted distance query, generalizing their results.

We design a basic data structure DPTREE (Algorithm 2) that answers summation queries by a sum-
mation segment tree with truncated Laplace noise (Definition 2.4). The algorithm first builds a
binary summation tree in an array and then adds truncated Laplace noises to each node. During a
query, the algorithm traverses each layer of the binary structure based on the input y, aggregating
values from sibling nodes by accessing at most O(log n) nodes along the path. It then returns the
accumulated left and right sums as the query result (Algorithm 2). See more details in Section C.

We then design DPTREEDISTANCE, a one-dimensional weighted ℓpp distance data structure detailed
in Algorithm 4 and 5. Initialization involves assigning each data point to the nearest bin and aggre-
gating their weighted polynomial terms into multiple arrays (illustrated in Figure 1), which are then
used to initialize several instances of our DPTREE. At query time, the algorithm retrieves aggregated
weights from each DPTREE corresponding to the query point and combines them using binomial
coefficients and distance powers to compute the one-dimensional weighted ℓpp distance. Guided by
Eq. (3), we design DPTREEHIGHDIM (Algorithm 6), which extends DPTREEDISTANCE to higher
dimension by constructing independent data structures for each coordinate. See details in Section E
and F.

4.3 SOFTMAX ACTIVATION

In this section, we present DPTREESOFTMAX (Algorithm 3) that answers the weighted Softmax
query (Definition 4.1) and is further used to design DP cross-attention. First, we introduce the
definition of weighted Softmax query, an abstraction for the problem described in Eq. (1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 3 Softmax query

1: datastrucutre DPTREESOFTMAX ▷ Theorem 4.2
2: members
3: D0,D1, . . . ,Dr : DPTREEDISTANCE ▷ Algorithm 4, Theorem E.1
4: P : [0,ΓR,s]

n×r ▷ Definition H.3 for ΓR,s, Eq. (9) for s, Eq. (10) for r
5: w : [−Rw, Rw]

n

6: Pwx, sw, ϵs : R
7: end members
8: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1)) ▷ Lemma H.6

9: ϵs, w, P, Pwx, sw ← ϵs, w, 0
n×r, 0, 0

10: for j = 1→ n do
11: Compute P (xj) ▷ Polynomial kernel function P (·), Lemma H.5
12: Compute wj∥P (xj)∥22
13: Pwx ← Pwx + wj∥P (xj)∥22
14: sw ← sw + wj

15: Pj,: ← P (xj)
16: end for
17: for i = 1→ r do
18: Di.INIT(P:,i, n, w, cϵ

3
√

r log(2/δ′)
, δ
3r) ▷ ALGORITHM 4

19: Pwx ← Pwx +Di.DISTANCEQUERY(0)
20: end for
21: D0.INIT(1n, n, w, ϵ/3, δ/3)
22: sw ← sw +D0.DISTANCEQUERY(0)
23: end procedure
24: procedure DISTANCEQUERY(y ∈ [0, R]d) ▷ Lemma H.6
25: Value← 0
26: Compute P (y)
27: Compute ∥P (y)∥22
28: for i = 1→ r do
29: Value← Value + Di.DISTANCEQUERY(P (y)i) ▷ Algorithm 5
30: end for
31: Value← 0.5 · (Pwx + sw∥P (y)∥22 − Value)
32: return Value
33: end procedure
34: end datastrucutre

Definition 4.1 (Weighted Softmax query (without normalization)). For the dataset X ∈ [0, R]n×d

where x⊤
i is the i-th row of X and query y ∈ [0, R]d, we define the weighted exponential inner

product/Softmax query to be:∑
i∈[n]

wi exp(⟨xi, y⟩/d) = w⊤ exp(Xy/d).

Building on Definition 4.1, we develop a novel algorithm to answer differentially private weighted
Softmax queries using the polynomial kernel method from Alman & Song (2023). Specifically, in
Eq.(2), the three terms compute the weighted ℓ22 distance, which we calculate using DPTREEHIGH-
DIM. By summing these terms with a controlled error, we extend DPTREEHIGHDIM to answer the
Softmax query efficiently. More details can be found in Section H.

Theorem 4.2 (Softmax query, informal version of Theorem H.7). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition H.3). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Our data structure DPTREESOFTMAX (Algorithm 3) uses O(nr)
spaces to solve Softmax query problem for dataset X ⊂ [0, R]d and support following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 3) It takes O(r log n) time to output a number z such
that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ |ϵs · w⊤ exp(Xy/d)|+O(ϵ−1Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

– it holds with probability at least 0.99.

Remark 4.3. In Theorem 4.2, the parameter ϵs is the accuracy parameter for polynomial kernel
approximation described in Section H. Besides, note that the error bound in Theorem 4.2 does not
depend on δ but depends on δ′. The role of δ is to control a hidden constant term in the big O
notation, i.e., increasing δ reduces the error by a small constant (Fact 2.5). In practice, we set δ as
a small positive constant close to 0. Please refer to the Lemma C.7 for more details.

4.4 ADAPTIVE QUERY DATA STRUCTURE

We adapt our DPTREESOFTMAX to DPTREESOFTMAXADAPTIVE (Algorithm 7) to solve the
adaptive query problem. By proving it can handle any query within the query space with a cer-
tain error, we ensure it effectively processes adaptive queries. We first boost the constant probability
to high probability using the Chernoff bound (Lemma B.2). Employing an ϵ0-net argument and the
union bound, we bound all query points within the net. Finally, we use the Lipschitz property of the
weighted Softmax distance function with an additive error to bound all points in the query space.
The corresponding proofs can be found in Section G and Section H.

Theorem 4.4 (Adaptive query Softmax data structure, informal version of Theorem H.10). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let the accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, and pf be the failure probability pa-
rameter. Let l = O(r log(dR/(ϵspf))). There is a data structure DPTREESOFTMAXADAPTIVE
(Algorithm 7) that uses O(lnr) spaces to solve the weighted Softmax query problem for the dataset
X ⊂ [0, R]d and supports the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). It takes O(lnr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). It takes O(lr log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ |ϵs · w⊤ exp(Xy/d)|+O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability at least 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 4.5. We describe the parallelization of our algorithms. In the second for loop of INIT
and the for loop of DISTANCEQUERY in Algorithm 3, the r DPTREEDISTANCE data structures
instantiated for each coordinate are independent of each other. In addition, the for loops in Algo-
rithm 7 are also parallelizable since the l = O(r log(dR/(ϵspf))) copies are independent. After
parallelization, we have the final time complexity of INIT to be O(nr) and DISTANCEQUERY to be
O(log n) in Algorithm 7 with O(lr) GPU process.

5 DISCUSSION

How do we extend to self-attention and other data structures? As self-attention is a more
fundamental module in LGMs, we would like to extend our data structure to this setting. However,
the challenge we faced was the dynamic update in tree nodes for each query for self-attention, which
our current analysis does not support. How we can solve this challenge is crucial, and we leave it as
our future direction.

Moreover, we observe that Li et al. (2015) introduces the DP matrix mechanism, which offers an
alternative to our currently used binary tree data structure. A preliminary idea for extending this
is as follows: consider A = exp(QK⊤/d) as defined in Definition 1.1, where Q of size m × d

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

represents the query matrix with m linear queries, and K serves as the database. Leveraging the
results from Li et al. (2015), we could design an alternative algorithm to enhance the current binary
tree data structure, DPTREE. We leave this exploration for future work.

Why not add noise to some other places? Where and how to add DP noises is an impor-
tant problem to ask during the DP algorithm design. In this paper, we consider the problem of∑n

i=1 wi exp(⟨xi, y⟩/d) where y, xi ∈ [0, R]d and w ∈ [−Rw, Rw]
n (Definition 4.1). Notice that

the only place where we add noises is in the most basic building block data structure DPTREE (Al-
gorihtm 2). From Lemma C.3 and the way we initialize DPTREE in Algorithm 4, we see that the
sensitivity ∆ of this problem is 2Rw.

A simple method for adding noise involves adding n noises to a length n array, with each item
wi exp(⟨xi, y⟩/d) for i ∈ [n]. However, this approach increases the error by a factor of n by basic
composition (Fact B.8) and also makes the model dependent on the number of queries. Besides,
it only supports a single query and requires rebuilding the tree for each new query, rendering it
impractical. In contrast, our current noise-adding technique (Lines 8 and 14 of Algorithm 2) utilizes
a summation tree such that the error only increases by a factor of poly log n. This method also
supports multiple queries, eliminating the need to rebuild the tree each time.

How to remove the relative error parameter α? The relative error parameter α in Theorem 3.1
appears because of the (1 + α)-approximation introduced in Algorithm 4 to reduce the number of
required iterations from naive O(n) to O(log(n)/α). However, we notice that a recent work (Liu
et al., 2024a) does not utilize (1 + α)-approximation and still achieves O(log n) iteration number.
They introduce a new tree node representation where each node stores the sum of distances from one
point to multiple points, enabling the answer to be divided into only log n values, each combining
two distance values, two count values, and y itself. Our DPTREE algorithms can be integrated with
their method, thus removing parameter α.

6 CONCLUSION

To our knowledge, we are the first work to provide differential privacy for cross-attention. This
paper presents the DPTREE data structures, which provide a differential privacy guarantee for the
cross-attention module in large generative models. This is achieved by transforming the cross-
attention mechanism into a weighted distance problem. Furthermore, our algorithm is robust to
adaptive queries, allowing users to interact with the model arbitrarily without extracting sensitive
information from the system prompts or RAG data. Our results may inspire more privacy algorithm
design in large generative models.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 43544–43562, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Anthropic. System prompts, 2024. https://docs.anthropic.com/en/docs/
system-prompts.

