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Abstract

Relations such as “is influenced by”, “is known001
for” or ”is a competitor of” are inherently002
graded: we can rank entity pairs based on how003
well they satisfy these relations, but it is hard004
to draw a line between those pairs that satisfy005
them and those that do not. Such graded rela-006
tions play a central role in many applications,007
yet they are typically not covered by existing008
Knowledge Graphs. In this paper, we consider009
the possibility of using Large Language Mod-010
els (LLMs) to fill this gap. To this end, we011
introduce a new benchmark, in which entity012
pairs have to be ranked according to how much013
they satisfy a given graded relation. The task014
is formulated as a few-shot ranking problem,015
where models only have access to a description016
of the relation and five prototypical instances.017
We use the proposed benchmark to evaluate018
state-of-the-art relation embedding strategies019
as well as several publicly available LLMs and020
closed conversational models such as GPT-4.021
We find that smaller language models struggle022
to outperform a naive baseline. Overall, the023
best results are obtained with the 11B parame-024
ter Flan-T5 model and the 13B parameter OPT025
model, where further increasing the model size026
does not seem to be beneficial. For all models,027
a clear gap with human performance remains.028

1 Introduction029

Language Models (LMs) capture an abundance of030

factual and commonsense knowledge about the031

world (Petroni et al., 2019; Roberts et al., 2020;032

Heinzerling and Inui, 2021; West et al., 2022; Hao033

et al., 2022; Cohen et al., 2023). Given two entities,034

Large Language Models (LLMs) can straightfor-035

wardly be used to obtain a description of how these036

entities are related, although with some caveats for037

less popular entities (Mallen et al., 2022). However,038

relations are often a matter of degree (Rosch, 1975;039

Turney, 2006; Vulić et al., 2017). For instance, sup-040

pose we are interested in modelling whether one041

entity has been influenced by another one. While 042

we could argue that most contemporary pop music 043

has been influenced by the Beatles, clearly there are 044

some bands that have been influenced more directly 045

than others. Graded relations such as influenced by, 046

competitor of or similar to are typically not found 047

in traditional Knowledge Graphs (KGs), while they 048

can nonetheless be of central importance to applica- 049

tions. For instance, in the context of financial NLP, 050

we may need to know which companies are leaders 051

and which are followers in a given field, who is 052

competing with whom, and what strategic alliances 053

exist. As another example, music recommendation 054

systems often suggest artists based on the user’s 055

listening history, but these suggestions would be 056

more helpful if the system could identify artists 057

that have influenced or were influenced by artists 058

the user already likes, as opposed to merely identi- 059

fying similar artists. Studying how such relations 060

can be modelled is thus clearly an important but 061

under-explored research problem. 062

The subjective nature of graded relations makes 063

it difficult to include them in traditional KGs. More- 064

over, for many of these relations, it would simply 065

not be feasible to list all the (graded) instances 066

in a comprehensive way. Taking inspiration from 067

existing work on extracting KGs from LLMs, we 068

therefore ask the following question: are current 069

LLMs capable of modelling graded relations be- 070

tween named entities in a meaningful way? The 071

task of modelling graded relations offers a num- 072

ber of unique challenges for LLMs. First, since 073

this is essentially a ranking task, designing suit- 074

able prompts is not straightforward. Second, the 075

task requires making very fine-grained distinctions. 076

For instance, while we can say that Microsoft is 077

known for Windows and Apple is known for MacOS, 078

the former statement represents a more prototyp- 079

ical instance of the known for relation, as Apple 080

is perhaps best known for its hardware products 081

(e.g. iPhone). It is currently unclear to what ex- 082
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tent LLMs are able to capture such subtle differ-083

ences. Finally, modelling graded relations requires084

comparing entities of different types. For instance,085

the known for relation has instances such as (Mi-086

crosoft,Windows), (the Beatles, Hey Jude) and even087

(France,wine). Comparing instances of such a di-088

verse nature poses a particular challenge, as such089

comparisons are almost never expressed in text.090

In this paper, we introduce RELENTLESS1, a091

new dataset aimed at furthering the study of graded092

relations between named entities. Our dataset cov-093

ers five common graded relations: competitor/rival094

of, friend/ally of, influenced by, known for, and095

similar to. We evaluate the ability of LLMs to rank096

entity pairs according to how much they satisfy097

these relations, given a description of the relation098

and five prototypical examples. Analysing the per-099

formance of several recent LLMs (Chung et al.,100

2022; Iyer et al., 2022), including GPT-4 (OpenAI,101

2023), we find the best models to achieve a Spear-102

man rank correlation of around 0.6. This shows103

that recent LLMs capture fine-grained relational104

knowledge to a meaningful extent, while at the105

same time still leaving a significant gap with hu-106

man performance. For the open-source LLMs, we107

find that while the largest models achieve strong108

results, smaller models fail to outperform a naive109

baseline based on fastText vectors (Bojanowski110

et al., 2017). GPT-3 performs well, albeit slightly111

below the best variants of Flan-T5 and OPT. Fi-112

nally, we found ChatGPT and GPT-4 hard to use113

for this task, since the OpenAI API2 does not allow114

computing perplexity scores. As a result, we were115

not able to outperform GPT-3 with these models.116

2 Related Work117

Benchmarks for Graded Relations RELENT-118

LESS was inspired by the SemEval 2012 Task 2119

dataset on modelling relational similarity (Jurgens120

et al., 2012), which we will refer to as RelSim. Rel-121

Sim covers 79 fine-grained relations, which are or-122

ganised into 10 categories, such as part-whole (e.g.123

car:engine), attribute (e.g. beggar:poor) and cause-124

purpose (enigma:puzzlement). For each of the fine-125

grained relations, a ranking of concept pairs is pro-126

vided, which reflects how prototypical these pairs127

are as instances of the relation. However, RelSim128

only considers concepts, whereas our focus is on129

1The name RELENTLESS refers to Relations between
Entities, where Less refers to the idea of ordering. The dataset
will be made available upon the acceptance of the paper.

