
ThinkPilot: Steering Reasoning Models via
Automated Think-prefixes Optimization

Anonymous ACL submission

Abstract001

Large Reasoning Models (LRMs) are power-002
ful, but they still suffer from inefficient and003
off-target reasoning. Currently, training-free004
methods are limited to either rigid heuristics005
or descriptive, non-actionable analyses. In this006
paper, we introduce ThinkPilot, a training-free007
framework that automatically optimizes LRMs008
reasoning. It uses an evolutionary process009
to generate think-prefixes, namely instructions010
that evolve driven by a taxonomy of reason-011
ing behaviors to guide models toward superior012
performance. Extensive experiments demon-013
strate ThinkPilot’s broad effectiveness: it sig-014
nificantly improves the accuracy-length trade-015
off for efficient reasoning, drastically improves016
safety (e.g., cutting the StrongREJECT score of017
DeepSeek-R1-Distill-Qwen-32B from 27.0%018
to 0.7%), and enhances instruction following.019
It also synergizes with existing training-based020
methods. Specially, our analysis reveals that021
think-prefixes can reliably control LRMs’ rea-022
soning behaviors, and that different tasks have023
strong preferences for specific behavioral dis-024
tributions. By automatically identifying and025
eliciting these behaviors, ThinkPilot provides026
a generalizable framework for aligning LRMs027
reasoning with task demands.028

1 Introduction029

Large Reasoning Models (LRMs) (Jaech et al.,030

2024; Guo et al., 2025) have achieved notable031

progress in complex tasks like math problem solv-032

ing and code generation. These models support iter-033

ative thinking and better problem decomposition by034

generating detailed reasoning before final answers035

(Chen et al., 2025a). However, LRMs still face036

issues such as overly lengthy reasoning, and off-037

target responses that deviate from instructions or038

expectations, which wastes computation and harms039

answer quality (Chen et al., 2024; Cuadron et al.,040

2025; Gan et al., 2025). Thus, to improve perfor-041

mance, guiding LRMs toward more efficient and 042

task-aligned reasoning patterns is essential. 043

To address these issues, existing efforts fall into 044

two main categories. Training-based approaches 045

adjust model parameters via supervised fine-tuning 046

or reinforcement learning to encourage behaviors 047

like safety or efficiency (Ma et al., 2025b; Aggar- 048

wal and Welleck, 2025; Chen et al., 2025a), but 049

they require expensive supervision or task-specific 050

reward design. In contrast, training-free methods 051

steer reasoning without changing model weights, 052

offering greater flexibility and scalability, which 053

makes them especially attractive for practical de- 054

ployment. Given these advantages, we focus on re- 055

cent advances and challenges in training-free ones. 056

Among training-free methods, current research 057

can be divided into two primary categories, each 058

with notable limitations. First, human-heuristic 059

methods (Wu et al., 2025a; Ma et al., 2025a; Wang 060

et al., 2025a; Handelman, 2009) guide the reason- 061

ing process by injecting human-crafted phrases to 062

make it more compact or safer. However, these 063

heuristics often lack principled theoretical ground- 064

ing, making them difficult to generalize across 065

tasks and models. Second, interpretability-driven 066

analysis (Wang et al., 2025b; Ghosal et al., 2025; 067

Zhang et al., 2025b; Ma et al., 2025a; Wu et al., 068

2025a) has turned to understand the reasoning pro- 069

cesses, such as assessing the importance of words 070

or sentences within the reasoning paths. Yet, the 071

efforts tend to remain descriptive, rarely yielding 072

actionable strategies for model intervention. Natu- 073

rally, these limitations raise a fundamental question: 074

can we develop a automatic and interpretability- 075

driven framework, to efficiently discover the rea- 076

soning interventions for LRMs? 077

In this paper, we introduce ThinkPilot, a 078

training-free method that optimizes LRMs perfor- 079

mance by strategically and automatically guiding 080

their reasoning process. At its core, ThinkPilot 081

introduces a taxonomy that defines specific rea- 082

1

43.3% acc, 13512 Avg tokens

AIME 24 LRM

Logical chain: Each thought must be a direct consequence of the
previous one. A leads to B, therefore C.AIME 24 LRM

AIME 24 LRM

Algorithmic efficiency thinking: Aim for O(1) complexity in thought –
a direct lookup or immediate calculation to the answer. Ensure the
'wait' does not introduce any actual computational delay.

AIME 24 LRM

(b) Thinking Process (Our ThinkPilot)

(a) Thinking Process (Vanilla)

Seed Think-prefix

Alright, I'll start by making sure I fully understand the task
objectives, constraints, and inputs. It's important to lay a strong
foundation before proceeding.

