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Abstract

In this paper, we propose new randomized algorithms for estimating the two-to-
infinity and one-to-two norms in a matrix-free setting, using only matrix-vector
multiplications. Our methods are based on appropriate modifications of Hutchin-
son’s diagonal estimator and its Hutch++ modification. We provide sample com-
plexity bounds for both modifications. We further illustrate the practical utility of
our algorithms for Jacobian-based regularization in deep neural network training
on image classification tasks.

1 Introduction

In recent years, there has been growing interest in randomized linear algebra techniques for estimating
matrix functions without explicit access to the matrix entries. This setting, known as matrix-free,
assumes access only to an oracle that computes matrix-vector products with a matrix A and its
transpose A⊤. The goal is to approximate important properties or functions of A using only these
products. Such a framework is essential in modern machine learning, where matrices such as Jacobian
of deep neural networks are prohibitively large to form explicitly but allow efficient computation of
matrix-vector products via automatic differentiation (autograd).

A classical problem in this framework is stochastic trace estimation [9], in which the trace of a
matrix is approximated using a few matrix-vector products with random vectors. Building on this
foundation, a variety of improved estimators have been developed. There are variance-reduced
methods such as Hutch++ [15], which exploit low-rank structure to accelerate convergence, and
dynamic algorithms [6, 23], which adaptively allocate samples to achieve near-optimal accuracy.
Structured estimators based on rank-one vectors [4] also offer computational advantages in certain
applications. Closely related is the problem of diagonal estimation [2, 1, 7], for which recent work
has provided algorithmic improvements and theoretical guarantees. These approaches form the basis
of matrix-free randomized methods for approximating key linear algebraic quantities.

In this work, we focus on matrix-free estimation of two operator norms: ∥ · ∥2→∞ and ∥ · ∥1→2.
Formally, for a matrix A ∈ Rd×n, the two-to-infinity norm can be equivalently defined as

∥A∥2→∞ = max
i∈[d]

∥Ai∥2.

Given the identity
∥A∥2→∞ = ∥A⊤∥1→2 ,

it suffices to concentrate on the estimation of the two-to-infinity norm. Compared to classical norms
such as the spectral or Frobenius norm, the two-to-infinity norm provides finer control over the
row-wise structure of a matrix. This is particularly advantageous when dealing with tall matrices,
where d≫ n. In such cases, each row contains relatively few elements compared to the total number
of columns, and bounding the two-to-infinity norm ensures that the norm of each row is tightly
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controlled (see Example 1). This localized control is especially useful in high-dimensional statistical
inference [5], perturbation analysis [19], and randomized matrix algorithms [10].

Our main contributions are as follows:

• We introduce a novel algorithm tailored specifically for the ∥ · ∥1→2 and ∥ · ∥2→∞ norms
under the matrix-free setting. Our method enjoys provable convergence guarantees and
empirically demonstrates reliable performance where previous algorithms exhibit instability
or divergence. This fills an important gap in the current literature and provides a practical
tool for both theoretical analysis and downstream applications.

• We apply our methodology as a regularizer to the problem of image classification using
deep neural networks. Our method achieves better generalization performance compared to
classical Jacobian regularization techniques [8, 21].

In the following sections, we propose randomized algorithms for estimating the two-to-infinity norm
using only access to matrix-vector products, and we analyze their theoretical performance guarantees.
We discuss related works in Section 2. Then in Section 3 we present our main algorithm, TwINEst (see
Algorithm 1), and analyze its sample complexity. Similarly, in Section 4, we provide an improvement
of the TwINEst algorithm based on Hutch++ type modification [15], and study theoretical properties
of the modified algorithm. Finally, we provide numerical results in Section 5. Proofs are postponed
until Appendix.

Notations. For vector a ∈ Rd, ∥a∥p = (
∑d

i=1 a
p
i )

1/p denotes the ℓp-norm (p ≥ 1), ∥a∥∞ =
maxi |ai| denotes the ℓ∞-norm. For matrix A ∈ Rn×d, Ai denotes the i-th row of A. A⊤ denotes
the transpose of a matrix A. ∥A∥F = (

∑n
i=1

∑d
j=1A

2
ij)

1/2 denotes the Frobenius norm. We define
the induced norms as ∥A∥p→q := supx ̸=0 ∥Ax∥q/∥x∥p. For example, ∥A∥2→∞ is equal to the
maximum ℓ2 norm of the rows and ∥A∥1→2 is equal to the maximum ℓ2 norm of the columns. We
let Ak = argminB:rk(B)≤k ∥A − B∥F denote the best k-rank approximation to A. For matrices
A,B ∈ Rn×d, A ⊙ B denotes the Hadamard product (element-wise). We denote by [d] the set
{1, 2, . . . , d}.