2https://openai.com/blog/openai-api

named entities. To the best of our knowledge, the 130

problem of modelling relational similarity between 131

named entities has not yet been considered. 132

HyperLex (Vulić et al., 2017) is focused on mod- 133

elling hypernymy as a graded relation. It involves 134

ranking concept pairs according to how prototyp- 135

ical they are of the hypernymy relation. As for 136

RelSim, named entities were explicitly excluded 137

from this dataset. More broadly, word similarity 138

benchmarks also follow the format of ranking con- 139

cept pairs according to the degree to which a graded 140

relation is satisfied, i.e. similarity. 141

Benchmarks with analogy questions (Turney 142

et al., 2003; Ushio et al., 2021b; Chen et al., 2022) 143

also relate to the problem of modelling graded 144

relations. These benchmarks typically follow a 145

multiple-choice format, where one word pair is 146

given (e.g. eye:seeing), and the system has to pre- 147

dict which among a given set of candidate an- 148

swer pairs is most analogous to the query pair (e.g. 149

ear:hearing). Most existing benchmarks again fo- 150

cus on concepts. Moreover, where named entities 151

are involved, the task degenerates to predicting 152

whether two entity pairs have the same relation, i.e. 153

the problem of measuring degrees of relatedness is 154

not considered for named entities. 155

Language Models as Knowledge Bases The 156

idea of using language models as knowledge bases 157

was popularised by Petroni et al. (2019), and has 158

gained considerable further traction with the advent 159

of LLMs. For instance, several authors have pro- 160

posed strategies for extracting knowledge graphs 161

from LLMs (West et al., 2022; Hao et al., 2022; 162

Cohen et al., 2023). While the idea of modelling 163

graded relations has not been considered, Hao et al. 164

(2022) focused on relations that are not covered by 165

traditional knowledge graphs, such as “is capable 166

of but not good at”. Similarly, our motivation for 167

studying graded relations between named entities 168

is also to complement what is captured by KGs. 169

3 Dataset 170

We consider the five relations which are shown in 171

Table 1. These relations were chosen because of 172

their graded character and because they can apply 173

to a broad range of entities. We created a dataset 174

with annotated entity pairs for each of the relations 175

in three phases. We recruited a diverse annotation 176

team in terms of age, gender, ethnicity and national- 177

ity; however, all annotators come from an academic 178

setting: four undergraduate students, one PhD stu- 179
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Relation Type Val Test Prototypical examples Middle rank examples

competitor/rival of 20 84
Dell : HP, Sprite : 7 Up, Israel : Pales-
tine, Liverpool FC : Manchester United,
Microsoft Teams : Slack

Macallan : Suntory, Marvel Comics : D.C.
Comics, Borussia Dortmund : PSG, UK :
France, Doctor Who : Game of Thrones

friend/ally of 20 88
Australia : New Zealand, Aznar : Bush,
Extinction Rebellion : Greta Thunberg,
Elsa : Anna, CIA : MI6

Kylo Ren : Rey, UK : Commonwealth,
Darth Vader : Emperor Palpatine, The
Beatles : Queen, Mark Drakeford : Rishi
Sunak

influenced by 20 90
Europe : European Union, Plato : Socrates,
Ethereum : Bitcoin, Messi : Maradona,
Impressionism : Edouard Manet

Mike Tyson : Muhammad Ali, US : NASA,
Acer : Asus, Vincent van Gogh : Bipo-
lar disorder, Conservative Party : Labour
Party

known for 20 105
Russell Crowe : Gladiator, Cadbury :
chocolate, Paris : Eiffel Tower, Leonardo
Da Vinci : Mona Lisa, Apple : iPhone

New Zealand : sheep, Le Corbusier :
purism art, Sean Connery : Finding For-
rester, Qualcomm : smartphones, Nikola
Tesla : robotics

similar to 20 89
Coca-Cola : Pepsi, Ligue 1 : Bundesliga,
Australia : New Zealand, The Avengers :
The Justice League, Tesco : Sainsburys

NATO : United Nations, Iraq : Iran, ce-
ment : concrete, Cornwall : Brittany,
Adele : Ed Sheeran

Table 1: Overview of the considered relations, showing the numbers of entity pairs in the validation and test sets,
the five prototypical training examples, and five examples from the middle of the ranking of the entity pairs in the
validation set.

5: This is clearly a positive example, and I would expect
everyone to agree with this view.

4: I consider this to be a positive example, but I would not
be surprised if some knowledgeable people consider
this word pair to be borderline.

3: I consider this to be a borderline case: I find it hard to
decide whether this is a positive or a negative example.

2: I consider this to be a negative example, but I would not
be surprised if some knowledgeable people consider
this word pair to be borderline.

1: This is clearly a negative example, and I would expect
everyone to agree with this view.

Table 2: Rating scale for the 2nd annotation phase.

dent and two faculty members. The students were180

recruited through an internal student employment181

service and were offered a remuneration of around182

$20 per hour. The total annotation effort was about183

160 hours. The annotation process was split into184

three phases.185

First phase In the first phase, the annotators were186

asked to provide 15 entity pairs for each of the five187

relations. Specifically, the aim was to provide 5188

prototypical examples (i.e. entity pairs that clearly189

satisfy the relationship), 5 borderline positive pairs,190

which only satisfy the relationship to some extent,191

and 5 borderline negative pairs, which do not sat-192

isfy the intended relationship but are nonetheless193

related in a similar way. After removing duplicates,194

this resulted in an average of 114 entity pairs for195

each relation, and 573 pairs in total. We augmented196

these entity pairs with a number of randomly cho- 197

sen entity pairs. The entities for these random pairs 198

were selected from the 50,000 most popular Wiki- 199

data entities, in terms of the number of page views 200

of the associated Wikipedia article. 201

Second phase In the second phase, each anno- 202

tator scored all the entity pairs that were provided 203

in phase 1, using the 5-point scale shown in Ta- 204

ble 2. For this phase, annotators were encouraged 205

to consult web sources (e.g. search engines such 206

as Google) for a limited time in order to famil- 207

iarize themselves with the considered entities, if 208

needed. This was the most time-consuming annota- 209

tion phase, taking almost 10 hours on average per 210

annotator to complete. 211

Third phase The third and final phase was aimed 212

at resolving disagreements between the annotations 213

from the second phase. Specifically, for each en- 214

tity pair where there was a difference of 3 points 215

between the highest and the lowest score, the anno- 216

tator(s) with a diverging view were asked to check 217

their previous annotation, and to either update their 218

score or to provide a justification. A total of 255 219

unique entity pairs were checked in this way (310 220

scores were checked in total). We subsequently 221

verified the justifications that were provided. In 222

13 cases, the justifications suggested that the other 223

annotators might have missed a salient point. For 224

these cases, the annotators with the opposite view 225

were asked to re-check their previous annotation. 226
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A B C D E F G Others

A 100 62 81 71 75 75 75 84
B 62 100 61 57 62 57 60 66
C 81 61 100 73 72 74 75 84
D 71 57 73 100 67 67 70 77
E 75 62 72 67 100 70 72 77
F 75 57 74 67 70 100 69 76
G 75 60 75 70 72 69 100 79

AVG 77 66 77 72 74 73 74 77

Table 3: Spearman correlation (%) between each pair of
annotators (A,...,G), and between each annotator and the
average score provided by the other six averaged over
all the five relation types after the 3rd and final quality
enhancement annotation round.

