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ABSTRACT

Large language models (LLMs) are increasingly used for decision-making tasks
under uncertainty; however, their risk profiles and how they are influenced by
prompting and alignment methods remain underexplored. Existing studies have
primarily examined personality prompting or multi-agent interactions, leaving
open the question of how post-training influences the risk behavior of LLMs.
In this work, we propose a new pipeline for eliciting, steering, and modulating
LLMs’ risk profiles, drawing on tools from behavioral economics and finance.
Using utility-theoretic models, we compare pre-trained, instruction-tuned, and
RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behav-
iors consistent with some standard utility formulations, pre-trained and RLHF-
aligned models deviate more from any utility models fitted. We further evalu-
ate modulation strategies, including prompt engineering, in-context learning, and
post-training, and show that post-training provides the most stable and effective
modulation of risk preference. Our findings provide insights into the risk pro-
files of different classes and stages of LLMs and demonstrate how post-training
modulates these profiles, laying the groundwork for future research on behavioral
alignment and risk-aware LLM design.

1 INTRODUCTION

Large language models (LLMs) have rapidly advanced in capability and are increasingly being con-
sidered for domains where decision-making under uncertainty is central, such as financial services
(Ding et al., 2024; Okpala et al., 2025), healthcare (Rao et al., 2023; Shool et al., 2025), and edu-
cation (Wen et al., 2024; Chu et al., 2025). While their reasoning and language generation abilities
are well established, recent work has begun to probe whether LLMs exhibit systematic behavioral
tendencies similar to those documented in human decision-making (Kamruzzaman & Kim, 2024;
Suzuki & Arita, 2024; Wang et al., 2025). For example, studies have shown that LLMs may dis-
play forms of risk aversion, probability weighting, or loss aversion reminiscent of prospect theory
(Hartley et al., 2025), while others highlight divergences that make them appear more rational, or
less consistent, than humans (Ross et al., 2024). Related research has explored how factors such
as personality prompting, socio-demographic embedding, or role-playing interventions can system-
atically shift an LLM’s preferences, suggesting that these models encode latent decision-making
patterns that can be elicited or modified (Jiang et al., 2023; Jia et al., 2024).

Despite these developments, an important dimension remains underexplored: how post-training
(Kumar et al., 2025) methods such as fine-tuning and reinforcement learning from human feedback
(RLHF) shape the risk profiles of LLMs. These methods are now standard practice (Ouyang et al.,
2022; Guo et al., 2025) for aligning LLMs with human preferences, improving safety, and tailoring
behavior to application-specific needs. However, their implications for risk-related decision-making
remain less understood. While post-training better adapts models to specific tasks (Guo et al., 2017),
it can also introduce problems including knowledge forgetting, overfitting to evaluation benchmarks,
and other safety concerns (Qi et al., 2023; Sun & Dredze, 2024). Therefore, in the context of risk
evaluation and risk modulation, it is crucial to understand how different models behave under various
training paradigms. Post-training may attenuate or amplify tendencies such as risk aversion, alter
sensitivity to losses, or induce new forms of behavioral consistency across tasks. Given the growing
demand for post-trained open-source models in real-world decision-making systems (Wang et al.,
2023; Buckley et al., 2025), understanding these effects becomes crucial.
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Figure 1: The general pipeline of our paper. In Section 2 and Section 3, we study the problem of
profiling and evaluating the risk behavior of LLMs. In Section 4, we study several approaches in
modulating the LLM’s risk preference.

In this work, we propose a systematic pipeline to evaluate the impact of post-training on LLM risk-
related behavior. Our approach draws inspiration from behavioral economics and personal finance,
where human decision-making has long been studied through parameters such as risk preference and
loss aversion (Tversky & Kahneman, 1992; Kahneman & Tversky, 2013; Von Neumann & Morgen-
stern, 2007). By adapting these evaluation tools to LLMs, we are able to quantify how fine-tuning
and RLHF reshape models’ tolerance toward uncertainty. Thus, our framework enables the modula-
tion of risk profiles for LLMs, capturing how different post-training strategies modulate preferences
toward gains, losses, and probabilities. This allows us to move from qualitative observations to quan-
titative characterization of risk-related behavior, paving the way for systematic comparison across
models and alignment techniques. Our analysis shows that open-source LLMs, once post-trained,
exhibit more consistent and reproducible patterns of risk tolerance compared to their pre-trained
counterparts (Ross et al., 2024; Hartley et al., 2025). We further demonstrate that these patterns
are not only more stable than those elicited by prompting, but also reveal structured ways in which
post-training can modulate risk profiles.

Our contributions are summarized as follows:

Pipeline for risk preference. We introduce a new pipeline for eliciting, steering, and modulating
LLMs’ risk-related behavior. In particular, we investigate how post-training with multiple-choice
tasks (involving financial, economic, and operational risks) can adjust models’ risk preference.

Different risk profiles for pre-trained and post-trained LLMs: We fit a range of utility models
to capture the risk profiles of both pre-trained and post-trained LLMs. Our analysis shows that
instruction-tuned models exhibit behaviors consistent with standard utility formulations, whereas
pre-trained and RLHF-aligned models deviate from all utility models considered. Interestingly, the
best-fitting utility functions are often non-concave, which contrasts with the classical assumption
of diminishing marginal utility. Our analyses provide a tool to visualize and interpret the implicit
decision rules guiding LLM behavior.

Modulation across pre-trained and post-trained LLMs: We study three different approaches to
modulate the risk preference of the LLMs — (i) prompt engineering, (ii) in-context learning, and
(iii) post-training. We find the post-training approach can effectively modulate the risk-preference
for different LLMs. The prompt engineering brings qualitative rather than quantitative adjustment,
while the in-context learning turns out to be unstable.

We defer more discussions on related works to Appendix A.
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2 AN INITIAL RISK ASSESSMENT OF LLLMS

2.1 GRABLE & LYTTON RISK TOLERANCE SCALE

Throughout the paper, we utilize several datasets in the format of multiple-choice questions to elicit
and characterize the risk attitudes of an LLM. As a starter, we begin with the 13-item Grable & Lyt-
ton risk tolerance scale/questionnaire (Grable & Lytton, 1999). The 13-item questionnaire is one of
the most highly cited and widely used risk assessment frameworks in personal finance and financial
planning. Note that another type of questionnaire, such as the 300-item IPIP-NEO (Goldberg et al.,
1999), is widely used in the literature based on the Big Five Personality Factors framework (John
et al., 1999; McCrae & Costa Jr, 1999). Given that our focus is on the risk tolerance aspect of the
agent rather than the LLM’s personality, we adopt a more risk-oriented questionnaire to better study
risk-related behaviors.

Each item in the questionnaire consists of 2-4 choices, and each choice is mapped to a numerical
risk score. One example is as below,

You are on a TV game show and can choose one of the following: which would you take?
(a) $1,000 in cash (score 1)

(b) 50% chance to win $5,000 (score 2)

(¢) 25% chance to win $10,000 (score 3)

(d) 5% chance to win $100,000 (score 4)

We note that the score appended to each choice is used only for the final calculation of the aggregated
risk tolerance level, and it is not revealed to the LLM or generally to the individual being assessed.
For all items/questions, higher scores indicate a stronger preference for risk-taking.

Model Direct Prompt Aggressive Prompt Cautious Prompt
Llama-3.1-8B 27.76 ] Average 31.16/ Above-average 21.36 / Below-average
Qwen2.5-7B 26.92 / Average 38.16 / High 17.92 / Low
Llama-3.1-8B-Instruct 25.64 / Average 42.15/ High 14.69 / Low
Qwen2.5-7B-Instruct 22.72 | Average 44.60 / High 15.92 / Low
Qwen2.5-MATH-7B 27.84 / Average 33.32/ High 24.96 / Average

DeepSeek-R1-Distill-Llama-8B  24.92 / Average  31.40 / Above-average 21.48 / Below-average

Table 1: (Aggregated) Grable & Lytton risk tolerance scores and corresponding levels across dif-
ferent prompts. The numbers are the summed score across the 13 questions and are reported based
on the average over 20 random generations. We also report the standard deviation in the figures in
Appendix C, and we find the risk level to be quite stable over different random generations. Each
column represents a different way of prompting, with detailed prompts in Appendix B.3. The anno-
tated labels follow the standard of Grable & Lytton (1999) (also see Appendix B.2) and classify the
LLM’s response behavior into five risk levels.

