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Abstract High-dimensional action spaces remain a challenge for dynamic algorithm configuration

(DAC). Interdependencies and varying importance between action dimensions are further

known key characteristics of DACproblems. We argue that these CoupledActionDimensions

with Importance Differences (CANDID) represent aspects of the DAC problem that are

not yet fully explored. To address this gap, we introduce a new white-box benchmark

within the DACBench suite that simulates the properties of CANDID. Further, we propose

sequential policies as an effective strategy for managing these properties. Such policies

factorize the action space and mitigate exponential growth by learning a policy per action

dimension. At the same time, these policies accommodate the interdependence of action

dimensions by fostering implicit coordination. We show this in an experimental study

of value-based policies on our new benchmark. This study demonstrates that sequential

policies significantly outperform independent learning of factorized policies in CANDID

action spaces. In addition, they overcome the scalability limitations associated with learning

a single policy across all action dimensions. The code used for our experiments is available

under https://github.com/PhilippBordne/candidDAC.

1 Introduction
In the Dynamic Algorithm Configuration (DAC) problem (Biedenkapp et al., 2020) hyperparameters

must be adjusted on-the-fly. A significant portion of these are either categorical or discrete, posing

a challenge for reinforcement learning (RL), the common approach to solving DAC (Adriaensen

et al., 2022), as they result in a combinatorial explosion of the joint action space. The DAC problem

is further complicated by interaction effects between hyperparameters (Hutter et al., 2014; van Rijn

and Hutter, 2018; Usmani et al., 2023) with varying importance of hyperparameters (Hutter et al.,

2014; Moosbauer et al., 2021; Mohan et al., 2023; Biedenkapp et al., 2018). In this paper, we will refer

to these properties as Coupled ActioN-Dimensions with Importance Differences (CANDID). This

work investigates how CANDID influences the performance of RL algorithms and lays the ground

for the development of better methods to tackle the DAC problem. To do so, we introduce a new

CANDID benchmark derived from the original Sigmoid benchmark (Biedenkapp et al., 2020). We

believe that this captures the complexities associated with the high-dimensionality of action spaces

in DAC and other control domains more comprehensively. We use this benchmark to evaluate RL

algorithms that learn policies per action dimension in factored action spaces (Sharma et al., 2017;

Xue et al., 2022). In particular, we implement two algorithm variants to learn sequential policies

(Metz et al., 2017). We compare them against a single agent baseline as typically used in DAC as well

as a multi-agent baseline. Our results suggest that under the CANDID properties, sequential policies

can coordinate action selection between dimensions while avoiding combinatorial explosion of the

action space. Our initial results encourage an extended study of sequential policies for DAC.

2 Related Work
Hyperparameter importances and interactions in the AutoML landscape. Hyperparameter impor-

tance is a key topic in AutoML. Tools like fANOVA (Hutter et al., 2014) quantify the importance of
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individual hyperparameters and their interactions. These tools guide the tuning of hyperparameters

and the examination of pipeline components in post-hoc analyses (van Rijn and Hutter, 2018). To

our knowledge, the importance and interactions of hyperparameters have not yet been used as

structural information to solve DAC problems more effectively.

Solving high-dimensional action spaces in RL. Large discrete or categorical action spaces pose a

significant challenge for RL, as well as DAC by RL (Biedenkapp et al., 2022). Factored action space

representations (FAR) address this challenge by learning policies per action dimension (Sharma et al.,

2017). Based on Deep Q-Networks (DQN) (Mnih et al., 2015), Metz et al. (2017) introduced sequential

policies that control one action dimension at a time and condition on previously selected actions.

This approach has been extended to more RL-algorithms (Pierrot et al., 2021). We further develop

this concept by ordering the sequential policies based on the importance of action dimensions and

propose an adaptation of its training algorithm inspired by sequential games. Other research has

approached high-dimensional action spaces as multi-agent learning problems, where each action

dimension is controlled by a distinct agent. For example, Xue et al. (2022) trained individual agents

per hyperparameter to dynamically tune a multi-objective optimization algorithm. In their study,

well-established MARL algorithms such as VDN (Sunehag et al., 2018) and QMIX (Rashid et al.,

2018) were utilized to coordinate learning in the multi-agent setting. As we aim to explicitly exploit

the CANDID property of DAC action spaces through sequential action selection, we focus solely on

the simplest MARL baseline which is independent learning of agents. Analogous to MARL research,

allowing sequential policies to observe previously selected actions acts as a communication scheme

between agents. This approach is tailored to the structure revealed by the importance of action

dimensions and their interaction effects. For further insights into the state-of-the-art of MARL, we

refer interested readers to the survey of Huh and Mohapatra (2023).