2 Related Works

Estimating matrix operator norms induced by different ℓp → ℓq combinations has been an important
topic in numerical linear algebra and machine learning, especially in settings where the matrix is not
explicitly available, but matrix-vector products with the matrix and its transpose can be performed.

A foundational contribution in this direction is the work [3], which proposes a general iterative
algorithm for estimating ∥ · ∥p→q norm for arbitrary p and q, based on a generalization of the classical
power method [16]. The approach relies on alternating optimization steps to approximate the optimal
input and output vectors. However, this method does not specifically address the cases of ∥ · ∥1→2

and ∥ · ∥2→∞ norms, which are of central interest in our work.

The paper [21] extends the methodology of [3] and applies it to more specialized norms, including
the ∥ · ∥1→2 and ∥ · ∥2→∞ norm cases. The authors propose using adversarial training techniques
as a way to implicitly regularize the operator norm of layers in neural networks. In doing so, they
demonstrate that certain adversarial perturbations correspond to directions aligned with large operator
norms. While the method provides a practical heuristic, it lacks theoretical convergence guarantees
and, as we will demonstrate in our work, often fails to converge in practice for the ∥ · ∥1→2 and
∥ · ∥2→∞ norm settings.

The two-to-infinity norm has found increasing utility as a tool for theoretical analysis in various
areas of high-dimensional statistics and learning theory. For instance, it plays a central role in
understanding the geometry of singular subspaces, particularly in contexts where entrywise control
is crucial [5]. In the setting of bandit problems with low-rank structure, the norm has been used to
derive tight bounds for subspace recovery, enabling sharper regret guarantees [10]. Moreover, recent
advances in spectral perturbation theory have extended classical results such as the Davis–Kahan
theorem to the two-to-infinity norm setting, leading to improved guarantees for exact clustering and
related tasks [19].
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3 Main Algorithmic Results

3.1 Hutchinson’s Diagonal Estimator

Our algorithms build upon a well-known technique for estimating the diagonal of a square matrix using
only matrix-vector products. This technique is known as the Hutchinson diagonal estimator [2, 1, 7].
In this section, we briefly introduce the estimator and provide concentration inequality that will be
useful for analyzing our algorithms.

Definition 1 (Hutchinson’s Diagonal Estimator). Let X1, . . . , Xm ∈ {−1, 1}d be independent
Rademacher random vectors. For a square matrix A ∈ Rd×d, the Hutchinson’s diagonal estimator
Dm(A) ∈ Rd is defined as

Dm(A) :=
1

m

m∑
i=1

Xi ⊙ (AXi).

This estimator is a natural extension of the classical Hutchinson method for trace estimation [9] to
the problem of diagonal estimation. It provides an unbiased estimate of the diagonal, satisfying, for
each i ∈ [d]:

E[Dm(A)] = diag(A), and Var[D1
i (A)] = ∥Ai∥22 −A2

ii.

In addition to being unbiased, the estimator also admits high-probability error bounds that characterize
its concentration around the true diagonal. In particular, we rely on the following result from [7],
which provides the following bound for the ℓ2 norm of the Hutchinson’s estimator error:

Theorem 1 (Theorem 1 in [7]). Let A ∈ Rd×d, m ∈ N, δ ∈ (0, 1]. Then with probability at least
1− δ:

∥Dm(A)− diag(A)∥2 ≤ c

√
log(2/δ)

m
∥A− diag(A)∥F ,

where c is an absolute constant.

3.2 Our method

Now we describe our strategy for estimating ∥ · ∥2→∞ norm. The main idea is that the diagonal
entries of the matrix AA⊤ correspond to the squared ℓ2 norms of the rows of A. Therefore, the
∥ · ∥2→∞ norm can be equivalently expressed as

∥A∥22→∞ = max
i∈[d]

diag(AA⊤)i.

This identity suggests a natural strategy: instead of computing all row norms explicitly, we can
estimate the diagonal of AA⊤ using the Hutchinson method, which only requires matrix-vector
products with A and A⊤. The final estimate of the ∥A∥2→∞ norm is then obtained by taking the
maximum of the estimated diagonal.

