
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNSUPERVISED PROMPT LEARNING WITH FEW-SHOT
EXAMPLES FOR ANSWERING OBJECTIVE QUESTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have been highly successful on diverse tasks,
while some applications require specializing general purpose LLMs to meet stricter
accuracy or latency targets; here we focus on objective question answering, an
important real-world setting in which a nontrivial subset benefits from such special-
ization. Most existing methods require parameter retraining or human supervision,
both entailing high computational and data collection burdens. To handle these
challenges, a direct approach is to generate “high-confidence” data from unsuper-
vised downstream tasks and use them for prompt learning or in-context learning to
efficiently refine pseudo-supervision. We consider combining the two approaches
for better performance; however, a naive strategy that learns the prompt first and
selects pseudo-supervised examples only at inference creates a mismatch between
prompt learning and usage. In this paper, we propose unsupervised few-shot prompt
learning (UFPL), which jointly learns the prompt and refines the overall pseudo-
supervision. The learning objective aligns prompt training with usage by requiring
the learned prompt to produce consistent answers when pseudo-supervised data
from the downstream task are used as in-context examples. We optimize the prompt
by translating gradient signals into textual critiques, which serve as feedback to
iteratively refine the prompt and the pseudo supervision. Theoretical analysis in
a simplified classification setting shows that the algorithm implicitly introduces a
regularization, supporting its design. Empirical results on diverse benchmarks and
a real world molecule optimization task show the effectiveness of our approach.

1 INTRODUCTION

Large language models have shown impressive performance on various real-world tasks (Brown
et al., 2020; Achiam et al., 2023). While broadly competent across downstream tasks, applications
with strict accuracy, latency, or safety targets, often benefit from specialization of general purpose
LLMs (Shin et al., 2020; Ouyang et al., 2022). We focus on objective question answering, an important
real-world setting in which each query has a single verifiable answer. This setting encompasses many
practical tasks that can benefit from specialization, including clinical question answering (Singhal
et al., 2025), instruction following (Wei et al., 2021), and so on.

Existing methods for LLM specialization mainly involve fine-tuning, prompt optimization, and
in-context learning. Parameter efficient fine-tuning, such as LoRA (Hu et al., 2021), updates a small
subset of parameters to specialize the LLM. By contrast, prompt learning (Sun et al., 2022; Zhou
et al., 2022) and in-context learning (Brown et al., 2020; Liu et al., 2022) adapt behavior by learning
input prompts or providing few-shot examples, leaving the base LLM unchanged. Although these
approaches share the same goal, fine-tuning produces additional model variants that raise storage
overhead, and when tasks arrive as a stream or change frequently, repeatedly loading and switching
variants adds latency and operational complexity. In such cases, retaining a general purpose LLM
with task appropriate prompts and data-specific few-shot examples can be preferable (Vu et al., 2022).

To facilitate efficient specialization of general purpose LLMs, we adopt prompt learning and in-context
learning, which optimize only the input, to improve performance on downstream tasks. These methods
typically require human supervision to induce prompts or to supply few-shot examples; however,
human feedback is costly and time-consuming to collect. Fortunately, in many real-world tasks,
LLMs can annotate text datasets with quality that matches or exceeds human annotators, motivating

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

min
𝐳
$

"#$

%
𝐿(𝑓 𝐱"

&, 𝐳, ∅ , 𝑦"
&)

Our
proposal

𝐳 Prompt (a sequence of tokens)

𝐱 Unlabeled data

(𝐱!, 𝑦!) Reliable pseudo-labeled data

D" A set of demonstrations for 𝐱"

min
𝐳
$

"#$

%
𝐿(𝑓 𝐱"

&, 𝐳, D" , 𝑦"
&)

D! = 𝐱"
(!), %𝑦"

(!)

"%&

'
, %𝑦"

(!) = 𝑓 𝐱"
(!), 𝐳, D"

𝑓(⋅,⋅,⋅) General purpose LLM

𝐿(⋅,⋅) Loss function

Naive
Combination

Prompt training phase

𝑦" = 𝑓 𝐱" , 𝐳, D"

𝑦" = 𝑓 𝐱" , 𝐳, D"

𝑦" = 𝑓 𝐱" , 𝐳, D"

Prompt using phase

! Prompt (a sequence of tokens)

" Unlabeled data

("!, %!) Reliable pseudo-labeled data

D" A set of demonstrations for ""
'(⋅,⋅,⋅) General purpose LLM

*(⋅,⋅) Loss function

Figure 1: Pipeline comparison of UFPL and Naive Combination.

the use of unlabeled data with LLMs. For example, GPT-3 has been reported to surpass human
performance on text classification (Gilardi et al., 2023),and more broadly LLMs perform strongly on
natural language classification benchmarks (Chong et al., 2022). Motivated by these observations, we
study an unsupervised specialization setting that uses LLM generated pseudo-supervision.

It is nontrivial to combine prompt learning and in-context learning to produce refined pseudo-
supervision for specialization in an unsupervised setting. A naive approach first identifies “high
confidence” pseudo-supervised data (e.g., via chain-of-thought (CoT) reasoning (Wei et al., 2022)),
and then either optimizes the prompt using these data (Diao et al., 2023; Sun et al., 2022) and
uses them as few shot examples for in context prediction (Wan et al., 2023b; Guo et al., 2024; Li
et al., 2024). However, this decoupled design is problematic: it uses few-shot examples only during
inference rather than during prompt learning, creating a mismatch between how the prompt is learned
and how it is used at inference, namely task shift.

In this paper, we propose unsupervised few-shot prompt learning (UFPL), which jointly optimizes
the prompt and the pseudo-supervision that determines the few-shot examples, ensuring consistency
between prompt training and usage, as illustrated in Figure 1. Specifically, we iteratively identify
“high-confidence” pseudo-labeled data and, using these data, align prompt training with usage by
requiring the learned prompt to produce consistent answers when pseudo-supervised data from the
downstream task are used as in-context examples. We use TextGrad (Yuksekgonul et al., 2024) to
optimize the prompt via gradient based updates driven by textual feedback, akin to gradient descent,
yielding an approach applicable to both open source and black box models. Theoretical analysis
shows that, in the simplified setting of classification, the proposed algorithm implicitly introduces a
regularization and the refined output exhibits a cluster structure that helps alleviate the overfitting
issue. We evaluate UFPL with other contenders on several benchmark datasets and a real-world
molecule optimization task. Experimental results show that UFPL produces high-quality refined
generations without human supervision, regardless of model scale.

2 RELATED WORK

Prompt Learning and In-context Learning. Recent advances in prompt learning have developed
more systematic methods for prompt design and optimization. Pioneering work such as BBT learns
prompts using derivative free optimization techniques like evolutionary algorithms (Sun et al., 2022).
BDPL employs policy gradient algorithms to optimize the prompt (Diao et al., 2023). Besides,
gradient based prompt learning methods were also proposed, including ProTeGi (Pryzant et al., 2023),
TextGrad (Yuksekgonul et al., 2024), and GREATER (Das et al., 2024). Typically, these methods
still require human supervision to optimize the prompt. Chain-of-Thought prompting introduces
unsupervised step-by-step reasoning for complex tasks, enabling LLMs to decompose a hard problem
into intermediate steps and solve them sequentially (Wei et al., 2022). Subsequent work improves
reliability by sampling multiple reasoning paths and selecting the most consistent answer (Wang et al.,
2022), and extends CoT by exploring multiple reasoning branches in a tree like structure for complex
problem solving (Yao et al., 2023). Although they do not rely on downstream supervision, these
methods solve problems individually and cannot leverage other data available in the downstream task.