The final ranking for each relation was obtained by227

averaging the scores of the 7 annotators.228

Table 3 summarises the agreement between the229

annotators in terms of Spearman’s rank correla-230

tion.3 The table shows the correlation between the231

individual annotators, as well as the correlation be-232

tween each annotator and the average of the scores233

from the six other annotators. The reconciliation234

step improved the average agreement over all the235

annotators from 70 to 77.4236

We split the annotated entity pairs as follows.237

First, we selected a small training set consisting238

of five prototypical pairs for each relation. This239

training set could be used, for instance, for few-240

shot prompting strategies. The entity pairs were241

selected (i) to be among the top-ranked entity pairs242

and (ii) to be sufficiently diverse (i.e. including243

entities of different types). Next, for each relation,244

we randomly selected 20 of the remaining entity245

pairs to be used as a validation set.5 The remaining246

entity pairs constitute the test set. Table 1 shows the247

prototypical entity pairs that were selected for each248

relation, as well as five examples of entity pairs249

from the validation set. The latter were selected250

from the middle of the ranking, typically with an251

average score of 3 to 4. We use the Spearman rank252

correlation between the predicted ranking and the253

ground truth ranking as the evaluation metric.6254

3In Appendix A, we include the breakdown of the annota-
tor agreement scores per relation type.

4Details about the agreement before the reconciliation step
can be found in the appendix.

5This validation set was not used in our main experiments,
but it was considered in the few-shot analysis (see subsec-
tion 6.2). However, we release the full validation set so it can
be used for further testing and experimentation without the
risk of overfitting on the test set

6The final annotated dataset, along with the guidelines
provided to annotators in each phase, are available in the
supplementary material.

4 Baselines 255

Human Performance As a proxy for human per- 256

formance, we report the average Spearman rank 257

correlation between each annotator and the aver- 258

age of the other annotators, referred to as Human 259

Upperbound. Please note that this upperbound is 260

computed based on the test set, and thus slightly 261

differs from the average agreement in Table 3. Fur- 262

thermore, note that we only estimate human perfor- 263

mance to provide a reference for interpreting the 264

results. Doing this accurately is challenging. For 265

instance, we can already see large differences in 266

agreement across the different annotators, suggest- 267

ing that the best annotators would perform much 268

better than what is suggested by the given upper- 269

bound. Conversely, one may also argue that be- 270

cause of the reconciliation step in the third phrase, 271

we are overestimating human performance. 272

4.1 Embedding Models 273

Word Embedding. First, we consider the fast- 274

Text (Bojanowski et al., 2017) embeddings that 275

were trained on Common Crawl with subword in- 276

formation7. Inspired by the tradition of modelling 277

word analogies using vector differences (Mikolov 278

et al., 2013), we represent each entity pair by sub- 279

tracting the fastText embedding of the first entity 280

from the embedding of the second entity. We re- 281

fer to the resulting vector as the fastText relation 282

embedding. For a given relation, we score an en- 283

tity pair by taking the maximum cosine similarity 284

between its fastText relation embedding and the 285

embedding of the five prototypical examples.8 We 286

use the maximum, rather than e.g. the average, due 287

to the diverse nature of these prototypical examples. 288

We refer this approach as fastTextpair. 289

As a naive baseline, we also consider a variant in 290

which an entity pair is scored by taking the cosine 291

similarity between the word embeddings of the 292

two entities. Note that this baseline ignores both 293

the description of the relation and the prototypical 294

examples. It is based on the idea that prototypical 295

pairs often involve closely related entities. We refer 296

to this approach as fastTextword. 297

RelBERT. RelBERT (Ushio et al., 2021a) is a 298

RoBERTa model that was fine-tuned to encode 299

word pairs such that analogous word pairs are repre- 300

sented by similar vectors. We use RelBERT models 301

7https://fasttext.cc/
8Empirically, we confirmed that indeed using the maxi-

mum leads to better results overall.
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that were initialised from RoBERTaBASE
9 and from302

