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ABSTRACT

Generative adversarial networks (GANs) are usually trained by a minimax game
which is notoriously and empirically known to be unstable. Recently, a totally new
methodology called Composite Functional Gradient Learning (CFG) provides an
alternative theoretical foundation for training GANs more stablely by employing
a strong discriminator with logistic regression and functional gradient learning for
the generator. However, the discriminator using logistic regression from the CFG
framework is gradually hard to discriminate between real and fake images while
the training steps go on. To address this problem, our key idea and contribution
are to introduce the Wasserstein distance regularization into the CFG framework
for the discriminator. This gives us a novel improved CFG formulation with more
competitive generate image quality. In particular, we provide an intuitive explana-
tion using logistic regression with Wasserstein regularization. The method helps
to enhance the model gradients in training GANs to archives better image qual-
ity. Empirically, we compare our improved CFG with the original version. We
show that the standard CFG is easy to stick into mode collapse problem, while
our improved CFG works much better thanks to the newly added Wasserstein dis-
tance regularization. We conduct extensive experiments for image generation on
different benchmarks, and it shows the efficacy of our improved CFG method.

1 INTRODUCTION

The GANs learn to sample random variable z from a known distribution pz to approximate the real
data distribution p∗. The minimax formulation is utilized by (Goodfellow et al., 2014) to optimize
the generator and discriminator alternately. Typically, the generator is trained to synthesize samples
by the learned underlying data distribution, while the discriminator differentiates the generated data
from real data samples. Despite various training strategies (Arjovsky et al., 2017; Gulrajani et al.,
2017) have been studied, GANs is still notoriously difficult to train due to its instability and the
issues of mode collapse. Recently, the Composite Functional Gradient Learning (CFG) (Johnson &
Zhang, 2019) has been presented as a novel theory for GANs which does not rely on the minimax
formulation. The CFG reformulate the generator by the functional gradient learning. In training, the
CFG employs the functional compositions to learn the generator greedily

Gt(z) = Gt−1(z) + ηtg(Gt−1(z)), (t = 1..., T ) (1)

Given the G0(z) ∈ Rr, the output x = Gt(z) will approximate the data from distribution p∗ with
the learning rate ηt and the discrete time step from time t = 1 to time t = T . Each g function is
estimated from the data. Accordingly, the discriminator works as a regressor to discriminate the data
from real and the generator:

D ≈ argmin
D

LR = argmin
D

[
Ex∼p∗ ln

(
1 + e−D(x)

)
+ Ex∼pz ln

(
1 + eD(x)

)]
(2)

The CFG theory gives a new stable GANs method, and it shows that with a strong discriminator,
the generator is more stable learned with functional gradient learning. However, empirically we
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found that the performance of CFG GANS is potentially very sensitive to the hyper-parameters,
which may demand extraordinary efforts to tune parameters carefully. On the other hand, as a useful
measurement of the distance between different probability distributions, the Optimal Transport Map
theory is widely utilized to alleviate the mode collapse problem in GANs training. This motivates us
to repurpose the Wasserstein distance from Optimal Transport Map theory to improve the efficacy
of CFG framework further. For unified the name of the CFG framework, we called it ICFG in the
rest of paper.

Formally, this paper presents an improved Composite Functional Gradient by enforcing the Wasser-
stein distance (ICFGW). Specifically, we incorporate the Wasserstein regularization into the Eq (3),
which thus has bounded first derivatives. This results in a novel improved ICFG formulation with
a better training process and image quality. We further give the intuitive explanation of employing
Wasserstein regularization to enhance the model gradients for GANs. According to the updated
ICFG theory, a new improved algorithm for learning generative adversarial models has been de-
veloped. We conduct extensive experiments for image generation on different benchmarks. We
compare our ICFGW against the ICFG (Johnson & Zhang, 2019). We demonstrate that the Wasser-
stein regularization improves the efficacy of ICFG; and the ICFG with Wasserstein regularization
improved the generated image quality. We summarize the main contributions as follows:

• For the first time, We introduce the Wasserstein regularization to the CFG framework,
which trains GANs with the regressor and is susceptible to many hyper-parameters. The
improved CFG learning formulation thus has better training process and image quality.