Apple. Apple intelligence, 2024. https://www.apple.com/apple-intelligence/.

Arturs Backurs, Zinan Lin, Sepideh Mahabadi, Sandeep Silwal, and Jakub Tarnawski. Efficiently
computing similarities to private datasets. arXiv preprint arXiv:2403.08917, 2024.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 560–566. IEEE,
2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-
scale vision transformer for image classification. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 357–366, 2021.

Justin Y Chen, Shyam Narayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Vincent Cohen-Addad, Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong.
Near-optimal private and scalable k-clustering. Advances in Neural Information Processing
Systems, 35:10462–10475, 2022a.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy.
Advances in Neural Information Processing Systems, 35:33702–33715, 2022b.

Itai Dinur, Uri Stemmer, David P Woodruff, and Samson Zhou. On differential privacy and adap-
tive data analysis with bounded space. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 35–65. Springer, 2023.

Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pp. 1–19. Springer, 2008.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Kennedy Edemacu and Xintao Wu. Privacy preserving prompt engineering: A survey. arXiv preprint
arXiv:2404.06001, 2024.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private re-
lease of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 560–578. SIAM, 2020.

11

https://docs.anthropic.com/en/docs/system-prompts
https://docs.anthropic.com/en/docs/system-prompts
https://www.apple.com/apple-intelligence/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean estima-
tion with few users. In International Conference on Machine Learning, pp. 16383–16412. PMLR,
2022.

Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph. In 2022
IEEE International Symposium on Information Theory (ISIT), pp. 2190–2195. IEEE, 2022.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest sub-
graph. In International Conference on Artificial Intelligence and Statistics, pp. 11581–11597.
PMLR, 2022.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. In
Neurips Safe Generative AI Workshop 2024, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pp. 89–99. PMLR, 2020.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu. On differentially
private counting on trees. In 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261, pp. 66. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2023.

GitHub. Agentgpt, 2024a. https://github.com/reworkd/AgentGPT.

GitHub. Chatgpt system prompt, 2024b. https://github.com/LouisShark/chatgpt_
system_prompt.

GitHub. Gpt researcher, 2024c. https://github.com/assafelovic/
gpt-researcher.

GitHub. Superagi, 2024d. https://github.com/TransformerOptimus/SuperAGI.

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Ste-
fano Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8376–8386, 2022.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex optimiza-
tion in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 5068–5089. SIAM, 2023.

12

https://github.com/reworkd/AgentGPT
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/assafelovic/gpt-researcher
https://github.com/assafelovic/gpt-researcher
https://github.com/TransformerOptimus/SuperAGI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adityanand Guntuboyina and Bodhisattva Sen. L1 covering numbers for uniformly bounded con-
vex functions. In Conference on Learning Theory, pp. 12–1. JMLR Workshop and Conference
Proceedings, 2012.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially-private histograms through consistency. arXiv preprint arXiv:0904.0942, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=VtmBAGCN7o.

Samuel B Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robustness implies
privacy in statistical estimation. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, pp. 497–506, 2023.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Tianhao Huang, Tao Yang, Ivan Habernal, Lijie Hu, and Di Wang. Private language models via
truncated laplacian mechanism. arXiv preprint arXiv:2410.08027, 2024.

Zhiyi Huang and Aaron Roth. Exploiting metric structure for efficient private query release. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 523–
534. SIAM, 2014.

Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th
International Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2021.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
language models. arXiv preprint arXiv:2407.01599, 2024.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv preprint
arXiv:1909.03577, 2019.

13

https://openreview.net/forum?id=VtmBAGCN7o

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. The matrix mech-
anism: optimizing linear counting queries under differential privacy. The VLDB journal, 24:
757–781, 2015.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024a.

Haoran Li, Yulin Chen, Jinglong Luo, Yan Kang, Xiaojin Zhang, Qi Hu, Chunkit Chan, and Yangqiu
Song. Privacy in large language models: Attacks, defenses and future directions. arXiv preprint
arXiv:2310.10383, 2023a.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and Yangqiu Song. Multi-
step jailbreaking privacy attacks on chatgpt. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 4138–4153, 2023b.

Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory to practice.
Springer, 2017.

Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random projections.
arXiv preprint arXiv:2306.01751, 2023a.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024b.

Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent
weighted sampling. arXiv preprint arXiv:2306.07674, 2023b.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024e.

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024a.

Zhihao Liu, Jian Lou, Wenjie Bao, Zhan Qin, and Kui Ren. Differentially private zeroth-order
methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
language model inference with local differential privacy. arXiv preprint arXiv:2310.09130, 2023.

Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schölkopf, and Mrinmaya Sachan.
Differentially private language models for secure data sharing. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 4860–4873. Association
for Computational Linguistics, 2022.

Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning Theory,
pp. 3979–4027. PMLR, 2022.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation.
arXiv preprint arXiv:2310.06289, 2023.

OpenAI. Creating a gpt, 2024a. https://help.openai.com/en/articles/
8554397-creating-a-gpt.

OpenAI. Video generation models as world simulators, 2024b. https://openai.com/
research/video-generation-models-as-world-simulators.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, pp. 26724–
26768. PMLR, 2023.

Dylan Patel. Chatgpt system prompt is 1700 tokens?!, 2024. https://x.com/dylan522p/
status/1755086111397863777.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, 2023.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. In 2022 IEEE International Conference on Big
Data (Big Data), pp. 115–120. IEEE, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photo-
realistic text-to-image diffusion models with deep language understanding. Advances in neural
information processing systems, 35:36479–36494, 2022.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 6327–6340, 2022a.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2022b.

15

https://help.openai.com/en/articles/8554397-creating-a-gpt
https://help.openai.com/en/articles/8554397-creating-a-gpt
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://x.com/dylan522p/status/1755086111397863777
https://x.com/dylan522p/status/1755086111397863777

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1–22, 2024.

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning, pp. 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pp. 32418–32462. PMLR, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Roman Vershynin. An introduction with applications in data science. Camb. Ser. Stat. Probab. Math,
47, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024a.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023b.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024b.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023c.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

David Woodruff, Fred Zhang, and Samson Zhou. On robust streaming for learning with experts:
algorithms and lower bounds. Advances in Neural Information Processing Systems, 36:79518–
79539, 2023.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-
shot adaptation of foundation models via multitask finetuning. In The Twelfth International
Conference on Learning Representations, 2023.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024b.

Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de Weijer, et al. Dynamic prompt learning:
Addressing cross-attention leakage for text-based image editing. Advances in Neural Information
Processing Systems, 36, 2024.

Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-Yan Lam.
Local differential privacy and its applications: A comprehensive survey. Computer Standards &
Interfaces, pp. 103827, 2023.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations, 2021.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

Ying Zhao and Jinjun Chen. A survey on differential privacy for unstructured data content. ACM
Computing Surveys (CSUR), 54(10s):1–28, 2022.

Chunyan Zheng, Keke Sun, Wenhao Zhao, Haibo Zhou, Lixing Jiang, Shaoyang Song, and Chunlai
Zhou. Locally differentially private in-context learning. In LREC/COLING, 2024.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

1.1 Related Work . 3

2 Preliminary 3

2.1 Notations . 3

2.2 Differential Privacy Definitions . 3

3 Main Results: Cross-Attention 4

4 Key Data Structure: DPTree 6

4.1 Technique Overview . 7

4.2 DPTree, DPTreeDistance, and DPTreeHighDim 7

4.3 Softmax Activation . 7

4.4 Adaptive Query Data Structure . 9

5 Discussion 9

6 Conclusion 10

A More Related Work 20

B More Preliminary 20

B.1 Probability Tools . 21

B.2 Algebraic Facts . 21

B.3 DP Facts . 21

B.4 Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms 22

C DPTree Algorithm 22

C.1 Single Data Structure . 22

C.2 Boost the Constant Probability to High Probability 22

C.3 Sensitivity for Summation Problem . 23

C.4 Algorithm of Data Structure . 23

D Weighted ℓpp Distance 25

E One-Dimensional Weighted ℓpp Distance Query 26

F High-Dimensional Weighted ℓpp Query 28

F.1 Privacy and Accuracy Analysis for High Dimensional Weighted Distance 28

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.2 High Dimension Single Data Structure . 30

G Adaptive Query 30

G.1 Boost the Constant Probability to High Probability 30

G.2 From Each Fixed Query Point to All On-net Points 31

G.3 From Net Points to All Points . 31

H Softmax Activation 33

H.1 Exponential Inner Product . 33

H.2 Algorithm Modifications . 34

H.3 Adaptive Softmax . 36

H.4 Proof of Main Result . 38

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Roadmap. The appendix is organized as follows. In Section A, we provide more related works.
In Section B, we give the preliminary of our paper. In Section C, we give the analysis of the data
structure DPTREE that can solve summation problem with DP and accuracy guarantee. In Section D,
we show how to solve weighted distance problem. In Section E, we give our DPTREEDISTANCE
data structure that can solve one dimensional ℓpp distance problem with DP and accuracy guaran-
tee. In Section F, we present the analysis of our DPTREEHIGHDIM (Algorithm 6) data structure,
which can address the high-dimensional ℓpp distance problem while ensuring differential privacy and
accuracy guarantees. In Section G, we show how we can handle adaptive query. In Section H, we
show how to extend our algorithm to Softmax activation and give the analysis of DPTREESOFTMAX
(Algorithm 3) and DPTREESOFTMAXADAPTIVE (Algorithm 7).