However, estimating the maximum value through the direct application of Hutchinson’s method
introduces high variance, leading to a noisy approximation. To mitigate this, we eliminate one source
of randomness in the final estimate. Let D be the estimate of the diagonal of AA⊤. While the entries
of D are typically noisy, we can reduce variance by avoiding direct use of maxiDi. Instead, we first
identify the index of the maximum estimated value, j = argmaxiDi, and then explicitly compute
the exact ℓ2-norm of the j-th row using a matrix-vector product with the j-th standard basis vector.
This approach significantly improves the quality of the estimate, which is supported ablation study
carried out in Section 5.1. The detailed procedure is presented in Algorithm 1.

3.3 TwINEst Algorithm Analysis

We begin by establishing upper bounds on the sample complexity of our proposed algorithms. In the
context of randomized numerical linear algebra, sample complexity typically refers to the number
of matrix-vector multiplications required to approximate a matrix quantity within a specified error
tolerance and failure probability. However, our analysis does not directly relate sample complexity to
the approximation error. Instead, our guarantees are expressed in terms of two key quantities: the
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Algorithm 1 TwINEst: Two-Infinity Norm Estimation

Input:
Oracle for matrix-vector multiplication with matrix A ∈ Rd×n,
Oracle for matrix-vector multiplication with matrix AT ∈ Rn×d,
Positive integer m ∈ N: number of iterations.

Output:
An estimate of the ∥A∥2→∞ norm.

1: Sample m random Rademacher vectors X1, X2, . . . , Xm, where each Xi ∈ {−1, 1}d
2: for each i = 1, 2, . . . ,m do
3: Compute ti = Xi ⊙AA⊤Xi

4: end for
5: Compute D = 1

m

∑m
i=1 ti ∈ Rd ▷D - estimate of the AA⊤ diagonal

6: Find j = argmaxiDi

7: Compute L = ∥A⊤ej∥2 ▷ ej - is the j-th standard basis vector
8: return L

failure probability δ and the gap ∆ between the largest ℓ2-norm of a row of A and the ℓ2-norm of the
closest non-maximum row. Formally, let M = maxi ∥Ai∥2. We define

∆ =M − max
i : ∥Ai∥2<M

∥Ai∥2. (1)

When ∆ is large, the row with the maximum ℓ2-norm can be identified more easily, resulting in lower
sample complexity. Conversely, a small ∆ indicates that the top norms are close, requiring more
samples to reliably identify the maximum.

We now establish the sample complexity required for our algorithm, TwINEst, to converge to the
exact value of the matrix norm ∥ · ∥2→∞ with high probability.

Theorem 2 (TwINEst Sample Complexity). Let A ∈ Rd×n, m ∈ N, and ∆ be defined in (1). Let
Tm(A) be the result of Algorithm 1 based on m random vectors. Then, it suffices to take

m >
8 log(2d/δ)

∆2
∥AA⊤ − diag(AA⊤)∥22→∞

to ensure Tm(A) = ∥A∥2→∞ with probability at least 1− δ.

Discussion. Proof of Theorem 2 is given in Appendix B.1. Results in a similar vein to Theorem 2
were previously obtained for the Hutchinson estimator [20, 11], Hutch++ [15], and some other
methods. Importantly, our analysis goes beyond simply bounding the probability of deviation from
the true value; instead, we directly bound the probability that our algorithm returns the exact value.
To the best of our knowledge, our bound is the first one on the sample complexity of randomized
estimation of two-to-infinity norm.

Notably, our method offers practical advantages over power-iteration based algorithms [21], partly
due to its straightforward parallelization.

4 Improved Algorithm

In this section, we improve the sample complexity bounds by modifying our algorithm using the
variance reduction technique introduced in [15]. The key insight is that a low-dimensional random
sketch suffices to capture the dominant eigenspace of AA⊤. Once this component is computed
exactly, applying a Hutchinson estimator to the residual yields reduced variance.

More precisely, we divide the budget of m matrix-vector multiplications into three parts. First, we
compute a random sketch AA⊤S, where S is a Rademacher matrix (with i.i.d. {±1} entries), and
obtain its orthonormal basis Q (e.g., via QR decomposition). This allows us to decompose the matrix
AA⊤ as follows:

AA⊤ = AA⊤QQ⊤ +AA⊤(I −QQ⊤),

where the diagonal of the low-rank component AA⊤QQ⊤ can be computed exactly using the second
portion of the budget. The diagonal of the residual term AA⊤(I −QQ⊤) is then estimated using
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Algorithm 2 TwINEst++

Input:
Oracle for matrix-vector multiplication with matrix A ∈ Rd×n,
Oracle for matrix-vector multiplication with matrix AT ∈ Rn×d,
Positive integer m ∈ N: number of iterations.

Output:
An estimate of the ∥A∥2→∞ norm.