• We give an intuitive understanding of the reason why the origin CFG architecture with
logistic regression has a weak effect on differentiating generated images from real images.
The Wasserstein regularization will help learn the gradient of the network stably in training
process.

• Empirically the experiments show that the ICFG-Network works better with Wasserstein
regularization than the original CFG in MNIST, EMNIST, FashionMNIST, CIFAR10,
SVHN and LSUN datasets. The new formulation gets a very competitive convergence
speed and synthesizing results over the original CFG.

2 RELATED WORKS

2.1 GENERATIVE ADVERSARIAL NETWORKS

GANs alternately optimized a discriminative and a generative model in a min-max loss function
(Goodfellow et al., 2014). There are various significant variants for image generation, such as DC-
GAN (Radford et al., 2015), Progressive Growing GAN (Karras et al., 2017), and BigGAN (Brock
et al., 2018),SAGAN (Zhang et al., 2019), StyleGAN (Karras et al., 2019). In general, GANs are
very difficult to be stably trained. Training GANs may suffer from various issues, including gradi-
ents vanishing, mode collapse, and so on (Che et al., 2016; Roth et al., 2017; Nowozin et al., 2016).
Numerous excellent works have been made in addressing these issues. For example, WGAN (Ar-
jovsky et al., 2017) and its extensions (Gulrajani et al., 2017; Nowozin et al., 2016; Mao et al., 2017;
Li et al., 2017; Metz et al., 2016) uses the Wasserstein distance to improve the training stability of
GANs. The normalization methods also contribute greatly to this issue (Ioffe & Szegedy, 2015;
Miyato et al., 2018; Kurach et al., 2019; Zhang et al., 2020).

2.2 WASSERSTEIN DISTANCE AND APPLICATIONS IN GANS

The Optimal Transport Map (OTM) problem has been proposed by Monge. By using the linear
program model and dual optimal method, Kantorovich has given a relaxation solution for the Opti-
mal Transport Map. Wasserstein distance is the minimum cost function for the Kantorovich linear
program model. The idea of Wasserstein distance has been introduced in WGAN(Arjovsky et al.,
2017)(Gulrajani et al., 2017). Unlike the GANs working with JS-divergence or least square loss
function always meeting the vanishing gradient problem, the Wasserstein distance could avoid the
vanishing gradient of the discriminator. It also controls the diversity of fake images from the genera-
tor. The mechanism and regularization of applying Wasserstein distance in GANs have been widely
explored in the following work. It has become a standard loss function in the GANs training(Zhang
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Figure 1: Synthesized images. The generated image from icfg is blur. The season is the weakness
ability of the discriminator to differentiate low quality generated images the and the real images.

et al., 2019) (Karras et al., 2019)(Shen et al., 2021). On the other hand, few efforts are made on
applying Wasserstein distance in regression or the classification. Some works provide theoretical
proof that Wasserstein distance is helpful for the regression and the classification task (Jiang et al.,
2020)(Frogner et al., 2015). (Frogner et al., 2015) develop a loss function for multi-label learning,
based on the Wasserstein distance. They give a statistical learning bound for the loss; and describe
an efficient learning algorithm based on this regularization. (Jiang et al., 2020) propose an approach
to fair classification that enforces independence between the classifier outputs and sensitive infor-
mation by minimizing Wasserstein-1 distances.

Inspired by these works, Wasserstein distance has been for the first time introduced into ICFG dis-
criminator of framework; we theoretically show that the regression with Wasserstein regularization
has a convergence with the methodology (Du et al., 2018)(Du et al., 2019). Meanwhile, we empiri-
cally show that such an idea can significantly improve the ICFG formulation.