3 Piecewise Linear Benchmark

(a) (b)

Figure 1: (a) Example of a prediction task on a 2D Piecewise Linear instance; (b) Comparison of its

reward surface against a 2D Sigmoid instance at 4 different time steps.

We implement the Piecewise Linear benchmark within DACBench (Eimer et al., 2021), building

on the Sigmoid benchmark that models a DAC problem with a high-dimensional action space

(Biedenkapp et al., 2020). In a𝑀-D Sigmoid, the task is to predict the values of𝑀 individual Sigmoid

curves over 𝑇 = 10 time steps, with 𝑛𝑚
act

action choices for dimension𝑚. Its reward function is

defined as 𝑟𝑡 =
∏𝑀

𝑚=1 1 − pred_error(𝑎𝑚𝑡 ), which can be maximized by minimizing the prediction

errors independently per action dimension. In contrast the Piecewise Linear benchmark aggregates

all action dimensions through a weighted sum to predict on a single target function (Figure 1a):

pred(𝑎1:𝑀𝑡 ) =
𝑎1𝑡

𝑛1
act
− 1
+

𝑀∑︁
𝑚=2

𝑤𝑚 (
𝑎𝑚𝑡

𝑛𝑚
act
− 1 −

1

2

) (1)

This introduces coupling and importance differences between action dimensions, emulating the

CANDID setting, and requires joint optimization of action dimensions (Figure 1b). Instead of
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Sigmoid curves, we sample 2-segment piecewise linear functions as prediction targets to avoid

constant target function values featured by many Sigmoid instances. We present more details such

as reward signal definition and the train and test dataset in Appendix A.

4 Controlling CANDID Action Spaces with Sequential Policies
The aim of RL is to learn the optimal policy for a Markov Decision Process (MDP)M = (S,A, 𝑃, 𝑅)
(Sutton and Barto, 2018). After factorizing a𝑀-dimensional action space A = A1 × ... ×A𝑀 into

1-dimensional action spacesA1, ...,A𝑀 we can learn a policy per action dimension. We will refer to

such approaches as factorized policies. Sequential policies build on the idea of extending the original

MDP M to a sequential MDP (sMDP) by introducing substates ( [𝑠𝑡 , ], [𝑠𝑡 , 𝑎1𝑡 ], ..., [𝑠𝑡 , 𝑎1:𝑀−1𝑡 ]) to
include an action selection process for all action dimensions at the current time step 𝑡 (Metz et al.,

2017). A comprehensive formalization of these MDP reformulations is given in Appendix B.1.

We choose sequential policies to solve CANDID action spaces for two reasons. (I) Sequential

policies are able to condition subsequent actions on already selected actions and thus to learn about

the coupling between action dimensions. (II) The different importances of action dimensions induce

an order for the selection process: By selecting the most important action first, this information is

available when controlling all other action dimensions at the current time step. We implemented

two different algorithms to learn sequential policies, which differ in the TD-updates (see, Equation

(2)). The first is a simplified version of SDQN (simSDQN) that omits the upper Q-network compared

to the implementation of Metz et al. (2017). This approach can be interpreted as a hybrid of tabular

and function-approximation Q-learning. We introduce an implicit state that denotes the current

stage in the action selection process and add a tabular entry for each of the𝑀 stages. The second

approach can be interpreted as multiple agents playing a sequential game (Sequential Agent Q-

Learning = SAQL) and selecting 𝑎𝑚𝑡 is the turn of the𝑚-th agent, an approach inspired by learning

equilibria in Stackelberg games (Gerstgrasser and Parkes, 2023). As our setting is fully cooperative,

all agents receive the same true reward. We provide a more detailed explanation in Appendix B.3.

target
𝑚
SAQL

= 𝑟𝑡 + 𝛾 max

𝑎𝑚
𝑄𝑚 ( [𝑠𝑡+1, 𝑎1:𝑚−1𝑡+1 ], 𝑎𝑚) = 𝑟𝑡 + 𝛾𝑉𝑚 (𝑠𝑚𝑡+1) (2a)

target
𝑚
simSDQN

=

{
max𝑎𝑚+1 𝑄

𝑚+1( [𝑠𝑡 , 𝑎1:𝑚𝑡 ], 𝑎𝑚+1) = 𝑉𝑚+1(𝑠𝑚+1𝑡 ), 1 ≤ 𝑚 ≤ 𝑀 − 1
𝑟𝑡 + 𝛾 max𝑎1 𝑄

1( [𝑠𝑡+1, ], 𝑎1) = 𝑟𝑡 + 𝛾𝑉 1(𝑠0
𝑡+1), 𝑚 = 𝑀

(2b)