RoBERTaLARGE
10. For a given relation, we score303

each entity pair as the maximum cosine similarity304

between its RelBERT encoding and the RelBERT305

encoding of the five prototypical examples.306

4.2 Language Models307

To score entity pairs using LMs, we create a prompt308

from the description of the relation and the five pro-309

totypical examples. The score of the entity pair310

then corresponds to the perplexity of the prompt.311

We consider two prompt templates: a binary ques-312

tion answering (QA) template similar to the instruc-313

tions provided to Flan-T5 for the task (Longpre314

et al., 2023), and a targeted list completion tem-315

plate (LC). Writing the five prototypical examples316

as [Ai, Bi]i=1...5 and the target entity pair as [C,D],317

the QA template has the following form:318

Answer the question by yes or no. We319

know that [A1, B1], . . . , [A5, B5] are ex-320

amples of <desc>. Are [C,D] <desc>321

as well?322

Yes323

The LC template has the following form:324

Complete the following list with exam-325

ples of <desc>326

[A1, B1]327

:328

[A5, B5]329

[C,D]330

In both templates, <desc> is the description of the331

relation, as follows:332

• Rival: entities that are competitors or rivals333

• Ally: entities that are friends or allies334

• Inf: what has influenced different entities335

• Know: what entities are known for336

• Sim: entities that are similar337

We use the following LMs: OPT (Zhang et al.,338

2022), OPT-IML (Iyer et al., 2022), T5 (Raffel339

et al., 2020), Flan-T5 (Chung et al., 2022), and340

Flan-UL2 (Tay et al., 2023), where the model341

weights are obtained via HuggingFace (Wolf et al.,342

9https://huggingface.co/relbert/
relbert-roberta-base

10https://huggingface.co/relbert/
relbert-roberta-large

2020)11. We also use GPT-3 (Brown et al., 2020), 343

which is a private model and subject to be changed 344

every six months; we use davinci, which is the 345

most powerful GPT-3 model available via the Ope- 346

nAI API 1213. We compute the perplexity over the 347

whole input text for OPT, OPT-IML and GPT-3, 348

while we use the last line of the input text (i.e., 349

“Yes” for the QA template and [C,D] for the LC 350

template) to compute the perplexity on the decoder 351

for T5, Flan-T5, and Flan-UL2. 352

We test two conversational LMs: ChatGPT (or 353

gpt-3.5-turbo) and GPT-4 (gpt-4). These mod- 354

els are only available through the OpenAI API. 355

Unfortunately, for these models, the API does not 356

allow us to obtain the log-likelihood of each token. 357

Therefore, we instead use a prompt which asks to 358

sort the list of entity pairs directly14. 359

5 Results 360

Table 4 summarises the results. The best result 361

is achieved by Flan-T5XXL with the QA template, 362

which scores 62.0%. In general, the performance 363

of this model remains far below the performance 364

upper bound suggested by the inter-annotator agree- 365

ment (77%). Surprisingly, however, for the rival of 366

relation, the human upper bound is outperformed 367

by Flan-UL2. In contrast, the friend/ally of rela- 368

tion appears to be particularly challenging. Among 369

the LM methods, the LC template generally leads 370

to the best results, but not for Flan-T5 and Flan- 371

UL2. This is not entirely surprising given that Flan 372

models have been fine-tuned using instructions sim- 373

ilar to the QA template (see subsection 4.2). Be- 374

yond the encoder-decoder LMs, OPT13B and GPT- 375

3davinci perform the best, even outperforming the 376

instruction fine-tuned OPTs (OPT-IML and OPT- 377

IMLMAX). GPT-3davinci is the best model in the in- 378

fluenced by and known for relations. Although Flan- 379

T5XXL and Flan-UL2 perform best on average, they 380

perform poorly on the influenced by relation, un- 381

derperforming GPT-3davinci and OPT13B by a wide 382

margin. Among the embedding based models, fast- 383

Text generally performs poorly. The performance 384

of RelBERTLARGE is remarkably strong, consider- 385

ing that this is a small concept-based relation model 386

that was not trained on relations between named en- 387

11A complete list of the models on huggingface we used
can be found in Appendix B.

12https://openai.com
13All the OpenAI models are from the checkpoint that was

live during May 2023.
14A complete prompt can be found in Appendix C
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Inst-FT Model Size Rival Ally Inf Know Sim Average

Human Upperbound 75.9 78.0 70.5 82.0 80.2 77.3

Embedding

fastTextword - 25.0 10.0 7.0 24.0 20.0 17.0
fastTextpair - 28.0 12.0 3.0 20.0 21.0 17.0
RelBERTBASE 110M 58.0 15.0 30.0 24.0 28.0 31.0
RelBERTLARGE 335M 64.0 20.0 20.0 44.0 53.0 40.0

LM

LC
te

m
pl

at
e

T5

T5SMALL 60M 20.0 33.0 24.0 11.0 10.0 19.0
T5BASE 220M 35.0 35.0 38.0 20.0 13.0 28.0
T5LARGE 770M 29.0 8.0 26.0 11.0 22.0 19.0
T5XL 3B 47.0 28.0 50.0 33.0 26.0 37.0
T5XXL 11B 33.0 8.0 24.0 18.0 15.0 19.0

Flan-T5SMALL ✓ 60M 38.0 33.0 24.0 16.0 7.0 24.0
Flan-T5BASE ✓ 220M 36.0 31.0 28.0 17.0 -0.0 22.0
Flan-T5LARGE ✓ 770M 41.0 19.0 36.0 24.0 22.0 29.0
Flan-T5XL ✓ 3B 40.0 17.0 35.0 27.0 31.0 30.0
Flan-T5XXL ✓ 11B 61.0 32.0 47.0 44.0 40.0 45.0

Flan-UL2 ✓ 20B 60.0 28.0 49.0 53.0 37.0 45.0

OPT

OPT125M 125M 41.0 37.0 51.0 23.0 13.0 33.0
OPT350M 300M 41.0 33.0 47.0 36.0 18.0 35.0
OPT1.3B 1.3B 58.0 39.0 54.0 45.0 42.0 48.0
OPT13B 13B 72.0 41.0 55.0 70.0 55.0 59.0
OPT30B 30B 71.0 39.0 57.0 69.0 53.0 58.0

OPT-IML30B ✓ 30B 65.0 36.0 55.0 70.0 47.0 55.0
OPT-IMLMAX-30B ✓ 30B 62.0 36.0 57.0 67.0 46.0 53.0

GPT GPT-3davinci* - 72.0 39.0 64.0 73.0 47.0 59.0

Q
A

te
m

pl
at

e

T5

T5SMALL 60M 10.0 -13.0 17.0 -6.0 8.0 3.0
T5BASE 220M 15.0 -7.0 6.0 -12.0 14.0 3.0
T5LARGE 770M -3.0 4.0 -12.0 -19.0 -1.0 -6.0
T5XL 3B -2.0 12.0 -8.0 17.0 -14.0 1.0
T5XXL 11B 7.0 1.0 -1.0 11.0 -4.0 3.0

Flan-T5SMALL ✓ 60M 31.0 -0.0 21.0 -3.0 8.0 11.0
Flan-T5BASE ✓ 220M 41.0 28.0 46.0 17.0 22.0 31.0
Flan-T5LARGE ✓ 770M 67.0 39.0 24.0 49.0 56.0 47.0
Flan-T5XL ✓ 3B 75.0 44.0 44.0 61.0 63.0 57.0
Flan-T5XXL ✓ 11B 74.0 56.0 44.0 70.0 66.0 62.0

Flan-UL2 ✓ 20B 79.0 51.0 47.0 67.0 57.0 60.0

OPT

OPT125M 125M 35.0 31.0 46.0 10.0 9.0 26.0
OPT350M 350M 38.0 35.0 37.0 21.0 19.0 30.0
OPT1.3B 1.3B 44.0 33.0 46.0 29.0 31.0 37.0
OPT13B 13B 63.0 39.0 43.0 61.0 43.0 50.0
OPT30B 30B 61.0 38.0 48.0 62.0 45.0 51.0