A MORE RELATED WORK

Differential Privacy Guarantee Analysis. Ever since Dwork et al. (2006) proposes the notion of
differential privacy (DP), it has become one of the most essential standards of privacy protection in
both theoretical and empirical ways (Dwork, 2008; Li et al., 2017; Zhao & Chen, 2022; Ponomareva
et al., 2023; Yang et al., 2023). DP provides a powerful, robust, and quantifiable privacy definition,
allowing algorithm design with concrete privacy and accuracy guarantee (Hay et al., 2009; Esfandiari
et al., 2022; Andoni et al., 2023; Li & Li, 2023b; Huang & Yi, 2021; Ghazi et al., 2023; Backurs
et al., 2024; Cohen-Addad et al., 2022a; Epasto et al., 2024; Chen et al., 2022; Hopkins et al., 2023;
Narayanan, 2022; 2023; Jung et al., 2019; Li & Li, 2024; Fan & Li, 2022; Fan et al., 2024; Li & Li,
2023a; Cherapanamjeri et al., 2023; Cohen-Addad et al., 2022b; Dong et al., 2024; Farhadi et al.,
2022; Gopi et al., 2021; 2023; Li et al., 2022; Gopi et al., 2022; Eliáš et al., 2020; Song et al., 2023b;
Dinur et al., 2023; Woodruff et al., 2023; Song et al., 2023a; Gao et al., 2024; Liang et al., 2024a; Li
et al., 2024b). Additionally, new mechanisms have been proposed beyond the traditional Laplace,
Gaussian, and Exponential mechanisms (Dwork & Roth, 2014). For example, truncated Laplace
mechanism (Geng et al., 2020) is proved to be the current tightest the lower and upper bounds on
the minimum noise amplitude and power cross all (ϵ, δ)-DP distributions.

Cross-Attention in System Prompt, RAG, Stable Diffusion and More. Cross-attention
(Vaswani et al., 2017), first introduced in language translation, is a widely used technique in many
advanced AI systems. For example, Stable Diffusion (Rombach et al., 2022; Liang et al., 2024d;
Wang et al., 2023b;c; 2024b) and SORA (OpenAI, 2024b) employ cross-attention as a core module
for a text-to-image conditional generation. This technique is also utilized by other multimodal mod-
els (Liang et al., 2024e), including Imagen (Saharia et al., 2022) and Diffusion Transformer (Peebles
& Xie, 2023). In the realm of text-to-image editing, Hertz et al. (2022) analyzes and controls the
cross-attention module to enable editing without requiring additional training. Furthermore, Yang
et al. (2024) tackles the issue of inaccurate cross-attention maps, enhancing fine-grained control
over edited regions while preventing unintended changes to other areas. In addition, Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020; Borgeaud et al., 2022; Gao et al., 2023), a technique
that improves model responses by retrieving information from a knowledge base or external doc-
uments, extensively uses cross-attention as its core design module. Cross-attention also has other
applications. Oymak et al. (2023) demonstrates that the prompt-tuning (Liang et al., 2024c) task can
be formulated as cross-attention, while Chen et al. (2021) uses cross-attention to fuse multi-scale
features in vision transformers, thereby reducing computation. Moreover, attention-based Trans-
former architecture makes LGMs equipping many emergent ability (Wei et al., 2022), such as spa-
tial reasoning (Wang et al., 2024a), mathematical reasoning (Li et al., 2024a), in-context learning
ability (Shi et al., 2024), compositional ability (Xu et al., 2024b), few-shot adaptation ability (Shi
et al., 2022b; Xu et al., 2023), and so on. There are some other works that used cross attention in
Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al., 2024c; Xu et al., 2024a; Wu et al.,
2024a; Hu et al., 2024a;b).

B MORE PRELIMINARY

In Section B.1, we give the probability tools we use in the paper. In Section B.2, we provide the
algebraic facts we use. In Section B.3, we give the DP facts we use in the paper. In Section B.4, we
compare between popular DP mechanisms.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.1 PROBABILITY TOOLS

In this section, we give several probability lemmas.
Lemma B.1 (Markov’s inequality). If x is a nonnegative random variable and t > 0, we have

Pr[x ≥ t] ≤ E[x]
t

.

Lemma B.2 (Chernoff bound, (Chernoff, 1952)). Let xi be a Bernoulli random variable with prob-
ability pi of being equal to 1 and 1− pi of being equal to 0, and all xi for i ∈ [n] are independent.
Let x =

∑n
i=1 xi. Let µ = E[x] =

∑n
i=1 pi. Then, for all δ > 0 we have

Pr[x ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),
and for all 0 < δ < 1

Pr[x ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
Lemma B.3 (Chebyshev’s inequality). Let x (integrable) be a random variable with finite non-zero
variance σ2 (and thus finite expected value µ). Then for any real number k > 0,

Pr[|x− µ| ≥ kσ] ≤ 1

k2
.

B.2 ALGEBRAIC FACTS

Fact B.4 (Upper bound of exponential, Fact C.9 in Liang et al. (2024d)). For a ∈ R, b ∈ R,
a, b ≤ R, where R ≥ 0, we have

| exp(a)− exp(b)| ≤ exp(R)|a− b|.

B.3 DP FACTS

In this section, we present several facts about differential privacy (DP).

We first define vector neighboring dataset and sensitivity.
Definition B.5 (Vector neighboring dataset). We define the two neighboring datasets as X,X ′ ∈ Rn

such that ∥X −X ′∥1 ≤ 1, i.e., they differ on a single data point.
Definition B.6 (Vector sensitivity). The sensitivity of a function f : Rn → Rd is defined by: ∆ :=
maxX,X′∈Rn,∥X−X′∥1=1 ∥f(X)− f(X ′)∥1.
We state the post-processing property, which means, in an algorithm, if one step is DP, all the
following steps are DP.
Fact B.7 (Post-processing, see Fact 2.1 in Ghazi et al. (2023)). Let A1 be an (ϵ, δ)-DP algorithm
and A2 be a (randomized) post-processing algorithm. Then the algorithm A(X) = A2(A1(X)) is
still an (ϵ, δ)-DP algorithm.

If we have many DP algorithms, we need a composition rule. The most straightforward composition
is the basic/sequential composition rule.
Fact B.8 (Basic composition, see Fact 2.3 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP al-
gorithm and A2 be an (ϵ2, δ2)-DP algorithm. Then A(X) = (A1(X),A2(A1(X), X)) is an
(ϵ1 + ϵ2, δ1 + δ2)-DP algorithm.

We can do much better if we know that the inputs are disjoint.
Fact B.9 (Parallel composition, see Fact 2.4 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP
algorithm and A2 be an (ϵ2, δ2)-DP algorithm. Assume A1 and A2 depend on disjoint subsets
of input coordinates. Then the algorithm A(X) = (A1(X),A2(A1(X), X)) is a (max{ϵ1, ϵ2},
max{δ1, δ2})-DP algorithm.

In addition, we have the advanced composition, which improves the dependence of the number of
DP algorithms to square root but compromises the term δ′.
Theorem B.10 (Advanced composition, see Theorem 3.20 in Dwork & Roth (2014)). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential
privacy under k-fold adaptive composition for:

ϵ′ = kϵ(eϵ − 1) + ϵ
√
2k log(1/δ′).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.4 COMPARISON OF TRUNCATED LAPLACE, GAUSSIAN, AND LAPLACE MECHANISMS

We first define the Laplace mechanism as below:

Definition B.11 (Laplace distribution). We use Lap(b) to denote the pdf: p(z) = 1
2b exp(−

|z|
b).

Fact B.12. For z ∼ Lap(b), E[z] = 0, and Var[z] = 2b2. Furthermore, if b = ∆/ϵ, we have
Var[z] = 2∆2/ϵ2.

In this paper, we use the Chebyshev inequality to bound the error, and from Geng et al. (2020), we
know that the truncated Laplace mechanism has the current minimum variance across all (ϵ, δ)-DP
distributions.

The variance of Gaussian mechanism in Theorem 3.22 in Dwork & Roth (2014):

Var =
2∆2 log(1.25/δ)

ϵ2
.

The variance of Laplace mechanism in Fact B.12:

Var =
2∆2

ϵ2
.

The variance of truncated Laplace mechanism in Fact 2.5, for c ∈ (0, 1]:

Var =
2∆2c

ϵ2
.

Thus, since it has the minimum variance, we choose the truncated Laplace mechanism to design our
algorithms among these popular mechanisms.

C DPTREE ALGORITHM

In this section, we give the analysis of privacy, accuracy and runtime of our DPTREE (Algorithm 2).

C.1 SINGLE DATA STRUCTURE

We give the theorem of our DPTREE data structure that can answer the summation problem with
DP, accuracy, runtime guarantee.
Theorem C.1 (DPTREE data structure). There is a data structure (see DPTREE in Algorithm 2)
that uses O(n) spaces to support the following operations:

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(y ∈ [0, R]). It takes O(log n) time to output two numbers z1 and z2 such that

– the process satisfies (ϵ, δ)-DP,
– |z1 −

∑
{k|xk≤y} ak| ≤ O(ϵ−1∆ log3/2 n) and |z2 −

∑
{k|xk≥y} ak| ≤

O(ϵ−1∆ log3/2 n),
– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma C.4 (running time of initialization), Lemma C.5
(running time of query), Lemma C.6 (DP of query), and Lemma C.7 (error of query) together.