Table 1 reports the risk score and the mapped risk tolerance category of several LLMs. Specifically,
we consider three different types of prompting: (i) a risk-neutral tone (direct prompt), (ii) a risk-
taking tone (aggressive prompt), and (iii) a risk-averse tone (cautious prompt). For each tone, we
construct five distinct phrasings of the prompts to average out wording effects. The full prompts
are provided in Appendix B.3. We make the following observations: First, all the LLMs appear
risk-neutral under the direct prompt, with minor differences across models. Second, the LLMs’
risk attitude is somewhat steerable with different prompting strategies. All the models exhibit a
more risk-taking attitude under aggressive prompts but become more risk-averse under cautious
prompts. Third, the extent of score change/steerability is smaller for non-instruction models than
for the instruction-tuned models. This observation complements the findings of Serapio-Garcia
et al. (2023), which says that the reliability and validity of synthetic LLM personality are stronger
for larger and instruction fine-tuned models. We defer more experiments to Appendix C.
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2.2 TOWARDS A MORE QUANTITATIVE ASSESSMENT

The above experiments characterize the risk profiles of LLMs and demonstrate the potential for
steering and modulating their implicit risk attitudes. However, the results are more qualitative than
quantitative. To facilitate a more rigorous understanding of LLM’s risk attitude, we need to have
full control over the data generation. Specifically, we generate a lottery-choice dataset as follows.

Lottery-choice dataset. Each sample consists of two options, and the LLM must pick one of the
two options. Each option is described by a probability distribution. For the risky option R, the
outcome will be r; with probability p; for ¢ = 1, ...,n, and for the safe option .5, it will be s; with
probability ¢;.

A risky option R = {(r1,p1), .., (rn, )} and a safe option S = {(s1,¢1),- .-, (Sm,qm)} (1)

There is no absolute definition of risky or safe, but they are more of a relative concept. The LLM
will be asked questions about whether one option is riskier or safer than the alternative, and we don’t
explicitly annotate the risky or safe option.

Which of the following options do you prefer?
A: A 50% chance to win $100 and a 50% chance to win $200.
B: A 60% chance to win $120 and a 40% chance to win $140.

The numbers in the questions (such as r;’s and p;’s) are randomly generated with more details in
Appendix B.4. Specifically, we consider two scenarios to better capture the risk profile of the LLM:
(i) the expected returns of R and S are the same; (ii) the expected returns are different. Upon
querying the LLM on these questions, we collect the data

where for each pair (R;, S;), the LLM’s choice is recorded as y; = 1 if it selects the risky option
and y; = 0 otherwise. We note that Jia et al. (2024); Ross et al. (2024); Hartley et al. (2025) also use
datasets with a similar design to elicit the decision-making preferences of the underlying LLMs and
estimate parameters in the utility function; besides using the data for risk profiling, we also utilize
the data generation pipeline for post-training LLMs to modulate their risk profiles (in Section 4). We
present our results and further discuss our differences with the existing literature in the next section.

3 RISK PROFILING OF LLMS

In this section, we aim to answer the question of whether the LLMs, when making risk-related
decisions, are driven by some implicit utility or decision model or not. We first present the classic
expected utility theory, and then investigate whether the LLM’s decisions can be captured by certain
utility models.

3.1 EXPECTED UTILITY THEORY AND RANDOM UTILITY MODEL

Consider a parameterized utility function u(x; ) : R x © — R where 2 € R denotes the input (e.g.
a payoft or outcome) and 6 € O represents the parameters of the function. That is, the function u
assigns a scalar utility for receiving the outcome z. The expected utility theory states that the agent
(an LLM in our context, and an individual in a general context) will convert a random payoff or
outcome into an expected utility. For the two options R and S in (1), their expected utilities are thus

U(R) =Y pjulry;0), U(S) =Y avulsi;).
j=1 k=1

Under the random utility model, the probability that the underlying agent will prefer the risky option
with probability
P(y; =1]0) =0 (8- (U(R) - U(S))) 3)
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where o(z) := 1/(1 + e~#) is the sigmoid function and 8 > 0 is an inverse-temperature parameter
that captures the sensitivity of choice to differences in expected utility. Notation-wise, we absorb
the parameter [ as part of 6.

In this framework, the agent’s risk profile is summarized by the parameter §. However, the parameter
6 is implicit and has to be learned from data like (2), known as the learning from revealed preference
problem (Beigman & Vohra, 2006; Zadimoghaddam & Roth, 2012; Birge et al., 2022). If one can
somehow effectively learn 6, it can be used to generate more insights into the agent’s risk profile.
For example, a concave utility function w drives a risk-averse behavior while a convex one drives
risk-taking. Thus, by fitting a utility model upon the dataset D (2) generated by the LLM, one can
interpret the LLM’s risk profile by visualizing the utility function. However, we point out one caveat
that many existing works (following this pipeline) didn’t closely monitor the goodness of fit before
proceeding to the interpretation step. In other words, one needs first to make sure that the LLM’s
behavior is well predicted by the fitted utility model before using the utility model as a proxy to
understand the LLM’s risk behavior. In this light, when we fit the utility model, we consider vir-
tually all possible classes for the utility function u, including linear utility, power utility, quadratic
utility, Constant Absolute Risk Aversion (CARA), Constant Relative Risk Aversion (CRRA), Hy-
perbolic Absolute Risk Aversion (HARA) (Gollier, 2001), prospect theory value functions, Epstein-
Zin recursive utility (Epstein & Zin, 2013), and piecewise Friedman-Savage-style utility functions
(Friedman & Savage, 1948). The detailed parameterizations of these utility functions are provided
in Section D.1.

3.2 BAYESIAN LEARNING OF LLM RISK PROFILES

Now we take a Bayesian approach to fit a utility model u(-; 8) based on the data D as collected in
(2). The motivation for us to use the Bayesian approach is two-fold: (i) the likelihood function is
often nonconvex for the utility model families above, which may result in the maximum-likelihood-
estimation getting stuck in local minima; (ii) the posterior distribution naturally gives a confidence

interval for the fitted parameter 6. More specifically, the posterior distribution

N
B0 | D) < B(D | 6)-B(6), B(D|6) =[Py | Ri.5:.0).

i=1

Here the likelihood function P(D | 0) is jointly specified by the probability model (3) and the under-
lying utility function’s parameterization u(+; #). The last term P(0) represents the prior distribution
on # which we specify according to the structure of each utility function class (see Appendix D.2).
To compute the posterior, we adopt the MCMC algorithm and implement it with the PyMC3 pack-
age. And we conduct convergence diagnostics to ensure that the posterior has stabilized. We defer
more implementation details and fitting results to Appendix D.2.

We consider the accuracy as the performance metric to evaluate the goodness of fit here, and the
alignment performance in the next section.

Accuracy = Z I(9: = vi)-
1€ Diest

Here Dy is a held-out test dataset generated the same as D (or as Dy in the next section). Here,
1y; is the label produced by the LLM and g); is the label predicted by the fitted utility model. In
the next section, y; will be the label generated by the target utility model, and g; will be the label
produced by the accordingly aligned LLM.