In-context learning conditions a frozen LLM on task descriptions and few-shot examples at inference
time, enabling rapid adaptation without parameters updates (Brown et al., 2020). Subsequent analyses
investigated what makes ICL effective, highlighting the roles of label space cues, surface form overlap,
and example quality (Min et al., 2022; Liu et al., 2022). A parallel line studied practical levers for
ICL, including calibrated decoding to mitigate majority label bias (Zhao et al., 2021) and ordering
strategies that reduce sensitivity to example permutations (Lu et al., 2022). Our work leverages these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

insights but targets unsupervised specialization: we jointly learn prompts and pseudo-supervised
few-shot examples so that prompt training is aligned with prompt use at inference.

Recent seminal works have explored using in-context prompting for LLM specialization without
retraining model parameters (Wan et al., 2023a;b; Li et al., 2024). These methods first identify “high-
confidence” pseudo-supervised data using carefully designed scoring functions, and then leverage the
selected data as in-context examples to guide final predictions. We jointly learn the task appropriate
prompt and the pseudo-supervision, making the prompt learning and using stages more consistent.

Self-supervised Fine-tuning. In an unsupervised setting, self-supervised fine-tuning methods
first use the LLM to generate pseudo-supervised data for a downstream task and then adapt the
LLM via parameter-efficient fine-tuning. For instance, LMSI employs CoT prompting (Wei et al.,
2022) to generate high-quality labels for unlabeled datasets, which were then used to optimize
the model (Huang et al., 2023). LLMRefine employs a fine-grained feedback model to identify
defects in outputs and guide iterative refinements, optimizing performance during inference without
additional training (Xu et al., 2024). Similarly, SALMON retrieves high-quality samples relevant to
the downstream task and used them as in-context examples to generate additional samples, which
were then iteratively employed to fine-tune the LLM (Sun et al., 2024). ISARA is an improved
self-refinement methods without human-crafted instructions and labeled rewards (Guo et al., 2024).

3 OUR APPROACH

In this section, we begin by introducing the notations, then describe the UFPL algorithm in detail,
and finally provide a theoretical analysis of its properties in a simplified setting of classification.

3.1 NOTATIONS

In this part, we introduce the notations. Let xl ∈ X be the l-th query in the unsupervised dataset of
size n, where X is the textual space. We denote by z ∈ X the prompt and z0 be the initial prompt.
We define the generation function as LLMgen(·, ·, ·) : (x, z, D) 7→ y, where x is the input, y ∈ X is
the answer in textual space, z is the prompt, and D = {(xk, ŷk)}Kk=1 is a set of K pseudo-supervised
examples drawn from the downstream task. We denote inference by LLMgen(x, z, D). When D = ∅,
e.g., LLMgen(x, z0, ∅), the model predicts with a default prompt and no examples.

To learn the prompt, following TextGrad (Yuksekgonul et al., 2024), we define a text valued loss
L(· | ·, ·, ·) : (z | x,y,y) 7→ p, where p ∈ X denotes a textual loss signal such as a prediction
consistency critique. For example, L(z | x, ŷ, y) returns an LLM generated critique that evaluates how
well the pseudo-supervision ŷ, produced using z, addresses x relative to the underlying supervision y.
For notational simplicity, when the context is clear we write L(z) in place of L(z | x, ŷ, y).
Next, we define a prompting operator LLMgrad(·) : p 7→ g that maps a textual loss p to a textual
gradient g ∈ X , i.e., a signal indicating a direction for improvement. Concretely, given L(z), we
obtain update instructions by

∂L

∂z
:= LLMgrad(L(z)) (1)

Finally, we define an update operator LLMupdate(·, ·) : (z,g) 7→ z that applies a textual gradient to
produce a refined prompt, in analogy to a gradient step:

znew = LLMupdate(zold,
∂L

∂z
). (2)

3.2 UNSUPERVISED FEW-SHOT PROMPT LEARNING

In this part, we present the proposed UFPL algorithm, which jointly optimizes the prompt and refines
the pseudo-supervision for the downstream task in an iterative manner.

Since the downstream task is unsupervised, we first identify “high-confidence” pseudo-supervised data
as initialization. Following prior work (Huang et al., 2023), we use self-consistency CoT (Wang et al.,
2022) both to select these data and to estimate the confidence of pseudo-supervised data. Specifically,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

LLM

in-context demonstrations with
tunable pseudo-supervision

unlabeled dataset

demonstrations prompt

Step 1: Generate "high-confidence”
pseudo-supervised data

𝐱!"
𝐱!"
𝐱!""𝑦

"𝑦

"𝑦

pred

pred

pred

𝐱!"
𝐱!"
𝐱!"

𝐱#$%&
𝐱#$%&
𝐱#$%&

pred

pred

pred
Step 3: Update the
prompt via TextGrad

Step 2: Construct prompt and in-context demonstrations

in-context demonstrations
selection algorithm 𝑓

unlabeled
data

"𝑦
"𝑦

"𝑦

𝐱!"
𝐱!"
𝐱!"

LLM

𝐱#$%&
𝐱#$%&

unlabeled demonstrations

prompt
…

LLM

"𝑦
"𝑦

"𝑦

𝐱!"
𝐱!"
𝐱!"

We iteratively Step 1: identify “high-confidence” pseudo-supervised data and, for each instance,
construct few shot examples by selecting a set of data from the downstream task with a selec-
tion algorithm. Step 2: assign to each selected data pseudo-supervision generated by the LLM
conditioned on the current prompt and its few-shot examples. Step 3: jointly refine the pseudo
supervision and learn the prompt on the high confidence set according to equation 5.

Figure 2: An illustration of the UFPL algorithm.

for each input xl, we perform multiple-path decoding with temperature T > 0, generating m
reasoning paths with prompt z and the corresponding answers {yl1 , . . . , ylm}. We then apply
majority voting (self-consistency) to select the most consistent answer ŷl and define its confidence as:

cl =
1

m

m∑
j=1

1(ylj = ŷl). (3)

To specialize an LLM for a given downstream task, a straightforward approach is to learn the prompt
based on these “high-confidence” pseudo-supervised data, following the principal idea from (Wan
et al., 2023b; Guo et al., 2024; Li et al., 2024). For example, we optimize the following objective:

argmin
z∈Z

n∑
l=1

1[cl ≥ γ] · L(z | xl,LLMgen(xl, z, ∅),LLMgen(xl, z0, ∅)), (4)

where 1[·] is the indicator function and γ ∈ [0, 1] is a threshold for selecting “high-confidence”
pseudo-supervised data in the downstream task.