C.2 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

By applying the Chernoff bound, we can increase the probability of obtaining a correct result. This
is achieved by replicating the data structure multiple times, generating several independent results,
and then reporting the median of these results. Taking the median helps mitigate the effect of outliers
and ensures that the final answer is reliable with high probability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Theorem C.2 (High-probability). There is a data structure that uses O(n log(1/δfail)) spaces to
support the following operations

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01)). It takes
O(n log(1/δfail)) time to initialize the data structure.

• QUERY(y ∈ [0, R]). It takes O(log(n) · log(1/δfail)) time to two numbers z1 and z2 such
that

– the process satisfies (ϵ, δ)-DP,

– |z1−
∑

{k|xk≤y} ak| ≤ O(ϵ−1∆ log3/2(n) · log(1/δfail)) and |z2−
∑

{k|xk≥y} ak| ≤
O(ϵ−1∆ log3/2(n) · log(1/δfail)),

– it holds with probability 1− δfail for failure probability δfail ∈ (0, 0.01).

Proof. Note that our data structure (Theorem C.1) succeeds with probability 0.99. The success of
the algorithm (Theorem C.1) can be viewed as a Bernoulli random variable, to which we apply the
Chernoff bound (Lemma B.2). By repeating the data structure O(log(1/δfail)) times and taking the
median of the outputs, we boost the success probability. The details are following.

To boost the success probability, we assume the query is repeated l times. Let i ∈ [l], and let zi
denote the indicator random variable for the success of the i-th instance of the data structure for a
single query. Let z =

∑l
i=1 zi be the total success times. Since p = Pr[zi = 1] = 0.99, we can

have µ = E[z] =
∑l

i=1 p = lp. Note that p = 0.99. By setting δ = 0.1 and using Chernoff bound
from Lemma B.2, we can show

Pr[z ≤ l/2] ≤ Pr[z ≤ (1− δ)lp] ≤ exp(−δ2lp/2).
Note that we want z > l/2 (since we want at least half to succeed so we could take the median),

Pr[z > l/2] ≥ 1− exp(−δ2lp/2).

To ensure that failure probability is δfail, we have

exp(−δ2lp/2) = δfail.

We can make this hold by choosing l = O(log(1/δfail)).

By the DP basic composition rule (Fact B.8), we need to choose ϵ = ϵ′/O(log(1/δfail)) and δ =
δ′/O(log(1/δfail)) where ϵ′, δ′ are the ϵ, δ in Theorem C.1.

C.3 SENSITIVITY FOR SUMMATION PROBLEM

Our DP summation tree data structure DPTREE (Algorithm 2) requires sensitivity parameter ∆. In
this section, we show that for the summation problem, we have the sensitivity ∆ = 2R if the input
X ∈ [−R,R]n.
Lemma C.3 (Sensitivity of summation). Let X ∈ [−R,R]n. We have the sensitivity ∆ = 2R for
DPTREE.INIT in Algorithm 2.

Proof. Let’s say two neighboring datasets X and X ′ differ in xi and x′
i for some i in the array X .

Then for a summation problem, i.e. f(X) :=
∑n

i=1 xi, we have

∆ = max
X,X′

|f(X)− f(X ′)| = max
X,X′

|xi − x′
i| = 2R.

where the first step follows from Definition B.6, the second step follows from X,X ′ differ in xi, x
′
i,

and the last step follows from each coordinate of the dataset is bounded in [−R,R].

C.4 ALGORITHM OF DATA STRUCTURE

In this section, we analyze the accuracy, DP, and runtime of Algorithm 2.

We first analyze the runtime.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma C.4 (Runtime of initialization, Algorithm 2). For the initialization, we have the time com-
plexity of Algorithm 2 is O(n).

Proof. All the computations are dominated by O(n) time.

Lemma C.5 (Runtime of query, Algorithm 2). For each query, we have the time complexity of
Algorithm 2 is O(log n).

Proof. Due to the property of tree, we will use at most 2 log n nodes in the tree, thus the running
time is O(log n).

We now analyze the DP.

Lemma C.6 (Privacy of query, Algorithm 2). The output process of QUERY (see Algorithm 2) is
(ϵ, δ)-DP.

Proof. Suppose that our dataset is X ∈ [−R,R]n. Note that we only add noise in the pre-processing
stage. There is no noise in the query stage. Since the problem we care about is summation, if we
change one leaf node, the sensitivity ∆ = 2R (see Lemma C.3). Since we add noise to each node
in the tree, and each leaf node count will contribute to log n nodes, it is equivalent to our output
function being in log n dimension. We will then blow up the DP parameter by log n factor. Thus,
using the basic composition rule (Fact B.8), the DP guarantee for the whole tree data structure is
((ϵ/ log n) · log n, (δ/ log n) · log n) which is (ϵ, δ)-DP.

We now analyze the accuracy.

Lemma C.7 (Accuracy of query, Algorithm 2). Let ϵ ∈ (0, 1) and δ ∈ (0, 1). Then, using Cheby-
shev’s inequality and Fact 2.5, we have the error of QUERY(see Algorithm 2) output is upper
bounded by:

O(ϵ−1∆ log3/2 n).

with probability 0.99.

Proof. Let y ∈ [0, R] be the query. Let A1, A2 = QUERY(y) denote the noised query answers
returned by DPTREE.QUERY in Algorithm 2. Let A∗

1, A
∗
2 be the true query answers without noise.

Let z := A1 − A∗
1 + A2 − A∗

2, which from Algorithm 2 we can see this is the sum of O(log n)
independent truncated Laplace random variables each with parameter TLap(∆, ϵ/ log n, δ/ log n).
Thus,

z =

O(logn)∑
i=1

zi

where zi ∼ TLap(∆, ϵ/ log n, δ/ log n), and every zi are independent to each other.

We know µ = E[z] = 0 since E[zi] = 0. From Fact 2.5, we know the variance for each zi is
Var[zi] = cϵ−2∆2 log2 n where 0 < c ≤ 2 and c = 2 when δ = 0.

Therefore, we can show

Var[z] = Var[

O(logn)∑
i=1

zi]

=

O(logn)∑
i=1

Var[zi]

= O(cϵ−2∆2 log3 n) (4)

where the first step follows from definition of z, the second step follows from every zi are indepen-
dent to each other, and the last step follows from Var[zi] = O(cϵ−2∆2 log2 n).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

x

x1

1
x2

2.2
x3

3.1
x4

−2
x5

−3
x6

2
x7

6
x8

0.5
x9

−1
x10

1

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
{1}
0
10

{2.2}
1
10

{∅}
2
10

{3.1,−2,−3}
3
10

{2}
4
10

{∅}
5
10

{6}
6
10

{0.5}
7
10

{∅}
8
10

{−1, 1}
9
10

{∅}
10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
c0 = 1

0
10

c1 = 2.2

1
10

c2 = 0

2
10

c3 = −1.9

3
10

c4 = 2

4
10

c5 = 0

5
10

c6 = 6

6
10

c7 = 0.5

7
10

c8 = 0

8
10

c9 = 0

9
10

c10 = 0

10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Figure 1: The visualization of how to compute the weighted ℓ1 distance for rounded dataset X ∈
[0, 1]10. The number above each xi is wi. See Algorithm 4 for details. Suppose y = 0. Then∑n

i=1 wi|y − xi| = 0.1 · 2.2 + 0.3 · 3.1 + 0.3 · (−2) + 0.3 · (−3) + 0.4 · 2 + 0.6 · 6 + 0.7 · 0.5 +
0.9 · (−1) + 0.9 · 1 = 4.4. See more details in Lemma D.1.

Note that we wish to bound |z| as our error.

Using Lemma B.3, we can have

Pr[|z| ≥ kσ] ≤ 1

k2
.

We know that σ =
√
Var[z] = O(c1/2ϵ−1∆ log3/2 n). Picking k = 10, we have

Pr[|z| < 10σ] ≥ 0.99.

Thus, we conclude that error is bounded by O(c1/2ϵ−1∆ log3/2 n) = O(ϵ−1∆ log3/2 n) (since
c ∈ (0, 2]) with probability 0.99.

D WEIGHTED ℓpp DISTANCE

In this section, we introduce how to handle weighted ℓpp distance problem in the high level idea. We
can solve high dimensional weighted problem by decomposing each coordinate of the high dimen-
sional dataset. Thus, we only need to show how to solve the one-dimensional weighted problem.

For data in d-dimension, due to the decomposability of ℓpp distance, our problem will be: given
xi ∈ [0, R]d and wi ∈ R for i ∈ [n], and y ∈ [0, R]d, we can compute

n∑
i=1

wi · ∥y − xi∥pp =
d∑

j=1

n∑
i=1

wi · |yj − xi,j |p

where xi,j , yj means the j-th coordinates of xi, y for j ∈ [d].

Now we can give the lemma for weighted distance of dataset.