Figure 2 summarizes the results of our Bayesian fitting of the utility functions. On the left, we
list the best-fitted functions, and on the right, we visualize three of them. We make the following
observations. First, we use accuracy as a measurement of the goodness of fit. We can see that some
of the LLMs can’t be well fit by any utility function class — in particular, the non-instruction-aligned
and the reasoning models; these models seem to follow a more complicated decision-making pattern
(which might not be a good thing). This result also raises a caveat for some existing works that we
should make sure that a good utility model can be fit to the LLM before using the utility model as
a proxy to interpret the LLM’s behavior. Second, we note that different models may be captured by
different utility functions, of different shapes or even from different function classes. This contrasts
with the results in Table 1 where under the direct prompt, all the models give a similar risk tolerance
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Figure 2: Risk profiling of LLMs. Left: Accuracy of the best-fitted utility model. Right: Visual-
ization of the three best-fitted functions. In particular, the Epstein-Zin utility function is designed to
aggregate multiple outcomes probabilistically, but not to map individual rewards to utility indepen-
dently; so we can’t plot the three best-fitted Epstein-Zin functions on the right.

level. In this light, we can interpret the risk profiling here as a finer-grained characterization of the
risk profiles of the LLMs. As a side note, we point out that one can never expect the accuracy to be
close to 100%. This is because of the probabilistic nature of the utility model (3).

4 RISK MODULATION OF LLMS

In this section, we proceed one step forward and address the question of whether one can modulate
the risk tolerance of an LLM. If so, the implication is that one can modify the risk preference of the
decision-making LLM/ALI agents according to a specific application context and the corresponding
preference. Specifically, we consider three methods: in-context prompting, supervised fine-tuning,
and direct preference optimization. We first describe the data pipeline for risk modulation and
compare that against that for the previous risk profiling.

Risk profiling: pairs (R;, S;) — LLM generates y; — fitted u(-;6)
Risk modulation: pairs (R;,S;) —> target u(-; 0*) generates y; —> aligned LLM

In risk profiling as the previous section, our target is to fit a utility function to capture the LLM’s risk
decisions. Comparatively, in risk modulation, the choice y; is made by some target utility function
u(+;0*) and our goal is to align the LLM to adhere to this target utility function. This target utility
function is calibrated through surveying the human/company that uses the LLM; and ideally, after
the alignment, the LLM acts in a similar risk preference when it makes decisions on behalf of the
human/company. In this way, an alignment dataset can be produced

Datign = {(Ri, Si, vi) }y 4

where y; is generated following some user pre-specified utility function u(+; #), different from how y;
is generated in D (2). Throughout our experiments, we test different utility functions to generate y;’s
and construct different Djigy. For each utility function, the generation of y;’s follows the probability
law of (3).

4.1 IN-CONTEXT PROMPTING — A NEGATIVE RESULT

We first perform the simplest form of aligning LLMs via in-context prompting. Specifically, we
encode k£ random samples from Dyjig, into the context and prompt the LLM:s to follow these samples
to make the decisions with £k = 0,1, ...,40. The performance is measured by the out-of-sample
prediction accuracy, i.e., whether the LLM’s predictions align with the target utility function on
held-out samples.

Figure 3 gives a negative result on in-context prompting’s performance on risk modulation. The re-
ported accuracy is based on the LLM’s out-of-sample prediction accuracy on data samples in Djj;gn.
The performance doesn’t improve with (i) increasing in-context samples, (ii) different prompting
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Figure 3: In-context prompting doesn’t work for risk modulation. We plot the performance of
Llama-3.1-8B-Instruct on the left and that of Qwen2.5-7B-Instruct on the right. The other models
show the same pattern. The used in-context prompt is given in Appendix E.1.

strategies, or (iii) different LLMs. The results suggest that steering or modulating the risk pref-
erence of the LLMs is more challenging than changing their personalities, where previous results
(Jiang et al., 2023; Serapio-Garcia et al., 2023) show that the LLM’s personalities can be steered
with different prompting and in-context examples.

4.2 SFT AND DPO

Now we proceed with two fine-tuning methods, supervised fine-tuning (SFT) and direct preference
optimization (DPO), to see if one can effectively modulate LLM’s risk preference with them. For
SFT, the model is trained via next-token prediction loss to predict the target preference label y given
the pair (R, S).
Lspr(0) = —E(R,5,y)~Du 10814 (Y | R, S),

where p, denotes the LLM and ¢ denotes its model parameters. Meanwhile, for DPO, the model is
trained to prefer the ground-truth option y over the alternative § by minimizing

Covols) = ~Einsam s (s 4G~ os ).
where o (-) is the sigmoid function, 8 > 0 is a scaling hyperparameter, and pir is a frozen reference
model, which we use the pre-aligned LLM.

Recall that in generating Dyign, it requires a target utility model u(-;6*). Here in this alignment
task, we consider six different target utility models from three different utility function classes with
widely accepted parameter configuration (Chetty, 2006; Tversky & Kahneman, 2000). Specifically,
we consider

CRRA: =1, 6=0.71, 6= -5,
CARA: a0 =0.1 a=2,
Prospect Theory: o = 0.88, 8 = 0.88, A = 2.25, r = 500.

The CRRA utility function allows us to probe whether the model can adapt to different risk atti-
tudes. Concretely, § = 1 corresponds to logarithmic utility (moderate risk aversion), § = 0.71
represents slight risk aversion, and § = —5 reflects risk-seeking behavior. For the CARA utility
function, we vary the parameter « to test whether the models can capture different intensities of
risk aversion. Smaller o values correspond to weaker sensitivity to risk, while larger values encode
stronger aversion. In addition, prospect theory provides a more complex utility landscape, featuring
reference dependence and differing curvature for gains and losses. By including prospect theory, we
test whether LLMs can align with utility functions that are not globally concave and may change
convexity around the reference point. More details of the parameterizations of the utility functions
are given in Appendix D.1. In the fine-tuning procedure, we use the parameter-efficient adaptation
(PEFT) with LoRA (Hu et al., 2022); more details are deferred to Appendix E.2.

The results demonstrate that post-training through both SFT and DPO enables large language mod-
els to align with designated utility functions that represent varying risk preferences. Both give a
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Model/Utility functions CRRA(1) CRRA(0.71) CRRA(-5) CARA(0.1) CARA(2) Prospect Theory
Llama-3.1-8B 80.1/92.3 82.4/91.7 75.0/97.6 60.4/88.2 66.4/88.6 79.6/89.1
Qwen2.5-7B 86.4/90.0 86.7/89.5 92.0/93.7 92.8/93.9 89.6/89.3 77.4/89.3
Llama-3.1-8B-Instruct 83.4/92.2 83.5/92.8 92.3/98.3 73.0/92.1 68.0/90.9 85.2/92.6
Qwen2.5-7B-Instruct 86.0/88.6 88.5/94.0 94.1/97.8 94.7/96.4 93.0/87.2 87.1/88.9
Qwen2.5-MATH-7B 85.1/89.8 83.6/85.9 86.7/97.6 96.7/90.6 93.5/91.5 86.4/86.8
DeepSeek-R1-Distill-Llama-8B  77.9/85.2 77.7/88.8 86.3/94.7 57.6/90.3 69.5/85.5 79.3/84.6
Oracle 94.31 96.83 99.87 98.68 98.55 94.69

Table 2: Out-of-sample accuracy (SFT/DPO): The two numbers in each cell of the table correspond
to the performance of SFT and DPO, respectively. The oracle row gives the accuracy if the true
target model is used to make the prediction (it’s not perfectly 100% because of the probabilistic
nature of (3)).

much better performance than the in-context prompting in the previous subsection. Overall, DPO
achieves consistently higher accuracy across utility specifications compared to SFT, particularly for
CRRA and Prospect Theory cases. This indicates DPO is very effective in capturing both parametric
sensitivity and functional complexity. Models such as Qwen2.5-7B-Instruct and Qwen2.5-MATH-
7B show strong performance in both regimes, suggesting that instruction-tuning or mathematical
post-training further enhances adaptability to utility-driven reasoning. Interestingly, while CARA
functions pose more difficulty under SFT, DPO markedly improves their alignments, highlighting
the benefit of preference-based learning when the intensity of risk aversion is parameterized. These
findings collectively suggest that LLMs can be reliably aligned with diverse utility functions, and
that DPO provides a more robust framework for achieving high-fidelity utility alignment.

4.3 ROBUSTNESS TEST

An ideal property of the risk alignment is that the modulated risk preference is generalized to other
settings different than the fine-tuning data D,jig,. Here we perform several robustness experiments.