1: Sample m
3 random Rademacher vectors X1, X2, . . . , X

m
3 , where each Xi ∈ {−1, 1}d

2: Sample random Rademacher matrix S ∈ Rd×m
3 , with i.i.d. {−1, 1} entries

3: Compute an orthonormal basis Q for AA⊤S ▷ via QR decomposition
4: for each i = 1, 2, . . . , m3 do
5: Compute ti = Xi ⊙AA⊤(I −QQ⊤)Xi

6: end for
7: Compute D̂ = 1

m

∑m
i=1 ti ∈ Rd

8: Compute D = D̂ + diag(AA⊤QQ⊤) ▷D - estimate of the AA⊤ diagonal
9: Find j = argmaxiDi

10: Compute L = ∥A⊤ej∥2 ▷ ej - is the j-th standard basis vector
11: return L

Hutchinson’s method with the remaining budget. Summing these two components yields an estimate
of diag(AA⊤) with lower variance than that produced by the TwINEst algorithm.

This modification results to improved sample complexity bounds, as formalized in Theorem 3. A
detailed description of the algorithm is provided in Algorithm 2.

4.1 TwINEst++ Algorithm Theoretical Analysis

Here, we analyze an improved version of our algorithm, TwINEst++, which leverages low-rank
approximations to enhance estimation efficiency. The structure of the proof follows the same
reasoning as in the case of Theorem 2 for the base TwINEst algorithm. In particular, we again rely on
a concentration inequality for the diagonal estimator. However, for TwINEst++, we employ a refined
concentration result provided in Theorem 1, which yields a tighter control over the estimation error
and enables the improved complexity result stated below.

Theorem 3 (TwINEst++ Sample Complexity). Let A ∈ Rd×n, m ∈ N, and ∆ be defined as in
Equation 1. Let Tm

++(A) be the output of Algorithm 2 based on m matrix-vector multiplications.
Then, it suffices to choose

m = O

(√
log(2/δ)

∆
∥A∥2F + log(1/δ)

)
to ensure that Tm

++(A) = ∥A∥2→∞ with probability at least 1− δ.

Proof. See Appendix B.2 of the Appendix.

Theorem 3 shows that TwINEst++ achieves an improved query complexity compared to the original
algorithm, particularly in challenging scenarios when ∆ → 0, making identification of the correct
row difficult. Specifically, the sample complexity is reduced from O(1/∆2) in the original TwINEst
algorithm to O(1/∆) in TwINEst++.

5 Experiments

We present an empirical evaluation of the proposed algorithms. Our experiments cover two settings:
synthetic and real-world matrices (see Section 5.1 and Section 5.2), and applications to deep learning
tasks (see Section 5.3). The results indicate that the algorithms yield accurate estimates of the
two-to-infinity norm and exhibit improved convergence behavior compared to existing methods. The
source code is available at:https://anonymous.4open.science/r/jacobian-image-classification-BB91.
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(a) Synthetic data with ∆ = 10−2.
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(b) Synthetic data with ∆ = 10−1.

Figure 1: Comparison of methods for estimating the two-to-infinity norm on random square matrices.
Shown is the relative error versus the number of matrix-vector multiplications, averaged over 500
trials.

5.1 Synthetic Data

In the following two sections, we compare the following methods:

• Adapted Power Method. A modification of the power iteration method for estimating the
two-to-infinity norm, introduced by [21]. This approach incorporates a projection operator
onto the ℓ∞ unit ball within the power method. Further details are provided in Algorithm 3.

• Rademacher Averaging. Similar to our TwINEst method (Algorithm 1), but the final
estimate is obtained by taking the maximum of diagonal estimates instead of computing the
argmax row.

• TwINEst. Our algorithm introduced in Algorithm 1.

• TwINEst++. An enhanced version of TwINEst incorporating random projections, described
in Algorithm 2.

The Adapted Power Method lacks theoretical guarantees and may diverge on certain matrices (see
Example 2). Therefore, we hypothesize that our algorithms will outperform it. In contrast, the
TwINEst and TwINEst++ methods are supported by theoretical convergence guarantees. We also
expect the TwINEst algorithm to consistently outperform Rademacher Averaging.

For our synthetic experiments, we generate random Gaussian matrices A ∈ R5000×5000. Specifically,
we fix a parameter ∆ < 1 and sample values c1, . . . , c5000 ∼ U [0, 1], setting c1 = 1 + ∆, c2 = 1.
Each row of the matrix A is normalized such that its ℓ2-norm is equal to ci, ensuring a gap of
magnitude ∆ between the largest and second-largest row norms. The singular value densities of these
matrices are quite similar for different values of ∆ (see Figure 3a). Therefore, the parameter ∆ may
have a significant impact on the convergence rate.

