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SymLearn: A Symbiotic Crowd-AI Collective Learning Framework
to Web-based Healthcare Policy Adherence Assessment

Anonymous Author(s)

ABSTRACT
This paper develops a symbiotic human-AI collective learning
framework that explores the complementary strengths of both AI
and crowdsourced human intelligence to address a novelWeb-based
healthcare-policy-adherence assessment (WebHA) problem. In partic-
ular, the objective of the WebHA problem is to automatically assess
people’s public health policy adherence during emergent global
health crisis events (e.g., COVID-19, MonkeyPox) by exploring
massive social media imagery data. Recent advances in human-AI
systems exhibit a significant potential in addressing the intricate
imagery-based classification problems like WebHA by leveraging
the collective intelligence of both humans andAI. This paper aims to
address the limitation of existing human-AI systems that often rely
heavily on human intelligence to improve AI model performance
while overlooking the fact that humans themselves can be fallible
and prone to errors. To address the above limitation, this paper
develops SymLearn, a symbiotic human-AI co-learning framework
that leverages human intelligence to troubleshoot and fine-tune the
AI model while using AI models to guide human crowd workers to
reduce the inherent human errors in their labels. Extensive experi-
ments on two real-world WebHA applications show that SymLearn
clearly outperforms the state-of-the-art baselines by improving
WebHA performance and reducing crowd response delay.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing.

KEYWORDS
Social Media, Public Health, Crowdsourcing, Human-AI Collabora-
tion
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1 INTRODUCTION
Web-based social media platform has emerged as a pervasive appli-
cation paradigm that allows individuals and their devices to work
in tandem to collaboratively report their observations about the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

physical world [12]. In particular, this application paradigm has
garnered significant attention for its capability to collect real-time
information about public health at scale [43]. As the world faces
new global health crisis (e.g., COVID-19, Polio, and MonkeyPox),
public health and well-being are increasingly at risk, especially
among vulnerable populations such as the elderly and immuno-
compromised individuals [5]. Governments have designed various
public health policies to address the prevailing health crisis and
mitigate its adverse effects on the populace. Examples of such poli-
cies include mask wearing, social distancing, hand-washing and
sanitization. However, to effectively implement and adjust these
policies, policymakers would need the accurate and timely infor-
mation on public health policy adherence [29]. Social media have
surfaced as a ubiquitousWeb platform for accessing an unparalleled
volume of timely observations about public health practice through
the imagery data posted by common citizens [43]. In this paper,
we focus on a Web-based healthcare-policy-adherence assessment
(WebHA) problem where the goal is to assess people’s healthcare
policy adherence by leveraging massive social media imagery data.

Recent progress has been made in addressing the WebHA prob-
lem in Web-based applications and AI communities [1, 23, 35]. Cur-
rent solutions often focus on leveraging advanced AI models (e.g.,
transformers, CNNs) that can effectively identify visual characteris-
tics related to public health practices, ensuring reasonable WebHA
performance [49]. However, these AI models often require a large
amount of high-quality training data from the studied WebHA ap-
plication and can encounter undesirable errors due to the complex
and noisy nature of social media images (e.g., these images can be
captured by various cameras with diversified angles, resolutions,
and backgrounds) [29]. Recent advances in human-AI collective
systems have shown great potential to address the limitations of AI
models in solving complex imagery-based classification problems
such as WebHA by exploring the collective intelligence of both hu-
mans and AI [38, 52]. These systems often use AI models to analyze
a vast amount of imagery data while leveraging human intelligence
(HI) to troubleshoot, fine-tune, and boost the performance of AI
models [48]. However, a major limitation in current human-AI col-
lective systems is that they rely heavily on HI to improve AI model
performance while overlooking the fact that humans themselves
can be fallible and prone to errors [55]. Such imperfect HI could po-
tentially collapse the AI models during the model training process
and lead to suboptimal application performance [36]. To address
the above challenge, current solutions apply various active learning
and label aggregation methods to improve the overall accuracy
of the human labels [13]. However, these approaches fail when
common mistakes exist in the human labels [14].

To address the above limitations, this paper proposes a symbi-
otic human-AI co-learning framework that explores the collective
power of both AI and HI. Our design is inspired by the symbiosis
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Figure 1: Illustrations of the symbiotic relationship between
humans and AI in mask wearing adherence assessment (red
color: incorrect estimation; green color: correct estimation).

from biology where two species establish a mutually beneficial rela-
tionship. For instance, flowers rely on bees to cross-pollinate their
female plants while bees feed on the flowers. Similarly, the idea of
our framework is to explore the symbiotic relationship between AI
and HI and boost the overall performance of the integrated system
for the target application. In particular, our system leverages HI to
troubleshoot and fine-tune the AI model while using AI models to
guide human workers to overcome the inherent limitations of HI
(e.g., perceptual resolution limitations and ignorance of fine-grained
details). For example, in Figure 1, we observe that the AI model can
mistakenly treat the people who are not facing directly toward the
camera as not adhering to the mask wearing policy as shown in
(A), while humans can recognize such cases when AI model fails
and identify correct WebHA labels. Meanwhile, we also observed
that humans can make incorrect estimations of the WebHA label
by ignoring the people in the back who are not following the mask
wearing policy, as shown in (B). In this case, AI model can make
an accurate estimation by analyzing the details that humans may
overlook. Therefore, the AI model can guide humans to pay atten-
tion to these individuals and improve the accuracy of human label
quality. However, designing such a symbiotic human-AI co-learning
framework poses two technical challenges.