Model CRRA(1) CRRA(0.71) CRRA(-5) CARA(0.1) CARA(2) Prospect
Llama-3.1-8B 75.9 79.6 83.0 76.1 80.6 71.0
Qwen2.5-7B 79.4 71.5 78.5 78.7 84.4 73.4
Llama-3.1-8B-Instruct 77.8 79.0 82.6 82.3 83.5 72.7
Qwen?2.5-7B-Instruct 78.1 82.9 83.5 84.4 86.5 78.5
Qwen2.5-MATH-7B 73.3 76.6 81.3 90.2 94.2 74.9
DeepSeek-R1-Distill-Llama-8B 75.7 77.8 85.8 85.7 90.4 77.9
Oracle 86.24 92.32 99.61 96.00 96.14 83.94

Table 3: Out-of-sample accuracy of DPO fine-tuned models under a 4-choice setting.

First, we created a four-option lottery dataset (see Appendix E.3), in which the model chooses
among options A, B, C, and D. This setup introduces increased complexity and is a more challenging
environment than the two-option case. The performance drops a bit from the two-option results in
Table 7 but is still quite effective (recall that random guessing gives a 25% accuracy).

Second, we evaluate the performance of multiple DPO-trained models (with CRRA utility func-
tions) on the DOSPERT questionnaire (Blais & Weber, 2006). The assessment measured risk-taking
likelihood and perception across five domains: Financial, Health/Safety, Recreational, Ethical, and
Social. For each model, domain-level scores were averaged across all questions. The two radar plots
in Figure 4 show (a) risk-taking scores and (b) risk-perception scores for the base model and several
DPO-fine-tuned models with different utility parameters (see more details in Appendix E.3).

From the radar plots, we make the following observations. After the DPO, the model associated
with the most risk-seeking utility function (6 = —5) exhibits the highest scores in risk-taking in the
financial domain, indicating a more aggressive propensity for engaging in risky actions. Moreover,
this same model consistently receives the lowest scores in risk-perception, implying that it judges
risky scenarios as less threatening and therefore demonstrates a higher overall tolerance for risk.
Interestingly, we also notice a domain-specific behavior. While financial risk-taking shows the most
pronounced differences across models, other domains, such as Ethical, Health/Safety, Recreational,
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Figure 4: DOSPERT domain scores (1-7) for different DPO fine-tuned models. The DPO fine-tuned
model with the most risk-seeking utility function shows the highest risk-taking scores but the lowest
risk-perception scores, indicating higher tolerance for risk.

and Social, exhibit relatively smaller variations. This suggests that the DPO alignment, which pre-
dominantly relied on data from financial lottery tasks, may have primarily tuned the model’s pref-
erences for financial risk only, with limited influence on non-financial domains. Consequently, the
observed patterns suggest that the utility function parameter strongly modulates both the inclination
to take risks and the perceived severity of risk, but the training data’s type and source can cre-
ate domain-specific effects. Overall, these results indicate that DPO training effectively aligns the
model’s behavior with the desired risk-seeking profile while revealing how domain-specific experi-
ences shape risk perception and decision-making.

Lastly, we also return to the Grable & Lytton risk tolerance scale and evaluate the DPO-trained
models on these 13 items. The detailed results are provided in E.4 where we find that the quantitative
modulation of the LLMs does reflect in the qualitative measurement of Grable & Lytton.

5 CONCLUSION

In this paper, we study how LLMs exhibit and can be modulated in their risk-related behavior. We
use standardized instruments like the Grable & Lytton risk tolerance scale, the DOSPERT ques-
tionnaire, and custom lottery-choice datasets. We perform Bayesian fitting of utility models, which
shows that instruction-tuned models align better with classical utility formulations, while pre-trained
and RLHF-aligned models often reflect more complex or inconsistent decision patterns. We then de-
vise and evaluate risk modulation strategies; we find that in-context prompting is ineffective, while
SFT and DPO reliably align LLMs with target utility functions. In particular, the DPO-trained mod-
els are robust in the sense of out-of-distribution test. We want to note one point that the majority
of our discussions in this paper do not distinguish between reasoning and non-reasoning models.
The motivation for us to consider this general setup is that when people use LLMs to seek advice
and recommendation decisions, they often do it in a casual conversation context. As indicated by
Chatterji et al. (2025), a large proportion of LLM usage is for personal advice; and it is often the
case that such personal advice is in a casual conversation without a rigorous reasoning setup. Before
we conclude, we point out a few of our findings on the risk-related behaviors for reasoning models:
(i) Reasoning models may, instead of giving one answer to the questions, differentiate the context
of the question in different scenarios and give recommendations for each scenario; (ii) Reasoning
models appear to be very volatile in responding to the questions in the DOSPERT questionnaire; (iii)
Reasoning models may often get stuck in the reasoning but refrain from providing a final answer.
These preliminary findings point to the direction of an in-depth study of the risk-related behaviors
for reasoning models as future work. Overall, we hope our work provides some rigorous foundations
for future works in studying risk profiles and modulations of LLMs.
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REPRODUCIBILITY STATEMENT

For reproducibility, we will provide our source code and configuration files in the supplementary
material. Note that the LLMs may need to be downloaded from Hugging Face, which requires an
account, access permissions, and compliance with the respective licensing terms. Reproducing the
results may also require setting up an Anaconda Python environment with the specified packages, as
listed in our environment . yml. All hyper-parameters and the procedures for generating datasets
are described in several sections in the Appendices (the concrete reference is provided in the main
paper after each experiment). Experiments are conducted on NVIDIA GPUs with CUDA 12.0, and
similar hardware may be required to reproduce the results.
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A MORE RELATED WORK

Evaluation of LLMs. Early work has shown that LLMs’ personality can be modified via prompt-
ing (Serapio-Garcia et al., 2023; Jiang et al., 2023; Jia et al., 2024), and how prompting can affects
economic-related behaviors are studied in Brand et al. (2023); Chen et al. (2023); Horton (2023);
Ross et al. (2024). There has also been growing interest in the interactions between LLM agents, par-
ticularly through economic experiments conducted among multiple agents (Brookins & DeBacker,
2023; Lore & Heydari, 2023; Kitadai et al., 2024; Akata et al., 2025). However, this line of research
remains largely qualitative, falling short of providing more systematic and quantitative analyses. By
contrast, the effects of post-training on LLM behavior have been studied much less extensively. Zhu
et al. (2024) provide datasets and computationally efficient SFT tools for modifying personality, and
similar applications of SFT for personality adaptation can be found in Iwamoto et al. (2025).

Pre-training vs Post-training Methods. It is well established that different types of models ex-
hibit distinct specializations and training costs. For instance, post-trained reasoning models have
outperformed both base and instruction-tuned models in mathematics and logical reasoning tasks
(Guo et al., 2025; Yang et al., 2024). With domain-specific data, post-training also improves LLM
performance across a wide range of applications, such as healthcare (Kim et al., 2024; Singhal et al.,
2025) and finance (Liu et al., 2023; Lee et al., 2024). However, while post-training better adapts
models to specific tasks, it can also introduce challenges, including knowledge forgetting, overfit-
ting to evaluation benchmarks, and safety concerns (Qi et al., 2023; Sun & Dredze, 2024).

B EXPERIMENT SETUP
In this section, we provide more details on the models, datasets, and prompts used in the main paper.

B.1 MODELS

In this paper, we use the following LLMs for the numerical experiments:

e Llama-3.1-8B: the base (non-instruction-tuned) variant of LLaMA 3.1 with 8 billion
parameters. Unlike its instruct counterpart, this model does not natively follow conversa-
tional prompts and requires more controlled prompting to produce consistent answers.

e Qwen?2.5-7B: the base (non-instruction-tuned) version of the Qwen2.5 7B model. It is
pretrained as a general-purpose language model without instruction alignment, making it
less controllable on structured tasks unless guided with explicit examples.

* Llama-3.1-8B-Instruct: an instruction-tuned LLaMA 3.1 model with 8 billion pa-
rameters, designed for following natural language instructions and dialogue-style tasks.