The results of synthetic experiments for different values of ∆ are illustrated in Figure 1. As anticipated,
TwINEst consistently outperforms Rademacher Averaging. The Adapted Power Method from [21]
fails to converge, as evidenced by its flat performance line. For a relatively large gap ∆ = 10−1, the
TwINEst algorithm rapidly converges, achieving accurate results consistently within approximately
400 iterations.

5.2 Real World Data

To validate our methods on real-world data, we evaluate them using the Jacobian matrix J ∈
R3·32·32×100 of a WideResNet-16-10 [24] pre-trained on CIFAR-100 [13]. Given the low-rank
structure of J , we expect TwINEst++ to outperform all other methods.

Figure 2 confirms our hypothesis: the TwINEst++ algorithm achieves rapid convergence consistent
with the approximate rank of matrix J , significantly outperforming other algorithms. Again, the
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Adapted Power Method from [21] fails to converge, highlighting the practical efficacy of our algo-
rithms. For a comprehensive ablation, we provide a comparison between the relative error of the
methods and their floating point operation counts (FLOPs) in Appendix D.3.

5.3 Deep Learning Applications
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Figure 2: Comparison of methods for estimat-
ing the two-to-infinity norm of the Jacobian
matrix of WideResNet-16-10 pre-trained on
CIFAR-100. The plot shows the relative error
versus the number of matrix-vector multipli-
cations, averaged over 500 trials.

We study whether penalizing the ∥·∥2→∞ norm of the
input-output Jacobian can improve the generalization
ability of neural networks in image classification. The
Jacobian of a standard image classifier is typically
a tall matrix: the number of output classes is much
smaller than the number of input features (pixels). In
this setting, the ∥ · ∥2→∞ norm provides finer control
over the worst-case directional response of individual
output units, which is not captured by global norms
like the Frobenius or spectral norm. As illustrated in
Example 1, the ∥·∥2→∞ norm remains bounded even
when the number of rows grows, unlike spectral and
Frobenius norms, which scale with dimensionality.
This makes it particularly well-suited for regularizing
tall Jacobians in high-dimensional input spaces.

We compare our regularizer to established Jacobian-
based penalties: Frobenius norm [8], spectral
norm [21], and ℓ∞ norm [21]. The ∥ · ∥2→∞ norm is
estimated using TwINEst Algorithm 1. We minimize
the following objective function:

L(x, y) = LCE(f(x), y) + λ · ∥Jf (x)∥2,
where LCE is the cross-entropy loss, f is the network, Jf (x) is the Jacobian of the logits with respect
to the input, and ∥ · ∥ is one of the following norms: Frobenius, spectral, ℓ∞, or ∥ · ∥2→∞.

Experiments are conducted on CIFAR-100 [13] and TinyImageNet [14] using the WideResNet-16-10
architecture [24], implemented in PyTorch [18] and trained on a single NVIDIA Tesla V100 GPU.
The hyperparameters are detailed in Appendix D.2. We evaluate each method by reporting the final
test accuracy, the stable rank of the Jacobian (computed as ∥J∥2F /∥J∥22), total training time (in
wall-clock hours), and the value of the regularization weight λ used during training.

CIFAR-100 TinyImageNet
Regularizer λ Time Acc. ↑ S. Rank ↓ Acc. ↑ S. Rank ↓
No regularization – 4h 75.5 ± 0.2 32.0 ± 1.1 57.8 ± 1.3 30.9 ± 4.3
Frobenius 10−7 12h 75.7 ± 0.5 31.6 ± 0.2 58.6 ± 0.3 27.8 ± 0.9
Spectral 10−6 10h 75.7 ± 0.3 32.0 ± 1.0 57.4 ± 0.8 28.2 ± 0.3
Infinity 10−6 10h 75.8 ± 0.4 30.7 ± 1.2 57.1 ± 0.7 28.8 ± 0.9
TwINEst (ours) 10−8 13h 77.3 ± 0.1 18.3 ± 0.8 59.6 ± 0.9 24.9 ± 0.3

Table 1: Comparison of Jacobian regularization methods on CIFAR-100 and TinyImageNet datasets
using WideResNet-16-10. Metrics averaged for 3 trials.

As shown in Section 5.3, our method improves the generalization ability of WideResNet-16-10 on
the CIFAR-100 and TinyImageNet datasets. In contrast, while other methods require slightly less
training time, they do not yield significant improvements over the baseline.