The first challenge is the complex interdependence between
AI and HI. We observe that a "chicken-and-egg" dilemma arises
when one form of intelligence relies on the reliable outputs of the
other [33]. Specifically, on one hand, AI models often need accurate
human workers to troubleshoot and improve their performance
(e.g., Figure 1 (A)). On the other hand, human workers need precise
AI feedback on the quality of their labels and reminders of the im-
portant public health practice-related visual details that they might
have overlooked, thereby reducing the likelihood of incorrect anno-
tations (e.g., Figure 1 (B)) [46]. However, neither AI nor HI is perfect
as shown in Figure 1. Therefore, obtaining accurate WebHA labels
in human-AI systems is challenging given such interdependence
between two types of intelligence [51].

The second challenge is to optimize the trade-off between la-
bel quality and response delay of the human-AI co-learning sys-
tem. One straightforward solution for establishing a human-AI
co-learning system is to directly recruit public health specialists to
obtain a good number of high-quality WebHA labels and then lever-
age those labels to troubleshoot and fine-tune the AI model [38].
However, this approach is not practical due to its high labor costs

and low efficiency, especially in the case of processing massive
amounts of social media data inputs in WebHA applications [30].
To obtain readily available and cost-effective human intelligence,
we can leverage open Web-based crowdsourcing platforms (e.g.,
Amazon Mechanical Turk, Prolific). These platforms provide a large
pool of freelance crowd workers who are available 24/7 and can
complete assigned tasks at affordable costs [28]. However, the re-
sponse time of crowd workers may vary due to potential response
delays and task dropouts [52]. Therefore, it is essential to design a
human-AI co-learning system to improve the label quality while
minimizing the crowd response delay.

In order to address the aforementioned challenges, this paper
presents SymLearn, a symbiotic human-AI co-learning framework
that explores the complex interdependence between AI and HI to
harness their collective strengths in solving the WebHA problem.
In particular, we first design a novel search space for crowd-AI col-
laboration, which provides flexible options for SymLearn to identify
a collective set of AI models and crowd workers that are capable of
jointly estimating the WebHA label for each input image. Subse-
quently, we develop a context-aware multi-armed bandit model that
selects an optimized set of WebHAmodels and crowd workers from
the search space to accurately determine the WebHA label for each
input image while minimizing the delay in crowd responses. To the
best of our knowledge, SymLearn is the first symbiotic human-AI
co-learning framework that develops a mutually beneficial human-
AI collaboration design to effectively solve the WebHA problem.
It is worth noting that SymLearn has the potential to address a
broader range of Web-based applications beyond WebHA (e.g., fake
news detection, abnormal event identification, sentiment analy-
sis, and opinion mining) by jointly exploring the imperfect yet
complementary AI and human intelligence. We demonstrate the
effectiveness of SymLearn by evaluating it through two real-world
WebHA applications, namely, mask wearing policy adherence and
social distancing policy adherence. The results show that SymLearn
outperforms the state-of-the-art deep learning approaches, human-
AI models, and AI model optimization frameworks by improving
WebHA performance and reducing crowd response delay.

2 RELATEDWORK
Social Media for Common Goods. Web-based social media have
attracted widespread interest in recent years due to their unparal-
leled capacity for obtaining real-time situational awareness in many
real-world applications for common goods [2, 4, 17, 25, 42, 47, 54].
For example, Trinh et al. leveraged a multi-access mobile social net-
work and a sequential deep neural network-based prediction model
to detect urban anomaly with high reliability and low latency [42].
Hao et al. designed a multimodal neural network-based disaster
damage assessment framework that utilizes massive social media
text and image data to classify disaster damage types in hurricane
events [17]. Alomari et al. utilized an automatic labeling method
to develop a distributed machine learning-based model for traffic-
related event detection from social media data [2]. However, it
remains a critical challenge to integrate AI and human intelligence
to solve the WebHA problem that leverages social media for public
health, all while considering the complex interdependence between
AI and HI. In this paper, we develop a novel symbiotic human-AI
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co-learning system to accurately assess public healthcare policy
adherence by utilizing massive social sensing imagery data.

Public Healthcare Assessment. With the emergence of dis-
eases like COVID-19, Polio, and Monkeypox, the public health and
well-being of society are becoming increasingly threatened, partic-
ularly among vulnerable groups such as the elderly and those with
weakened immune systems [5]. Public healthcare assessment is a
crucial aspect of healthcare management and policy-making that
has garnered a significant amount of attention [1, 8, 23, 31, 35, 49].
For example, Raza et al. created a voice-based social media plat-
form to provide trustworthy health information during COVID-19
to underserved online communities [35]. Chen et al. developed a
deep neural network model to predict health risks accurately by
utilizing socioeconomic status and environmental factors from so-
cial media [8]. Yue et al. proposed a contrastive domain adaptation
approach for early detection of misleading healthcare information
on social media [49]. This paper studies a novel problem of utilizing
social media imagery data for accurate healthcare policy adher-
ence assessment (i.e., WebHA). In particular, we develop a novel
symbiotic human-AI co-learning framework to improve the overall
performance of WebHA applications.