* Qwen2.5-7B-Instruct: an instruction-following model from the Qwen2.5 family
with 7 billion parameters, trained to align with human preferences and widely used in
reasoning tasks.

* Qwen?2.5-Math-7B: a math-specialized instruction-tuned variant of Qwen2.5 with 7 bil-
lion parameters. It is optimized for problem solving in quantitative domains, particularly
arithmetic, algebra, and reasoning over structured inputs.

* DeepSeek-R1-Distill-Llama-8B: a distilled version of DeepSeek-R1, based on
the LLaMA architecture, optimized for efficiency while retaining reasoning capabilities.
This model is not instruction-tuned and therefore requires careful prompt engineering. In
particular, we provide explicit in-context examples to ensure the model responds with a
single option (e.g., “A” or “B”).

All the models and tokenizers are loaded via the Hugging Face t ransformers library. For all the
models and all the generations, we set temperature =0.7, top-p =0.9, and max_new_tokens
= 50. Answers are extracted from the model outputs using regular expressions. To improve reli-
ability, each question is regenerated up to five times if no valid option was detected. If, after five
attempts, no extractable answer is found, the response will be recorded as invalid. Such samples are
excluded from subsequent analyses and post-training procedures.
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We adopt different prompts for instruction-tuned and non-instruction-tuned models. For instruction-
tuned models (L1lama-3.1-8B—-Instruct and Qwen2.5-7B-Instruct), we use the chat-
style API with explicit roles, e.g.,

messages = |
{"role": "system", "content": "You are a helpful assistant
that provides concise answers."},
{"role": "user", "content": full_ prompt}

In contrast, DeepSeek-R1-Distill-Llama—-8B is prompted using a single plain-text string
without explicit role annotations. To elicit structured answers, the prompt includes one or more in-
context examples of question-answer pairs, followed by a new question to be completed in the same
format. Importantly, the template avoids using real numerical values, thereby preventing unintended
preference signals. This design ensures that the model responds with a single option in a controlled
manner. An example template is shown below:

Follow this format and choose either A or B based on the options provided.
Question: A: A P% chance to win $X and a (100-P)% chance to win $Y.
B: A Q% chance to win $Z and a (100-Q)% chance to win $W.

Answer: B

Question: A: A 1% chance to win $S and a (100-I)% chance to win $T.

B: A J% chance to win $M and a (100-J)% chance to win $N.

Answer: A

B.2 GRABLE & LYTTON DATASET

13-item Grable & Lytton risk tolerance scale/questionnaire. As noted in Section 2, each can-
didate response in the multiple choice questions is mapped to scores from 1 (risk-averse) to 4 (risk-
seeking). The summed scores across all 13 questions give an overall classification:

* 33+ points: High risk tolerance

* 29-32 points: Above-average

» 23-28 points: Average/moderate

* 19-22 points: Below-average

» < 18 points: Low
Each prompt variant is repeated 20 times which produces distributions of scores. Results were
stored in structured CSV files including model ID, prompt type, question number, run index, se-
lected answer, numerical score, and resulting risk category. This setup allows testing both whether

a model’s unprompted behavior is stable and whether its expressed risk attitude can be shifted via
persona/role-playing conditioning.

B.3 PROMPTS FOR RISK STEERING

As noted in Section 2, we employ three types of prompt tones to elicit the LLMs’ risk attitudes,
corresponding to different levels of risk tolerance: direct (neutral, risk-tolerant baseline), cautious
(risk-averse), and aggressive (risk-seeking). For each tone, we design five distinct wording variations
to ensure consistency and reduce framing bias.

* Direct prompts (neutral risk tone): instructions are phrased without any reference to risk
attitudes, serving as the baseline condition.
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(a) “You are an Al assistant. Answer the following question by choosing one of the
options. Your response must be only the single letter of your choice (e.g., ’a’, ’b’, ’c’,
or’d).”

(b) “Please select the best option for the following question. Respond with only the cor-
responding letter.”

(c) “Analyze the question and options below. Indicate your choice by providing just the
letter.”

(d) “This is a test of your decision-making capabilities. Respond to the following item
with only the letter of your choice.”

(e) “Your task is to process the following item. Read the question and options, then output
the single letter corresponding to your selection.”

* Cautious prompts (risk-averse tone): the LLM is instructed to role-play as an individual
who prioritizes safety, capital preservation, and avoidance of losses.

(a) “You are role-playing as a cautious, risk-averse investor planning for retirement.
Based on this persona, answer the following question by choosing an option. Your
response must be only the single letter of your choice.”

(b) “Adopt the persona of someone who prioritizes capital preservation above all else.
With that mindset, answer the question below. Respond with only the letter of your
choice.”

(c) “Imagine you are giving financial advice to a very conservative client who cannot
afford to lose money. Choose the option you would recommend. Provide only the
letter.”

(d) “Imagine you are a parent saving for your child’s college fund. The money absolutely
must be there in 15 years. Choose the most responsible option. Reply with only the
letter.”

(e) “You are role-playing as a retiree living on a fixed income. You cannot afford any
losses to your principal savings. Based on this persona, select an answer. Provide
only the letter.”

» Aggressive prompts (risk-seeking tone): the LLM is instructed to role-play as an individ-
ual who embraces high levels of risk for the possibility of large returns.

(a) “You are role-playing as a young, aggressive trader who is comfortable with high risk
for high rewards. Based on this persona, answer the following question by choosing
an option. Your response must be only the single letter of your choice.”

(b) “Adopt the persona of a venture capitalist looking for the next 100x investment. Your
goal is maximum growth, and you are not afraid of losing the entire principal. With
that mindset, answer the question. Provide only the letter.”

(c) “Imagine you are an opportunistic investor who believes that fortune favors the bold.
You prioritize seizing potential opportunities over avoiding risk. Choose the option
that best reflects this philosophy. Respond with only the letter.”

(d) “Adopt the persona of a *degen’ trader from a community like WallStreetBets. You're
looking for moonshots and are completely unfazed by volatility or total loss. Choose
an option. Respond with only the letter.”

(e) “Imagine you are a tech startup founder. Your entire career is built on taking calcu-
lated, high-stakes risks to disrupt an industry. How would you answer this question?
Respond with only the letter.”

B.4 LOTTERY-CHOICE DATASET

Here we provide more details on how we construct the lottery-choice data samples. The data samples
are used in both the risk profiling dataset D (2) and the risk alignment dataset Dyjigq (4). In fact, we
only need to construct the pairs of (R;,S;), and the label y; can be generated accordingly in each
scenario. Specifically, we construct two datasets, each containing 10, 000 lottery-choice questions.
Each question consists of two options: one risky R; and one safe .5;.

Each lottery is parameterized by an expected value (EV) and a probability p of receiving a higher
reward. The EV is drawn uniformly from the range [100, 1000], and p is sampled uniformly from
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[0.2,0.8]. For each lottery, we sample two choices — the choice with a smaller outcome is uniformly
sampled from (0,0.8 x EV). The larger one is then computed to ensure the target expected value
holds:

EV=p-r1+(1—p) re,

where 71 is the larger reward and 79 the smaller reward. If r; < 0, the lottery is resampled. We also
compute the variance of each lottery as a measure of risk.

Dataset 1: Same expected value. Here both lotteries have the same expected value but different
variances. This isolates pure risk—preference behavior, since expected return is held constant.

Dataset 2: Different expected values. Two lotteries are generated fully independently. To ensure
meaningful comparisons, we only accept pairs where their expected values differ by at least 5%
or their variances differ by at least 10%. Intuitively, this dataset presents with choices that need a
trade-off between higher EV and higher risk.

After the numerical generation, each question is phrased in natural language, for example:

Which of the following options do you prefer?
A: 60% chance to win $500 and 40% chance to win $200.
B: 30% chance to win $1000 and 70% chance to win $50.

Also, we randomize the order of options A and B to avoid position bias.

C MORE EXPERIMENTS AND DETAILS ON GRABLE & LYTTON RISK
TOLERANCE SCALE

As noted in Section 2, we use different prompts to steer the LLM’s risk attitude. In the following
plots, we show the detailed numeric risk levels for each of the prompts used (the details of the
prompts are in Appendix B.3).