However, prompt learning based on “high-confidence” pseudo-supervised data, as in Eqn. equation 4,
creates a mismatch between prompt training and using phases because the objective does not consider
the examples used at inference. Since inference uses LLMgen(x, z, D), we jointly learn the prompt
and refine the task’s pseudo-supervision, with the refined pseudo-labeled data serving as few-shot
examples at inference. Therefore, we define the objective for unsupervised few-shot prompt learning:

Lm(z) =

n∑
l=1

1[cl ≥ γ] · L(z | xl,LLMgen(xl, z, Dl),LLMgen(xl, z0, ∅)), (5)

where Dl denotes the set of in-context examples for input xl selected by algorithm f(xl; z), the
pseudo-supervision of these examples is also generated with prompt z and their examples. Specifically,
f(xl, z) returns a set of pseudo-supervised examples drawn from the downstream task:

Dl = {(xk,LLMgen(xk, z,Dk))|xk ∈ Sl}Kk=1
,

where LLMgen(xk, z,Dk) is the pseudo-supervision of xk, guided by both z and Dk.

For few-shot examples selection, following seminal works on in-context example selection (Liu et al.,
2022; Min et al., 2022), we choose, for each input xl, its K nearest neighbors as the in-context
examples, denoted by Sl:

Sl = argmin
{kj}K

j=1⊂{1,...,n}

K∑
j=1

d(xl,xkj
), (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where d(·, ·) denotes a distance between two inputs; for example, we use d(xl,xk) = ∥θ(xl) −
θ(xk)∥2 with θ(·) a sentence encoder (Liu et al., 2022). In addition, to mitigate majority label bias in
the in-context examples, we adopt the plug-in de-biasing method of (Zhao et al., 2021).

We illustrate the proposed UFPL algorithm in Figure 2 and provide pseudo-code in Algorithm 1. Our
algorithm proceeds iteratively and can be terminated early depending on the time and cost constraints
of the downstream task.

3.3 THEORETICAL ANALYSIS

In this section, we present theoretical insights for the UFPL algorithm. The included theorem is
standard and intended solely to support the approach, not to claim a theoretical contribution.

Informatively, the analysis shows that UFPL refines generation by encouraging the pseudo supervision
to form a clustered structure in the output space. In the simplified multi-class classification setting,
UFPL promotes a multi-manifold structure in which each class occupies a disjoint convex region.
Consequently, queries with similar semantics are encouraged to receive the same refined label, helping
mitigate overfitting and improve generalization (Chapelle et al., 2006; Belkin et al., 2006).

Recent seminal works have shown that ICL can be interpreted as a form of implicit empirical risk
minimization (ERM) (Min et al., 2022; Xie et al., 2022; Bai et al., 2023). We begin by recalling the
following lemma from Bai et al. (2023).
Lemma 1 (Corollary G.1 in (Bai et al., 2023)). For any transformer with layer L ≥ 1, under the same
setting as Theorem G.1 in (Bai et al., 2023), the (2L)-layer transformer TFθ there approximates
the true gradient descent trajectory {wℓ

GD}ℓ≥0: For the intermediate iterates {ŵℓ}ℓ∈[L] considered
therein, we have

∥ŵℓ −wℓ
GD∥2 ≤ L−1

f (1 + ηLf)
ℓε,

where Lf = supw∈W ∥∇2L̂N (w)∥op denotes the smoothness of L̂N within W .

Lemma 1 shows that, under the mild technical assumptions in Bai et al. (2023), a (2L)-layer
transformer approximates the true gradient-descent trajectory, with the intermediate iterates closely
tracking gradient descent in context. Viewed through this lens, ICL performs an ERM like procedure
over the provided few-shot examples: the model instantiates an implicit classifier conditioned on these
examples and applies it to new data. Therefore, UFPL enforces consistency of the refined pseudo-
supervision under such examples-conditioned ERM: for any pseudo-supervised data, conditioning on
pseudo-supervised examples induces (via ICL) an implicit classifier that is applied to that data, and
the resulting prediction is encouraged to agree with its pseudo supervision.

Based on this observation, we make the following assumption about the refined outputs of UFPL.
Assumption 1 (Leave-one-out correctness). Consider a multi-class classification task (e.g., multiple-
choice QA). Let S = {(xi, yi)}ni=1 and, for each i, let S(−i) := S \ {(xi, yi)}. Denote by f (−i) :
Rd → RK the score function returned by the (demonstration-conditioned) ERM (via ICL) trained
on S(−i), and define the induced classifier h(−i)(x) := argmaxk∈{1,...,K} f

(−i)
k (x). We assume

leave-one-out correctness: for every i ∈ {1, . . . , n},

h(−i)(xi) = yi.

Assumption 2 (Uniform stability). Let A be the (demonstration-conditioned) regularized ERM
procedure that maps a sample to a predictor; denote by fS : Rd → RK and fS(−i) the score functions
returned by A on S and S(−i), respectively. Let ℓ : RK × {1, . . . ,K} → R+ be the per-example
loss (e.g., cross-entropy or hinge), and assume ℓ is L-Lipschitz in its score argument.

We say A is uniformly stable with parameter β > 0 if for all i ∈ {1, . . . , n} and all z = (x, y),∣∣ ℓ(fS(x), y) − ℓ
(
fS(−i)(x), y

) ∣∣ ≤ β

n
.

Theorem 1. Under Assumptions 1 and 2, let S = {(xi, ỹi)}ni=1 be the refined pseudo supervision
produced by UFPL. Let fS : Rd →RK be the ERM score and hS(x) = argmaxk≤K fS,k(x) the
induced classifier. Then there exists γ > 0 such that for all i,

fS,ỹi
(xi) − max

j ̸=ỹi

fS,j(xi) ≥ γ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Unsupervised Few-shot Prompt Learning (UFPL)

1: Set total number of iterations T , number of in-context demonstrations K, total number of
sampling m for confidence estimation, and confidence threshold γ.

2: for t = 1 to T do
3: Stochastic sampling: Sample a mini-batch of data from the downstream task
4: Confidence estimation: Estimate the confidence by equation 3 with z(t)

5: Compute loss: Compute loss by equation 5 and generate gradient by equation 1
6: Update prompt: z(t+1) = LLMupdate(z

(t), ∂L
∂z(t))

7: Refine output: ∀l ∈ [n], ŷl = LLMgen(xl, z
(t+1), Dl)

8: end for

If, in addition, fS is L-Lipschitz in x, set r := γ/(3L). Then for any point x and any training point
xi, if ∥x− xi∥2 < r then hS(x) = ỹi. In particular, if two training points xi, xj can be connected
by a chain xi = z0, z1, . . . , zm = xj with ∥zt+1 − zt∥2 < r for all t, then ỹi = ỹj .

Theorem 1 shows that the pseudo supervision refined by UFPL exhibits a low dimensional, cluster
aligned geometry consistent with the clustering induced by graph Laplacian minimization, indicating
that UFPL imposes an implicit regularization in the output space, which helps mitigate overfitting
and improve generalization. Detailed proofs are deferred to the Appendix B.