Human-AI Co-Learning. Our SymLearn is also related to re-
cent progress in developing human-AI co-learning solutions to
combine the complementary strengths of AI and HI [21, 38, 48, 52].
For example, Sener et. al. developed a deep core-set approach that
selects a subset of representative images to collect crowd labels for
AI model retraining to improve the overall image classification per-
formance [38]. Zhang et al. utilized crowd labels from non-expert
citizen scientists with deep damage assessment models to enhance
the performance of disaster damage severity classification in disas-
ter response [52]. Yoo et al. proposed a parametric crowd-AI hybrid
solution that employed a task-agnostic prediction loss design to
improve the AI and crowd intelligence fusion for accurate image
classification [48]. Hu et al. built a crowdsourcing-based image
data bias detection framework that improves the image classifica-
tion performance of deep visual models by identifying sampling
bias [21]. However, current human-AI co-learning solutions focus
on leveraging one type of intelligence to improve the other while
overlooking the interdependence and interactions between them.
In contrast, our SymLearn develops a closed-loop and mutually
beneficial human-AI collaboration framework to jointly optimize
the WebHA performance.

3 PROBLEM FORMULATION
To define the human-AI collaborative WebHA problem, we first
introduce several basic concepts.

Definition 1. Social Media Image (𝑿 ): We define 𝑿 as a
collection of images related to public health crises that are gathered
from social media to evaluate the adherence to healthcare policies.
Here, 𝑋𝑖 denotes the 𝑖𝑡ℎ image within the set, and 𝐼 represents the
total number of images involved in the studied WebHA application.

Definition 2. WebHA Label (𝒀 ): In this paper, we focus on a
classification-based WebHA application, where the public health
policy adherence status is classified into 𝐵 different categories. For
example, in a WebHA application of determining the mask wearing
compliance from CDC [6], the WebHA labels are binary: adhering

and not adhering. Specifically, we define 𝑌 = {𝑌1, 𝑌2, ..., 𝑌𝐼 } as the
ground-truth WebHA labels for all studied WebHA images, where
𝑌𝑖 represents the WebHA label assigned to 𝑋𝑖 .

Definition 3. WebHAModel (𝑴): we define𝑴 = {𝑀1, 𝑀2, ...,
𝑀𝐾 } to be a set of AI models (e.g., CNN, Transformer) for WebHA

tasks. In particular, we denote 𝑌𝑀𝑘

𝑖
as the WebHA label estimated

by a WebHA model𝑀𝑘 for the social media image 𝑋𝑖 .

We note that AI-based WebHA models can generate incorrect
WebHA labels for input images and it is sometimes challenging to
troubleshoot AI models without human interventions [37]. There-
fore, our SymLearn integrates human intelligence from crowdsourc-
ing systems with AI models in a symbiotic co-learning system to
improve WebHA estimation accuracy. In particular, the practice
of wearing masks and adhering to social distancing guidelines has
gained widespread acceptance and is embraced by a majority of the
population during the COVID-19 pandemic. Consequently, indi-
viduals have become more proficient at assessing compliance with
mask wearing and social distancing policies [15]. We further define
a few terms on the crowdsourcing aspect of our model below.

Definition 4. Crowd Worker (𝑪): Our SymLearn framework
recruits freelance workers from crowdsourcing platforms to esti-
mate the WebHA label for an input image, which will be integrated
with output from the WebHA model to generate the final WebHA
label for the image. Each crowd worker is assigned the task of pro-
viding a label for each studied image. Specifically, for an image 𝑋𝑖 ,
a group of 𝑁𝑖 crowd workers denoted by 𝑪𝒊 = {𝐶𝑖1,𝐶

𝑖
2, . . . ,𝐶

𝑖
𝑁𝑖
}

are assigned by SymLearn to label 𝑋𝑖 . We define 𝑌𝐶
𝑖
𝑛

𝑖
as the corre-

sponding WebHA label from crowd worker 𝐶𝑖𝑛 for image 𝑋𝑖 .

Definition 5. Crowd Response Time (𝑫): We define 𝐷𝑖 as
the duration between the start time of the first crowd worker and
the completion time of the last crowd worker for the 𝑖𝑡ℎ image to
complete the labeling task for the social media image 𝑋𝑖 .

Definition 6. WebHALabel Collectively Learned byCrowd
and AI (̂𝒀 ):̂𝒀 refers to the final outputs of SymLearn, which are
generated by our symbiotic human-AI system that integrates inputs
from WebHA models and crowd workers to improve overall label
quality and reduce response delay. We will discuss the detailed de-
sign of our SymLearn in the next section. In particular, 𝑌𝑖 denotes
the final WebHA label identified for the social media image 𝑋𝑖 .

In our human-AI collaborative WebHA problem, the objective is
to dynamically identify a set of WebHA models and crowd workers
that can collaboratively learn the accurate WebHA label for each
input image while minimizing the response time of the crowd
worker. We formally define our problem as follows:

argmax
𝑌𝑖

(
Pr(𝑌𝑖 = 𝑌𝑖 | 𝑋𝑖 , 𝑴, 𝑪𝒊 )

)
, ∀ 1 < 𝑖 < 𝐼

while argmin
𝑌𝑖

(
𝐷𝑖 | 𝑋𝑖 , 𝑴, 𝑪𝒊

)
, ∀ 1 < 𝑖 < 𝐼

(1)

Our problem is challenging due to the complex interdependence
between HI and AI and the intricate trade-off between label quality
and response delay in the human-AI co-learning framework.
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4 SOLUTION
In this section, we present our SymLearn, a symbiotic crowd-AI
co-learning framework to address the healthcare policy adherence
assessment problem.We provide an overview figure of SymLearn in
Appendix A.1. In particular, SymLearn contains two key modules:

(1) Symbiotic Crowd-AI Collaboration Space Design (SCSD): it in-
troduces a crowd-AI collaboration search space design that offers
adaptable options for SymLearn to systematically investigate opti-
mal combinations of diverse AI models and crowd workers for the
joint estimation ofWebHA labels for each input image. In particular,
our module includes a novel crowdsourcing interface design where
the AI model can guide humans to pay attention to fine-grained
details crucial for determining WebHA labels, thereby improving
the accuracy of human label quality.