3 IMPROVED ICFG WITH WASSERSTEIN REGULARIZATION

3.1 REGRESSION IN ICFG FRAMEWORK

We follow the definition in the original ICFG frameworkJohnson & Zhang (2019). This paper de-
notes the ICFG with a regression classifier as discriminator (Eq. 2) and a functional gradient learning
generator (Eq. 1). The discriminator works as a regression classifier to discriminate the image from
real and the generator, while the generator serves as the derivation function transforming the Gt(Z)
approximating the p∗, the density of real data. The sequence of transformation in Eq. 1 takes the
discrete steps from time t − 1 to t (t = 1, · · · , T ). Empirically, we found that the performance of
GANs from ICFG framework is very sensitive to so many hyper-parameters, such as T , N, ηt and g
as in Eq. 1. Particularly, the g is computed from data as

g(x) = s(x)r̃(x)f
′′
(r̃(x))∇D(x)

where s(x) is an arbitrary scaling factor; r̃(x) = e−D(x). We define δ = s(x)r̃(x)f
′′
(r̃(x)), and

the image quality generated is very sensitive the value of δ. Furthermore, the training process of
GANs by ICFG is much sensitive to the learning rate than that learned by minimax optimization.
For example, with slightly changing the value of learning rate, the quality of synthesized images is
changed from very high to very noisy, as empirically visualized in Fig. 1. In these figures, the lr is
set as 0.0025 above and 0.000025 below respectively; and δ is 1 and 0.1 for SVHN and CIFAR10
individually. For example, if we set the lr to 0.0025, the results of SVHN will become very noisy.
Furthermore, when we train the ICFG for more epochs with less tuned hyper-parameters, the model
may still be inclined to get collapsed. For example, we show the blurred and noisy images in Fig.
1 . We refer these problem as the weakness ability of the discriminator to differentiate low quality
generated images the and the real images. With different δ and lr, the gradient from the discriminator
is too low to guide the generator update its weights. As a result, We should give a more stronger
regularization in the discriminator.
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3.2 WASSERSTEIN REGULARIZATION FOR THE ICFGW

To resolve above problems, we introduce Wasserstein regularization into the ICFG framework. We
will give an insight explanation of the Wasserstein regularization and empirical evaluations in the
next two sections. Wasserstein regularization is a conception from the Wasserstein distance of Opti-
mal Transport Map. The formulation of origin Wasserstein distance is Eq. (3), it stands for a mini-
mum transport map from p to q. The γ (x, y) stands for the Joint probability density distribution of
p, q. d (x, y) stands for the distance between p and q.

W [p, q] = inf
γ∈[p,q]

∫∫
γ (x, y) d (x, y) dxdy (3)

The formulation Eq. (3) is hard to compute, so the Kantorovich gives a duality form from the ori-
gin Optimal Transport Map using Linear Programming (LP). The problem also changes to Optimal
Transport plan, the cost function is refered in Eq. (4). The

∫
[p (x) f (x)− q (x) f (x)] dx stands

for the cost of the transport plan and ‖f (x)− f (y)‖ ≤ d (x, y) stands for the distance measure-
ment. The duality form has a maximum optimization direction opposed from the origin minimum
optimization direction.

W [p, q] = max
f

{∫
[p (x) f (x)− q (x) f (x)] dx

∣∣∣∣ ‖f (x)− f (y)‖ ≤ d (x, y)} (4)

In the experiments, the Eq. (4) always be written as the discrete form like Eq. (5). The Ex∼p∗ stands
for sampling from the real data and Ex∼pz stands for sampling from the generated data.f and D
both stands for the discriminator and the G stands for the generator.

DW = argmax
‖D‖L≤1

LW = argmax
‖D‖L≤1

Ex∼p∗ [D (x)]− Ex∼pz [D (G (z))] (5)

3.3 LOSS FUNCTION FOR THE DISCRIMINATOR OF ICFGW

As to implement the Wasserstein regularization to the discriminator of ICFG, we give a new loss
function to replace the origin logistic regression loss. The formula of it is in the Eq. (6). It stands for a
Convex combination of logistic regression and the Wasserstein distance. The parameter α is between
0 and 1. The symbol LR stands for the loss function of ICFG discriminator from Eq. (2). LW stands
for the loss function of the Wasserstein distance from Eq. (5). The origin logistic regression is to
find a hyper-plane to differentiate the different classes data clearly. But in the high-dimensional
image space, it is difficult to find such a hyper-plane to differentiates the generated images from
the real images clearly. As to resolve this problem, we add a Wasserstein regularization to the
logistic regression loss function. With Wasserstein distance definition, the new hyper-plane will
differentiates the generated images and real images in a maximum probabilistic distance. The new
hyper-plane not only differentiates the data from generated or real images, but also gives a maximum
probabilistic distance between generated and real images.