5 Experimental Setup
We compared sequential policies on the Sigmoid and Piecewise Linear benchmark against two

baselines: (I) Double DQN (DDQN) (van Hasselt et al., 2016) as baseline of a single-agent policy

controlling all action dimensions simultaneously; (II) Independent Q-Learning (IQL) (Tampuu et al.,

2015) as multi-agent baseline controlling all action dimensions independently. Note that IQL can

be seen as an ablation of SAQL without communication between individual agents. We provide a

detailed comparison of the evaluated algorithms in Appendix B.3.

Additional action dimensions of the Piecewise Linear benchmark enable higher rewards through

more accurate predictions. As static baseline, we calculated the reward achievable by predictions

based solely on the first and most important action dimension (optimal (1D)). Outperforming this

baseline indicates effective coordination of action dimensions.

We selected hyperparameters on a per-algorithm basis on the training instance set of the 5D

Sigmoid benchmark. To this end, we evaluated each algorithm on a portfolio of 100 randomly

sampled hyperparameter configurations. Each evaluation consisted of 10 random seeds that we

aggregated through the median (Agarwal et al., 2021). We provide the configurations together with

the model architectures in Appendices C & D and the used computing resources in Appendix E.

To induce importance differences, we define the weights per action dimension as𝑤𝑚 = 𝜆𝑚−1

for𝑚 ∈ {2, ..., 𝑀}. We set the importance decay 𝜆 = 0.5 for all experiments and report the results
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for further importance decays in Appendix F. To assess scaling with action space size, we evaluated

the approaches on varying action space dimensionality (dim, or 𝑀) and actions per dimension

(n_act). We provide details on the train and test dataset in Appendix A.

6 Results and Discussion
Are Sequential Policies Beneficial for CANDID DAC? To answer this question, we compare the

best performing approaches on the 5D Sigmoid without CANDID properties and the 5D Piecewise

Linear benchmark with CANDID properties. The performance of the multi-agent baselines (IQL) is

notably poor in the CANDID setting and performs best in other scenarios, as illustrated in Figure 2.

Even on the 2D Piecewise Linear benchmark, where all other evaluated algorithms achieve near-

perfect solutions within a fraction of the total training episodes, IQL lags behind. This demonstrates

the need for a mechanism of coordination between action dimensions with interaction effects and

becomes especially evident when comparing performances of IQL and SAQL.

Figure 2: Average episodic rewards (mean, std from 20 seeds) on the test sets of 5D Sigmoid and

Piecewise Linear benchmark (𝜆 = 0.5 and n_act = 3). Generalization error on 5D Sigmoid

results from hyperparameter selection on its training set.

Can Sequential Policies Scale to Larger Configuration Spaces? To answer this, we vary the

number of discrete action choices per dimension (n_act) and the number of action dimensions.

Although being slightly outperformed by simSDQN and matched by DDQN on the 5D Piecewise

Linear benchmark, the performance of SAQL (as IQL) remains stable when increasing the dimension

of the action space to 10 (Figure 3, upper row). simSDQN is notably impacted by the expansion of

action space dimensionality. This outcome is likely attributed to the reward signal being solely

observed in the TD-update of the last, i.e. the least important, action dimension. As a result, reward

information must be propagated through more Q-networks before it reaches the most important

policies, which is required for them to identify their optimal actions. DDQNs performance also

decreases, as adding action dimensions leads to exponential growth of its action space. Increasing

the number of discrete action choices per action dimension has a similar effect on DDQN as it

still results in polynomial growth in size of its action space. Factorized policies are not negatively

affected by this change, as can be seen in the bottom row of Figure 3, as it results only in a linear

growth in size of their action spaces.

We further observed that the degree of importance differences between action dimensions

has minimal impact on the relative performances of the evaluated algorithms, as detailed in

Appendix F. In another ablation, we found that inverting the importance order of action selection

in sequential policies slightly reduces their performance, which supports our initial intuition about

the effectiveness of selecting the most important action first (Appendix G).

7 Limitations
This exploratory study is limited by its reliance on a white-box benchmark emulating the CANDID

properties. It may not fully encapsulate the complexity of real-world applications, which could
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Figure 3: Experiments investigating scaling behavior of algorithms. First row keeps number of actions

per action dimension fixed at n_act = 3 and varies dimensionality dim of action space.