4 EXPERIMENTS

In this section, we evaluate UFPL alongside six contenders on a range of benchmarks. We then
conduct ablation studies to quantify runtime and cost and to assess the contribution of each component.
Finally, we test the proposed algorithm on a real-world molecular optimization task.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate UFPL on a comprehensive suite of benchmarks spanning question answering,
reasoning, mathematics, and natural language understanding. The evaluation covers the MMLU
benchmark (Hendrycks et al., 2021) (AST, HSCS, HSM, CMath, CCS, CMed, MAN, MAR, and
RND); GPQA (Rein et al., 2024); SimpleQA (Wei et al., 2024); TruthfulQA (Lin et al., 2022);
GSM8k (Cobbe et al., 2021); Hellaswag (Zellers et al., 2019), and BBH dataset (Suzgun et al., 2023).

We also evaluate UFPL on a real-world molecular optimization task using the DOCKSTRING
dataset (García-Ortegón et al., 2022). Each molecule is represented as a SMILES string (Yuksekgonul
et al., 2024), and the learning problem is to generate an improved version that surpasses the original
in terms of important chemical properties, specifically the Vina score, which reflects binding affinity,
and the QED score, which measures drug-likeness (Trott & Olson, 2010).

Contenders. We compare UFPL with six contenders: two baselines that directly generate answers
(with and without chain-of-thought reasoning), two in-context learning algorithms, and two strong
prompt learning contenders with pseudo-supervision in the downstream tasks. Specifically,

Direct prompts the LLM with a default prompt to produce answers. Auto-CoT (Zhang et al., 2022)
induces intermediate reasoning at inference, encouraging a chain-of-thought before the final answer.
Using the same mechanism as UFPL to select “high-confidence” pseudo supervised examples, we
evaluate ICL (Liu et al., 2022), which uses these examples as few-shot examples to predict the
remaining unlabeled data, and USP (Wan et al., 2023b), which scores and selects “high-confidence”
data and then applies in-context learning for generation.
Following the self refinement strategy of (Huang et al., 2023), which performs prompt learning using
“high-confidence” pseudo-supervised data, we intorduce SR (BDPL) (Diao et al., 2023), which
optimizes prompts via policy gradient on pseudo-supervised data, and SR (RLprompt) (Deng
et al., 2022), which uses a parameter efficient policy network to generate prompts conditioned on
these examples. For both variants we use the default settings in their original papers.

For fairness, we apply the plug-in calibration method of (Zhao et al., 2021) to all contenders.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparisons on benchmark datasets. We report the average accuracy (%) and standard
deviation over 5 runs. The best average accuracy are in bold, and (↑ ·) indicates the improvement over Direct.

Model Dataset Direct ICL Auto-CoT USP SR (BDPL) SR (RLprompt) PAPO

GPT-4o

GPQA 47.4 ± 0.2 47.1 ± 0.5 47.9 ± 0.7 47.8 ± 0.8 48.3 ± 1.3 48.1 ± 1.9 49.7 ± 1.5 (↑2.3)
SimpleQA 38.2 ± 0.8 37.5 ± 1.2 38.9 ± 1.0 38.8 ± 1.1 38.1 ± 1.3 37.4 ± 1.1 39.6 ± 0.9 (↑1.4)
TruthfulQA 71.8 ± 0.5 72.3 ± 0.8 72.1 ± 1.2 72.2 ± 1.1 72.7 ± 1.7 72.3 ± 1.0 74.3 ± 1.2 (↑2.5)
MMLU 87.5 ± 0.3 87.7 ± 1.1 88.1 ± 1.3 88.0 ± 1.4 88.9 ± 2.1 89.2 ± 1.7 90.4 ± 1.9 (↑2.9)
GSM8k 93.9 ± 0.5 94.1 ± 0.8 94.3 ± 0.9 94.4 ± 1.0 94.5 ± 1.4 94.9 ± 1.5 95.7 ± 1.3 (↑1.8)
HellaSwag 94.7 ± 0.4 94.8 ± 0.6 95.1 ± 0.6 95.0 ± 0.7 95.7 ± 1.3 95.5 ± 0.8 96.3 ± 0.5 (↑1.6)
BBH 83.1 ± 0.8 83.4 ± 0.9 83.3 ± 1.1 83.4 ± 1.2 84.8 ± 1.5 85.1 ± 1.2 86.2 ± 0.8 (↑3.1)

Qwen3

GPQA 47.9 ± 1.3 47.3 ± 0.9 48.4 ± 0.5 48.3 ± 0.6 47.9 ± 1.0 47.5 ± 0.9 49.9 ± 0.6 (↑2.0)
SimpleQA 39.1 ± 0.7 38.7 ± 1.1 39.4 ± 0.9 39.5 ± 1.0 40.3 ± 1.5 40.7 ± 0.9 41.5 ± 1.1 (↑2.4)
TruthfulQA 72.9 ± 0.9 73.1 ± 1.0 73.3 ± 1.2 73.4 ± 1.1 74.4 ± 1.5 74.8 ± 1.2 75.3 ± 1.1 (↑2.4)
MMLU 85.3 ± 0.5 85.7 ± 1.0 86.1 ± 1.2 86.2 ± 1.2 86.6 ± 1.5 86.9 ± 1.6 88.1 ± 0.7 (↑2.8)
GSM8k 94.4 ± 1.8 94.6 ± 1.5 94.9 ± 1.6 94.8 ± 1.5 95.2 ± 1.4 94.5 ± 1.2 95.9 ± 1.3 (↑1.5)
HellaSwag 95.1 ± 0.9 95.3 ± 0.9 95.6 ± 0.8 95.5 ± 0.9 96.1 ± 1.1 96.2 ± 0.9 96.7 ± 0.8 (↑1.6)
BBH 87.5 ± 1.1 87.8 ± 1.2 88.0 ± 1.3 88.1 ± 1.3 88.5 ± 1.5 88.6 ± 1.3 88.9 ± 1.4 (↑1.4)

Llama

GPQA 25.9 ± 0.4 26.7 ± 2.1 27.1 ± 1.8 27.2 ± 1.8 27.5 ± 2.2 27.8 ± 1.9 29.3 ± 1.7 (↑3.4)
SimpleQA 15.3 ± 0.9 15.6 ± 1.0 15.8 ± 1.1 15.9 ± 1.1 16.3 ± 1.5 16.5 ± 1.6 16.9 ± 2.1 (↑1.6)
TruthfulQA 31.9 ± 0.7 32.1 ± 0.9 32.3 ± 1.0 32.4 ± 1.0 32.7 ± 1.3 32.9 ± 1.4 33.1 ± 1.5 (↑1.2)
MMLU 49.1 ± 0.3 49.5 ± 1.7 49.8 ± 1.4 49.9 ± 1.5 50.7 ± 1.6 50.5 ± 1.5 52.8 ± 0.9 (↑3.7)
GSM8k 44.3 ± 0.4 45.1 ± 1.5 45.3 ± 1.9 45.4 ± 2.0 46.0 ± 1.9 46.3 ± 1.7 47.5 ± 1.3 (↑3.2)
HellaSwag 41.3 ± 0.6 41.8 ± 0.8 42.1 ± 0.9 42.2 ± 0.9 43.5 ± 1.1 44.0 ± 0.9 44.7 ± 0.6 (↑3.4)
BBH 37.6 ± 1.1 38.0 ± 1.2 38.6 ± 1.3 38.7 ± 1.3 39.5 ± 1.4 39.8 ± 1.3 40.3 ± 1.4 (↑2.7)

Implementation Details. In all experiments, we employed GPT-4o 1, Qwen3-235B 2, and Llama-
3.2-1B 3, spanning from black-box to open-source models, and from large-scale to small-scale LLMs.
In the ablation studies, we employ GPT-4o and Llama-3.2-1B to evaluate the stability of the proposed
algorithm. We set all termination T = 3. For both ICL and UFPL, the number of demonstrations is
set to 5. The confidence threshold is fixed at γ = 0.65 for UFPL and all competing methods. Due to
page limits, more implementation details on hyperparameters setting and prompts design are provided
in Appendix C.