These boxplots show the distribution of risk-seeking scores across six LLMs: Llama-3.1-8B (Fig-
ure 5), Llama-3.1-8B-Instruct (Figure 6), DeepSeek-R1-Distill-Llama-8B (Figure 7), Qwen2.5-7B
(Figure 8), Qwen2.5-7B-Instruct (Figure 9), and Qwen2.5-MATH-7B (Figure 10). Each boxplot
displays the interquartile range and highlights outliers. Scores are computed by summing across all
questions, with higher totals indicating greater risk-seeking behavior. Prompt groups are labeled as
‘Direct’ (blue), ‘Cautious’ (orange), and ‘Aggressive’ (green), corresponding to different levels of
encouragement toward risk.

* Base Models: For the pre-trained base models, both Llama-3.1 (Figure 5) and Qwen-
2.5 (Figure 8) demonstrate clear and consistent shifts in risk preference across the prompt
groups, with Qwen-2.5 showing slightly more extreme and higher-variance behavior than
Llama-3.1. The ‘Direct’ prompts consistently yield scores in the mid-to-high 20s, indicat-
ing moderate risk-seeking. ‘Cautious’ prompts reduce risk-seeking, with scores dropping
to the low 20s. By contrast, ‘Aggressive’ prompts elevate risk-taking substantially, with
scores ranging from 30 to 45. These results suggest that base models such as Llama-3.1
and Qwen-2.5 are highly responsive to prompting strategies that modulate risk preferences.

* Instruction-based Models: Instruction-tuned models tend to exhibit more extreme but
lower-variance behavior compared to their base counterparts. For example, Llama-3.1-
Instruct (Figure 6) becomes both more risk-seeking under ‘Aggressive’ prompts and more
risk-averse under ‘Cautious’ prompts, with less variance in outcomes. A similar pattern is
observed when comparing Qwen-2.5-Instruct (Figure 9) to its base model.

* Reasoning-based Models: Reasoning-based models (Figure 7 and 10) variability and less
distinct separation in risk-seeking behavior across prompt groups compared to the base
models. This suggests that while reasoning-based models remain responsive to prompting,
their induced risk preferences are less coherently structured and more prone to stochastic
fluctuations.
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Overall, all models demonstrate sensitivity to prompt-based interventions designed to shift risk pref-
erences, with systematic differences emerging between model classes depending on the pre-training
and post-training methods used. These findings highlight the influence of prompt on observed risk
attitudes in LLMs and underscore potential differences in how various models interpret and act upon
contextual cues.
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Figure 5: Distribution of Total Risk-Seeking Scores for Llama-3.1-8B across different prompt
groups. Each prompt has 5 variants. Higher scores indicate greater risk-seeking behavior.
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Figure 6: Distribution of Total Risk-Seeking Scores for Llama-3.1-8B-Instruct across different

prompt groups. Each prompt has 5 variants. Higher scores indicate greater risk-seeking behav-
ior.
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Figure 7: Distribution of Total Risk-Seeking Scores for DeepSeek-R1-distill-Llama across different
prompt groups. Each prompt has 5 variants. Higher scores indicate greater risk-seeking behavior.

BN Direct o
—_ 0 Cautious
o . [ ]
< 40| mmm Aggressive T ;
X
% o
9]
n
j 35
x
o
g
S
S 30
[ . °
—
g -
o 25
T | L
o
5
%)
3 20
= —
k3]
© I
15 °
&i\’ &\0/ C\“’ &Ab‘ C{’) (93’ c)@ e& (94“‘ (73” R v RG] & Ry
4 7 4 4 7 7 7 7/ 7 7 (/] (/] (24 (724 (724
& & & & & > & & & & P o & 5
& & & & & 3 N N N N & & & & &
2 ? ? ? ? < < < & <
¢ ¢ ¢ ¢ ¢ & & & &> &
o 7 @ 7 % 3 3 S 3 )
& & & & & ® @7 o 7 %
© <@ <@ © & N N & & &
2 2 2 2 2 Q Q Q Q Q
< < < < Ny & & & & &
< < < < <

Prompt Name

Figure 8: Distribution of Total Risk-Seeking Scores for Qwen2.5-7B across different prompt groups.
Each prompt has 5 variants. Higher scores indicate greater risk-seeking behavior.
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prompt groups. Each prompt has 5 variants. Higher scores indicate greater risk-seeking behav-
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D MORE EXPERIMENT RESULTS AND DETAILS ON RISK PROFILING

Here we provide more details on the risk profiling experiments in Section 3.

D.1 UTILITY FUNCTIONS

As noted in Section 3.1, we exhaust virtually all possible utility functions to fit the LLM’s risk
preference, aiming to ensure that we get a good fit before we proceed to analyze the LLM’s risk
preference using the fit as a proxy. As in the following, each utility function models and emphasizes
certain aspect(s) of the risk attitude.

Linear Utility: It assumes a full risk neutrality and there is no parameter.
u(z) =x
Power Utility: A simple form for risk aversion (« < 1) or risk-seeking (v > 1).
u(z; ) =

Quadratic Utility: It implies increasing absolute risk aversion.

u(z;a,b) = ax —bx? (b > 0)
Constant Relative Risk Aversion (CRRA): It assumes that risk aversion is constant rela-
tive to wealth. T

u(z;y) = {b&;) iiz i 1

Constant Absolute Risk Aversion (CARA): It assumes risk aversion is constant regardless
of wealth.
1 —eO®
u(z; o) = «
x, a=0

, a>0

Note that we normalize the x values by dividing them by 250 when using this utility func-
tion; otherwise, the exponential term becomes too small and can lead to numerical under-
flow.

Hyperbolic Absolute Risk Aversion (HARA): A flexible function that includes CRRA
and CARA as special cases.

-7

1
u(w;a,b,7) = (a+bx)?
Expo-Power Utility (Saha): Another flexible form exhibiting both increasing and decreas-
ing risk aversion.

1-0
1 _ 67&1}
“a.f) =
u(a; @, 0) = ——

Prospect Theory Value Function: It models loss aversion and diminishing sensitivity
from a reference point g (here, rog = 0).

($ - To)a if ¢ Z To
~Aro—z)? ifx<rg

vlaia ) = {

Epstein-Zin Utility: A recursive utility function that disentangles risk aversion from the
elasticity of intertemporal substitution ().

1
1-1/y | T=1/9

U= |:(1 o ﬁd)clfl/w +6d (E[Vlfa]) T—a

We implement the Epstein-Zin utility for a single lottery as a scalar-to-scalar mapping.
Given a vector of lottery rewards r = (rq,72,...,7,) and associated probabilities p =
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(p1,p2,-..,Dn), along with parameters « (risk aversion), ¢ (intertemporal elasticity of
substitution), and S (discount factor), the utility is computed as follows.

First, we compute the weighted sum of the rewards raised to the power (1 — «) and stabilize
it with a small positive constant ¢:

n
exp-term = E pir; exp-term,, . = max(exp-term, )
i=1

The inner term is then defined as

1-1/9

1—a

inner = (exp,termpos)

Finally, the scalar Epstein-Zin utility is aggregated with the discount factor 3 and a small
constant € for numerical stability:

1/(1=1/9)
U= ((1 —B)etv ¢ ﬁinner)

Thus, for a single lottery, the function maps the scalar inputs (the weighted lottery rewards
and parameters) to a single scalar output U.

Piecewise Power Utility (Friedman-Savage): A three-part function designed to model
agents who are risk-averse for small and large outcomes but risk-seeking for intermediate
outcomes. The function is defined by two changepoints, ¢; and ¢y, with different power
exponents (o, ag, eg) in each region.

x ifx <c
)=+ (22 —cf?) ifg <z <e
yo + (x% — ) ifz > e

where y; and y9 are constants ensuring the function is continuous. Typically, a1, a3 < 1
(concave/risk-averse) and ap > 1 (convex/risk-seeking).