L = αLR + (1− α)LW (6)

3.4 EVALUATIONS OF UPDATE FUNCTION FOR GENERATOR

This section will evaluate the g(x) in the empirical process. g(x) is a symbol from formula Eq. (3.1).
It is a very import parameter for the ICFG because it controls the gradient of discriminator used to
update the generated images. In the experiment, we use cfg-eta replace the theoretical g(x). In
the origin ICFG, the little change of cfg-eta such as change 0.25 to 1 will influence the training
process and generated image quality. But in our ICFGW, the cfg-eta will be set to 10 or 100 as
the change of our Wasserstein regularization parameter α. The reason for that is the Wasserstein
regularization Eq .(5) and logistic regression Eq .(2) has a adversarial optimization direction. The
logistic regression is to obtain a minimum discriminator but the Wasserstein regularization is to
obtain a maximum distance between the generated images and real. In the ICFGW’s train, the
gradient from discriminator will be much smaller than the ICFG because of the adversarial progress.
That is why cfg-eta value in ICFGW will be 10 or 100 times bigger than the origin ICFG.
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NAME DESCRIPTION VALUE
B training data batch size 64
U discriminator update per epoch 1
N examples for updating G per epoch 640
T number of iterations in ICFG 25
LAMDA a hyper-parameters for L constant 0.1
α a hyper-parameters for Wasserstein regularization 0.9

Table 1: meta-parameters.

DATASET LR CFG-ETA LAMDA
E/Fashion/MNIST 2.5e-4 1/10 0.1/None
SVHN 2.5e-4 1/10 0.1/None
CIFAR 2.5e-4 1/10 0.1/None
LSUN 2.5e-4 1/10/100 0.1/None

Table 2: learning rate and others parameters for experiment.None stands for no implementation of
parameter. The cfg-eta value is very different from the ICFG. We gives a insight explanation in the
methodology. LMADA value of None stands for don not use this parameter

4 EXPERIMENT

4.1 DATASETS

We used MNIST(LeCun et al., 1998), ,FashionMNIST(Xiao et al., 2017), EMNIST(Cohen et al.,
2017), CIFAR10(Krizhevsky et al., 2009), the Street View House Numbers dataset (SVHN)(Netzer
et al., 2011), and the large-scale scene understanding (LSUN) dataset(Yu et al., 2015). We almost
follow the origin ICFG choosing for the datasets. We also give some addition datasets for our ex-
periments. These datasets are provided with class labels (digits ‘0’ – ‘9’ for MNIST, FashionMNIS,
EMNIST and SVHN and 10 scene types for LSUN). A number of studies have used only one LSUN
class (‘bedroom’) for image generation. The origin paper employs a balanced two-class dataset us-
ing the same number of training images from the ‘bedroom’ class and the ‘living room’ class (LSUN
BR+LR)and a balanced dataset from ‘tower’ and ‘bridge’ (LSUN T+B). But we choose to use the
’bedroom’(LSUN B) and the LSUN Tower(LSUN T) to make our experiment because the origin
ICFG performance not very well in these database and we also present the result of the (LSUN
T+B) and (LSUN BR+LR) in our supplements.