(2) Active Integrated Crowd-AI Co-Learning (AICC): it develops a
novel context-aware multi-armed bandit model that selects a set
of optimized WebHA models and crowd workers from the search
space in the SCSD module. The AICC then integrates the inputs
from the selected WebHA models and crowd workers to identify
the accurate WebHA label for each input image while minimizing
the crowd response delay.

4.1 Symbiotic Crowd-AI Collaboration Space
Design

In the first subsection, we present our symbiotic collaboration space
design by exploring the collective power of both crowdsourcing
and AI. We first define a key definition in our SCSD module.

Definition 7. Crowd-AI Collaboration Strategy: We define
a crowd-AI collaboration strategy as a scenario where SymLearn
selects a set of WebHAmodels and a certain number of crowd work-
ers with a group of assigned crowdsourcing questions to estimate
the WebHA label for an input image. Our SymLearn aggregates the
inputs from both WebHA models and crowd workers to generate
the final WebHA label for each image.

The goal of our SymLearn is to identify the desirable crowd-AI
collaboration strategy that produces correct WebHA labels for each
input image. In particular, our crowd-AI collaboration strategy con-
tains three “control knobs” in both crowd and AI space to jointly
optimize the performance of WebHA tasks: i) selecting a different
set of WebHA models for each input image; ii) selecting different
number of crowd workers for each input image; iii) determining the
crowdsourcing questions sent to each crowd worker. Such a design
provides an effective exploration of the combination of WebHA
models, crowd workers, and appropriate crowdsourcing questions
to collectively generate accurate WebHA labels while minimizing
crowd response delays. An illustration of our crowd-AI collabo-
ration strategy design is shown in Figure 2. Note that our SCSD
module focuses on designing a crowd-AI collaboration space that
includes all possible options for SymLearn to establish a crowd-AI
collaboration strategy for each input image. We will present a novel
crowd-AI co-learning framework in the next subsection to explore
the trade-off between the above control knobs and determine the
optimal crowd-AI collaboration strategy for each input image.

Figure 2: Illustrations of Crowd-AI Collaboration Strategy

First, our crowd-AI collaboration strategy provides the option
to select different WebHA models for each input image. In particu-
lar, we consider a WebHA model that contains two key attributes:
network architecture and hyperparameter configuration, where the
selection of the two attributes will directly affect its WebHA per-
formance. More specifically, in terms of network architecture, we
consider the WebHA models with different network architectures
in terms of the type of the convolutional block (residual block or
dense block), the number of convolutional layers per block, the
width of convolutional block, the growth rate, and the size of in-
put features [50]. In terms of hyperparameter configurations, we
consider the WebHA models with different learning rates, optimiz-
ers (e.g., RMSprop, SGD, Adam), weight decays, and conditional
parameters of the optimizer (e.g., RMSprop alpha, SGD momentum,
Adam beta1, Adam beta2) [27]. Second, our crowd-AI collaboration
strategy provides the option to select different numbers of crowd
workers for each input image. For example, a higher level of incon-
sistency between the outputs of WebHA models often indicates the
need of a larger number of crowd workers. However, there also
exists a non-trivial trade-off between the number of crowd workers
and the crowdsourcing budget as well as the potential delay in
crowd responses. We will discuss our context-aware multi-armed
bandit model to address such a challenge next.

Finally, our crowd-AI collaboration strategy provides the option
to ask different levels of crowdsourcing questions for a given input
image to assist crowd workers in obtaining the correct labels as
illustrated in Figure 3. Specifically, our crowdsourcing question de-
sign starts with a basic question group 1 (i.e., questions 1 and 2) to
ensure that crowd workers pay close attention to the context in the
images when they provide labels. Subsequently, we design question
group 2 (i.e., questions 3-6) to encourage workers to consider the
crucial factors related to WebHA prediction tasks. For instance,
question 4 prompts workers to consider the impact of occlusion on
the prediction accuracy. Finally, we include question group 3 (i.e.,
question 7) to prompt workers to re-evaluate their predictions and
assess whether they would like to change their predictions based
on the previous questions they answered. The design of our crowd-
sourcing questions is motivated by the concept of “self-reflection”
from psychology, which has been demonstrated to be an effective
metacognitive mechanism in improving one’s performance in cog-
nitive tasks [9]. We refer to our designed crowdsourcing questions

4
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Figure 3: An Example of AI-assisted Crowdsourcing Task in SCSD Module

(i.e., question groups 1-3) as “self-reflection” questions. Unlike cur-
rent crowdsourcing approaches that rely on passively receiving
raw annotations from crowd workers (e.g., crowd labels of simple
annotation tasks without any active quality control) [13], our de-
sign actively guides the crowd workers to reflect on their labels
during their reasoning process. The “self-reflection” questions serve
as options for SymLearn to stimulate the crowd workers to think
more carefully and provide high-quality labels when necessary for
the images that are proven to be challenging to the WebHA models.
We also evaluate the effectiveness of our AI-assisted crowdsourc-
ing task design and demonstrate the advantage of our design in
improving the crowd label quality in Subsection 5.3.2.