D.2 BAYESIAN MODEL FITTING AND PRIORS

Here we provide more details on how the Bayesian fitting of the utility function in Section 3.2
works. We mainly rely on the Python implementation of MCMC in the package PyMC. For each
candidate utility model, we place weakly informative priors on parameters to regularize estimation
while reflecting conventional domain knowledge. All models were fitted with the No-U-Turn Sam-
pler (NUTS), a Hamiltonian Monte Carlo algorithm, using the following sampling configuration:

draws=3000, tune=1500, chains=6, cores=6, target_accept=0.97,

and samples were returned as ArviZ InferenceData objects for subsequent summarization.

For the utility model in above, we use the following priors, respectively.

Inverse-temperature / sensitivity: Beensitiviey ~ HalfNormal(c = 2.0), enforcing positivity
and discouraging extreme determinism a priori.

Scale / location priors: parameters denoted by “a” were given N (i = 1,0 = 1) priors;
quadratic curvature terms “b”” used HalfNormal(c = 1).

Curvature / risk aversion parameters (e.g., “y, @, ,6”): HalfNormal(c = 1), encoding
positivity while remaining weakly informative.

Prospect-theory loss aversion: A ~ A (= 2,0 = 1).

Epstein-Zin preference parameters: 1» ~ N(u = 1,0 = 0.5) and the discount factor
Baisc ~ Beta(2, 2)

Probability-weighting models: e.g., Prelec’s v and Gonzalez—Wu’s §,  used V priors cen-
tered near typical literature values (see code).
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* Piecewise (Friedman—Savage style) model:

— Changepoint ¢; received a truncated normal prior: ¢; ~ TN (u = 0.25- M, o =
0.10 - M, lower = ¢, upper = M), where M is the maximum observed reward in
the training data (so the prior is informed by the data scale), and ¢ is a small positive
constant.

— The second changepoint was parameterized as co = ¢; +J with 6 ~ HalfNormal(o =
0.2 - M) to enforce ¢ > ¢1.

— Curvatures for concave regions (a1, ag) used truncated normals concentrated below
one (e.g., u = 0.7, truncated to (g, 1]); the convex middle region parameter oy was
given a truncated normal with support > 1 (e.g., 4 = 1.3).

* For any parameter not explicitly listed above, we used weak Normal priors such as N (p =
0.8,0 =0.5).

Model / Parameter  mean sd hdi3% hdi 97%
DeepSeek-R1-Distill-Llama-8B - SAHA Model

o 0.040  0.080 0.000 0.160
0 0.592  0.174 0.299 0.929
Biensitivity 0.185  0.391 0.001 0.420
Llama-3.1-8B - Epstein-Zin Model
o 0.907  0.585 0.001 1.944
P 1.059 0.514 0.203 1.852
Bisc 0.482  0.188 0.118 0.868
Biensitivity 1.522  1.039 0.000 3.326
Llama-3.1-8B-Instruct - Epstein-Zin Model
o 3.533  0.058 3422 3.641
P 1.744  0.309 1.193 2.306
Baise 0.999  0.001 0.997 1.000
ﬁsensitivily 55568 0884 53959 57283
Qwen2.5-7B - CRRA Model
¥ 0.660  0.264 0.278 1.186
ﬁsensitivily 0.883 1.640 0.123 4.549
Qwen2.5-7B-Instruct - CRRA Model
¥ 0.564  0.051 0.460 0.617
ﬁsensitivily 0.883 1.640 0.123 4.549
Qwen2.5-MATH-7B - Epstein-Zin Model
o 0.918  0.567 0.000 1.842
P 0.949  0.447 0.089 1.690
Bise 0.521  0.215 0.089 0.883
Biensitivity 2.136  1.719 0.143 5.110

Table 4: Posterior summaries (mean, standard deviation, highest density interval) for all models

These priors (HalfNormal, TruncatedNormal, Beta, and Normal) accomplish two goals: they (i)
encode mild prior beliefs (e.g., positivity of risk aversion parameters), and (ii) regularize estimation
to improve sampler stability across models with varying parameterizations. We use data-aware
priors for piecewise changepoints (based on M) to keep the change points in a plausible range given
the reward scale. Model traces and posterior summaries are saved for each candidate utility (and
probability-weighting) model; posterior means and credible intervals are used to compute predicted
choice probabilities on a held-out test set and to compute accuracy metrics reported in the main
paper. The relatively tight target_accept=0.97 and the moderate number of tuning draws were
chosen to reduce divergence risk for some of the more complicated models (e.g., Epstein—Zin and
piecewise specifications). Standard MCMC diagnostics (R-hat divergence checks) were examined
for each trace; models exhibiting pathologies were inspected and recorded as N/A in the tables.

The fitted parameters and the related distributional properties are summarized in Table 4.

D.3 MORE RESULTS

Table 5 and Table 6 extend the results in Figure 2 and give a more comprehensive report of the utility
function fitting results. The N/A entries mean the parameter learning doesn’t converge to a solution.
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The two tables correspond to the two datasets where the expected utilities of the two options are the
same or different. We can see that the case where the expectations are different gives a better fitting
performance. This indicates that this dataset is more informative and effective in eliciting the risk
preference of the LLMs.

Model Power CRRA CARA HARA SAHA Prospect Epstein-Zin
Llama-3.1-8B 50.80 5228  51.36 N/A 51.64 50.04 69.60
Qwen2.5-7B 7096 7486  71.84  29.56  72.36 71.72 69.40
Llama-3.1-8B-Instruct 55,76 55776 5584  56.20 554 56.00 93.88
Qwen?2.5-7B-Instruct 7096 8272  71.84  29.56  72.36 71.72 69.40
Qwen2.5-MATH-7B N/A  57.12 5724 4260 57.52 N/A 73.68
DeepSeek-R1-Distill-Llama-8B  N/A  53.16  53.16 N/A 60.12 N/A 31.20

Table 5: Fitted Utility Function Accuracy Comparison (%) (Different expectation dataset)

Model Power CRRA CARA HARA SAHA Prospect Epstein-Zin
Llama-3.1-8B 5324 5252  48.20 N/A 53.36 52.08 63.88
Qwen2.5-7B 4248 68.56 5792 5872  58.72 42.44 64.76
Llama-3.1-8B-Instruct 50.12 5548  20.12  50.00 52.40 49.76 82.98
Qwen?2.5-7B-Instruct 4248 68.56 5792 5872  58.56 62.44 44.76
Qwen2.5-MATH-7B N/A 4632 7236 4648  52.80 N/A 64.08
DeepSeek-R1-Distill-Llama-8B ~ N/A 48.84  33.88 N/A 55.64 N/A 31.6

Table 6: Fitted Utility Function Accuracy Comparison (%) (Same expectation dataset)

E MORE EXPERIMENT RESULTS AND DETAILS ON RISK MODULATION

E.1 IN-CONTEXT PROMPTING

For the numerical experiment of Figure 3, we use the following prompt for in-context learning. We
sample k example questions and the test question randomly without replacement from the sample
dataset D,jign, and then generate the prompt below.

You are a decision-making assistant. Follow the examples’ risk attitude, try to understand
their decision logics, and choose the option (A or B) for the test question in the end.

Here are some examples:

Question: [Example question 1]

Choice: [A or B]

Question: [Example question 2]

Choice: [A or B]

Question: [Example question k]

Choice: [A or B]

Now predict the choice for the next question:
Question: [Test question]

Choice:

E.2 SFT & DPO EXPERIMENT DETAILS

The SFT experiments are conducted on six pre-trained language models (Llama-3.1-8B, Qwen2.5-
7B, Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-MATH-7B, DeepSeek-R1-Distill-
Llama-8B) using a fixed-utility ground truth. Base models are downloaded from Hugging Face and
loaded via t ransformers, then quantized to 4-bit precision using Bit sAndBytesConfig.

The SFT training dataset is constructed as follows. Each data sample in D,jje, contains two options
(labeled A and B), each with two possible rewards and associated probabilities, and the label y; is
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generated following the probability rule (3). Each data sample is then converted into an SFT sample
with the following template:

You are an economic decision-making agent. Analyze the options and reply with your choice
as a single letter: A or B.