Second row keeps dim fixed and varies n_act. Both experiments keep importance decay

𝜆 = 0.5 fixed. Rewards from test set (mean, std from 20 seeds).

limit the general applicability of the findings. It is also limited to the most basic multi-agent

baseline, IQL and comparison against more advanced algorithms such as QMIX would allow

a better contextualization of sequential policies’ performance within the SOTA. Several of the

evaluated algorithms achieved near optimal performance. This might limit its suitability for the

validation of improvements to these algorithms. A major drawback of our implementation of

sequential policies as compared to traditional multi-agent algorithms is that the dimensionality of

their observation space grows linearly with the number of interacting action dimensions and it is

not straightforward to add policies later on.

8 Broader Impact Statement

While this work was specifically directed towards DAC, the challenge of controlling numerous

interacting inputs is ubiquitous in most complex real-world systems. As such, the introduced

approach could be applied in settings where communication between components of these systems

is possible. Some examples are robots with multiple joints, smart buildings or grids. Application of

our approach would require prior analysis of the structure of the control problem, in particular,

to identify interacting control inputs and their relative importance. Sequential policies require,

like other factorized approaches, the learning of multiple policies. This can lead to an increased

demand for training and computing time and memory.

9 Conclusions

In this report, we introduced coupled action dimensions with importance differences (CANDID) as

an under-researched challenge for reinforcement learning & DAC and provided the Piecewise Linear

benchmark for assessing RL algorithms in these settings. In our experimental study, we have shown

that sequential policies are a promising technique to address this challenge. In future work, we plan

to apply SAQL to real-world inspired benchmarks and to compare it against more advanced MARL

baselines that use value function factorization such as QMIX. As we see value function factorization

to be mainly orthogonal to SAQL, we also plan to combine the two approaches. Moreover, we

plan to improve agent coordination by exploring learned message passing, inspired by existing

approaches like Huang et al. (2020). This strategy aims to prevent observation space growth with

action dimensionality, improving scalability.
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The benchmark design reflects the stated challenges (section

3) and experimental results and discussion show superior performance of our approach

(section 6)

(b) Did you describe the limitations of your work? [Yes] see section 7

(c) Did you discuss any potential negative societal impacts of your work? [Yes] see section 8

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] We did several proofreads and

use colorblind-friendly colors in our plots.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [No] We used the same benchmarks and

instance sets for all methods. We trained all methods on the same type of CPU but for the

DDQN experiments with (dim=10, n_act=3) and (dim=5, n_act=10) we had to use a GPU

due to the size of the resulting Q-networks. However this shouldn’t affect our comparisons

since we compared progress over the number of episodes and also limited training by the

number of episodes and not in training time.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] We describe the hyperparameter search pro-

cess qualitatively in section 5 and the used hyperparameters in appendix C. The benchmark

and its instances are part of the published code, the search for hyperparameters is conducted

through the main experimental script and comprehensible from there.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to ac-

count for the impact of randomness in your methods or data? [Yes] We evaluated ev-

ery (method,benchmark)-pair on 20 random seeds. During hyperparameter selection we

evaluated every method on 10 random seeds per configuration.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] We included std in our plots.
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(e) Did you report the statistical significance of your results? [No] This study is exploratory

and we believe our conclusions are justifiable by the plots including std.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] This was not

in our scope of finding suitable RL algorithms for DAC.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] We did no such comparisons.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] see appendix E

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We did limited ablations: comparing IQL and SAQL (section 6) and by validating the

order of sequential policies (appendix 9)

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] We provided a link to the repository.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] Most of the experiments are small-scale and can be executed locally.

We provide examples how to execute them locally.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] We use hydra to define experimental setups and provide a

description on how to that in the README. We also focused on documentation of the main

script. The source code for our benchmark and algorithms is mostly typed but we are still

working on improving it until publication.

(d) Did you include the raw results of running your experiments with the given code, data,

and instructions? [Yes] The metrics in the plots are included in a .csv in the directory

analysis/run_data within the repository.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] In the directory analysis/ we

provide the notebooks used to generate the plots.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] We used DACBench and cite it in our paper

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] No such material was used.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No such data was used.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

license in repository

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] availabe on GitHub
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6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]
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A Details on Piecewise Linear Benchmark

Figure 4: Several examples of test instances of the Piecewise Linear benchmark and predictions from a

policy learned through SAQL.