4.2 Active Integrated Crowd-AI Co-Learning
In our second module, we introduce an active integrated crowd-AI
co-learning (AICC) module that identifies the desirable collabora-
tion strategy from the search space defined in the SCSD module.
In AICC, WebHA models and crowd workers work collaboratively
to learn the accurate WebHA label of a given social media image
while minimizing the response delay of the crowd. To achieve such
an objective, we develop a novel context-aware multi-armed bandit
(CMAB) model to determine the desirable crowd-AI collaboration
strategy to identify the correct label for each input image. We refer
to our model as Crowd-AI CMAB.

The multi-armed bandit model is a classic problem in decision-
making that involves choosing betweenmultiple options (the "arms"

of the bandit) with uncertain reward probabilities in order to maxi-
mize the cumulative reward over time [24]. It balances the explo-
ration of less-known options with the exploitation of those that
have shown high rewards so far. The context-aware multi-armed
bandit model is a variation of the classic multi-armed bandit model
by taking into account contextual information when making de-
cisions. In a context-aware MAB setting, an agent interacts with
arms to maximize cumulative rewards over time. By incorporating
contextual information into MAB, the agent is better equipped to
make informed decisions that adapt to the changing environment,
leading to improved performance and a more efficient exploration-
exploitation trade-off. We first introduce a few key definitions for
the Crowd-AI CMAB model.

Definition 8. Arms (𝑨): We define the set of arms, denoted
as 𝑨 = {𝐴1, 𝐴2, ..., 𝐴𝐽 }, within our Crowd-AI CMAB model repre-
senting different collaboration strategies between crowd workers
and AI models for WebHA tasks. Specifically, 𝐴 𝑗 represents the 𝑗𝑡ℎ

arm, and 𝐽 represents the total count of available arms. Our model’s
objective is to determine the desirable collaboration strategy for
each input image.

Definition 9. Context (𝑶): Our definition of the context 𝑶
is the relevant information needed to make the desirable decision
regarding collaboration between crowd and AI. In particular, the
context includes the entropy of AI model predictions for an input
image. The entropy of predictions generated by various AI models
represents the inconsistency between the AI outputs and serves
as a measure of the difficulty of the prediction task: when AI mod-
els are less consistent with each other, it indicates the task to be
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more challenging, as there are multiple possible predictions with
high probabilities. Intuitively, incorporating the entropy into the
context helps us identify difficult cases for AI models, recruit more
crowd workers, and assign navigation questions to improve overall
prediction performance.

Definition 10. Reward (𝑹): The reward 𝑹 is a feedback mech-
anism that our SymLearn receives by choosing a specific crowd-AI
collaboration strategy (arm). In our paper, we aim to maximize
the prediction accuracy of WebHA while minimizing the response
delay. To achieve this goal, we incorporate two components in the
definition of the reward. The first component is the correctness 𝑄𝑖

𝑗

of the WebHA label estimated by our SymLearn framework (defini-
tion 6). The second component is the response delay 𝐷𝑖

𝑗
that refers

to the duration between the start time of the first crowd worker and
the completion time of the last crowd worker for the 𝑖𝑡ℎ image and
𝑗𝑡ℎ arm. Specifically, the reward 𝑅𝑖

𝑗
for the 𝑖𝑡ℎ image and 𝑗𝑡ℎ arm

is formally defined as a combination of the above two components:

𝑅𝑖𝑗 = 𝑒
𝑄𝑖

𝑗 + 𝑒−𝐷
𝑖
𝑗 (2)

The above reward function design ensures that our SymLearn is
rewarded when it selects the collaboration strategy that maximizes
the generated WebHA label quality for the training data while
minimizing the crowd response delay as we discuss in the overall
objective of our problem (Equation (1)).

The objective of the CMAB model is to maximize cumulative
reward for all studied images. To achieve this goal, we begin by
modeling the reward distribution as a linear function of the context
vector [53]. Using this approach, we can calculate the expected
reward for selecting the 𝑗𝑡ℎ arm for the 𝑖𝑡ℎ image as follows:

𝑅𝑖
𝑗
= 𝛽 𝑗𝑂𝑖 (3)

where 𝛽 𝑗 represents the arm-specific parameter vector, and 𝑂𝑖 is
the context information for the 𝑖𝑡ℎ image.

The key challenge of estimating unknown parameter 𝛽 𝑗 to learn
the reward 𝑅𝑖

𝑗
is to strike a good balance between exploration

(i.e., trying new crowd-AI collaboration strategies) and exploitation
(i.e., selecting crowd-AI collaboration strategies with high expected
rewards). While exploring new strategies of the crowd and AI col-
laboration obtains more information on how different collaboration
strategies contribute to the reward, it also requires an additional
crowdsourcing budget and leads to increased response delay. Con-
versely, exploitation limits the exploration of new collaboration
strategies to meet the constrained crowdsourcing budget, but it may
miss the collaboration strategies with high rewards. Therefore, it
remains to be a challenging question on how to achieve the optimal
balance between exploration and exploitation of the collaboration
strategies between crowd and AI.

To address the above challenge, our AICC module incorporates
an upper confidence bound (UCB) estimation, which selects the arm
with the highest upper confidence bound based on the estimated
reward distribution and confidence intervals [16]. Specifically, our
AICCmodule utilizes a tree structure, inwhich each node represents
a distinct set of crowd-AI collaboration strategies with a specific
context as described in Definition 9. Our AICC module selects a
node in the tree structure based on the current context and then
estimates the UCB of the arms within that node. More specifically,

our AICC module traverses the tree to identify the node 𝑣 that
corresponds to the current context𝑂𝑖 . The node 𝑣 corresponds to a
partition of the arms𝐴𝑣 , which are the set of arms that have similar
expected rewards for the given context features. Our AICC module
then applies the UCB estimation to the arms in 𝐴𝑣 , using the UCB
value for the 𝑖𝑡ℎ image and 𝑗𝑡ℎ arm given by:

𝑈𝐶𝐵𝑖𝑗 = 𝑅
𝑖
𝑗
+

√√
𝛼 log(∑𝑞∈𝐴𝑣

𝑛𝑖𝑞 )
𝑛𝑖
𝑗

(4)

where 𝑅𝑖
𝑗
is the estimated reward for image 𝑖 and arm 𝑗 , 𝑛𝑖

𝑗
is the

number of times arm 𝑗 has been selected for image 𝑖 , and 𝛼 is a
tuning parameter that controls the degree of exploration.