Lemma D.1 (Weighted distance one dimension). For a collection of numbers {x1, x2, · · · , xn} ⊂ R
and corresponding weights {w1, w2, · · · , wn} ⊂ R, and a number y ∈ R. We define two sets

S+ := {k ∈ [n] : xk > y}
S− := {k ∈ [n] : xk < y},

It holds
n∑

k=1

wk|xk − y|p =

p∑
j=0

(
p

j

)
yp−j((−1)p−j

∑
k∈S+

wkx
j
k + (−1)j

∑
k∈S−

wkx
j
k),

where
(
p
j

)
denotes the binomial coefficient that

(
p
j

)
= p!

j!(p−j)! .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof. We show that
n∑

k=1

wk|xk − y|p =
∑

xk∈S+

wk(xk − y)p +
∑

xk∈S−

wk(y − xk)
p

= (
∑

xk∈S+

wk

p∑
j=0

(−1)p−j

(
p

j

)
xj
ky

p−j) + (
∑

xk∈S−

wk

p∑
j=0

(−1)j
(
p

j

)
xj
ky

p−j)

=

p∑
j=0

(

(
p

j

)
(−1)p−jyp−j

∑
k∈S+

wkx
j
k) +

p∑
j=0

(

(
p

j

)
(−1)jyp−j

∑
k∈S−

wkx
j
k)

=

p∑
j=0

(
p

j

)
yp−j((−1)p−j

∑
k∈S+

wkx
j
k + (−1)j

∑
k∈S−

wkx
j
k).

Thus, we complete the proof.

E ONE-DIMENSIONAL WEIGHTED ℓpp DISTANCE QUERY

In this section, we generalize the algorithms in Backurs et al. (2024) and Liu et al. (2024a) to
weighted distance. Here, we compute the problem of one-dimensional weighted ℓpp distance query
i.e.

∑
i∈[n] wi|y−xi| for a given query y ∈ [0, R], weights w ∈ [−Rw, Rw]

n and dataset X ⊂ [0, R]

and n = |X|. In this section, we give the theorem for our DPTREEDISTANCE data structure.

Algorithm 4 Pre-processing data structure

1: datastructure DPTREEDISTANCE ▷ Theorem E.1
2: members
3: D0, . . . ,Dp : DPTREE ▷ Alg. 2
4: X : [0, R]n

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma D.1
8: X,w, a← X,w, 0n×(p+1)

9: for i = 1→ n do ▷ xi ∈ X for i ∈ [n]
10: Let j ∈ [n] denotes the integer such that xi ∈ [(j − 1)R/n, jR/n)
11: for q = 0→ p do
12: aj,q ← aj,q + wix

q
i

13: end for
14: end for
15: for q = 0→ p do
16: Dq .INIT(a:,q, n, 2RwR

q, ϵ/(p+ 1), δ/(p+ 1)) ▷ Alg. 2, Lemma C.3
17: end for
18: end procedure
19: end datastructure

Algorithm 5 One dimensional weighted ℓpp distance query

1: datastructure DPTREEDISTANCE ▷ Theorem E.1
2: procedure DISTANCEQUERY(y ∈ [0, R])
3: for q = 0→ p do
4: cleft,q, cright,q ←Dq.QUERY(y)
5: end for
6: return

∑p
q=0

(
p
q

)
yp−q((−1)p−qcright,q + (−1)qcleft,q)

7: end procedure
8: end datastructure

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Theorem E.1 (DPTREEDISTANCE data structure). There is a data structure DPTREEDISTANCE
(Algorithm 4,5) that uses O(np) spaces to solve weighted ℓpp distance query problem for dataset
X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 4) It takes

O(np) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]). (Algorithm 5) It takes O(p log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y− xi|,
– |z −∑

i∈[n] wi|y − xi|| ≤ O(ϵ−1pRw(2R)p log3/2 n),
– it holds with probability 0.99.

Proof. We set the total layers of one tree L = (log n). There are p+ 1 trees.

Init Time and Space. The total number of nodes on one tree is O(n). There are total O(pn)
values stored for p + 1 trees. Adding the time of iterating all data points, initializing these values
takes O(pn) time.

Query Time. Each query iterates through all layers. On each layer it takes O(1) time to calculate
cleft,q and cright,q . There are (log n) layers, and p+ 1 trees, so the total query time is O(p log n).

Privacy Guarantees. For each Dq for q ∈ {0, 1, . . . , p}, we input a:,q . Since X ∈ [0, R]n and
w ∈ [−Rw, Rw]

n, the input range for a:,q is [−RwR
q, RwR

q]. Then from Lemma C.3, sensitivity
is 2RwR

q .

From Lemma C.6, we know each Dq query is (ϵ/(p + 1), δ/(p + 1))-DP. By basic composition
Fact B.8, the total differential privacy parameter is (ϵ, δ). This completes the proof.

Error Guarantees. The additive error consists of two parts.

The first part is from the data in the leaf node which contains query y. The error is∑
xk∈[(j−1)·R/2L,j·R/2L)

|xk − y|p ≤ n · (R
2L

)p.

When L = log n, this error is O(Rp/np−1).

The second part is the Truncated Laplace noise. From the proof of Lemma C.7, we have each Dq

for q ∈ {0, 1, . . . , p} has O(L) independent TLap(∆q, ϵq/L, δq/L) noises for L = log n layers.

Let A be the noisy output of DISTANCEQUERY in Algorithm 5 and A∗ =
∑

k∈[n] wk|y−xk| be the
true output. Then, for our Algorithm 4 and 5, the variance is

Var[

L∑
i

TLap(∆q, ϵq/L, δq/L)] =

L∑
i

Var[TLap(∆q, ϵq/L, δq/L)]

= O(L3ϵ−2
q ∆2

q)

Replacing ∆q = O(RqRw) and ϵq = O(ϵ/p), using Lemma B.3, with high probability 0.99, we
have

|
L∑
i

TLap(∆q, ϵq/L, δq/L)| ≤ O(pRwR
qL3/2/ϵ). (5)

Then we bound the error with this inequality:

|A−A′| ≤ |
p∑

q=0

(
p

q

)
yp−q

L∑
i=1

((−1)p−qTLap(∆q, ϵq/L, δq/L) + (−1)qTLap(∆q, ϵq/L, δq/L))|

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

≤
p∑

q=0

(
p

q

)
yp−q|

L∑
i=1

(TLap(∆q, ϵq/L, δq/L) + TLap(∆q, ϵq/L, δq/L))|

=

p∑
q=0

(
p

q

)
yp−q ·O(pRwR

qL3/2/ϵ)

= O(ϵ−1pRwL
3/2

p∑
q=0

(
p

q

)
yp−qRq)

= O(ϵ−1pRwL
3/2(y +R)p)

= O(ϵ−1pRw(2R)p log3/2 n),

where the third step follows from Eq. (5), and the last step is from L = log n and y ∈ [0, R].

Therefore, by triangle inequality and two parts of error, the total error is

O(Rp/np−1) +O(ϵ−1pRw(2R)p log3/2 n) ≤ O(ϵ−1pRw(2R)p log3/2 n),

since p ≥ 1 and n ∈ N+. This completes the proof.

F HIGH-DIMENSIONAL WEIGHTED ℓpp QUERY

In this section, we show how we can solve the high dimensional weighted ℓpp distance problem,
generalizing results from Backurs et al. (2024) and Liu et al. (2024a). In Section F.1, we give
the analysis of Algorithm 6. In Section F.2, we give the theorem of our DPTREEHIGHDIM data
structure.

Algorithm 4,5 can be naturally extended to higher dimensions because of the decomposability of the
ℓpp distance function. We construct d separate one-dimensional distance query data structures, each
corresponding to a coordinate projection of the dataset.

F.1 PRIVACY AND ACCURACY ANALYSIS FOR HIGH DIMENSIONAL WEIGHTED DISTANCE

We now give the analysis of our Algorithm 6 for high dimensional weighted ℓpp distance query.

Algorithm 6 High-dimensional weighted ℓpp distance query

1: datastrucutre DPTREEHIGHDIM ▷ Theorem F.3
2: members
3: D1, . . . ,Dd : DPTREEDISTANCE ▷ Alg. 4
4: X : [0, R]n×d

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1))

8: X ← X
9: w ← w

10: for i = 1→ d do
11: Di.INIT(X:,i, n, w, cϵ/

√
d log(1/δ′), δ/d) ▷ Alg. 4

12: end for
13: end procedure
14: procedure DISTANCEQUERY(y ∈ [0, R]d) ▷ Lemma F.1, Lemma F.2
15: Value← 0
16: for i = 1→ d do
17: Value← Value + Di.DISTANCEQUERY(yi) ▷ Alg. 5
18: end for
19: return Value
20: end procedure
21: end datastrucutre

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma F.1 (Privacy of DISTANCEQUERY, Algorithm 6). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
6, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥pp represent the true distance query value.

• Let ϵ = O(log(1/δ′)).

Then, we have the output process of DISTANCEQUERY (Algorithm 6) is (ϵ, δ + δ′)-DP.

Proof. The (ϵ, δ + δ′)-DP guarantee follows from the approximate DP advanced composi-
tion result Theorem B.10. Our algorithm instantiate each one-dimensional data structure with
(cϵ/

√
d log(1/δ′), δ/d)-DP total d times.

From advanced composition in Theorem B.10, for a sufficient small parameter ϵ and constant c, we
have the final privacy loss parameter be:

O(cϵ
√
2d log(1/δ′)/

√
d log(1/δ′)) = O(ϵ)

and the final failure probability parameter be:

dδ/d+ δ′ = δ + δ′.

Lemma F.2 (Accuracy of DISTANCEQUERY, Algorithm 6). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
6, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥pp represent the true distance query value.

With probability 0.99, we have

|A−A∗| ≤ O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n).

Proof. Let Ai be the i-th dimension output returned by Di in Algorithm 6. Let A∗,i be the true
distance query value in the i-th dimension. Observe that A∗ =

∑d
i=1 A∗,i and A =

∑d
i=1 Ai.

We follow the similar idea in the proof of Theorem E.1. With ϵ scaled down by cϵ/
√
d log(1/δ′)

and δ scaled down by δ/d, the variance of each individual dimension is given by (see proof of
Theorem E.1)

O(ϵ−2dp2(2R)2pR2
w log(1/δ′) log3 n).