Figure 5: Several examples of test instances of the Piecewise Linear benchmark and predictions from a

policy learned through IQL.

Train and Test Instance Datasets. The Piecewise Linear benchmark’s training and test datasets

Itrain and Itest consist of 300 different target function instances each. Instances for both datasets

were generated in a two-step process. First we randomly sample an intermediate point (𝑥,𝑦), where
𝑥 ∈ [0, 9] and 𝑦 ∈ [0, 1]. Next, a random choice determines whether to establish a connection

between (0, 0) and (9, 1) (increasing) or between (0, 1) and (9, 0) (decreasing) through the sampled

intermediate point. Together this defines the 2 piecewise linear segments of our target function.

When interacting with the Piecewise Linear benchmark, one episode consists of predicting the

function values of a specific target function instance over 𝑇 = 10 time steps. During training

we reset the environment after finishing an episode and continue with predicting on the next

target function instance (round-robin). We note that this defines a contextual MDP (cMDP) as

it is proposed for the DAC framework (Biedenkapp et al., 2020). We also note that the described
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instances are independent from the number of action dimensions and actions per action dimension.

Hence we used the same train and test instance datasets for all our experiments.

Figure 4 visualizes different instances from the generated instance set, along with the result-

ing predictions obtained by aggregating an increasing number of action dimensions through a

sequential policy. It shows that as more action dimensions are aggregated, the prediction accuracy

generally improves. Figure 6 illustrates, for a single time step, how a sequential policy progressively

approximates the value of the prediction target more accurately as it aggregates more dimensions.

In contrast, Figure 5 shows how independent policies often fail to coordinate.

Observation Space. Similar to the Sigmoid benchmark (Biedenkapp et al., 2020) the observation

space consists of information about the current instance 𝑖 ∈ I , the remaining number of steps for

the current instance𝑇 − 𝑡 and the actions selected at the previous time step. The current instance is

uniquely defined by the coordinates (𝑥,𝑦) of the intermediate point and a bit 𝑏 which determines

whether the target function is increasing or decreasing. Thus, the observation vector of policies in

a single policy setting (DDQN) and in a factorized but non-sequential policy setting (IQL) is defined

as 𝑜𝑡 = [𝑇 − 𝑡, 𝑥𝑖 , 𝑦𝑖 , 𝑏𝑖 , 𝑎1𝑡−1, ..., 𝑎𝑀𝑡−1]. The observation of an atomic policy𝑚 in the sequential policy

setting (SAQL, simSDQN) additionally includes actions selected by its predecessors at the current

time step: 𝑜𝑚𝑡 = [𝑇 − 𝑡, 𝑥𝑖 , 𝑦𝑖 , 𝑏𝑖 , 𝑎1𝑡−1, ..., 𝑎𝑀𝑡−1, 𝑎1𝑡 , ..., 𝑎𝑚−1𝑡 ].

Reward Computation. To compute the reward at step 𝑡 , we first calculate the prediction error as the

absolute difference between the aggregated prediction pred(𝑎1:𝑀𝑡 ) and the value of the piecewise

linear function pl(𝑡) at the current point in time:

pred_error(𝑎1:𝑀𝑡 ) = |pred(𝑎1:𝑀𝑡 ) − pl(𝑡) | (3)

The aggregated prediction pred(𝑎1:𝑀𝑡 ) is defined in Equation (1). To incentivize learning across all

action dimensions, including those with less significant contributions, we define an exponentially

decaying reward signal 𝑟𝑡 = 𝑒−𝑐 ·pred_error(𝑎
1:𝑀
𝑡 )

. This formulation ensures that selecting the first

action optimally is necessary to obtain high rewards, but it might not be sufficient, as the exponen-

tially decaying reward puts more emphasis on a precise prediction. For our experiments, we have

chosen 𝑐 = 4.6.

Figure 6: Illustration of action selection by a sequential policy trained through SAQL on the Piecewise

Linear benchmark at time step 𝑡 = 5 of benchmark instance 299. It demonstrates how the

prediction gets iteratively fine-tuned to fit the target value.
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B MDP Reformulations and Algorithms in Detail