After the aforementioned process, we select the crowd-AI collab-
oration strategy that yields the highest reward for each input image
and aggregates the WebHA labels generated by both the crowd and
AI to produce the final outputs of our SymLearn framework. As
the WebHA models and crowd workers vary for each input image,
advanced label aggregation strategies (e.g., estimation-theoretic
approaches, active learning) [20], are not applicable to our prob-
lem as they often rely on a fixed set of aggregation sources (e.g.,
WebHA models and crowd workers) to establish the aggregation
model. Therefore, we adopt majority voting as our simple but ro-
bust aggregation function. In addition, we provide a summary of
SymLearn using pseudocode in Appendix A.2.

5 EVALUATION
5.1 Datasets and Crowdsourcing Settings
5.1.1 Two Real-world WebHA Applications. We conduct experi-
ments to evaluate the performance of SymLearn using two publicly
available WebHA datasets published by [29]: 1) Mask Wearing Pol-
icy Adherence (MWPA) application and 2) Social Distancing Policy
Adherence (SDPA) application. Both datasets comprise a collection
of images related to public health crisis, sourced from a popular
social media platform (i.e., Twitter/X [45]) during the COVID pan-
demic. In the MWPA dataset, the WebHA labels are classified into
two categories: adhering (i.e., all individuals in the picture are appro-
priately wearing face masks in line with mask wearing guidelines
from CDC [6]) and not adhering (i.e., not all individuals in the
image are wearing face masks correctly). In the SDPA dataset, the
WebHA labels are also classified into two categories: adhering (i.e.,
all individuals in the picture are following social distancing guide-
lines according to CDC’s recommendations [7]) and not adhering
(i.e., not all individuals in the image are practicing social distanc-
ing). In our experiments, we use the ground-truth labels provided
by [29] for the evaluation. To ensure the accuracy of the ground
truth labels and the reliability of our evaluation, we further enlist
the help of domain experts to only include the images where the
ground-truth labels of mask wearing policy adherence and social
distancing policy adherence can be clearly validated by the domain
experts. Table 1 provides the statistics of the two datasets. In ad-
dition, we split each dataset into training, validation, and testing
sets, following a ratio of 6:2:2, as outlined in [32]. In particular,
SymLearn and compared baselines are trained on the training and
validation sets for WebHA tasks. The testing set is then used to
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evaluate the performance of SymLearn and compared baselines for
WebHA applications.1

Table 1: Statistics of Two WebHA Applications

Application MWPA SDPA
Data Collection Time May, 2020 May, 2020
Number of Images 2,165 1,027
% of Class Adhering 75.4% 41.0%
% of Class Not Adhering 24.6% 59.0%

5.1.2 Crowdsourcing Settings. To recruit crowd workers for our
experiments, we employ Amazon Mechanical Turk (AMT) [44], a
commonly used crowdsourcing platform. To ensure high-quality
annotations, we impose two requirements for selecting participants
in our task: a minimum of 1,000 approved tasks completed by the
worker and an overall approval rate above 95%. In the experiments,
479 crowd workers are recruited for the MWPA application and
232 workers are recruited for the SDPA application. The average
WebHA annotation accuracy for the crowd workers recruited for
the MWPA and SDPA applications are 92.8% and 80.9%, respectively.
We compensate each crowd worker $0.05 per annotation task for
an image. We followed the IRB protocol of this project.

5.2 Baselines and Experimental Settings
To evaluate the proposed SymLearn, we compare it with a rich
collection of state-of-the-art baselines, including: (1) Deep Neural
Network (DNN): ResNet [19], DenseNet [22], and DeiT [41]; (2)
Crowd-AI Collaboration: Deep Active [38], CrowdLearn [52], and
LL++ [39]; (3) AI Model Optimization: DEHB [3], BOHB [10], and
MnasNet [40]. A detailed description of all compared baselines is
presented in Appendix A.3.

To ensure a fair comparison, we use the same input to all com-
pared baselines: 1) the images collected from the WebHA appli-
cations; 2) the ground-truth labels for the WebHA images in the
training and validation sets; 3) the labeled WebHA images from the
crowdsourcing query. Specifically, we use the queried crowd labels
to fine-tune the DNN and AI model optimization baselines so that
all compared schemes have the same inputs and the performance
of compared baselines is optimized. We also include the detailed
hyperparameter settings for our experiment in Appendix A.4.

We utilize four commonly used evaluation metrics for imbal-
anced image classification tasks in our experiments. The metrics
include Accuracy (Acc.), F1-Score, Kappa Score (K-Score), and
Matthews Correlation Coefficient (MCC). In particular, we include
K-Score and MCC in addition to Accuracy and F1-Score, since the
MWPA and SDPA datasets used in our study are imbalanced, and
K-Score and MCC are shown to be reliable metrics for evaluating
imbalanced classification tasks. A higher value for these metrics
indicates a better classification result for WebHA tasks.