43.3% acc(+0%), 15262 Avg tokens(+13.0%)

43.3% acc (+0%), 12129 Avg tokens(-10,2%)

46.7% acc (+3.4%), 10722 Avg tokens (-20.6%)

Thinking steps Think-prefix Thinking Process A Evaluation benchmark

1st Iter: Reasoning behavior changes from Task Initialization to Stepwise Reasoning

2st Iter: Reasoning behavior changes from Stepwise Reasoning to Stepwise Reasoning and Uncertainty Management

Figure 1: The comparison between (a) vanilla thinking process and (b) ThinkPilot, which guides an LRM by
iteratively optimizing think-prefixes based on reasoning behaviors. On the R1-Qwen-7B model, after two iterations,
ThinkPilot improves accuracy by 3.4% while reducing average token usage by 20.6% on AIME 24.

soning behaviors—i.e., the observable and control-083

lable strategies adopted by models during the think-084

ing process. Built upon this taxonomy, ThinkPilot085

uses an evolution-inspired workflow to discover086

effective reasoning interventions. Specifically, it087

generates think-prefixes, which are interventional088

instructions inserted at the start of the thinking pro-089

cess, to trigger desired reasoning. Through iterative090

refinement, these prefixes gradually shift the rea-091

soning behaviors they control, thereby enabling the092

identification of task-preferred reasoning behaviors093

and achieving superior performance. As shown in094

Figure 1 , ThinkPilot achieves desired performance095

with significantly lower token overhead compared096

to vanilla approaches.097

Experimental results show that ThinkPilot098

demonstrates broad effectiveness across diverse099

tasks. In Efficient Reasoning, it significantly100

improves the model’s accuracy-length trade-off,101

achieving higher accuracy with more concise out-102

puts than baseline methods. The impact on Safety103

is particularly remarkable: it reduced the Stron-104

gREJECT score of R1-Qwen-32B from 27.0% to105

just 0.7%, without compromising other reasoning106

abilities. Furthermore, in Instruction Following,107

it boosted the IFEval score of R1-Qwen-32B by108

6.4 points. Crucially, ThinkPilot also synergizes109

with training-based methods, further reducing110

SAFECHAIN’s StrongREJECT score from an al-111

ready low 19.4% to a just 1.4%.112

To further understand the source of ThinkPilot’s113

performance gains, we conducted analysis and iden-114

tified two key insights. First, existing studies show 115

that LRMs may fail to follow the instructions for 116

controlling thinking process (Wu et al., 2025a), 117

whereas we demonstrate that think-prefixes can 118

reliably and precisely control reasoning behav- 119

iors for LRMs. This enables LRMs to be steered in 120

desired directions. Second, different tasks favor 121

distinct reasoning behaviors, and this prefrence 122

strongly correlated to performance. For exam- 123

ple, behaviors that are helpful in some tasks may 124

be ineffective or even harmful in others. This re- 125

veals the importance of aligning behavior strategies 126

with task characteristics. In practice, ThinkPilot 127

automatically identifies and elicits the behaviors 128

each task prefers, thus ultimately leading to the 129

performance that align with human expectations. 130

In summary, our contributions are as follows: 131

• We propose ThinkPilot, a novel training-free 132

framework that uses an evolutionary algo- 133

rithm guided by a taxonomy of reasoning be- 134

haviors, automatically discovering the think- 135

prefixes for steering model reasoning. 136

• We reveal that reasoning behaviors of LRMs 137

can be precisely controlled via think-prefixes, 138

and that aligning these behaviors with task- 139

specific preferences significantly enhances 140

performance. 141

• Extensive experiments validate that ThinkPi- 142

lot as a highly effective and general frame- 143

work, significantly improves efficiency, safety, 144

2

Evolution

Next Iteration？

Initialization

<Evolved Think-prefixes>

Specific Benchmark

Evaluation

<Think-prefixes, Scores>

<Seed Think-prefixes>

LRM<Specific dev set>

 (C) Evolution

No
<Final Think-prefixes>

Think-prefix

select Top n Think-prefixes

... ...

Prompt

LLM

Top n Think-prefixes

generated j Think-prefixes

...