4.2 PERFORMANCE COMPARISON ON BENCHMARKS

In this section, we compare the UFPL algorithm with other contenders on benchmark datasets.

Performance. We report the mean accuracy and standard deviation of the refined answers produced
by UFPL and other contenders in Table 1. The proposed UFPL algorithm consistently outperforms
nearly all other methods across the evaluated datasets. Relative to Direct and Auto-CoT, UFPL
achieves higher accuracy, indicating that leveraging unlabeled downstream data and optimizing the
prompt can refine generation more effectively than simply eliciting chain-of-thought at inference.
Moreover, UFPL surpasses ICL, USP, SR (BDPL), and SR (RLPrompt), underscoring the value of
jointly refining the few-shot pseudo-supervised examples during prompt learning rather than selecting
them only at inference. The gains persist across model scales and task types, and they hold under a
common calibration scheme applied to all contenders, suggesting that the improvements arise from
better alignment between prompt learning and usage rather than from evaluation artifacts.

Runtime overhead and cost. Next, we analyze the runtime overhead and cost of UFPL. Our method
adds two sources of cost: (i) constructing a distance matrix over the unlabeled set at initialization for
few-shot examples selection, and (ii) per round refinement of pseudo supervision coupled with prompt
updates. The initialization is a one time cost that is amortized over subsequent rounds, while the per
round refinement primarily adds selection and consistency checks on a small subset of examples.

We compare UFPL with four representative contenders: Direct, USP, SR (RLPrompt), and SFT-
LoRA (Hu et al., 2021). The cost of SFT-LoRA is computed as the total GPU and CPU hours used
for training on A100, multiplied by the on-demand hourly rate, and then amortized over the number

1https://platform.openai.com/docs/models/gpt-4o
2https://huggingface.co/Qwen/Qwen3-235B-A22B
3https://huggingface.co/meta-llama/Llama-3.2-1B

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Cost (USD/1k)

49

50

51

52

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Cost (USD/1k)

Method

Direct

SFT-LoRA

USP

RLPrompt

UFPL

(a) MMLU

0 2 4 6 8
Cost (USD/1k)

44.8

45.6

46.4

47.2

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Cost (USD/1k)

Method

Direct

SFT-LoRA

USP

RLPrompt

UFPL

(b) GSM8K

0 2 4 6 8
Cost (USD/1k)

37.8

38.4

39.0

39.6

40.2

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Cost (USD/1k)

Method

Direct

SFT-LoRA

USP

RLPrompt

UFPL

(c) BBH

0 2 4 6 8
Cost (USD/1k)

15.6

16.0

16.4

16.8

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Cost (USD/1k)

Method

Direct

SFT-LoRA

USP

RLPrompt

UFPL

(d) SimpleQA

Figure 3: Average Performance v.s. Cost on Llama-3.2-1B.

2 4 6 8 10 12 14 16
Time (min / 1k)

87.5

88.0

88.5

89.0

89.5

90.0

90.5

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Time

Method
Direct

USP

SR (RLPrompt)

UFPL (1)

UFPL (2)

UFPL (3)

(a) MMLU

2 4 6 8 10 12 14 16
Time (min / 1k)

94.0

94.5

95.0

95.5

96.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Time

Method
Direct

USP

SR (RLPrompt)

UFPL (1)

UFPL (2)

UFPL (3)

(b) GSM8K

2 4 6 8 10 12 14 16
Time (min / 1k)

83.0

83.5

84.0

84.5

85.0

85.5

86.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Time

Method
Direct

USP

SR (RLPrompt)

UFPL (1)

UFPL (2)

UFPL (3)

(c) BBH

2 4 6 8 10 12 14 16
Time (min / 1k)

37.5

38.0

38.5

39.0

39.5

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Average Accuracy vs Time

Method
Direct

USP

SR (RLPrompt)

UFPL (1)

UFPL (2)

UFPL (3)

(d) SimpleQA

Figure 4: Average Performance v.s. Runtime Overhead on GPT-4o.

of inference tokens to obtain a per-1k-token cost. SFT-LoRA performs supervised fine-tuning on the
same high confidence pseudo supervised data as USP and SR (RLPrompt).

We report the average accuracy and average cost of UFPL and competing method over ten runs
with Llama-3.2-1B in Figure 3. The results show that UFPL attains higher accuracy with only a
modest increase in cost, and this trend is consistent across datasets. Compared with Direct and USP,
which have costs comparable to UFPL, UFPL shows better performance. Relative to SFT-Lora, our
method achieves both higher accuracy and lower cost, indicating that fine-tuning a LLM can be more
expensive than UFPL.

Figure 4 presents the average accuracy and run time over ten runs for all contenders on GPT-4o.
Since UFPL is iterative, we report its performance for three runs. As shown in Figure 4, the second
run of UFPL achieves a noticeable performance improvement with a reasonable runtime overhead.

Effectiveness of each component. To test the effectiveness of each component in UFPL, we
introduce the following ablation baselines. Each variant isolates a specific aspect of the proposed
pipeline, allowing us to understand its individual impact on performance across multiple datasets.
The comparison methods are defined as follows:

UFPL (textual conf.): Replaces the CoT selection mechanism for initializing high-confidence data
with a strategy based on the LLM’s output likelihood scores.
UFPL (w/o voting): Replaces the confidence-based voting mechanism by estimating confidence
from a single sampled output.
UFPL (random sampling): Replaces the K nearest neighbors selection with random sampling.
Few-shot examples are selected randomly while ensuring class balance.
UFPL (w RLPrompt): Replaces the TextGrad optimization step in the proposed method with
RLPrompt while keeping all other components unchanged.
UFPL: Represents the complete version of our proposed method, incorporating all components.

We report the results on GPT-4o in Table 2. We observe that all proposed components are beneficial
for performance improvement: removing any single component consistently degrades performance,
while using all components yields the best results across datasets.

Beyond prompt optimization and the refinement of pseudo supervision. In some real-world
tasks, users may prefer a customized model instead of relying on refined generation for downstream
applications. To support this, we use the refined pseudo-supervision and apply OpenAI’s commercial

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance comparisons of UFPL variants on benchmark datasets. We report average accuracy (%)
and standard deviation over 5 runs. The best results are in bold.

Dataset UFPL (textual conf.) UFPL (w/o voting) UFPL (random sampling) UFPL (w. RLPrompt) UFPL
MMLU 87.9 ± 1.5 85.8 ± 1.3 87.4 ± 1.4 86.8 ± 2.3 88.5 ± 0.8
GPQA 39.1 ± 0.7 38.1 ± 0.9 38.7 ± 1.6 38.5 ± 1.9 40.4 ± 1.2
GSM8K 94.5 ± 1.9 93.8 ± 1.1 94.3 ± 1.6 93.9 ± 1.5 95.2 ± 1.4

fine-tuning service to obtain a customized model. Fine-tuning is performed using the official OpenAI
API4. We report the results in Appendix A.1.