5.3 Evaluation Results
5.3.1 WebHAClassification Performance. Wefirst evaluate the clas-
sification performance of all compared approaches on the MWPA
and SDPA applications. The evaluation results are summarized in
1Our codes will be made publicly available upon the acceptance of the paper.

Table 2 and 3. We observe that SymLearn clearly outperforms all
compared schemes on all evaluation metrics. For example, on the
MWPA dataset, the performance gains of SymLearn compared to
the best-performing baseline (i.e., BOHB) on Accuracy, F1-Score,
K-Score, and MCC are 6.93%, 5.29%, 13.54%, and 12.49%, respectively.
Such performance gains are primarily achieved by our symbiotic
crowd-AI collaborative learning framework that effectively iden-
tifies a desirable crowd-AI collaboration strategy to estimate the
accurate WebHA label for each input image through the novel
context-aware multi-armed bandit model. The consistent perfor-
mance gains achieved by SymLearn over two diversified WebHA
applications (i.e., MWPA and SDPA) demonstrate the robustness of
SymLearn over different WebHA applications.

Table 2: Performance Comparisons on MWPA

Algorithm Acc. F1 K-Score MCC

ResNet 0.7968 0.8629 0.4704 0.4713

DenseNet 0.7852 0.8526 0.4585 0.4619

DeiT 0.8106 0.8758 0.4779 0.4786

Deep Active 0.8314 0.8962 0.4606 0.4972

CrowdLearn 0.8453 0.8942 0.6076 0.6114

LL++ 0.8291 0.8840 0.5600 0.5620

DEHB 0.8522 0.8984 0.6284 0.6336

BOHB 0.8545 0.8976 0.6497 0.6639

MnasNet 0.7898 0.8530 0.4882 0.4968

SymLearn 0.9238 0.9505 0.7851 0.7888

Table 3: Performance Comparisons on SDPA

Algorithm Acc. F1 K-Score MCC

ResNet 0.7122 0.6911 0.4289 0.4400

DenseNet 0.7073 0.6809 0.4162 0.4243

DeiT 0.6829 0.6829 0.3859 0.4118

Deep Active 0.7121 0.6629 0.4125 0.4135

CrowdLearn 0.7024 0.6806 0.4096 0.4201

LL++ 0.7317 0.7150 0.4695 0.4838

DEHB 0.6927 0.6957 0.4068 0.4373

BOHB 0.7463 0.7045 0.4831 0.4847

MnasNet 0.6683 0.6495 0.3452 0.3566

SymLearn 0.7951 0.7439 0.5733 0.5738

5.3.2 Crowd Response Quality Comparison. In this set of experi-
ments, we evaluate the effectiveness of our AI-assisted crowdsourc-
ing task design as shown in Figure 3. In particular, we compared
the crowd label quality on WebHA returned by the crowd workers
with and without guidance from the "Self-Reflection" Questions
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(i.e., Question Group 1-3 as shown in Figure 3) in both MWPA
and SDPA applications. The evaluation results are presented in
Figure 4. We observe that the quality of crowd labels has clearly
improved with the self-reflection question design (i.e., "w/SRQ" in
Figure 4) compared to those without the self-reflection question
design (i.e., "w/o SRQ" in Figure 4). In our experiments, we recruit
the same amount of crowd workers to perform labeling tasks on
the same set of studied images for both the "w/SRQ" and "wo/SRQ"
settings. The evaluation results demonstrate the effectiveness of
our AI-assisted crowdsourcing task design that stimulates crowd
workers to reflect on their labels during their reasoning process
and provide high-quality labels when necessary for images that are
proven to be challenging to the WebHA models. In general, the first
two sets of evaluation results above demonstrate that SymLearn
effectively harnesses the symbiotic relationship between AI and
HI for WebHA tasks: Subsection 5.3.1 demonstrates that SymLearn
leverages crowd inputs to optimize AI model performance, while
Subsection 5.3.2 shows that SymLearn utilizes AI to guide crowd
workers in enhancing crowd label quality.

(a) MWPA (b) SDPA

Figure 4: Crowd Response Quality Comparison (SRQ: “Self-
Reflection” Questions)

5.3.3 Crowd Response Time. We then evaluate the crowd response
time (Definition 5) of SymLearn and the crowd-AI collaboration
baselines (i.e., Deep Active, CrowdLearn, LL++). The evaluation
results are presented in Figure 5. We note that the response time
of SymLearn framework is the least for both MWPA and SDPA
tasks compared to other baselines. Such a performance gain is due
to the novel context-aware multi-armed bandit model design that
identifies the smallest number of crowd labels needed to integrate
with the AI outputs to generate the accurate WebHA label for each
input image. The improvement in crowd response time clearly
expedites the delivery of WebHA results in a timely manner, which
allows public agencies to receive timely information and effectively
implement and adjust policies.

5.3.4 Ablation Study. Finally, we conduct an ablation study to
assess the contributions of two key modules, namely SCSD and
AICC, in our SymLearn framework. We present the performance
evaluation results obtained by eliminating each of these modules
individually. In particular, we replace the SCSD module by directly
tasking the crowd workers to provide the WebHA label without
our crowd-AI collaboration space design as shown in Figure 3. In

(a) MWPA (b) SDPA

Figure 5: Crowd Response Time

addition, we remove AICC model by integrating the inputs from
AI models and crowd workers through a consensus-based label
aggregation [20]. The evaluation results, presented in Figure 6,
show a decrease in performance in terms of all evaluation metrics
after removing SCSD or AICC modules on both datasets. The re-
sults clearly demonstrate that both the SCSD and AICC modules
make critical contributions to the SymLearn framework in terms
of WebHA prediction accuracy.