B.1 Action Space Factorization and MDP Reformulations

𝑠𝑡 𝑠𝑡+1

𝑎𝑡 = 𝑎1:𝑀𝑡

𝑟𝑡−1 𝑟𝑡

𝑠𝑡 𝑠𝑡+1

𝑎𝑚𝑡

𝑟𝑡−1 𝑟𝑡
𝑎−𝑚𝑡

[𝑠𝑡 , ]︸︷︷︸
𝑠0𝑡

[𝑠𝑡 , 𝑎1𝑡 ]︸ ︷︷ ︸
𝑠1𝑡

[𝑠𝑡 , 𝑎1:2𝑡 ]︸   ︷︷   ︸
𝑠2𝑡

[𝑠𝑡 , 𝑎1:𝑀−1𝑡 ]︸       ︷︷       ︸
𝑠𝑀−1𝑡

[𝑠𝑡+1, ]︸ ︷︷ ︸
𝑠0
𝑡+1

𝑎1𝑡 𝑎2𝑡 𝑎𝑀𝑡

𝑟𝑡−1 0 0 0 𝑟𝑡

Figure 7: Transitions in the original MDP (upper), reformulated as a parallel MDP (pMDP, middle)

and a sequential MDP (sMDP, below, adapted from Metz et al. (2017)), where [·, ·] represents
augmented state vectors.

In this work we aim at solving Markov Decision Processes (MDP) with discrete action spaces,

which can be defined asM = (S,A, 𝑃, 𝑅) where S ⊆ R𝑁
is the state space. A = A1 × ... ×A𝑀 is a

factorization of A ⊂ N𝑀
.

Parallel MDP. Given the factorization of A, we define a parallel MDP (pMDP)M as an instance

of a stochastic or Markov game G = (S,A, 𝑃, 𝑅), where A is factorized per definition. Each A𝑚

represents the actions available to one of the𝑀 players. 𝑅 defines a pay-off function per agent (e.g.

𝑅 : S ×A→ R𝑀
) (Leyton-Brown and Shoham, 2008) but we assume all agents to receive a shared

reward to solve the original MDP M. The distributions over the next state 𝑆𝑡+1 and reward 𝑅𝑡 not

only depend on its own action but also the actions selected by all other players, denoted as 𝑎−𝑚𝑡 .

However in the pMDP these actions go unobserved.

Sequential MDP. Alternatively, given the factorization we define a sequential MDP (sMDP). We

introduce intermediate steps into M which correspond to selecting one action after the other:

Mseq = (Sseq,Aseq, 𝑃seq, 𝑅seq), where Sseq = ⟨S0,S1, ...S𝑀−1⟩ and Aseq = ⟨A1, ...,A𝑀⟩ are ordered
sets with S0 = S and S𝑚 = S ×A1 × ... ×A𝑚 . Transitions happen periodically S𝑚 → S(𝑚+1)mod𝑀 ,

with reward given and time 𝑡 incremented upon transitions into 𝑠0 ∈ S0. In state 𝑠𝑚 ∈ S𝑚
action

𝑎𝑚+1 can only be selected from A𝑚+1 (Metz et al., 2017).

B.2 Background on (D)DQN

Before we translate the MDP reformulations into our modifications to DDQN (van Hasselt et al.,

2016) we want to provide a brief introduction to Q-Learning and Deep Q-Networks and recommend

the excellent text-book by Sutton and Barto (2018) for a more thorough introduction.

Q-Learning and TD-Updates. Q-Learning (Watkins and Dayan, 1992) is a widely used approach to

learn optimal policies in MDPs by learning the state-value function𝑄 : S×A→ R, (𝑠, 𝑎) ↦→ 𝑄 (𝑠, 𝑎).
𝑄 (𝑠, 𝑎) is an estimate of the accumulated (and potentially discounted) reward obtainable over an

entire episode if choosing action 𝑎 in state 𝑠 . Given 𝑄 we define our policy 𝜋 (𝑠) = argmax𝑎𝑄 (𝑠, 𝑎)
and analogously we can compute the value function 𝑉 : S → R, 𝑠 ↦→ 𝑉 (𝑠) of a state as 𝑉 (𝑠) =
max𝑎𝑄 (𝑠, 𝑎). The idea of Q-Learning is to update our estimate 𝑄 using temporal-difference (TD)

updates through the Bellman Optimality Equation: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑡 + 𝛾 max𝑎𝑄 (𝑆𝑡+1, 𝑎). 𝑅𝑡 and 𝑆𝑡+1
are random variables for the reward and next state we will end up with, if taking action 𝑎𝑡 in state
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𝑠𝑡 . Given an observed transition (𝑠, 𝑎, 𝑟, 𝑠′) in our MDP the TD-update of 𝑄 is:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)] = 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾𝑉 (𝑠′) −𝑄 (𝑠, 𝑎)] (4)

Hence we define 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′) = 𝑟 + 𝛾𝑉 (𝑠′) as our TD-target.