OPT-IML30B ✓ 30B 57.0 37.0 36.0 53.0 35.0 44.0
OPT-IMLMAX-30B ✓ 30B 58.0 36.0 39.0 43.0 42.0 43.0

GPT GPT-3davinci* - 67.0 35.0 50.0 61.0 35.0 50.0

Conv. LM ChatGPT* - -0.9 32.5 17.5 15.5 14.7 17.9
GPT-4* - 62.5 55.8 35.9 60.8 69.3 56.9

Table 4: Spearman’s rank correlation (%) on the test set. The LMs are grouped by the template (QA or LC), the
model family, and instruction-fine-tuned or not. The best correlation in each relation type is highlighted by bold
characters. Model size is measured as the number of parameters. Models marked with * are not openly available.

tities. As far as the OpenAI conversational models388

are concerned, we can see that GPT-4 achieves the389

best result on the similar to relation. The poor per-390

formance of ChatGPT suggests that the considered391

list ranking prompt may be hard to understand for392

this model, or that the task of ranking around 100393

pairs may be too complicated. We also observed394

that ChatGPT tends to omit more pairs from its 395

output than GPT-4 (see Appendix D). 396

6 Analysis 397

We now aim to gain a better understanding of the 398

behaviour of LMs. First, we analyse the effect of 399

model size (subsection 6.1). Then, we experiment 400
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(a) QA template (b) LC template
Figure 1: Average Spearman’s rank correlation results
among the five relation types along with the model size.

with different zero-shot and few-shot learning set-401

ups (subsection 6.2), and we present a qualitative402

analysis of the predictions (subsection 6.3). For the403

latter two analyses, we focus on the best perform-404

ing models for each LM family from the main ex-405

periment, using their optimal prompts: Flan-UL2,406

Flan-T5XXL, OPT13B, and GPT-3davinci.15407

6.1 Model Size408

In this section, we analyse the effect of model size.409

Figure 1 visualises the performance of the differ-410

ent model families in function of model size. For411

Flan-T5, OPT, and OPT-IML we can see a strong412

correlation between performance and size. Never-413

theless, the result of the largest OPT models sug-414

gests that a plateau in performance may have been415

reached at 13B. Moreover, for T5 we do not see an416

improvement in performance for larger models16.417

6.2 Zero-shot/Few-shot Learning418

In the main experiments, for each relation, models419

had access to a description as well as five prototyp-420

ical examples. To analyse the impact of these five421

examples, we now describe experiments in which422

only the description is provided (i.e. zero-shot) or423

where only 1 or 3 examples are given (few-shot).424

For the few-shot setting, we use the same QA and425

LC templates as in the main experiment. For the426

3-shot experiments, we randomly choose 3 of the 5427

examples, and similar for the 1-shot experiments.428

Since this introduces some randomness, we report429

results for three different samples17.430

15Note that we omit Flan-UL2 from the model size analysis
as there is only a single Flan-UL2 model.

16In Appendix E we include a more detailed breakdown of
the results of this model size experiment by relation type.

17The prompt used in the zero-shot/few-shot learning can
be found in Appendix F

(a) QA template (b) LC template
Figure 2: Spearman’s rank correlation averaged over
the five relation types with different number of the pro-
totypical examples. For 1-shot and 3-shot examples, we
report the each correlation of the three individual runs.

Figure 2a shows the results for the QA template. 431

We can see that all models improve when more pro- 432

totypical examples are provided, with the zero-shot 433

performance of Flan-UL2 being an outlier. Remark- 434

ably, Flan-UL2 achieves 62.5% accuracy in the 435

zero-shot setting, which is competitive with the 5- 436

shot results in Table 4. Flan-T5XXL also achieves a 437

zero-shot result of 54.5%, which is better than most 438

of the models in the main (5-shot) experiments. In 439

the zero-shot setting, OPT13B performs better than 440

GPT-3davinci, but GPT-3davinci quickly improves as 441

more examples are provided, clearly outperform- 442

ing OPT13B in the 5-shot setting. Figure 2b shows 443

the results for the LC template. We again see that 444

providing more examples benefits all models. Un- 445

like for the QA template, however, Flan-T5XXL 446

performs poorly in the zero-shot setting. Moreover, 447

OPT13B now sees the largest improvement between 448

the zero-shot and 5-shot settings. 449

6.3 Qualitative Analysis 450

To better understand the predictions of the models, 451

we analyse the most flagrant mistakes. Specifically, 452

we focus on those entity pairs whose predicted rank 453

is in the top 30%, while being in the bottom 30% 454

of the gold ranking, and vice versa. Table 5 and 455

Table 6 show the entity pairs from the test set for 456

which this was the case. For this analysis, we look 457

at the models with their optimal templates: i.e., 458

Flan-T5 and Flan-UL2 with the QA template, and 459

the other models with the LC template. 460

When looking at the instances that mistakenly 461

end up in the top 30%, we see entities which are 462

closely related (e.g. “Coca-Cola : Pepsi”) while 463

not actually satisfying the intended relation. We 464

can see several cases where entities with similar 465
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Incorrectly predicted to be in the top 30%
Fl

an
-T

5 X
X

L

Ally Armenia : Azerbaijan, Liam Gallagher : Noel Gal-
lagher, Russia : Georgia

Inf
Harry Potter : Wizard of Oz, heavy metal : punk
music, Luke Bryan : Hank Williams, James Brown
: Michael Jackson

Sim sphinx : sphynx, New York : York, cannoli : can-
neloni

Fl
an

-U
L

2

Rival Serena Williams : Andy Murray

Ally Liam Gallagher : Noel Gallagher, Google : Sam-
sung

Inf Harry Potter : Wizard of Oz, heavy metal : punk
music, James Brown : Michael Jackson

Know Belgium : wine

Sim sphinx : sphynx, cannoli : canneloni

O
PT

13
B

Rival Serena Williams : Andy Murray

Ally Joseph Stalin : Josip Broz Tito, Armenia : Azerbai-
jan, Sophia Loren : Marlon Brando

Inf Joe Biden : Donald Trump, Harry Potter : Wizard
of Oz, Singaporean food : Malaysian food