Due to page limits, additional benchmark results are presented in Appendix A.1. Hyperparameter
ablation studies are presented in Appendix A.2. Illustrative examples are presented in Appendix A.3.

4.3 MOLECULE OPTIMIZATION

0.4 0.5 0.6 0.7 0.8 0.9
druglikeness (QED)

8.5

8.0

7.5

7.0

6.5

6.0

bi
nd

in
g

af
fin

ity
 (V

in
a

sc
or

e)

Fenofibrate

Fenofibric acid

Ciprofibrate

UFPL
Auto-CoT

Figure 5: Vina score and QED score
of the molecules refined by UFPL and
Auto-CoT compared to clinically ap-
proved compounds. The molecule re-
fined by UFPL exhibits greater struc-
tural similarity to its closest approved
counterpart while achieving better QED
and Vina scores.

In this part, we apply te proposed UFPL algorithm to a real
world drug molecular optimization task. The supervision for
each molecule is defined by the optimal counterparts, evaluated
based on the Vina score and QED score. We begin with five
clinically approved drugs from the dataset as the initial set of
“high-confidence” pseudo-supervised data. GPT-4o is used as
the LLM, with the prompt text adopted from TextGrad.

In Figure 5, we present the drug molecules refined by the
proposed UFPL in the final three iterations, alongside the
molecule refined by Auto-CoT and three clinically approved
drugs Ciprofibrate, Fenofibrate, and Fenofibric acid. We ob-
serve that the molecule refined by UFPL is structurally close
to clinically approved drugs, while achieving better QED and
Vina scores and outperforming the Auto-CoT method.

Based on this empirical result, UFPL explores the entire unsu-
pervised dataset to generate more refined outputs, while leverag-
ing the TextGrad framework to produce explainable decisions,
which allow researchers to clearly understand how and why a
molecule’s structure is generated. These results underscore the
promising potential of the proposed UFPL algorithm in scientific discovery tasks.

5 CONCLUSION

In this paper, we investigate specialization of general purpose LLM without retraining model parame-
ters or relying on human supervision. A straightforward approach is to generate “high-confidence”
pseudo-supervised data and then apply in-context learning or prompt learning; however, using the
few-shot examples only at inference rather than during prompt learning create a mismatch between
how the prompt is learned and how it is used. We propose UFPL, an algorithm that iteratively
identifies “high confidence” pseudo supervised data and jointly optimizes the prompt while refining
pseudo supervision, thereby specializing general purpose LLMs for downstream tasks. This joint
optimization aligns prompt training with usage by requiring the learned prompt to produce consistent
answers when pseudo-supervised data from the downstream task are used as few-shot examples.
Theoretical analysis shows that, in a simplified multi-class classification setting, UFPL encourages
pseudo-supervision to form a low-dimensional structure, helping to mitigate overfitting and improve
generalization. Experiments on several benchmarks and a real-world molecule optimization task
demonstrate the effectiveness of UFPL.

4https://platform.openai.com/docs/guides/fine-tuning

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in Neural Information
Processing Systems (NeurIPS), 36:57125–57211, 2023.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7
(11), 2006.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:1877–1901,
2020.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning. MIT Press,
2006.

Derek Chong, Jenny Hong, and Christopher D Manning. Detecting label errors by using pre-trained
language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 9074–9091, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Sarkar Snigdha Sarathi Das, Ryo Kamoi, Bo Pang, Yusen Zhang, Caiming Xiong, and Rui Zhang.
Greater: Gradients over reasoning makes smaller language models strong prompt optimizers. In
The 13th International Conference on Learning Representations (ICLR), 2024.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 3369–3391, 2022.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, LIN Yong, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. Transactions on Machine Learning
Research, 2023.

Miguel García-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato, Andreas
Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better benchmarks for
ligand design. Journal of Chemical Information and Modeling, 62(15):3486–3502, 2022.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120,
2023.

Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei, Xiaoying Zhang, Zhaoran Wang, and Yang Liu.
Human-instruction-free llm self-alignment with limited samples. arXiv preprint arXiv:2401.06785,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In The 10th International
Conference on Learning Representations (ICLR), 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In The 10th International Conference
on Learning Representations (ICLR), 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1051–1068, 2023.

Rui Li, Guoyin Wang, and Jiwei Li. Are human-generated demonstrations necessary for in-context
learning? In The 12th International Conference on Learning Representations, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 3214–3252, 2022.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures, pp. 100–114, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 8086–8098,
2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 11048–11064, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems (NeurIPS),
35:27730–27744, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7957–7968, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
Kevin Clark, Stephen R Pfohl, Heather Cole-Lewis, et al. Toward expert-level medical question
answering with large language models. Nature Medicine, 31(3):943–950, 2025.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In Proceedings of the 39th International Conference on Machine
Learning (ICML), pp. 20841–20855, 2022.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. Advances in Neural Information Processing Systems (NeurIPS), 36:
2511–2565, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. In Findings of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 13003–13051, 2023.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 5039–5059, 2022.

Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Arik, and Tomas Pfister. Better zero-shot reasoning
with self-adaptive prompting. In Findings of the 61st Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 3493–3514, 2023a.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Martin Eisenschlos, Sercan O Arik,
and Tomas Pfister. Universal self-adaptive prompting. In The 2023 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 7437–7462, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The 11th International Conference on Learning Representations (ICLR), 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems (NeurIPS), 35:24824–24837, 2022.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
arXiv preprint arXiv:2411.04368, 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The 11th International Conference on Learning
Representations, 2022.

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj Juraska, Biao Zhang, Zhongtao Liu, William Yang
Wang, Lei Li, and Markus Freitag. Llmrefine: Pinpointing and refining large language models via
fine-grained actionable feedback. In Findings of the Association for Computational Linguistics
(NAACL), pp. 1429–1445, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems (NeurIPS), 36:11809–11822, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 4791–4800, 2019.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The 11th International Conference on Learning Representations (ICLR),
2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Proceedings of the 38th International Conference
on Machine Learning (ICML), pp. 12697–12706, 2021.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The 11th International
Conference on Learning Representations (ICLR), 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ADDITIONAL PERFORMANCE COMPARISON ON BENCHMARKS

We first report the performance of each sub-dataset within MMLU in Table 3.

Table 3: Performance comparisons across sub-datasets in MMLU with GPT-4o. We report the average accuracy
(%) and standard deviation over 5 runs. The best results are in bold and (↑ ·) indicates the improvement over
Direct in terms of average accuracy.