Thus, the total variance for d instantiated data structures is then

O(ϵ−2d2p2(2R)2pR2
w log(1/δ′) log3 n).

Finally, from Lemma B.3, we have the additive error given by

O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F.2 HIGH DIMENSION SINGLE DATA STRUCTURE

We have the data structure that can solve weighted ℓpp distance problem in d-dimensional data.

Theorem F.3 (DPTREEHIGHDIM data structure). There is a data structure DPTREEHIGHDIM
(Algorithm 6) that uses O(npd) spaces to solve weighted ℓpp distance query problem for dataset
X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1)). (Algorithm 6) It takes O(npd) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 6) It takes O(dp log n) time to output a num-
ber z such that

– the process of output z satisfies is (ϵ, δ + δ′)-DP private, which computes∑
i∈[n] wi∥y − xi∥pp,

– |z −∑
i∈[n] wi∥y − xi∥1| ≤ O(ϵ−1dp(2R)pRw

√
log(1/δ′) · log3/2 n),

– it holds with probability 0.99.

Proof. For the runtime analysis, since we loop data structure DPTREEDISTANCE d times, an addi-
tional d factor will appear for both initialization and query time complexity. The DP is proved by
Lemma F.1. The accuracy is proved by Lemma F.2.

G ADAPTIVE QUERY

In this section, we introduce how we can solve the adaptive query problem by our algorithm, using
some tools from Qin et al. (2022). Our idea is that, if we can prove that our algorithm can solve any
query in the query space with certain error. Then, since adaptive query must lie in this space, we can
handle adaptive query. In Section G.1, we show how we can boost the constant probability of our
algorithm to high probability. In Section G.2, we show how we can apply the notion of ϵ0-net and
bound all query points in net. In Section G.3, we show how we can bound all points in the query
space by introducing an additive error.

First, from Theorem F.3, given query y ∈ [0, R]d we have DISTANCEQUERY(y) that can solve
d-dimension weighted ℓpp distance problem with constant probability 0.99. Now we show how to
improve it to solve adaptive query problem. Here, we focus on the case when p = 1.

G.1 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

We can repeat the data structure multiple times and take the median to boost the constant probability
using Chernoff bound from Lemma B.2.

Lemma G.1 (Using Chernoff bound to boost the probability). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log(1/pf)) independent copies of data structure DPTREEHIGHDIM and
take the median of the outputs with each data structure instantiated with (ϵ/l, (δ + δ′)/l)-
DP.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then for each fixed query point y, we can have the process of outputting the median of l responses
is (ϵ, δ + δ′)-DP and the error is upper bounded by B with probability 1− pf .

Proof. By basic composition Fact B.8, we prove the DP. Similar to the proof of Theorem C.2, we
prove the error by Chernoff bound (Lemma B.2).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G.2 FROM EACH FIXED QUERY POINT TO ALL ON-NET POINTS

In this section, we build ϵ0-net and generalize from each fixed query point to all on-net points.
Definition G.2 (ℓp ϵ0-net, see Definition 4.2.1 in Vershynin (2017)). We define N be ℓp ϵ0-net of
B := {q ∈ [0, R]d} such that, for every point q in B, there exists y ∈ N satisfying ∥y − q∥p ≤ ϵ0.
Fact G.3 (ℓ∞ ϵ0-net). Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N . We have |N | ≤
(5R/ϵ0)

d.
Fact G.4 (ℓ2 ϵ0-net, see Lemma 5 in Woodruff (2014)). Let N be the ℓ2 ϵ0-net of B, and |N | be the
size of net N . We have |N | ≤ (5R/ϵ0)

d.
Fact G.5 (ℓ1 ϵ0-net, see Theorem 2 in Guntuboyina & Sen (2012)). Let N be the ℓ1 ϵ0-net of B, and
|N | be the size of net N . We have |N | ≤ (5R

√
d/ϵ0)

d.
Lemma G.6 (From for each query point to for all points in net). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log(|N |/pf)) independent copies of data structure DPTREEHIGHDIM
and take the median of the outputs with each data structure instantiated with (ϵ/l, (δ +
δ′)/l)-DP.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1− pf , for all query points y ∈ N , we can have the process of outputting the
median of l responses is (ϵ, δ + δ′)-DP and the error is upper bounded by B.

Proof. By basic composition Fact B.8, we prove the DP. From Lemma G.1, we know for each
y ∈ N , the error is upper bounded by B with probability 1− pf/|N |.
Then, by union bound, with probability 1− pf , the error of all |N | query points in the net y ∈ N is
upper bounded by B.

G.3 FROM NET POINTS TO ALL POINTS

In this section, we show how to generalize points from net to all points in the query space. Since
adaptive query must lie in this space, we complete the proof of adaptive query.
Lemma G.7 (Lipschitz of query function). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1.

• Let L = nRw.

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi∥y − xi∥1 −
∑
i∈[n]

wi∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · |∥y − xi∥1 − ∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · ∥y − ỹ∥1

= nRw · ∥y − ỹ∥1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

where the first step follows from definition of Z(y), the second step follows from triangular in-
equality, the third step follows from reverse triangular inequality, the fourth step follows from
w ∈ [−Rw, Rw]

n.

Lemma G.8 (From points in net to all points in query space). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
d/pf)) independent copies of data structure

{DPTREEHIGHDIMj}lj=1 and take the median of the outputs with each data struc-
ture instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREEHIGHDIMj .DISTANCEQUERY(y)}lj=1).

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1, where Z(y) is L-Lipschitz with L = nRw.

• Let B = O(ϵ−1lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfy

|f(y)− Z(q)| ≤ B + Ldϵ0.

Proof. By basic composition Fact B.8, we prove the DP.

We define an event E such that:

∀y ∈ N

|f(y)− Z(y)| ≤ B.

From Lemma G.1, with l = O(log(|N |/pf)) we know

Pr[event E holds] ≥ 1− pf

We can show

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

where the first step follows from definition of l, the second step follows from Fact G.3.

We condition on event E to be held. Then, by definition of ℓ∞ ϵ0-net (see Definition G.2), for each
q /∈ N , there exists y ∈ N such that

∥y − q∥∞ ≤ ϵ0 (6)

We know

|Z(y)− Z(q)| ≤ L · ∥y − q∥1
≤ L · d∥y − q∥∞
≤ L · dϵ0 (7)

where the first step follows from Lemma G.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from Eq. (6).

Using the on-net query y to answer the off-net query q, for any q /∈ N , we have

|f(y)− Z(q)| ≤ |f(y)− Z(y)|+ |Z(q)− Z(y)|

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

≤ |f(y)− Z(y)|+ L · d · ϵ0
≤ B + L · d · ϵ0 (8)

where the first step follows from triangular inequality, the second step follows from Eq. (7), the third
step follows from Lemma G.6.

Thus, we complete the proof.

Therefore, even adaptive queries can be answered accurately, since any adaptive query can be as-
sumed in B.

H SOFTMAX ACTIVATION

In this section, we introduce how we extend previous ℓpp distance results to the Softmax activation
function, which is the most widely used distance measure in attention mechanism based models.

In Section H.1, we show how to extend to the Softmax distance function in Lemma H.6. In Sec-
tion H.2, we show how to adjust our algorithms. In Section H.3, we extend our algorithm to be
robust to adaptive query. In Section H.4, we give the proof of our main result Theorem 3.1.

H.1 EXPONENTIAL INNER PRODUCT

In this section, we show how we obtain the Softmax distance using ℓ22 distance query. First, we
provide some helpful results from Alman & Song (2023).
Definition H.1 (Definition 3.1 in Alman & Song (2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma H.2 (Lemma 3.4 in Alman & Song (2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ R, and
∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 0.1), there is a
positive integer s bounded above by

s = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
, (9)

and a positive integer r bounded above by

r ≤
(
2s+ 2d

2s

)
(10)

such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition H.1) of A ∈
Rn×n. Furthermore, the matrices U1 and U2 defining Ã can be computed in O(n · r) time.

Here we consider the vector version of Lemma H.2.
Definition H.3. We define ΓR,s := maxj∈[s]

Rj
√
j!

.

Then, we have P (x) : [0, R]d → [0,ΓR,s]
r where P (·) is polynomial kernel function defined in

Alman & Song (2023).
Remark H.4. We use ΓR,s to denote the value range of our polynomial kernel methods function,
i.e., P (x) : [0, R]d → [0,ΓR,s]

r. The factorial term in ΓR,s comes from Taylor approximation
coefficients. We take the maximum overall s order approximation terms to get the upper bound of
our value range.

We use the polynomial approximation method, which has been applied to accelerate Transformer
model extensively Alman & Song (2023; 2024a;b); Liang et al. (2024e;b).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Lemma H.5 (Polynomial approximation). For any accuracy parameter ϵs ∈ (0, 0.1), let R ≥ 1,
and let P (x) : [0, R]d → [0,ΓR,s]

r be the s-th order polynomial kernel function defined in Alman
& Song (2023) where r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Then, for any x, y ∈

[0, R]d, we have

|P (x)⊤P (y)− exp(x⊤y/d)| ≤ ϵs ·min{exp(x⊤y/d), P (x)⊤P (y)}
Furthermore, the vectors P (x) and P (y) can be computed in O(r) time.

Proof. Let n = 1. The proof follows from directly applying Lemma H.2.

Using the results from Alman & Song (2023) above, we can extend our results to Softmax activation.