Know Coca-Cola : Pepsi, Steve Jobs : AirPods

G
PT

-3
da

vi
nc

i

Rival Serena Williams : Andy Murray

Ally Joseph Stalin : Josip Broz Tito, Armenia : Azerbai-
jan, Liam Gallagher : Noel Gallagher

Inf Harry Potter : Wizard of Oz

Know Coca-Cola : Pepsi

Sim Nicolae Ceaus, escu : Javier Hernández

Table 5: Test examples of incorrect predictions made by
the three best models in the top 30%.

names are mistakenly predicted to be similar (e.g.466

sphinx : sphynx, New York : York, cannoli : can-467

neloni). Several models also mistakenly predict468

“Serena Williams : Andy Murray” as an instance of469

the rival-of relation, presumably because the model470

has learned that players from the same sport are471

often rivals. When looking at the examples from472

the bottom 30%, we can see entities which only473

recently became prominent (e.g. FTX and Alameda474

Research), highlighting the limitation of using lan-475

guage models that have not been trained on the476

most recent data. The “Corsica : Napoleon Bona-477

parte”, “Prince Harry : Monarchy” and “trending478

music : TikTok” examples illustrate how the mod-479

els can struggle with cases involving entities of480

different semantic types.481

7 Conclusions482

In this paper, we have proposed the task of mod-483

elling graded relations between named entities,484

with a new dataset. The task consists in ranking485

Incorrectly predicted to be in the bottom 30%

Fl
an

-T
5 X

X
L

Rival Isaac Newton : Gottfried Leibniz

Ally China : North Korea, Ron Weasley : Neville Long-
bottom, Windows : Xbox

Inf
Prince Harry : Monarchy, trending music : TikTok,
Coca-Cola : Pepsi, Apple Music : Spotify, Pepsi :
Coca-Cola, Hoover : Dyson

Know Corsica : Napoleon Bonaparte, France : cheese

Sim Suits : Law&Order, Shark : Bush

Fl
an

-U
L

2

Ally
Tata Motors : Jaguar, China : North Korea, HSBC
: BlackRock, Coca-Cola : McDonald’s, Huawei :
China

Inf Prince Harry : Monarchy, trending music : Tik-
Tok, Wales : Westminster, Theresa May : David
Cameron

Know Europe : The Final Countdown, Corsica :
Napoleon Bonaparte, OpenAI : ChatGPT

Sim Minnesota : Wisconsin, Shark : Bush, Glastonbury
: Roskilde

O
PT

13
B

Ally
FTX : Alameda Research, Red Bull : GoPro,
HSBC : BlackRock, Microsoft : LinkedIn, Win-
dows : Xbox

Inf Prince Harry : Monarchy, trending music : TikTok,
Wales : Westminster

Know OpenAI : ChatGPT, UK : rain

Sim pill : tablet, Great Britian : British Empire, fusilli :
rotini, Shark : Bush

G
PT

-3
da

vi
nc

i

Rival Netflix : Disney Plus

Ally FTX : Alameda Research, Rishi Sunak : Joe Biden,
Microsoft : LinkedIn, Windows : Xbox

Inf Prince Harry : Monarchy, trending music : TikTok,
Stephen King : Arthur Machen

Know OpenAI:ChatGPT

Sim Homebase : IKEA, fusilli : rotini, Shark : Bush,
Primark : Shein

Table 6: Test examples of incorrect predictions made by
the three best models in the bottom 30%.

entity pairs according to how much they satisfy 486

a given graded relation, where models only have 487

access to the description of the relation and five 488

prototypical instances per relation. To assess the 489

difficulty of the task, we analysed a large num- 490

ber of baselines, including public LLMs of up to 491

30B parameters, state-of-the-art relation embed- 492

ding models, and closed LLMs such as GPT-4. We 493

found significant performance differences between 494

the largest LMs and their smaller siblings, which 495

highlights the progress achieved in NLP in the last 496

few years by scaling up LMs. However, even the 497

largest models trail human performance by around 498

15 percentage points. 499
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Limitations500

Our dataset is aimed at testing the ability of LMs501

to understand graded relations between named en-502

tities. In particular, the size of the dataset makes503

it unsuitable for training models (beyond the few-504

shot setting). Furthermore, our dataset is limited505

to five relation types. We believe these relations506

to be among the most prominent graded relations507

between named entities. Nonetheless, there are508

clearly various other relations that could be consid-509

ered, especially in domain-specific settings. While510

the annotation process involved comprehensive511

quality control mechanisms, the dataset may have512

inherited some of the biases of the annotators. The513

annotators were diverse in terms of gender, nation-514

ality and cultural background, but all came from515

the the same academic setting. Since the annota-516

tion is inherently subjective, this may be reflected517

in the final dataset. Finally, the task may have a518

temporal component in which some relationships519

may change over time. Our annotations represents520

the views of the annotators at a particular moment521

in time. In future, the dataset could be extended, to522

provide different temporal snapshots, which would523

allow an evaluation of ability of LMs to model524

temporal context.525

Ethics Statement526

Our data has been created and labelled by human527

annotators. As such, we have ensured that proper528

training was provided, and that annotators were529

paid fairly through our institutional student job530

provider. We also acknowledge the potential biases531

of our dataset, and the potentially sensitive nature532

of examples related to political or religious content.533

To mitigate this issue, we have relied on a diverse534

set of annotators, and we have provided guidelines535

about avoiding sensitive content.536
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A B C D E F G Others

A 100 53 77 63 64 68 67 80
B 53 100 52 43 47 46 48 56
C 77 52 100 63 58 67 68 79
D 63 43 63 100 48 54 59 66
E 64 47 58 48 100 57 59 65
F 68 46 67 54 57 100 62 70
G 67 48 68 59 59 62 100 73

AVG 70 55 69 61 62 65 66 70

Table 7: Spearman correlation (%) between each pair
of annotators (A,...,G), and between each annotator and
the average score provided by the other six averaged
over all the five relation types before the 3rd and final
quality enhancement annotation round.

A B C D E F G Others

A 100 55 79 69 74 78 79 86
B 55 100 46 35 58 57 50 54
C 79 46 100 75 67 73 75 80
D 69 35 75 100 52 66 68 74
E 74 58 67 52 100 69 67 74
F 78 57 73 66 69 100 65 79
G 79 50 75 68 67 65 100 79

AVG 76 57 74 66 70 73 72 75

Table 8: Spearman correlation (%) on the competi-
tor/rival of relation between each pair of annotators
(A,...,G), and between each annotator and the average
score provided by the other six after the 3rd and final
quality enhancement annotation round.