(a) MWPA (b) SDPA

Figure 6: Ablation Study

6 CONCLUSION
This paper introduces a SymLearn framework to solve the WebHA
problem. In particular, our SymLearn develops a symbiotic human-
AI co-learning framework that explores the complex interdepen-
dence between AI and HI to harness their collective strengths in
addressing the WebHA problem. Our SymLearn system addresses
the limitation of current human-AI systems which often focus on
leveraging one type of intelligence to improve the other while
overlooking the interdependence and interactions between them.
Our SymLearn is shown to achieve the highest WebHA accuracy
compared to a broad set of baselines in two real-world WebHA ap-
plications while minimizing the crowd response delay. We believe
SymLearn provides useful insights to develop a closed-loop and
mutually beneficial human-AI collaboration framework in address-
ing a broader range of real-world Web-based applications beyond
WebHA, such as fake news detection, abnormal event identification,
sentiment analysis, and opinion mining.
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A APPENDIX
A.1 Overview of SymLearn

Figure 7: Overview of SymLearn Framework

A.2 Summary of SymLearn Framework
We summarize the SymLearn framework in Algorithm 1. The inputs
to the framework are the social media images 𝑿 , crowd workers
𝑪 , and WebHA models 𝑴 . The outputs to the framework are the
generated crowd-AI collaborative label 𝒀̂ for WebHA applications
with the desirable collaboration strategy between crowd workers
and WebHA models.

Algorithm 1 SymLearn Framework Summary
1: input: 𝑿 , 𝑪 , 𝑴
2: output: 𝒀

⊲ Training Phase
3: Calculate context𝑂𝑖 for each 𝑋𝑖 (Definition 9)
4: for each image 𝑋𝑖 do
5: for each arm 𝐴𝑗 do
6: Estimate reward 𝑅𝑖

𝑗
(Definition 10)

7: end for
8: end for

⊲ Prediction Phase
9: for each image 𝑋𝑖 do
10: Predict arm 𝐴𝑗 (Definition 8)
11: Add crowd workers and questions based on 𝐴𝑗

12: Collect crowd prediction 𝑌𝑪𝒊
𝑖

(Definition 4)

13: Use 𝑌𝑴
𝑖

and 𝑌𝑪𝒊
𝑖

to generate collaborative prediction 𝑌𝑖 and add it
to 𝒀 (Definition 6)

14: end for

A.3 Baselines
To evaluate the proposed SymLearn, we compare it with a rich
collection of state-of-the-art baselines as follows:

1) Deep Neural Network (DNN):
• ResNet [19]: a deep convolutional neural network architec-

ture that introduces residual block with skip connections
to help improve image classification accuracy.

• DenseNet [22]: a densely connected convolutional neural
network that connects each layer to every other layer to
promote feature learning for image classification.

• DeiT [41]: a vision transformer that leverages self-attention
mechanisms to achieve state-of-the-art image classification
performance with fewer parameters than traditional con-
volutional neural networks.

2) Crowd-AI Collaboration:
• Deep Active [38]: an active learning technique that iden-

tifies a subset of data samples for crowd labeling and sub-
sequently incorporates the crowd labels to retrain the AI
model to enhance WebHA classification performance.

• CrowdLearn [52]: a crowd-AI collaborative framework
that utilizes the power of crowdsourced human intelligence
to troubleshoot AI models and enhance the overall classifi-
cation performance.

• LL++ [39]: a crowd-AI hybrid approach that leverages a
crowdsourcing-based uncertainty-aware estimation model
to identify and resolve failure cases of AI models in image
classification.

3) AI Model Optimization:
• DEHB [3]: a representative optimizer for AI models that

designs a strategy based on non-stochastic infinite-armed
bandit to optimize AI model performance.

• BOHB [10]: a commonly used optimizer for AI models that
utilizes a Bayesian optimization approach to enhance AI
model performance.

• MnasNet [40]: a lightweight technique to optimize AI mod-
els by leveraging a multi-objective reinforcement learning
scheme for factorized hierarchical AI model design search.

A.4 Hyperparameter Settings
In the experiments, our SymLearn framework and compared base-
lines are implemented using PyTorch 1.1.0 libraries [34] and trained
on NVIDIA Quadro RTX 6000 GPUs. For DNN and crowd-AI base-
lines, we optimize the parameters of each compared scheme on
the training and validation datasets to achieve their best perfor-
mance [18]. For AI model optimization baselines, we follow the
standard practice in AI model optimization to optimize the AI model
design using the training and validation datasets [11].

In our experiments, we follow a standard AI model optimization
process [26, 50] to define the network architecture and hyperpa-
rameter search space. Specifically, the network architecture search
space includes 1) the types of convolutional block (residual block
or dense block), 2) the number of convolutional layers per block
(ranging from 1 to 36), 3) the width of convolutional block (between
21 and 27), 4) the growth rate (between 32 and 48), and 5) the size of
input features (between 64 and 96). For hyperparameter configura-
tions, we consider the search space that includes 1) the learning rate
(between 10−6 and 10−3), 2) the weight decay (between 0 and 10−3),
3) three candidate optimizers (SGD, RMSprop, and ADAM), 4) the
conditional parameters of SGD momentum, RMSprop alpha, Adam
beta1, and Adam beta2 (between 0.8 and 1.0), and 5) the number of
epochs (between 30 and 150).
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