Lemma H.6 (Weighted Softmax approximation). Let accuracy parameter be ϵs ∈ (0, 0.1). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let P (x) : [0, R]d → [0,ΓR,s]

r

be the s-th order polynomial kernel function defined in Lemma H.5. Then we can approximate
exponential inner product using polynomial kernel function:

| − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)− w⊤ exp(Xy/d)|

= O(|w⊤ exp(Xy/d) · ϵs|)
Moreover, the vectors P (·) can be computed in O(r) time.

Proof. From Lemma H.5, we can use a polynomial kernel to approximate the Softmax function:

|
∑
i∈[n]

wiP (xi)
⊤P (y)− w⊤ exp(Xy/d)| =O(|w⊤ exp(Xy/d) · ϵs|).

The proof of approximation error and time complexity of constructing P (·) follows from
Lemma H.5.

Then, we can show

2
∑
i∈[n]

wiP (xi)
⊤P (y) = −

∑
i∈[n]

wi∥P (xi)− P (y)∥22 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

= −
∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

where the first step follows from ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩, and the second step follows
∥x∥22 =

∑d
j=1 |xj |2 for x ∈ Rd.

H.2 ALGORITHM MODIFICATIONS

Based on Lemma H.6, we can now extend our DP algorithms to handle Softmax activation. First,
we need to construct P (y) and P (xi) for i ∈ [n], each costing O(r) time. Then, for the second
term in Lemma H.6, i.e. 1

2

∑
i∈[n] wi(∥P (xi)∥22 + ∥P (y)∥22), we don’t need to add DP noises in it;

instead, we calculate this term exactly, preprocess it, and store the results in the algorithm. For the
first term,− 1

2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−P (y)j |2, we can adjust our high dimensional DP distance

query algorithm to solve it. For the second term in Lemma H.6, i.e., 1
2

∑
i∈[n] wi(∥P (xi)∥22 +

∥P (y)∥22), it can be expressed as 1
2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−0|2 and 1

2

∑
i∈[n] wi(

∑
j∈[r] P (y)2j).

The former can be computed using query 0, while the latter can be solved using the precomputed
value

∑
i∈[n] wi, which can be obtained from the data 1n and query 0. Thus, we only need to

consider the case p = 2 in weighted ℓpp distance algorithms.

Now we can give our result that can answer Softmax query.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Theorem H.7 (Softmax query, formal version of Theorem 4.2). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s be defined in Definition H.3. Let accuracy parameter
be ϵs ∈ (0, 0.1). There is a data structure DPTREESOFTMAX (Algorithm 3) that uses O(nr) spaces
to solve Softmax query problem for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 3) It takes O(r log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z−w⊤ exp(Xy/d)| ≤ |ϵs ·w⊤ exp(Xy/d)|+O(ϵ−1Γ2
R,sRwr

√
log(1/δ′)·log3/2 n),

– it holds with probability 0.99.

Proof. Let Pwx :=
∑

i∈[n] wi∥P (xi)∥22 and sw :=
∑

i∈[n] wi. Observe that Pwx =∑
i∈[n] wi∥P (xi) − 0∥22, meaning we can calculating Pwx using query 0. Similarly, sw =∑
i∈[n] wi∥1n− 0∥22, meaning we can calculating sw using data 1n and query 0. Thus, we compute

Pwx, sw in Line 19 and 22 in Algorithm 3 in this way.

From the privacy proof of Lemma F.1 and the way we choose privacy parameters, similarly we get
the output process of calculating Pwx and Value is (ϵ/3, δ/3 + δ′/2)-DP. Also, the output process
of calculating sw is (ϵ/3, δ/3)-DP. Then, by Fact B.8, overall process is (ϵ, δ+ δ′)-DP in Line 31 of
Algorithm 3.

We then show the time complexity. From Lemma H.6, we know that constructing P (·) requires
O(r) time. In the first for loop of INIT, the dominating time consumption is O(nr). The second for
loop also has a time complexity of O(nr). Therefore, the total time complexity for INIT is O(nr). In
the DISTANCEQUERY function, constructing P (y) takes O(r) time. Within the for loop, it requires
O(r log n). Thus, the total time complexity for DISTANCEQUERY is O(r log n).

The space complexity is O(nr), since storing the n× r matrix P is the dominating factor.

The proof of the error follows from the triangle inequality by combining the errors in Lemma H.6
and Theorem F.3. Here, we omit the constant factors of 2 and 3 used for the privacy guarantee in
Algorithm 3, incorporating it into the big-O notation for the error analysis. To be more specific, in
Line 31 of Algorithm 3, we have 3 terms to bound the error, namely Pwx, sw∥P (y)∥22 and Value.
From Lemma H.6, the first source of error comes from the approximation error introduced by poly-
nomial kernel method, i.e.,

|w⊤ exp(Xy/d)− 1

2
(
∑
i∈[n]

wi∥P (xi)∥22︸ ︷︷ ︸
Pwx

+
∑
i∈[n]

wi︸ ︷︷ ︸
sw

∥P (y)∥22 −
∑
i∈[n]

wi∥P (xi)− P (y)∥22︸ ︷︷ ︸
Value

)|

= O(|ϵs · w⊤ exp(Xy/d)|).
Then, the second source of error comes from the DP noises in Theorem F.3, where we use Algo-
rithm 4 to compute the three terms.

The two terms Pwx and Value have additive error O(ϵ−1Γ2
R,sRwr

√
log(1/δ′) · log3/2 n) (Theo-

rem F.3) due to to the way we choose the DP parameters, the application of advanced composition
(Theorem B.10), and the transformation of the value range from [0, R] to [0,ΓR,s] by the polynomial
kernel. See more details in the proof of Lemma F.2.

As for the term sw∥P (y)∥22, the addtive error of sw is O(ϵ−1Rw log3/2 n). But since ∥P (y)∥22 ≤
rΓ2

R,s, we have the addtive error is O(ϵ−1Γ2
R,sRwr log

3/2 n) which is smaller than other two terms.
We ignore the constant 3 introduced by summing three terms by triangle inequality of absolute
function, i.e., | − t1 + t2 + t3| ≤ |t1|+ |t2|+ |t3|.
Finally, summing the two sources of error by triangle inequality, we finish the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

H.3 ADAPTIVE SOFTMAX

In this section, we show how to make Algorithm 3 robust to adaptive query. We follow the
same idea from Section G. We notice that, in the Softmax activation, we have query function
Z(y) := w⊤ exp(Xy/d) different from the ℓ1 distance in Section G. Therefore, we need to re-
calculate Lipschitz constant first.
Lemma H.8 (Lipschitz of weighted Softmax). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) := w⊤ exp(Xy/d).

• Let L = nd−1/2RRw exp(R2).

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi exp(x
⊤
i y/d)−

∑
i∈[n]

wi exp(x
⊤
i ỹ/d)|

≤
∑
i∈[n]

|wi| · | exp(x⊤
i y/d)− exp(x⊤

i ỹ/d)|

≤
∑
i∈[n]

|wi| exp(R2)|x⊤
i y/d− x⊤

i ỹ/d|

≤
∑
i∈[n]

|wi| exp(R2)∥xi∥2 · ∥y − ỹ∥2/d

≤ nRw exp(R2)
√
dR · ∥y − ỹ∥2/d

≤ nd−1/2RRw exp(R2)∥y − ỹ∥1
where the first step follows from definition of Z(y), Z(ỹ), the second step follows from triangu-
lar inequality, the third step follows from Fact B.4, the fourth step follows from Cauchy–Schwarz
inequality |u⊤v| ≤ ∥u∥2 · ∥v∥2 for u, v ∈ Rd, the fifth step follows from wi ∈ [−Rw, Rw] and
xi ∈ [0, R]d, and the last step follows from ∥u∥2 ≤ ∥u∥1 for u ∈ Rd.

Then we can show how to extend our algorithm to be robust to adaptive query.
Lemma H.9 (Adaptive Softmax). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
r/pf)) independent copies of data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 3) and take the median of the outputs with
each data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d), where Z(y) is L-Lipschitz with L = nd−1/2RRw exp(R2).

• Let B = O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfies

|f(y)− Z(q)| ≤ |ϵsZ(q)|+B +O(n
√
dRRw exp(R2)ϵ0).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Proof. The proof follows from the same idea as the proof of Lemma G.8, except that we use Theo-
rem H.7 and the Lipschitz in Lemma H.8.

Algorithm 7 Adaptive query data structure

1: datastructure DPTREESOFTMAXADAPTIVE ▷ Theorem 4.4
2: members
3: D1, . . . ,DO(r log(dR/(ϵspf))) : DPTREESOFTMAX ▷ Algorithm 3
4: end members
5: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈
(0, 1), c ∈ (0, 0.1)), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))

6: l← O(r log(dR/(ϵspf)))
7: for i = 1→ l do
8: Di.INIT(X,n,w, ϵ/l, δ/l, δ′/l, c, ϵs)
9: end for

10: end procedure
11: procedure DISTANCEQUERY(y ∈ [0, R]d)
12: l← O(r log(dR/(ϵspf)))
13: r ← 0l

14: for i = 1→ l do
15: ri ← Di.DISTANCEQUERY(y)
16: end for
17: return Median of r
18: end procedure
19: end datastructure

Theorem H.10 (Adaptive query Softmax data structure, formal version of Theorem 4.4). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s be defined in

Definition H.3. Let accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, and pf be the failure probability parameter.
Let l = O(r log(dR/(ϵspf))). There is a data structure DPTREESOFTMAXADAPTIVE (Algo-
rithm 7) that uses O(lnr) spaces to solve weighted Softmax query problem for dataset X ⊂ [0, R]d

and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). (Algorithm 7) It takes O(lnr) time to initialize the
data structure.