4.2 IMPLEMENTATION DETAILS

As to fairy compare to the origin ICFG, we take the same implement settings. All the experiments
were done using a single NVIDIA Tesla v100 or a single NVIDIA RTX 2080TI. The meta-parameter
values for ICFG were fixed to those in Tab. 1 unless otherwise specified. ICFG is sensitive with
the setting of step size η for the generative image updated in order to approximate an appropriate
value. In our work, we give the same lr setting with the ICFG but different η size. For example, we
could utilize the η value 10x or 100x more or less than those in our ICFGW as to approximate an
appropriate image quality. This can also achieve very good result. Wasserstein regularization α is
a hyper-parameter for the experiment; we set the meta-parameter LAMDA 0.9. The base setting is
presented in the Tab. 1 and Tab. 2. The cfg-eta and lr in Tab. 2 stands for the δ = s(x)r̃(x)f

′′
(r̃(x))

and η symbol. In order to keep the theoretical symbol and our experiment code consistent, we
use cfg-eta , lr and cfg-alpha stands for the theoretical symbol in the experiment section. In our
experiment, we will make a little change with the lr and other hyper-parameters to compare the
effect between ICFG and our methods.

4.3 BASELINES

As a representative of comparison methods, we tested WGAN with the gradient penalty (WGANgp),
the Least square GAN. Both of them always been the baseline in other GANs Network. The network
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WGAN LSGAN ICFG ICFGW
MNIST 0.781 0.679 1.15 2.32
SVHN 0.913 0.87 1.39 2.65
CIFAR 3.53 3.41 4.02 4.45

LSUN B 2.382 2.312 3.046 3.029
LSUN T 3.67 3.52 4.428 4.92

Table 3: Inception Score Result.

architecture is the same as the ICFG to fairy comparison. The network architecture is composite of
two types, the first is DCGAN and the other is resnet. The DCGAN is used for MNIST, FashionM-
NIST, EMNIST, CIFAR10,and SVHN. The resnet is used for the LSUN datasets.

4.4 EVALUATION METRICS

Generative adversarial models is known to be challenge to make reliable likelihood estimates. So we
instead evaluated the visual quality of generated images by adopting the inception score Salimans
et al. (2016) and Fréchet inception distanceHeusel et al. (2017). The intuition behind inception
score is that high-quality generated images should lead to close to the real image. And the Fréchet
inception distance indicate that the similarity between the generated images and the real image. We
note that the inception score is limited, e.g., it would not detect mode collapse or missing modes.
Apart from that, we found that it generally corresponds well to human perception.

In addition, we used Fréchet inception distance (FID) of. FID measures the distance between the
distribution of f(x∗) for real data x∗and the distribution of f(x) for generated data x, where function
f is set to convert an image to the internal representation of a classifier net- work; One advantage
of this metric is that it would be high (poor) if mode collapse occurs, and a disadvantage is that its
computation is relatively expensive.

In the results below, we call these two metrics the (inception) score and the Fréchet distance.

4.5 RESULT FOR OUR EXPERIMENT

In this section, we present our Wasserstein regularization for ICFG experimental comparisons with
others GAN-model approaches. We also present the result of our model with the approximate
learning-rate, cfg-eta, cfg-alpha compare to the origin-paper and evaluate that our method archives
better result in the different meta-parameters.

4.5.1 INCEPTION SCORE RESULTS

We can see the result of Inception Score value among different GANs in the Tab. 3 and Tab. 4.
Note that the IS scores are affected by many factors, we recompute all the IS scores in all our
experiments with our local compute environments. As we measure, the Inception Score for the real
data in the datasets are 2.58(MNIST), 9.56(CIFAR10), 4.62(SVHN), 4.78(LSUN T), 3.72(LSUN
B), 3.72(LSUN B+L), 3.79(LSUN T+B), 5.8(LSUN C), 4.34(FashionMNIST), 2.2(EMNIST). We
get the Inception Score function from this url1. There are very different from the ICFG experiment.
So we choose to use our experiment IS value to compare the quality between different model. We
can still find the same conclusion in different IS score via the relation between them. Tab. 3 and
Tab. 4 presents the result of the IS score of every model. We can clearly find that the ICFG score
and ICFGW score is very close, and the WGAN and LSGAN performance not so much good in all
the datasets. Although the score is different from the ICFG, the relative relationship also stands for
that ICFGW archives a better image quality than ICFG in the same database.