Model Dataset Direct ICL Auto-CoT USP SR (BDPL) SR (RLprompt) UFPL

GPT-4o

MAR 90.2 ± 2.0 90.7 ± 1.7 88.9 ± 1.7 92.4 ± 0.9 91.3 ± 1.8 91.0 ± 0.8 92.1 ± 0.8 (↑1.9)
MAN 76.8 ± 1.4 76.4 ± 1.0 76.5 ± 1.0 77.5 ± 1.6 79.0 ± 1.2 78.2 ± 0.9 81.1 ± 1.4 (↑4.3)
HSM 50.9 ± 2.9 47.5 ± 2.2 47.4 ± 2.2 51.4 ± 2.3 53.4 ± 1.8 53.2 ± 1.1 55.6 ± 1.6 (↑4.7)
HCS 90.8 ± 2.7 91.0 ± 2.1 89.1 ± 2.1 89.9 ± 2.3 92.5 ± 2.1 91.3 ± 2.2 93.1 ± 1.4 (↑2.3)
CMed 61.9 ± 1.8 58.4 ± 3.4 58.4 ± 3.4 61.8 ± 2.1 61.4 ± 1.7 59.5 ± 3.0 63.8 ± 2.3 (↑1.9)
CMath 40.7 ± 4.2 40.8 ± 2.5 40.2 ± 2.5 41.1 ± 2.8 44.3 ± 2.7 43.3 ± 1.3 46.1 ± 1.6 (↑5.4)
CCS 68.4 ± 2.4 71.5 ± 1.3 69.6 ± 1.3 69.8 ± 2.3 71.8 ± 1.8 71.0 ± 1.6 73.2 ± 1.0 (↑4.8)
AST 86.6 ± 2.5 86.8 ± 2.3 86.5 ± 2.3 87.1 ± 2.1 85.6 ± 3.6 88.0 ± 2.8 87.2 ± 1.5 (↑0.6)
RND 68.7 ± 1.1 68.9 ± 1.2 68.3 ± 1.2 70.4 ± 1.7 70.6 ± 1.7 70.5 ± 1.3 72.8 ± 2.0 (↑4.1)

In certain cases, users may prefer a customized model over refined generation for downstream tasks.
To evaluate the performance of the fine-tuned model for both the proposed method and the baselines,
we first learn the prompt and pseudo-supervision using 20% of the original dataset. The model is
then fine-tuned on this refined dataset and evaluated on the remaining 80% of the data. We report the
results in Table 4. Our proposed method consistently outperforms other contenders, indicating higher
quality in the refined generation compared to existing approaches.

Table 4: Performance comparisons on fine-tuned models across sub-datasets in MMLU with GPT-4o. We report
the average accuracy (%) and standard deviation over 5 runs. The best results are in bold. The best results are in
bold and (↑ ·) indicates the improvement over Direct in terms of average accuracy.

Model Dataset Direct ICL Auto-CoT USP SR (BDPL) SR (RLprompt) UFPL

GPT-4o

MAR 91.1 ± 2.3 88.9 ± 1.5 89.9 ± 1.3 92.7 ± 1.1 91.5 ± 1.7 92.4 ± 0.4 93.6 ± 0.8 (↑2.5)
MAN 76.9 ± 1.1 77.8 ± 1.5 77.0 ± 1.3 78.5 ± 2.0 79.5 ± 1.6 79.0 ± 1.0 82.0 ± 1.8 (↑5.1)
HSM 51.1 ± 2.8 47.9 ± 2.0 47.6 ± 2.2 52.0 ± 1.9 54.0 ± 2.1 53.7 ± 0.7 56.9 ± 2.1 (↑5.8)
HCS 91.6 ± 2.5 89.6 ± 2.4 89.7 ± 1.8 91.6 ± 1.8 93.7 ± 2.0 92.2 ± 1.7 94.1 ± 1.7 (↑2.5)
CMed 62.9 ± 1.5 59.9 ± 2.9 59.4 ± 3.0 62.6 ± 2.5 62.7 ± 1.9 61.2 ± 2.6 64.1 ± 2.4 (↑1.2)
CMath 41.6 ± 4.0 41.2 ± 2.3 41.3 ± 2.0 42.4 ± 2.9 45.1 ± 2.6 44.3 ± 1.6 47.2 ± 1.8 (↑5.6)
CCS 69.7 ± 2.0 70.8 ± 1.4 70.6 ± 1.1 70.6 ± 2.5 72.9 ± 1.6 72.4 ± 1.8 74.7 ± 1.3 (↑5.0)
AST 87.4 ± 2.6 87.7 ± 2.4 87.3 ± 2.1 88.5 ± 2.1 86.7 ± 3.1 89.1 ± 2.4 88.7 ± 1.9 (↑1.3)
RND 69.4 ± 1.3 69.3 ± 1.4 69.5 ± 1.1 71.3 ± 1.4 71.9 ± 1.4 71.6 ± 1.0 73.8 ± 1.8 (↑4.4)

A.2 ABLATION STUDIES

In this part, we conduct ablation studies on the proposed UFPL algorithm, analyzing the impact of
generation of “high-confidence” pseudo-supervised data, the selection of in-context examples, the
computational overhead of UFPL, and the choice of LLM used in the pipeline.

Number of in-context demonstrations. Finally, we investigate the impact of the number of in-
context demonstrations by selecting different numbers of K-nearest samples for each query, following
the distance metric used in (Liu et al., 2022). The comparison results are reported in Table 5. It can
be observed that the UFPL algorithm outperforms both the Direct and ICL methods on nearly all
datasets across different values of K. This highlights the benefit of leveraging pseudo-supervised
data as in-context demonstrations during the prompt optimization phase. Based on our empirical
results, setting K = 5 is recommended to achieve satisfactory performance.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Performance comparisons with varying number of in-context examples on benchmark datasets. We
report the average accuracy (%) and standard deviation over 5 runs. The best results are in bold.

Method MNLI QQP SST-2 MRPC CoLA WNLI RTE RND
Direct 91.7 ± 2.3 71.4 ± 1.0 89.6 ± 1.5 90.9 ± 2.0 69.7 ± 1.7 90.8 ± 1.6 92.9 ± 1.2 68.7 ± 1.1
ICL (k = 3) 89.3 ± 1.9 68.5 ± 2.1 88.9 ± 2.4 88.3 ± 1.7 66.4 ± 2.3 87.5 ± 1.7 88.3 ± 1.2 67.5 ± 1.5
ICL (k = 5) 90.4 ± 2.0 71.6 ± 2.0 88.4 ± 0.7 91.0 ± 1.5 69.7 ± 2.3 87.3 ± 1.7 93.1 ± 1.0 68.9 ± 1.2
UFPL (k = 3) 91.5 ± 2.1 72.5 ± 2.1 91.3 ± 1.7 92.3 ± 1.8 71.8 ± 1.5 91.0 ± 1.7 93.1 ± 2.0 71.5 ± 2.6
UFPL (k = 5) 92.0 ± 1.8 73.2 ± 2.0 92.7 ± 1.1 93.4 ± 1.7 71.2 ± 1.1 91.1 ± 1.4 94.9 ± 1.6 72.8 ± 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence Threshold ()

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Confidence Threshold vs Accuracy

SST2
RTE
MNLI
MMLU

Figure 6: Accuracy with different γ.

Confidence threshold. We first investigate the confidence
threshold γ for generating “high-confidence” pseudo-labeled
data. Experiments are conducted across both the question an-
swering and natural language inference tasks, using average
accuracy as the evaluation metric. The results are presented
in Figure 6. We observe that setting the confidence threshold
between 0.6 and 0.7 yields stable and satisfactory performance
across all experiments. A lower threshold may introduce incor-
rect pseudo-labels, negatively affecting performance, while a
higher threshold can limit the amount of selected pseudo-supervised data, also leading to performance
degradation. Based on these findings, we recommend setting the confidence threshold in the range of
0.6 to 0.7 for practical applications.