Prompt
(enhanced and weakened)

LLM

all Reasoning

Behavior
sample

random m Think-prefixes

generated 2m Think-prefixes

Selection Crossover Mutation

、

Task Initialization Startegic Planning Stepwise Reasoning

Knowleage Retrieval Uncertainty Management Final Conclution

 (B) Taxonomy of Reasoning Behaviors

Evaluation

(A) Overveiw of ThinkPilot

Figure 2: Overview of the ThinkPilot. The method optimizes think-prefixes through an evolutionary loop (A),
where the evolution process (C) involves selection, crossover, and mutation, guided by the taxonomy of reasoning
behaviors (B). The complete prompts for crossover and mutation can refer to Appendix B.

and instruction-following capabilities. More-145

over, it can effectively synergize with existing146

training-based methods.147

2 ThinkPilot148

In this section, we introduce the workflow of149

ThinkPilot. As shown in Figure 2 (A), ThinkPilot150

consists of two main stages: an initialization and151

evaluation phase that constructs and assesses seed152

think-prefixes, and a core evolution and iteration153

phase. The latter integrates reasoning behavior154

modeling (Figure 2 (B)) with three evolutionary155

strategies (selection, mutation, and crossover) to156

generate increasingly effective think-prefixes (Fig-157

ure 2 (C)). Guided by performance feedback, this158

process iteratively improves prefixes, yielding a159

high-quality set tailored to downstream tasks.160

2.1 Initialization and Evaluation161

To initiate the iterative process, we construct a di-162

verse set of seed think-prefixes for each task, vary-163

ing in control strength, narrative style, and length164

to enrich the search space. These seeds are de-165

signed from a first-person perspective to simulate166

a LRMs’ internal monologue and are aligned with167

the task’s objective, such as using “Ok, let’s168

think concisely.” to encourage brevity. Then,169

each resulting candidate is evaluated on the down-170

stream task using specific metrics like accuracy,171

consistency, or safety. This evaluation is crucial for172

identifying the most effective prefixes and guiding 173

subsequent optimization efforts. 174

2.2 Evolution and Iteration 175

The Evolution and Iteration method optimizes 176

think-prefixes via an evolutionary algorithm. In 177

the previous stage, seed think-prefixes are created 178

and scored using a validation set. This score guides 179

the evolutionary process, where the algorithm iter- 180

atively applies mutation, crossover, and selection 181

to evolve the prefixes and create new candidates 182

(Figure 2 (C)). This evolutionary cycle repeats un- 183

til a stopping condition is met, producing prefixes 184

optimized for a specific LRM and task. 185

Taxonomy of Reasoning Behavior To guide the 186

evolution of think-prefixes, we introduce a taxon- 187

omy of reasoning behaviors, grounded in empirical 188

observations of LRMs and interpretability studies 189

(Bogdan et al., 2025; Wang et al., 2025b; Venhoff 190

et al., 2025). This taxonomy categorizes the think- 191

ing processes employed by LRMs during inference, 192

where each type represents a distinct reasoning 193

pattern. As shown in Table 1, we list six types of 194

reasoning behaviors, such as Task Initialization and 195

Strategic Planning, along with their definitions and 196

characteristic expressions. We integrate this tax- 197

onomy as prior knowledge into the later mutation 198

and crossover processes. It serves as a heuristic 199

guide to encourage the generation of effective and 200

diverse think-prefixes that align with downstream 201

3

Types Definition Example

Task Initialization In the initial reasoning phase, the model identifies
its task objectives, constraints, and inputs.

“Okay, I need to ...”,
“My task is to ...”

Strategic Planning Before execution, explicitly state or determine a
structured action plan or strategic blueprint.

“I will first ..., then ...”,
“To solve this, I’ll ...”

Knowledge Retrieval Review relevant knowledge for problem-solving. “According to my knowledge ...”

Stepwise Reasoning Execute independent reasoning or computation
steps based on the planned logic.

“... So”, “... Thus”,
“... Therefore”, “... First”

Uncertainty Management The model pauses and flags confusion or
uncertainty when encountering ambiguity.

“Wait, ...”, “Hmm, ...”,
“Well, ...”,“Actually, ...”

Final Conclusion Present the final conclusion. “In conclusion ...”

Table 1: Taxonomy of Reasoning Behaviors.