6 Conclusion

In this paper, we proposed two novel matrix-free stochastic algorithms for estimating the two-to-
infinity and one-to-two norms, and provided theoretical analysis of their behavior. Our empirical
results demonstrate that the proposed methods outperform existing approaches in terms of both
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accuracy and computational efficiency. Furthermore, we showed that our algorithms can be easily
integrated into deep learning pipelines. In particular, we illustrated their utility in improving the
generalization performance of neural networks on image classification tasks.
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A Technical Lemmas

Lemma 4. Let A ∈ Rd×d, m ∈ N, i ∈ [d], and ε ≥ 0. Then

P (|Dm
i (A)−Aii| ≥ ε) ≤ 2 exp

(
− ε2m

2(∥Ai∥22 −A2
ii)

)
.

Proof. This statement follows from Theorem 2 in [1], but we provide an independent argument.
Since (Xk

i )
2 = 1 for Rademacher random variables,

Dm
i (A)−Aii =

1

m

m∑
k=1

(Xk ⊙AXk)i −Aii =
1

m

m∑
k=1

Aii(X
k
i )

2 +
∑
j ̸=i

Xk
i AijX

k
j

−Aii

=
1

m

m∑
k=1

∑
j ̸=i

Xk
i AijX

k
j .

Define Y k
j = Xk

i X
k
j . Since the product of two independent Rademacher variables is again

Rademacher, and they remain mutually independent,

P (|Dm
i (A)−Aii| ≥ ε) = P

∣∣∣∣∣∣
m∑

k=1

∑
j ̸=i

Aij

m
Y k
j

∣∣∣∣∣∣ ≥ ε

 .

Applying Hoeffding’s inequality (see [22]) yields the desired result.

Theorem 5. Let A ∈ Rd×d, m ∈ N, ε ≥ 0, and let Ā be the matrix A with diagonal entries set to
zero. Then

P (∥Dm(A)− diag(A)∥∞ ≥ ε) ≤ 2d exp

(
− ε2m

2∥Ā∥22→∞

)
.

Proof.

P (∥Dm(A)− diag(A)∥∞ ≥ ε) = P
(
max

i
|Dm

i (A)− diag(A)i| ≥ ε
)

≤
d∑

i=1

P (|Dm
i (A)− diag(A)i| ≥ ε) (By the union bound)

≤
d∑

i=1

2 exp

(
− ε2m

2∥Āi∥22

)
(By Lemma 4)

≤ 2d exp

(
− ε2m

2∥Ā∥22→∞

)
.

Lemma 6. Let k ∈ N and let A ∈ Rd×d be a positive semidefinite (PSD) matrix. Denote by Ak the
best rank-k approximation of A in the Frobenius norm. Then,

∥A−Ak∥F ≤ 1√
k
tr(A).

Proof. Since A is PSD, it admits an eigenvalue decomposition A = UΛU⊤ with non-negative
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. The best rank-k approximation Ak is obtained by keeping the
top k eigenvalues. Therefore,

∥A−Ak∥2F =

d∑
i=k+1

λ2i .
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Applying the inequality λi ≤ λk+1 for all i > k and using Cauchy–Schwarz, we obtain

d∑
i=k+1

λ2i ≤ λk+1

d∑
i=k+1

λi ≤
1

k

(
d∑

i=1

λi

)2

=
1

k
tr(A)2.

Taking the square root gives the desired bound.

B High Dimensional Proofs

B.1 Proof of Theorem 2

For simplicity of notation, let B := AA⊤ and B̄ denote the matrix B with its diagonal entries set to
zero. Let D := Dm(B) be the diagonal estimate of B.

Recall that, as discussed in Section 3, the goal of the algorithm is to find an index corresponding
to a row of maximal ℓ2-norm. The key observation is that for any γ ∈ argmaxiBii (there might
be multiple rows with maximal norm), we need to show that its estimate Dγ dominates all other
estimates Dj for j ∈ S, where S := {i | i /∈ argmaxiBii} be the set of non-maximal rows.

By Theorem 5, with probability at least 1− δ:

∥D − diag(B)∥∞ ≤ ε, where ε =

√
2 log(2d/δ)

m
∥B̄∥2→∞.

This bound implies that for each i, Di ∈ [Bii − ε,Bii + ε] . Moreover, by definition of ∆ for any j,
Bγγ ≥ Bjj +∆. Combining these facts, we conclude that for any γ ∈ argmaxiBii,

Dγ −Dj ≥ (Bγγ − ε)− (Bjj + ε) = (Bγγ −Bjj)︸ ︷︷ ︸
≥∆

−2ε > ∆− 2 (∆/2) = 0,

where the last inequality holds when ε < ∆/2.