A.3 ILLUSTRATIVE EXAMPLE

In this section, we present the optimized prompts for the SimpleQA (Wei et al., 2024) dataset as an
illustration.

Example of the SimpleQA dataset

Prompt at initialization:
You will answer a general-knowledge question on $topic topic. Always conclude the last line
of your response should be of the following format: ’Answer: $VALUE’ where VALUE is a
$answer_type value."

Prompt refined by UFPL:
You will answer a general-knowledge question. Restate the question in your own words
to ensure understanding. Compare it with the examples provided above, note any shared
entities and relations. Reason through the composition using evidence from both the question
and demonstrations. Cross Check your conclusion, ensure it does not contradict any high
confidence example. Always conclude the last line of your response should be of the following
format: ’Answer: $VALUE’ where VALUE is a $answer_type value."

B PROOF OF THEOREM 1

Theorem 2 (Restatement of Theorem 1). Under Assumptions 1 and 2, let S = {(xi, ỹi)}ni=1 be
the refined pseudo supervision produced by UFPL. Let fS : Rd → RK be the ERM score and
hS(x) = argmaxk≤K fS,k(x) the induced classifier. Then there exists γ > 0 such that, for all i,

fS,ỹi
(xi) − max

j ̸=ỹi

fS,j(xi) ≥ γ.

If, in addition, fS is L-Lipschitz in x, set r := γ/(3L). Then:

(a) (Local purity) For every i and every x with ∥x− xi∥2 < r, we have hS(x) = ỹi.

(b) (Cluster connectivity) Define U :=
⋃n

i=1 B(xi, r). If two training points xi, xj admit a
chain of indices i = i0, i1, . . . , im = j such that B(xit , r) ∩B(xit+1

, r) ̸= ∅ for all t, then
ỹi = ỹj . Equivalently, hS is constant on each path-connected component of U .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Step 1: Uniform margin at training points. For each i, let f (−i) be the leave-one-out ERM
score trained on S(−i). By Assumption 1, there exists γi > 0 with

f
(−i)
ỹi

(xi) − max
j ̸=ỹi

f
(−i)
j (xi) ≥ γi.

Assumption 2 yields, for all classes k,
∣∣fS,k(xi) − f

(−i)
k (xi)

∣∣ ≤ C/n. Hence, by the triangle
inequality,

fS,ỹi
(xi)−max

j ̸=ỹi

fS,j(xi) ≥
[
f
(−i)
ỹi

(xi)−max
j ̸=ỹi

f
(−i)
j (xi)

]
− 2C

n

≥ γi − 2C
n .

Let γ := mini γi − 2C
n > 0 (for sufficiently large n). This proves the uniform margin claim.

Step 2: Local label stability via Lipschitz continuity. Assume fS is L-Lipschitz: ∥fS(x) −
fS(x

′)∥∞ ≤ L∥x− x′∥2. Fix any i and any x with ∥x− xi∥2 < r = γ/(3L). Then, for all k,∣∣fS,k(x)− fS,k(xi)
∣∣ ≤ L∥x− xi∥2 < Lr = γ/3.

Therefore,
fS,ỹi

(x) ≥ fS,ỹi
(xi)− γ/3,

max
j ̸=ỹi

fS,j(x) ≤ max
j ̸=ỹi

fS,j(xi) + γ/3.

Subtracting gives

fS,ỹi
(x)−max

j ̸=ỹi

fS,j(x) ≥
[
fS,ỹi

(xi)−max
j ̸=ỹi

fS,j(xi)
]
− 2γ

3 ≥ γ − 2γ
3 = γ

3 > 0.

Hence hS(x) = ỹi, proving (a). If a deterministic tie-breaking rule is specified, one can take
r = γ/(2L) with a nonnegative gap.

Step 3: Propagation along overlapping balls. Suppose B(xit , r) ∩ B(xit+1
, r) ̸= ∅. Pick any

z ∈ B(xit , r) ∩ B(xit+1
, r). By (a), hS(z) = ỹit and also hS(z) = ỹit+1

, hence ỹit = ỹit+1
. By

induction along the chain i = i0, i1, . . . , im = j, we get ỹi = ỹj , proving (b). Equivalently, since
labels are constant within each B(xi, r) and agree on overlaps, hS is constant on every path-connected
component of U =

⋃
i B(xi, r).

C IMPLEMENTATION DETAILS

In this section, we present the prompts (manual templates) used by TextGrad for each dataset.

C.1 PROMPT DESIGN IN TEXTGRAD

For every task we compose a system prompt that fixes the global behaviour of GPT-4o and a task
prompt that encodes the input variables.

The forward model receives the concatenation: <task-prompt> + <in-context demos>
+ <query>.

Confidence filter. A sample is kept in the loss only if

max
c

pθ(y = c | x) ≥ 0.80

This threshold was tuned once on GLUE and reused everywhere else.

Hyper-parameters.

• Optimiser: TGD (step size 1.0, temperature 0.7);
• Prompt length cap: 256 GPT-4o tokens;
• Demonstrations per query: K = 4;
• PAPO iterations T : 10 (classification) / 5 (reasoning datasets).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dataset Initial prompt z0
SST-2 Review: {sentence }, Options: {options }. Answer:
CoLA Sentence: {sentence} Options: {options }. Answer:
MNLI Premise: {premise}\nHypothesis: {hypothesis }\nOptions: {options }. Answer:
QQP Question 1: {question1 }\nQuestion 2: {question2 }\nOptions: {options }. Answer:
MRPC Sentence 1: {sentence1}\nSentence 2: {sentence2}\nOptions: {options }. Answer:
RTE Premise: {sentence1}\nHypothesis: {sentence2}\nOptions: {options }. Answer:
WNLI Sentence 1: {sentence1}\nSentence 2: {sentence2}\nOptions: {options }. Answer:
CAIS/MMLU Question: {question }, Options: {options }. Answer:
SimpleQA You will answer a general-knowledge question on $topic topic. Always conclude the

last line of your response should be of the following format: ’Answer: $VALUE’
where VALUE is a $answer_type value."

GPQA You will answer a professional knowledge question. Think step-by-step. Always
finish with Answer: $OPTION where OPTION is the letter of the correct choice.

Table 6: Initial prompt templates for all datasets evaluated in the paper.

C.2 PROMPT DESIGN FOR EACH TASK

D USE OF LARGE LANGUAGE MODELS

We use LLMs to check grammar.

16

	Introduction
	Related Work
	Our Approach
	Notations
	Unsupervised Few-shot Prompt Learning
	Theoretical Analysis

	Experiments
	Experimental Setup
	Performance Comparison on Benchmarks
	Molecule Optimization

	Conclusion
	Additional Experimental Results
	Additional Performance Comparison on Benchmarks
	Ablation Studies
	Illustrative Example

	Proof of Theorem 1
	Implementation Details
	Prompt Design in TextGrad
	Prompt Design for Each Task

	Use of Large Language Models