A B C D E F G Others

A 100 73 85 69 74 78 73 87
B 73 100 74 52 64 72 65 75
C 85 74 100 68 72 77 74 87
D 69 52 68 100 63 59 65 69
E 74 64 72 63 100 67 70 76
F 78 72 77 59 67 100 75 80
G 73 65 74 65 70 75 100 78

Avg 79 71 78 68 73 76 75 79

Table 9: Spearman correlation (%) on the friend/ally
of relation between each pair of annotators (A,...,G),
and between each annotator and the average score pro-
vided by the other six after the 3rd and final quality
enhancement annotation round.

correlation for each relation type after the 3rd and718

final quality enhancement annotation round.719

B Models on HuggingFace720

Table 13 shows the model alias on the HuggingFace721

of the LMs we used in our experiment.722

C Conversational Model Baselines723

Writing the list of target word pairs as724

[Ci, Di]i=1...n, our prompt has the following725

A B C D E F G Others

A 100 50 76 68 69 59 71 76
B 50 100 55 63 49 32 54 55
C 76 55 100 74 70 69 76 84
D 68 63 74 100 65 52 70 76
E 69 49 70 65 100 65 71 71
F 59 32 69 52 65 100 62 61
G 71 54 76 70 71 62 100 78

AVG 70 58 74 70 70 63 72 71

Table 10: Spearman correlation (%) on the influenced
by relation between each pair of annotators (A,...,G),
and between each annotator and the average score pro-
vided by the other six after the 3rd and final quality
enhancement annotation round.

A B C D E F G Others

A 100 74 84 78 80 80 77 88
B 74 100 71 70 73 65 70 76
C 84 71 100 77 77 75 80 88
D 78 70 77 100 76 82 75 83
E 80 73 77 76 100 71 76 81
F 80 65 75 82 71 100 71 80
G 77 70 80 75 76 71 100 82

AVG 82 75 81 80 79 78 78 83

Table 11: Spearman correlation (%) on the known for
relation between each pair of annotators (A,...,G), and
between each annotator and the average score provided
by the other six after the 3rd and final quality en-
hancement annotation round.

A B C D E F G Others

A 100 58 82 74 79 78 73 82
B 58 100 61 64 64 59 61 68
C 82 61 100 74 75 74 70 79
D 74 64 74 100 77 77 73 83
E 79 64 75 77 100 75 78 84
F 78 59 74 77 75 100 74 79
G 73 61 70 73 78 74 100 78

AVG 78 67 76 77 78 77 75 79

Table 12: Spearman correlation (%) on the similar to
relation between each pair of annotators (A,...,G), and
between each annotator and the average score provided
by the other six after the 3rd and final quality en-
hancement annotation round.

form: 726

Consider the following reference list of 727

<desc>: 728

[A1, B1] 729

: 730

[A5, B5] 731

Now sort the entity pairs from the follow- 732

ing list based on the extent to which they 733

also represent <desc> in descending or- 734

der. Do not include the pairs from the 735
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Model Name on HuggingFace

RelBERTBASE relbert/relbert-roberta-base
RelBERTLARGE relbert/relbert-roberta-large

OPT125M facebook/opt-125m
OPT350M facebook/opt-350m
OPT1.3B facebook/opt-1.3b
OPT2.7B facebook/opt-2.7b
OPT6.7B facebook/opt-6.7b
OPT13B facebook/opt-13b
OPT30B facebook/opt-30b
OPT66B facebook/opt-66b

OPT-IML1.3B facebook/opt-iml-1.3b
OPT-IML30B facebook/opt-iml-30b
OPT-IMLMAX-1.3B facebook/opt-iml-max-1.3b
OPT-IMLMAX-30B facebook/opt-iml-max-30b

T5SMALL t5-small
T5BASE t5-base
T5LARGE t5-large
T5XL t5-3b
T5XXL t5-11b

Flan-T5SMALL google/flan-t5-small
Flan-T5BASE google/flan-t5-base
Flan-T5LARGE google/flan-t5-large
Flan-T5XL google/flan-t5-xl
Flan-T5XXL google/flan-t5-xxl
Flan-UL220B google/flan-ul2

Table 13: The language models used in the paper and
their corresponding alias on HuggingFace model hub.

ChatGPT GPT-4

Rival -0.9 (0.0%) 62.5 (100.0%)
Ally 42.5 (56.8%) 55.8 (100.0%)
Inf 17.5 (91.1%) 35.9 (94.4%)
Know 15.5 (86.7%) 60.8 (100.0%)
Sim 14.7 (80.9%) 69.3 (98.9%)

AVG 17.9 (63.1%) 56.9 (98.7%)

Table 14: Spearman’s rank correlation (%) on the test
set for conversational LMs with the percentage of word
pairs included in the output.

reference list. The output should contain736

all the entity pairs from the following list737

and no duplicates:738

[C1, D1]739

:740

[Cn, Dn]741

These conversational models often omit entity pairs742

from the output, especially those with lower sim-743

ilarity to the reference pairs. To deal with this,744

we simply concatenate those removed pairs to the745

bottom of the sorted output list.746

D Conversational LMs747

Table 14 shows the results and percentage of re-748

trieved pairs of the conversational LMs.749

(a) QA template (b) LC template
Figure 3: Spearman’s rank correlation for the competi-
tor/rival of relation type along with the model size.

(a) QA template (b) LC template
Figure 4: Spearman’s rank correlation for the friend/ally
of relation type along with the model size.

(a) QA template (b) LC template
Figure 5: Spearman’s rank correlation for the influenced
by relation type along with the model size.

E Additional Results 750

Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7 751

show the performance improvement along with the 752

model size for individual relation types. Figure 8, 753

Figure 9, Figure 10, Figure 11, and Figure 12 show 754

the zero-shot and few-shot evaluation result for 755

individual relation types. 756
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(a) QA template (b) LC template
Figure 6: Spearman’s rank correlation for the known for
relation type along with the model size.

(a) QA template (b) LC template
Figure 7: Spearman’s rank correlation for the similar to
relation type along with the model size.

(a) QA template (b) LC template
Figure 8: Spearman’s rank correlation for competi-
tor/rival of relation with different number of the proto-
typical examples.