4.5.2 FRÉCHET DISTANCE RESULTS.

We can see the result of the image quality measured by the Fréchet Distance score in relation to
training time and image quantity. We compute the the Fréchet Distance with 20k generative images

1https://github.com/sbarratt/inception-score-pytorch
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ICFG ICFGW
EMNIST 2.1 2.14

FashionMNIST 4.21 4.16
LSUN C 3.17 3.09

LSUN B+L 3.44 3.49
LSUN T+B 5.11 4.92

Table 4: Inception Score Result.

WGAN LSGAN ICFG ICFGW
MNIST 4.72 4.93 4.49 3.688
SVHN 5.87 5.87 5.53 5.9
CIFAR 36.24 36.24 27.89 27.51

LSUN B 18.72 18.72 12.25 11.8
LSUN T 22.76 22.76 16.43 20.86

Table 5: Fréchet Distance results.

and 20k real images from datasets. The same as IS score, We keep the same strategy of recomputing
all the FID score in our local compute environments for a fair comparison. The codes of FID
functions are in2. We compute the value of FID in our environments but the scores gets much higher
than the value of ICFG paper. Although we use the same ICFG method to generate the image,
the result is no so much different. So we will compare the FID score which is calculate in local
environment with different model and datasets. We can see the FID result in the Tab. 5 and Tab.
6. ICFGW archives the best in the MNIST, Fashion MNIST, EMNIST, SVHN, CIFAR10 and the
LSUN T, T+B, B+L datasets. The ICFG works the best in the LSUN B. The WGAN and the LSGAN
still have not well performance. The reason is that, for a fair comparison with other methods, we do
not use tuning tricks, and these methods are also sensitive to varying hyper-parameters.

The reason for that would like be we keep the origin network settings of both network and do not
add much training tricks to it. Besides we do not tune the hyper-parameters very carefully. For we
keep the same network as the ICFG and still get the best scores in the nine out of ten datasets.The
FID result shows that our ICFGW is effective and helpful to generate high quality images.

4.5.3 VISUAL INSPECTION OF GENERATED IMAGES

At last,we can see the image generate by different lr and cfg-eta and cfg-alpha parameter. Fig-
ure 2,3,4,5,6,7,8 shows the result of the experiment with ICFGW and ICFG. We set the same lr in
ICFGW and ICFG separately. Besides we present the same epoch generate image together to show
our ICFGW method can archive the same or better effect as the ICFG method. In some datasets, the
ICFG image has already collapsed while ICFGW still works very well.

2https://github.com/mseitzer/pytorch-fid

ICFG ICFGW
EMNIST 2.312 2.02

FashionMNIST 6.16 6.026
LSUN C 11.04 12.0

LSUN B+L 11.9 17.71
LSUN T+B 16.74 27.49

Table 6: Fréchet Distance results.
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Figure 2: Result for SVHN:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=1 cfg-alpha=0.9

Figure 3: Result for CIFAR10:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=0.5 cfg-
alpha=0.9

Figure 4: Result for LSUN B:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=10 cfg-
alpha=0.9

Figure 5: Result for LSUN T:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=0.5 cfg-
alpha=0.9

Figure 6: Result for LSUN C:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=10 cfg-
alpha=0.9

Figure 7: Result for LSUN B+L:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=10 cfg-
alpha=0.9
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Figure 8: Result for LSUN T+B:above is ICFGW and below is ICFG lr=0.00025 cfg-eta=10 cfg-
alpha=0.9

5 CONCLUSION

In this paper, we introduced the Wasserstein regularization into the Composite Functional Gradient
Learning (CFG) which is a new theoretical way to train GAN. While the discriminator of standard
ICFG is very sensitive to varying hyper-parameters. The effect of its differentiates is not good
enough. But our ICFGW work much better with various hyper-parameters. The experiments results
demonstrate that the proposed approach shows more stable performance compared with ICFG and
other methods. The Inception score, Fréchet Distance, and the visual quality of generated image
show that our method is more stable. In future work, we plan to investigate the generator object
function from KL diversity to the Wasserstein distance as to achieve more stable and efficient GANs
architecture.
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