This shows that for any maximal row γ and any non-maximal row j,Dγ > Dj with probability at least
1− δ. Therefore, the algorithm correctly identifies a maximal row, meaning that Tm(A) = ∥A∥2→∞.

Finally, the condition ε < ∆/2 is equivalent to

m >
8 log(2d/δ)

∆2
∥B̄∥22→∞ =

8 log(2d/δ)

∆2
∥AA⊤ − diag(AA⊤)∥22→∞.

B.2 Proof of Theorem 3

Define B := AA⊤. Let S ∈ Rd×l be a random Rademacher matrix, and let Q be an orthonormal
basis for the range of BS. We decompose B as

B = BQQ⊤ +B(I −QQ⊤),

where BQQ⊤ can be computed exactly using l matrix-vector products with B, and the challenge is
to estimate diag(B(I −QQ⊤)).

Define D̂ := Dk(B(I−QQ⊤)). Let k ∈ N and l = O(k+log(1/δ)). Then we have with probability
at least 1− δ:
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∥D̂ − diag(B(I −QQ⊤))∥∞ ≤ ∥D̂ − diag(B(I −QQ⊤))∥2

≤ c

√
log(2/δ)

k
∥B(I −QQT )∥F (By Theorem 1)

≤ 2c

√
log(2/δ)

k
∥B −Bk∥F

(By Corollary 7 and Claim 1 from [17])

≤ 2c

√
log(2/δ)

k2
tr(B) (By Lemma 6)

= 2c

√
log(2/δ)

k2
∥A∥2F (since B = AA⊤)

Setting k = O

(√
log(2/δ)

∆ ∥A∥2F
)

ensures that

∥D̂ − diag(B(I −QQ⊤))∥∞ < ∆/2.

Finally, following the same reasoning as in the proof of Theorem 2, we conclude that Tm
++(A) =

∥A∥2→∞ with probability at least 1− δ, when

m = O

(√
log(2/δ)

∆
∥A∥2F + log(1/δ)

)
.

C Two-To-Infinity Norm Properties

Example 1. Let A ∈ Rd×n be a matrix with entries

Aij = 1/
√
n.

Then
∥A∥2→∞ = 1, ∥A∥2 = ∥A∥F =

√
d.

This example highlights that while spectral and Frobenius norms grow with the dimension d, the
two-to-infinity norm remains bounded, emphasizing its effectiveness in controlling row-wise behavior
independently of d.

Lemma 7. For any matrix A ∈ Rn×d

∥A∥2→∞ = max
i

∥Ai∥2

Proof. Using the fact that the vector norm ∥ · ∥2 is dual to itself,

∥A∥2→∞ = sup
∥x∥2≤1

max
i

|(Ax)i| = sup
∥x∥2≤1

max
i

|⟨Ai·, x⟩| = max
i

dual norm︷ ︸︸ ︷
sup

∥x∥2≤1

|⟨Ai·, x⟩|

= max
i

∥Ai·∥2

We can swap supremum and maximum because any vector norm is a continuous function and the
closed unit ball is a compact set.

Lemma 8 (Right Unitarily Invariant). Let U ∈ Rn×n be a unitary matrix and A ∈ Rd×n, then

∥AU∥2→∞ = ∥A∥2→∞
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Proof. Using the definition of two-to-infinity norm and the commonly known fact that the ∥ · ∥2
vector norm is unitarily invariant,

∥AU∥2→∞ = sup
x ̸=0

∥AUx∥∞
∥x∥2

= sup
x ̸=0

∥A(Ux)∥∞
∥Ux∥2

Let us denote y = Ux. Since U is unitary, we have rank(U) = n, so x = U−1y and we can take the
supremum over the vector y.

= sup
y ̸=0

∥Ay∥∞
∥y∥2

= ∥A∥2→∞

Lemma 9. For any matrices A ∈ Rn×d, B ∈ Rd×m, and C ∈ Rk×n

∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥2

∥CA∥2→∞ ≤ ∥C∥∞∥A∥2→∞

Proof. Using the fact that the ∥ · ∥2 vector norm is sub-multiplicative (∥Bx∥2 ≤ ∥B∥2∥x∥2),

∥AB∥2→∞ = sup
x ̸=0

∥ABx∥∞
∥x∥2

= sup
x ̸=0

∥ABx∥∞∥B∥2
∥B∥2∥x∥2

≤ sup
x ̸=0

∥ABx∥∞
∥Bx∥2

∥B∥2

≤ sup
y ̸=0

∥Ay∥∞
∥y∥2

∥B∥2 = ∥A∥2→∞∥B∥2

The last expression follows from Hölder’s inequality:

∥CA∥2→∞ = sup
∥x∥2=1

∥CAx∥∞ = sup
∥x∥2=1

max
i

|⟨Ci, Ax⟩| ≤ sup
∥x∥2=1

max
i

∥Ci∥1∥Ax∥∞

= max
i

∥Ci∥1 sup
∥x∥2=1

∥Ax∥∞ = ∥C∥∞∥A∥2→∞

Remark 10. The norm ∥ · ∥2→∞ is not sub-multiplicative. For example, ∥AB∥2→∞ =
√
8 > 2 =

∥A∥2→∞∥B∥2→∞ when

A = B =

[
1 1
1 1

]
, AB =

[
2 2
2 2

]
.

D Details for Experiments

D.1 Adapted Power Method

Definition 2 (Projection Operator for ℓp). Let x ∈ Rd. The projection operator ψp(x) onto the ℓp
unit sphere is defined as

ψp(x) =

{
sign(x)⊙ |x|p−1/∥x∥p−1

p , if p <∞,

|I|−1 sign(x)⊙ 1I , if p = ∞,

where I := {i ∈ [d] : |xi| = ∥x∥∞}, and 1I :=
∑

i∈I ei is the indicator vector over I.

Example 2 (Divergence of the Adapted Power Method). Let A ∈ R2×2 be given by

A =

(
2 0
0 1

)
.

Then, with probability 1
2 , the Adapted Power Method diverges when applied to the matrix A.
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Algorithm 3 Adapted Power Method for Two-to-Infinity Norm from [21]

Input:
Oracle for matrix-vector multiplication with matrix A ∈ Rd×n,
Oracle for matrix-vector multiplication with matrix AT ∈ Rn×d,
Positive integer m ∈ N: number of iterations.

Output:
An estimate of the ∥A∥2→∞ norm.

1: Sample random vector X0 ∈ Rn from N (0, In)
2: for each i = 1, 2, . . . ,m do
3: Compute Y i = ψ∞(AXi−1)
4: Compute Xi = ψ2(A

⊤Y i)
5: end for
6: Compute L = (Y m)⊤AXm

7: return L

Explanation. We follow the notation from Algorithm 3. Let X ′ = AX0, where the components of
the initial vector X0 are independent. Then,

P(X ′
1 < X ′

2) = P(2X0
1 < X0

2 ) = P(2X0
1 −X0

2 < 0) = P(N (0, 5) < 0) =
1

2
.

By the definition of ψ∞, we then have Y 1 = (0, 1)⊤ with probability 1
2 . It follows that

X1 =
A⊤Y 1

∥A⊤Y 1∥2
= (0, 1)⊤.

It is easy to verify that this condition is preserved in all subsequent iterations, i.e.,Xi = Y i = (0, 1)⊤

for all i. Consequently, the final estimate is

L = (Y m)⊤AXm = 1,

which is incorrect, as the two-to-infinity norm of A is 2.

D.2 Hyperparameters for Image Classification

Each model is trained for 200 epochs using stochastic gradient descent (SGD) with Nesterov momen-
tum of 0.9 and weight decay of 5 · 10−5. The initial learning rate is set to 0.1, decayed by a factor of
0.1 at epochs 60, 120, and 160. We use a batch size of 128 and apply the data augmentations listed
below.

D.2.1 CIFAR-100

Table 2: Data augmentation used for CIFAR-100.
Transform Parameters
RandomHorizontalFlip —
Pad padding = 4, padding_mode = "symmetric"
RandomCrop size = 32
Normalize mean = [0.5, 0.5, 0.5], std = [0.5, 0.5, 0.5]
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D.2.2 TinyImageNet

Table 3: Data augmentation used for TinyImageNet.
Transform Parameters
RandomHorizontalFlip —
Pad padding = 4, padding_mode = "symmetric"
RandomCrop size = 64
ColorJitter brightness = 0.2, contrast = 0.2,

saturation = 0.2, hue = 0.1
Normalize mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]

D.3 Supplementary Figures
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Figure 3: Singular values of synthetic and real world matrices.
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(b) Synthetic data with ∆ =
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Figure 4: Comparison of methods for estimating the two-to-infinity matrix norm. The plot shows
the relative error versus GFLOPs, averaged over 500 trials. For the Jacobian matrix, matrix-vector
multiplications were computed using JVP and VJP via autograd, whereas for synthetic data, explicit
matrix-vector multiplications were used.
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