Q-Learning Through Function Approximation Using (D)DQN. In discrete state and action spaces

of very limited size we might learn tabular entries per pair (𝑠, 𝑎) ∈ S ×A. For very big or infinite

state and/or action spaces we have to resort to function approximation, for example through Deep

Q-Networks (DQN, Mnih et al. (2015)). Here we update the parameters 𝜃 of our Q-function by

minimizing the loss:

L(𝜃 ) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷 [(𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃−) −𝑄 (𝑠, 𝑎;𝜃 ))2] (5)

Parameters 𝜃− represent target networks that are updated with a delay. 𝐷 is a replay buffer where

we store transitions (experiences) we collect while interacting with the environment. To update our

Q-network we use mini-batches sampled from 𝐷 . Analogous to Q-Learning the TD-target for DQN

is 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′;𝜃−). We also note that in DQN Q-networks are mappings 𝑞𝜃 : S → R |A | .
That is given a state 𝑠 they assign a value to each action 𝑎 or action combination in action vector

a = 𝑎1:𝑀 ∈ N𝑀
in case of𝑀-dimensional action spaces. This means 𝑄 (𝑠, 𝑎;𝜃 ) = 𝑞𝜃 (𝑠) [𝑎].

Instead of the original DQNwe implemented our approaches usingDouble DQN (DDQN, vanHasselt

et al. (2016)) which is a minor extension to DQN but does not affect the presented conceptualization.

B.3 Learning Q-Networks in the MDP Reformulations

Algorithm Underlying MDP Q-network(s) to learn

DDQN original MDP 𝑞 : S → R |A |

IQL parallel MDP {𝑞𝑚 : S → R |A𝑚 | | 𝑚 = 1, ..., 𝑀}

SAQL/simSDQN sequential MDP {𝑞𝑚 : S ×𝑚−1𝑖=1 A𝑖 → R |A𝑚 | | 𝑚 = 1, ..., 𝑀}

Table 1: Q-networks to learn in our evaluated algorithms.

In this section, we discuss in detail how to learn policies for different reformulations of the

original MDP (Figure 7). For ease of presentation, we drop references to 𝜃 . Solving the original

MDP is straightforward and requires the learning of a single policy. The related Q-network can be

updated against the common TD-target.

For the parallel MDP, we apply Independent Q-Learning (IQL) (Tampuu et al., 2015), learning𝑀

policies, one per action dimension. Each associated Q-network takes the original state 𝑠𝑡 as input

and maps it to the Q-values of its respective action dimension. Since the actions of other agents

go unobserved, they can be treated as unobserved (and nonstationary) environment dynamics.

Consequently, we can update each of the𝑀 Q-networks independently using the shared, common

reward, and the usual TD-target.

In the sequential MDP (Metz et al., 2017), policies can observe not only the current state 𝑠𝑡 ,

but also the action dimensions already selected for that state. Accordingly, the Q-networks learn

to map these augmented observations to the action values of their respective dimensions. We

implemented two approaches to update these Q-networks, with different underlying interpretations.

The first approach, Sequential Agent Q-Learning (SAQL), views the sequential MDP as a sequential

stochastic game. In substate 𝑠𝑚−1𝑡 = [𝑠𝑡 , 𝑎1:𝑚−1], it is agent𝑚’s turn to choose an action, observing

the actions already taken by other players in round 𝑡 . Agent𝑚 will make its next observation in
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round 𝑡 + 1, with some fellow players having already acted. Here, we apply the standard DDQN

algorithm, limited to the respective action dimension, using an augmented observation space and

the shared reward 𝑟𝑡 , since the game setting is fully cooperative. IQL can be seen as an ablation of

SAQL, with identical Q-networks and TD-targets, except for excluding the observation of other

agents’ actions.

The second approach, Simplified Sequential DQN (simSDQN), is mainly identical to the original

proposal by Metz et al. (2017). Our modification is to omit the upper Q-network, because we

couldn’t successfully train under this setup. We refer the reader to the paper by Metz et al. (2017) for

the role of the upper Q-network. In simSDQN, we explicitly solve the sequential MDP by updating

our Q-Functions against the state-value of the next substate in the sMDP. Using𝑀 Q-networks can

be viewed as tabular entries for each of the 𝑀 substates recurring periodically. Table 1 lists the

Q-networks to be learned for our different approaches, and Equation (6) formalizes the targets for

the Q-network updates.