• DISTANCEQUERY(y ∈ [0, R]d). (Algorithm 7) It takes O(lr log n) time to output a number
z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z−w⊤ exp(Xy/d)| ≤ |ϵs·w⊤ exp(Xy/d)|+O(ϵ−1lΓ2
R,sRwr

√
log(l/δ′)·log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We only need to show how to pick ϵ0 in the parameter l, because everything else is
the same as Lemma H.9. We know the additive error introduced by adaptive query is Ea :=
O(n
√
dRRw exp(R2)ϵ0) and the relative error introduced by polynomial kernel approximation is

Ep := w⊤ exp(Xy/d) · ϵs. It can be shown that:

Ep := w⊤ exp(Xy/d) · ϵs
≤ ϵs∥w∥2 · ∥ exp(Xy/d)∥2
= O(nRwϵs exp(R

2))

where the first step follows from definition of Ep, the second step follows from Cauchy–Schwarz
inequality, and the last step follows from w ∈ [−Rw, Rw]

n, X ∈ [0, R]n×d, and y ∈ [0, R]d.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Picking ϵ0 = Θ(ϵs√
dR

), we can hide the error of adaptive query Ea in Ep. Thus, we have

l = O(log((R/ϵ0)
r/pf))

= O(log((
√
dR2/ϵs)

r/pf))

= O(r log(dR/(ϵspf)))

where the first step comes from the definition of l, the second step comes from picking ϵ0 =
Θ(ϵs√

dR
), and the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b <

1, d > 1.

H.4 PROOF OF MAIN RESULT

In this section, we give the proof of our main result of Theorem 3.1.
Theorem H.11 (Softmax cross-attention, formal version of Theorem 3.1). Let Q,K, V,Attn be
defined in Definition 1.1. Assume the input context length n is large enough. Let pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma H.6). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition H.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ [0, R]d, to QUERY(Qi) (Algorithm 1) for each i ∈ [m]. It takes O(ldr log n)
time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error 2ϵs/(1− ϵs),
– the process of output z has additive error O((1−ϵs)

−1n−1ϵ−1lΓ2
R,sRwr

√
log(l/δ′) ·

log3/2 n),
– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We first prove the privacy and then prove error for each coordinate of the output O of Algo-
rithm 1.

Proof of Privacy:

From Theorem H.10, Dk.DISTANCEQUERY for k ∈ {0, 1, . . . , d} in Algorithm 1 answer
(ϵ/2, δ/2 + δ′/2)-DP queries that are robust to adpative queries. By Fact B.8, the procedure for
calculating each coordinate of vector O is (ϵ, δ + δ′)-DP in Line 15 of Algorithm 1.

Proof of Error:

We prove the error bound of the cross-atteniton module. We omit the constant factor of 2 used for
the privacy guarantee in Algorithm 1, incorporating it into the big-O notation for the error analysis.
Let AV be the true value and ÃV be the noisy value. Let D be the true value and D̃ be the noisy
value. First, we use triangular inequality to decompose the error:

|(D−1AV)i,k − (D̃−1ÃV)i,k|
≤ |(D−1AV)i,k − (D−1ÃV)i,k|+ |(D−1ÃV)i,k − (D̃−1ÃV)i,k| (11)

We now prove for each term.

Part 1: Error bound for AV

From Section 3, we know that we can ensure matrix AV in cross-attention computation satisfies DP.
Next, from Theorem 4.4, for i ∈ [m], j ∈ [n], k ∈ [d], we have (AV)i,k is (ϵ, δ + δ′)-DP and also
robust to adaptive query.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Let ζ := ϵ−1lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n denote the additive error. Then, from Theorem H.10,

we have

|(AV)i,k − (̃AV)i,k| ≤ |ϵs · (AV)i,k|+O(ζ) (12)

For Di,i, we can show

Di,i = (A · 1n)i =

n∑
j=1

exp(⟨Qi,Kj⟩/d) ≥ n (13)

because ⟨Qi,Kj⟩ ≥ 0 for bounded Q,K.

Finally, we can show the error of first term in Eq. (11) is bounded by

|(D−1AV)i,k − (D−1ÃV)i,k| = |D−1
i,i ((AV)i,k − (̃AV)i,k)|

= |D−1
i,i | · |((AV)i,k − (̃AV)i,k)|

≤ |ϵs ·D−1
i,i (AV)i,k|+O(n−1ζ)

where the first step follows from definition, the second step follows from simple algebra, and the
last step follows from Eq. (12) and (13).

Part 2: Error bound for D

We initialize one DPTREESOFTMAXADAPTIVE D0 with INIT(K,n,1n, ϵ, δ, δ
′, c, ϵs, pf) in Algo-

rithm 1 to compute D. Notice that we input 1n as the third argument.

Recall that

Di,i =

n∑
i=1

exp(⟨Qi,Kj⟩/d)).

This can be viewed as the weighted Softmax problem but with weight 1n. To be more clear, let
us recall that Rw is the upper bound of the entries in V , and define R′

w as the upper bound of the
entries in 1n. Observe that we can reuse previous results in Theorem H.10 with adjustment only on
the value of R′

w (which is 1) in D0.

We wish to bound

|D−1
i,i − D̃−1

i,i | =
|Di,i − D̃i,i|
Di,i · D̃i,i

.

For the term |Di,i − D̃i,i|, similar to Eq. (12), from Theorem H.10, we have

|Di,i − D̃i,i| ≤ |ϵs ·Di,i|+O(ζ), (14)

where we assume Rw ≥ 1 = R′
w and loose the R′

w in additive error parameter in D0 from 1 to Rw.

Now we need the lower bound of D̃i,i. From Eq. (14), we have

D̃i,i ≥ Di,i − (|ϵs ·Di,i|+O(ζ)) ≥ |(1− ϵs) ·Di,i| −O(ζ).

Then, we have

|D−1
i,i − D̃−1

i,i | = D−1
i,i

|Di,i − D̃i,i|
D̃i,i

≤ D−1
i,i

|ϵs ·Di,i|+O(ζ)

|(1− ϵs) ·Di,i| −O(ζ)

We assume n is large enough and thus ignore other small factors. Observe that O(ζ) = O(log3/2 n),
and Di,i ≥ n = O(n) from Part 1. Thus, O(ζ) is a small order term compared to Di,i. As a
consequence, we get

|D−1
i,i − D̃−1

i,i | ≤ D−1
i,i

|ϵs ·Di,i|
|(1− ϵs) ·Di,i|

= D−1
i,i

ϵs
(1− ϵs)

, (15)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

since ϵs ∈ (0, 0.1).

From Eq. (12), we have

|(̃AV)i,k| ≤ (1 + ϵs) · |(AV)i,k|+O(ζ)

We consider the second term in Eq.(11). Then,

|(D−1ÃV)i,k − (D̃−1ÃV)i,k|
= |D−1

i,i − D̃−1
i,i | · |(ÃV)i,k|

≤ D−1
i,i

ϵs
(1− ϵs)

((1 + ϵs) · |(AV)i,k|+O(ζ))

= ϵs
(1 + ϵs)

(1− ϵs)
·D−1

i,i |(AV)i,k|+O(
ϵs

(1− ϵs)
D−1

i,i ζ)

≤ ϵs
(1 + ϵs)

(1− ϵs)
· |D−1

i,i (AV)i,k|+O(
ϵs

(1− ϵs)
n−1ζ)

where the first step follows from simple algebra, the second step follows from the previous derived
upper bounds, the third step follows from simple algebra, and the last step follows from Eq.(13).

Part 3: Final error bound

Combining results from Part 1 and 2, the final error bound is

|(D−1AV)i,k − (D̃−1ÃV)i,k|
≤ |(D−1AV)i,k − (D−1ÃV)i,k|+ |(D−1ÃV)i,k − (D̃−1ÃV)i,k|

= ϵs · |D−1
i,i (AV)i,k|+O(n−1ζ) + ϵs

(1 + ϵs)

(1− ϵs)
· |D−1

i,i (AV)i,k|+O(
ϵs

(1− ϵs)
n−1ζ)

=
2ϵs

(1− ϵs)
· |(D−1AV)i,k|+O((1− ϵs)

−1n−1ζ)

Therefore, we prove the error bound.

40

	Introduction
	Related Work

	Preliminary
	Notations
	Differential Privacy Definitions

	Main Results: Cross-Attention
	Key Data Structure: DPTree
	Technique Overview
	DPTree, DPTreeDistance, and DPTreeHighDim
	Softmax Activation
	Adaptive Query Data Structure

	Discussion
	Conclusion
	More Related Work
	More Preliminary
	Probability Tools
	Algebraic Facts
	DP Facts
	Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms

	DPTree Algorithm
	Single Data Structure
	Boost the Constant Probability to High Probability
	Sensitivity for Summation Problem
	Algorithm of Data Structure

	Weighted Distance
	One-Dimensional Weighted Distance Query
	High-Dimensional Weighted Query
	Privacy and Accuracy Analysis for High Dimensional Weighted Distance
	High Dimension Single Data Structure

	Adaptive Query
	Boost the Constant Probability to High Probability
	From Each Fixed Query Point to All On-net Points
	From Net Points to All Points

	Softmax Activation
	Exponential Inner Product
	Algorithm Modifications
	Adaptive Softmax
	Proof of Main Result