F Prompt for Zero-shot/Few-shot757

Learning758

The QA template for zero-shot/few-shot learning759

are:760

Answer the question by yes or no. Are761

[C,D] <desc>?762

Yes763

while the zero-shot LC template has the following764

form:765

(a) QA template (b) LC template
Figure 9: Spearman’s rank correlation for friend/ally
of relation with different number of the prototypical
examples.

(a) QA template (b) LC template
Figure 10: Spearman’s rank correlation for influenced
by relation with different number of the prototypical
examples.

(a) QA template (b) LC template
Figure 11: Spearman’s rank correlation for known for
relation with different number of the prototypical exam-
ples.

Complete the following list with exam- 766

ples of <desc>? 767

[C,D] 768

G Full Results 769

Table 15 shows the result for all the LMs we con- 770

sidered in the paper. 771
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Inst-FT Model Size Rival Ally Inf Know Sim Average

Human Upperbound 75.9 78.0 70.5 82.0 80.2 77.3

Embedding

fastTextword - 25.0 10.0 7.0 24.0 20.0 17.0
fastTextpair - 28.0 12.0 3.0 20.0 21.0 17.0
RelBERTBASE 110M 58.0 15.0 30.0 24.0 28.0 31.0
RelBERTLARGE 335M 64.0 20.0 20.0 44.0 53.0 40.0

LM

LC
te

m
pl

at
e

T5

T5SMALL 60M 20.0 33.0 24.0 11.0 10.0 19.0
T5BASE 220M 35.0 35.0 38.0 20.0 13.0 28.0
T5LARGE 770M 29.0 8.0 26.0 11.0 22.0 19.0
T5XL 3B 47.0 28.0 50.0 33.0 26.0 37.0
T5XXL 11B 33.0 8.0 24.0 18.0 15.0 19.0

Flan-T5SMALL ✓ 60M 38.0 33.0 24.0 16.0 7.0 24.0
Flan-T5BASE ✓ 220M 36.0 31.0 28.0 17.0 -0.0 22.0
Flan-T5LARGE ✓ 770M 41.0 19.0 36.0 24.0 22.0 29.0
Flan-T5XL ✓ 3B 40.0 17.0 35.0 27.0 31.0 30.0
Flan-T5XXL ✓ 11B 61.0 32.0 47.0 44.0 40.0 45.0

Flan-UL2 ✓ 20B 60.0 28.0 49.0 53.0 37.0 45.0

OPT

OPT125M 125M 41.0 37.0 51.0 23.0 13.0 33.0
OPT350M 300M 41.0 33.0 47.0 36.0 18.0 35.0
OPT1.3B 1.3B 58.0 39.0 54.0 45.0 42.0 48.0
OPT2.7B 2.7B 65.0 41.0 58.0 56.0 42.0 52.0
OPT6.7B 6.7B 71.0 42.0 59.0 61.0 47.0 56.0
OPT13B 13B 72.0 41.0 55.0 70.0 55.0 59.0
OPT30B 30B 71.0 39.0 57.0 69.0 53.0 58.0

OPT-IML1.3B ✓ 1.3B 57.0 39.0 56.0 51.0 35.0 47.0
OPT-IML30B ✓ 30B 65.0 36.0 55.0 70.0 47.0 55.0
OPT-IMLMAX-1.3B ✓ 1.3B 55.0 37.0 57.0 49.0 33.0 46.0
OPT-IMLMAX-30B ✓ 30B 62.0 36.0 57.0 67.0 46.0 53.0

GPT GPT-3davinci* - 72.0 39.0 64.0 73.0 47.0 59.0

Q
A

te
m

pl
at

e

T5

T5SMALL 60M 10.0 -13.0 17.0 -6.0 8.0 3.0
T5BASE 220M 15.0 -7.0 6.0 -12.0 14.0 3.0
T5LARGE 770M -3.0 4.0 -12.0 -19.0 -1.0 -6.0
T5XL 3B -2.0 12.0 -8.0 17.0 -14.0 1.0
T5XXL 11B 7.0 1.0 -1.0 11.0 -4.0 3.0

Flan-T5SMALL ✓ 60M 31.0 -0.0 21.0 -3.0 8.0 11.0
Flan-T5BASE ✓ 220M 41.0 28.0 46.0 17.0 22.0 31.0
Flan-T5LARGE ✓ 770M 67.0 39.0 24.0 49.0 56.0 47.0
Flan-T5XL ✓ 3B 75.0 44.0 44.0 61.0 63.0 57.0
Flan-T5XXL ✓ 11B 74.0 56.0 44.0 70.0 66.0 62.0

Flan-UL2 ✓ 20B 79.0 51.0 47.0 67.0 57.0 60.0

OPT

OPT125M 125M 35.0 31.0 46.0 10.0 9.0 26.0
OPT350M 350M 38.0 35.0 37.0 21.0 19.0 30.0
OPT1.3B 1.3B 44.0 33.0 46.0 29.0 31.0 37.0
OPT2.7B 2.7B 54.0 32.0 50.0 38.0 32.0 41.0
OPT6.7B 6.7B 53.0 33.0 39.0 46.0 34.0 41.0
OPT13B 13B 63.0 39.0 43.0 61.0 43.0 50.0
OPT30B 30B 61.0 38.0 48.0 62.0 45.0 51.0

OPT-IML1.3B ✓ 1.3B 45.0 27.0 42.0 21.0 26.0 32.0
OPT-IML30B ✓ 30B 57.0 37.0 36.0 53.0 35.0 44.0
OPT-IMLMAX-1.3B ✓ 1.3B 42.0 25.0 38.0 16.0 29.0 30.0
OPT-IMLMAX-30B ✓ 30B 58.0 36.0 39.0 43.0 42.0 43.0

GPT GPT-3davinci* - 67.0 35.0 50.0 61.0 35.0 50.0

Conv. LM ChatGPT* - -0.9 32.5 17.5 15.5 14.7 17.9
GPT-4* - 62.5 55.8 35.9 60.8 69.3 56.9

Table 15: Spearman’s rank correlation (%) on the test set. The LMs are grouped by the template (QA or LC), the
model family, and instruction-fine-tuned or not. The best correlation in each relation type is highlighted by bold
characters. Model size is measured as the number of parameters. Models marked with * are not openly available.
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(a) QA template (b) LC template
Figure 12: Spearman’s rank correlation for similar to
relation with different number of the prototypical exam-
ples.
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