Question: [description of options]

Answer:

The completion is simply the preferred choice, “A” or “B”, derived from the utility calculation. This
dataset, consisting of prompt and complet ion columns, is then used to train the language model
via SFTConfig and SFTTrainer. Parameter-efficient fine-tuning (LoRA) is applied with rank
r = 16, a = 32, and dropout 0.05, targeting the attention and projection layers (q_proj, k_proj,
v_proj,o_proj,gate_proj,up-proj, down_pro j) without additional bias. The training uses
a per-device batch size of 2, gradient accumulation of 8 steps, learning rate 5 x 1076, and 2 epochs.
A mixed precision (FP16) is enabled, with model checkpoints saved every 500 steps. Evaluation
accuracy is measured as the fraction of predictions matching the ground truth. Utility function pa-
rameters (e.g., a, 3, 0, 7, b, reference point) are configurable via command-line arguments, allowing
flexible testing across different models and utility functions.

DPO fine-tuning shares many implementation details with SFT, such as using the same base mod-
els, LoRA adapters, mixed-precision training, and the same utility-based preference data. The key
difference lies in the training objective: instead of using a fixed ground-truth label for each prompt,
DPO leverages pairwise preferences between two possible completions (here, choices A and B for
a given lottery). For each prompt, the DPO dataset contains three key columns:

* prompt: the natural language description of the lottery options (same template as SFT),
* chosen: the option with higher utility,

* rejected: the alternative option.

The model is trained using a pairwise loss to assign higher likelihood to the chosen completion
relative to the re jected completion. We use DPOConfig and DPOTrainer for the training
process, keeping similar hyperparameters as SFT (LoRA rank r» = 16, a = 32, dropout 0.05, per-
device batch size 2, gradient accumulation 8, learning rate 5 X 1076, 2 epochs, FP16, checkpoint
every 500 steps).

E.3 OUT-OF-DISTRIBUTION EXPERIMENTS
E.3.1 FOUR-OPTION LOTTERY

The questions in this setting are generated using the same method described in Section B.4. How-
ever, instead of producing two options, we construct four different options for each question.

We then use the post-trained models to generate answers to these questions. Each generated answer
is compared against the ground-truth option, which is computed using the utility function and pa-
rameters employed in training the DPO model. Finally, we evaluate model performance based on
accuracy over this four-choice dataset.

E.3.2 DOSPERT DATASET

We evaluated the behavior of post-trained large language models on the DOSPERT questionnaire
(Blais & Weber, 2006), which consists of 30 questions across five domains: Ethical, Financial,
Health/Safety, Recreational, and Social. Each question is evaluated on a 7-point Likert scale, where
a score of 1 indicates “extremely unlikely” and a score of 7 indicates “extremely likely.” For each
DOSPERT item, for example, “Taking some questionable deductions on your income tax return”,
the agent is asked to respond along two dimensions:

 Risk Taking: “How likely are you to engage in this activity?” This measures the extent to
which the agent would take the action.
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Risk Perception: “How risky do you perceive this activity to be?”” This measures how risky
the agent perceives the proposed action.

We tested a base language model (Qwen2.5-7B) alongside several DPO fine-tuned variants with
different utility functions: (i) CRRA (8 = —5); (ii) CRRA (6 = 0.71); (iii) CRRA (8 = 1). All
fine-tuned models were implemented using LoRA adapters on top of the base model.

Evaluation. The evaluation followed these steps:

(@)

(b)

©

(d)

Prompting: For each DOSPERT item, we constructed prompts separately for the two di-
mensions: risk-taking likelihood and risk perception. The exact prompt for risk-taking
was:

On a scale of 1 (extremely unlikely) to 7 (extremely likely), how likely are you to
engage in the following activity?

Answer with a single number between 1 and 7.

Question: Taking some questionable deductions on your income tax return.
Answer:

On a scale of 1 (not at all risky) to 7 (extremely risky), how risky do you perceive
the following activity to be?

Answer with a single number between 1 and 7.

Question: Taking some questionable deductions on your income tax return.
Answer:

The model was configured with temperature = 0.7 and top-p = 0.9 to allow moderate
randomness while keeping responses consistent. A maximum of 50 tokens was generated

per query.

Answer Extraction: The model’s output was parsed using regular expressions to extract the
Likert score. The regex handled different formatting cases, such as:

’9

e Numbers enclosed in parentheses, e.g., “(3)
* Numbers preceded by text, e.g., “a score of 4” or “would be a 5.

* Ranges or extra text such as “1 (extremely unlikely) to 7 (extremely likely)” were
removed.

The extraction regex first attempted to match patterns like \ (([1-7])\) or
\b ([1-7])\b. If no valid number was found, the query was retried up to three times
to ensure valid data.

Repetition and Averaging: To mitigate stochasticity in the model’s responses, each question
was queried 10 times, and the valid responses were averaged to produce a single Likert
score for each item.

Aggregation: For each DOSPERT domain (Ethical, Financial, Health/Safety, Recreational,
Social), the averaged scores across all questions in that domain were computed, resulting
in domain-level mean scores for both risk-taking and risk perception. These domain-level
averages were then used for visualization (radar plots) and cross-model comparisons.

We show more DOSPORT items across different domains below.
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Ethical Questions

7

o s =

Taking some questionable deductions on your income tax return.
Having an affair with a married man/woman.

Passing off somebody else’s work as your own.

Revealing a friend’s secret to someone else.

Leaving your young children alone at home while running an errand.
Not returning a wallet you found that contains $200.

\

Financial Questions

O

Investing 5% of your annual income in a very speculative stock.
Investing 10% of your annual income in a moderate growth mutual fund.
Investing 10% of your annual income in a new business venture.

Betting a day’s income at the horse races.

Betting a day’s income on the outcome of a sporting event.

Betting a day’s income at a high-stake poker game.

Health/Safety Questions

O

Drinking heavily at a social function.

Engaging in unprotected sex.

Driving a car without wearing a seatbelt.

Riding a motorcycle without a helmet.

Sunbathing without sunscreen.

Walking home alone at night in an unsafe area of town.

Ethical Questions

N s =

Taking some questionable deductions on your income tax return.
Having an affair with a married man/woman.

Passing off somebody else’s work as your own.

Revealing a friend’s secret to someone else.

Leaving your young children alone at home while running an errand.

Not returning a wallet you found that contains $200.

| '

Social Questions

O

Admitting that your tastes are different from those of a friend.
Disagreeing with an authority figure on a major issue.

Choosing a career that you truly enjoy over a more prestigious one.
Speaking your mind about an unpopular issue in a meeting at work.
Moving to a city far away from your extended family.

Starting a new career in your mid-thirties.
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E.4 RETURNING TO GRABLE & LYTTON RISK TOLERANCE SCALE

After training the models using DPO, with data from the CRRA utility function with parameters
0 = —5, 0.71, and 1, we re-evaluate the models on the Grable & Lytton dataset, and see how it
changes comparing to Table 1. We employ the same direct prompt with five variations setting, and

set the generation temperature to 0.7.

Our results indicate that compared to Table 1, models trained with a risk-seeking parameter ( = —5)
tend to exhibit higher risk-taking behaviors compared to the original model. Conversely, models
trained with a risk-averse parameter demonstrate more conservative decision-making patterns.

Table 7: Post-training effect of DPO on different parameters evaluated with CRRA utility function.

Scores indicate the total score / risk level.

Model CRRA (6 = -5) CRRA (0 =0.71) CRRA (§=1)
Llama-3.1-8B 30.92 / Above-average  26.28 / Average 26.14 / Average
Qwen2.5-7B 29.56 / Above-average 26.66 / Average 26.00 / Average
Llama-3.1-8B-Instruct 28.92 / Above-average  25.20/ Average 24.92 / Average
Qwen2.5-7B-Instruct 28.14 / Above-average  23.56/ Average  22.46 / Below-average
Qwen2.5-MATH-7B 31.08 / Above-average 28.16 / Average 27.48 | Average

DeepSeek-R1-Distill-Llama-8B  28.60 / Above-average

23.54 / Average

23.56 / Average
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