target
DDQN

= 𝑟𝑡 + 𝛾 max

a
𝑄 (𝑠𝑡+1, a) = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) (6a)

target
𝑚
IQL

= 𝑟𝑡 + 𝛾 max

𝑎𝑚
𝑄𝑚 (𝑠𝑡+1, 𝑎𝑚) = 𝑟𝑡 + 𝛾𝑉𝑚 (𝑠𝑡+1) (6b)

target
𝑚
SAQL

= 𝑟𝑡 + 𝛾 max

𝑎𝑚
𝑄𝑚 ( [𝑠𝑡+1, 𝑎1:𝑚−1𝑡+1 ], 𝑎𝑚) = 𝑟𝑡 + 𝛾𝑉𝑚 (𝑠𝑚𝑡+1) (6c)

target
𝑚
simSDQN

=

{
max𝑎𝑚+1 𝑄

𝑚+1( [𝑠𝑡 , 𝑎1:𝑚𝑡 ], 𝑎𝑚+1) = 𝑉𝑚+1(𝑠𝑚+1𝑡 ), 1 ≤ 𝑚 ≤ 𝑀 − 1
𝑟𝑡 + 𝛾 max𝑎1 𝑄

1( [𝑠𝑡+1, ], 𝑎1) = 𝑟𝑡 + 𝛾𝑉 1(𝑠0
𝑡+1), 𝑚 = 𝑀

(6d)

C Hyperparameter Settings

Hyperparameters DDQN IQL SAQL simSDQN
Learning Rate (𝛼) 1.0076e-4 3.2680e-5 7.7590e-5 3.0855e-4

Discount Factor (𝛾 ) 0.9349 0.9147 0.9086 0.9696

Start Exploration Rate (𝜖start) 0.2382 0.9289 0.4607 0.1341

Target Update Frequency 15 39 12 33

Target Soft Update Factor (𝜏) 0.2613 0.1258 0.6196 0.4765

Batch Size 220 63 67 105

End Exploration Rate (𝜖end) 0.01

Exploration fraction (linear 𝜖 - decay) 0.5

Optimizer Adam
1

Replay Buffer Size 2500

Table 2: Hyperparameters per method, used for our experiments.

D Policy architecture
We represented the Q-functions of our learned policies as 3 layer MLPs with ReLU activation

functions. Note that for the factorized policies IQL, SAQL, simSDQN the number of policies to

learn corresponds to the dimension of the benchmark. For all policies, we used shared numbers

of hidden units: 120 and 84 in the first and second hidden layers, respectively. For DDQN and

IQL the number of input units corresponds to the dimensionality of the observation space of the

benchmark environment. For sequential policies SAQL and simSDQN the size of the input layer of

𝑄𝑚
is dim_observation_space +𝑚 for𝑚 ∈ {0, ..., 𝑀 − 1} (see Appendix A). The output size for all

factorized policies is the number of actions per action dimension n_act ∈ {3, 5, 10}, for DDQN it is

the number of all possible action combinations over all action dimensions n_act𝑀 = n_actdim.

15



E Compute Resources

Unless otherwise stated, the experiments were run on nodes using a single CPU "Intel Xeon Gold

6230". For DDQN experiments with higher-dimensional action spaces (dim = 10) or more discrete

action choices per action dimension (n_act = 10), the resulting Q-networks were substantially

larger, necessitating the use of GPU accelerators. These experiments were executed on nodes

equipped with "NVIDIA Tesla V100" GPUs.

F Different Importance Decays

Figure 8: Average episodic test rewards (mean, std from 20 seeds) on the 5D Piecewise Linear bench-

mark, for different importance decays 𝜆. Lower 𝜆 means importance is decreased more

strongly from action dimension to action dimension.

G Reversed Importances

Figure 9: Average episodic test rewards (mean, std from 20 seeds) obtained by SAQL and simSDQN

when selecting actions with descending or ascending (reversed) importance on 5D Piecewise

Linear benchmark.

The ablation presented in Figure 9 confirmes our intuition regarding selecting actions in

descending order of their importance for sequential policies and emphasizes the signficance of

getting the order of importances right. This analysis also sheds light on a potential issue of simSDQN

when facing higher dimensonal action spaces: In our design, rewards are only assigned when

performing the TD-update for the Q-network responsible for the least important action dimension.

This requires the propagation of reward information to more important action dimensions (for

a conceptual illustration, refer to Figure 7). By reversing the order of action dimensions, the

Q-network corresponding to the most important action dimension can be directly updated towards

the reward signal. This leads to a noticeable speed up of learning in the initial training phase.
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