task objectives.202

Selection Selection preserves the highest-scoring203

think-prefixes from the previous evaluation. The204

top n think-prefixes, ranked by score, advance to205

the next round. This mechanism prevents high-206

quality prefixes from being displaced and provides207

foundational material for subsequent mutation and208

crossover operations, thereby ensuring effective209

evolutionary progress.210

Crossover Crossover aims to generate novel211

think-prefixes by synthesizing complementary rea-212

soning behaviors from the top n performing pre-213

fixes. The process leverages a Large Language214

Model (LLM), such as GPT-4o, guided by a few-215

shot prompt. Specifically, we select the top-n think-216

prefixes, denoted as {si}ni=1. These prefixes, along217

with a reasoning behavior classification (RB), are218

formatted into a tailored prompt, Promptcrossover(·).219

This prompt instructs the LLM to analyze the be-220

haviors within {si} and generate j new prefixes221

that effectively blend these complementary behav-222

iors. The entire generation process can be formal-223

ized as follows:224

{ci}ji=1 = LLM
(

Promptcrossover

(
{si}ni=1, RB, j

))
(1)225

where {ci}ji=1 is the resulting set of j new think-226

prefixes.227

Mutation Mutation introduces targeted perturba-228

tions, guided by specific reasoning behaviors, to en-229

hance population diversity and explore potentially230

superior think-prefixes. The process begins by ran-231

domly selecting m think-prefixes from the current232

population. For each selected prefix s, we indepen-233

dently assign a randomly chosen reasoning behav-234

ior rb (e.g., task initialization, strategic planning)235

to guide its transformation. Given that the optimal 236

influence of a reasoning behavior may vary across 237

tasks, we introduce two directional perturbations: 238

enhanced, which amplifies the influence of the as- 239

signed behavior, and weakened, which reduces it. 240

This bidirectional mechanism broadens the explo- 241

ration of compatibility between think-prefixes and 242

reasoning behaviors, thereby enhancing the effec- 243

tiveness of the mutation operator. 244

To implement this, we designed a mutation 245

prompt template, Promptmutation(·). For each of 246

the m pairs of a prefix s and its assigned reason- 247

ing behavior rb, we use this template to construct 248

a prompt. This prompt instructs an instruction- 249

following LLM to simultaneously generate two 250

new think-prefixes: one enhanced version and one 251

weakened version. Thus, m calls to the LLM pro- 252

duce a total of 2m new candidate think-prefixes. 253

This mutation process for a single prefix s can be 254

formalized as: 255

senhanced, sweakened = LLM
(

Promptmutation

(
s, rb

))
(2) 256

Iteration The three operations above generate a 257

new candidate set of thinking prefixes. As illus- 258

trated in Figure 2, This set is then re-evaluated by 259

the LRM to initiate the next iteration. The process 260

is repeated until convergence, which is determined 261

by either a fixed number of iterations or a perfor- 262

mance improvement threshold. Ultimately, this 263

iterative process yields the optimal think-prefixes. 264

3 Experiments and Analysis 265

3.1 Experimental Setup 266

Tasks, benchmarks, and Metrics We evaluate 267

ThinkPilot on three tasks: Efficient Reasoning, 268

Safety, and Instruction Following. 269

4

Backbone Method
MATH 500 AIME 2024 GPQA-D AMC 2023 Average

Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. ∆Acc. ∆Len.

Training-Free

R1-Qwen-1.5B

Vanilla 79.7 4619 26.2 15161 39.4 10139 70.2 9436 53.9 9839 − −
NoThink 62.9 809 11.0 3157 33.5 879 42.4 1540 37.5 1596 −16.4 −83.8%
CoD 75.8 2557 26.2 9969 35.5 9299 61.9 5138 49.9 6741 −4.0 −31.5%
ThinkPilot 81.0 2547 33.3 8569 39.4 8340 74.8 6405 57.1 6465 +3.2 −34.2%

Qwen3-8B

Vanilla 93.3 5026 73.3 14989 58.9 6964 91.6 6569 79.3 8387 − −
NoThink 82.3 916 32.5 4904 47.7 1383 70.4 2097 58.2 2325 −21.1 −72.3%
CoD 92.6 2724 74.2 14267 55.7 3137 93.9 5619 79.1 6512 −0.2 −22.4%
ThinkPilot 93.2 3900 72.5 13083 59.9 5904 92.0 5797 79.4 7171 +0.1 −14.5%

QwQ-32B

Vanilla 94.1 3916 80.6 11536 64.4 7590 97.8 6954 84.2 7499 − −
NoThink 76.1 3413 80.6 13010 63.7 4894 92.3 7379 78.2 7174 −6.0 −4.3%
CoD 93.2 2717 77.3 10676 64.3 6586 97.2 5524 83.0 6376 −1.2 −15.0%
ThinkPilot 93.5 3272 80.8 10058 65.9 6709 98.9 6378 84.8 6604 +0.6 −11.9%

Training-Based

R1-Qwen-1.5B
Arora and Zanette (2025) 80.3 2500 29.8 9162 36.5 7302 73.3 4699 55.0 5916 − −

+ ThinkPilot 82.7 2106 29.6 7806 38.4 6576 72.2 4485 55.7 5243 +0.7 −11.4%

R1-Qwen-7B
Arora and Zanette (2025) 89.7 2749 52.3 10392 50.1 7077 88.1 5057 70.1 6319 − −

+ ThinkPilot 90.0 2376 55.8 8264 49.7 5977 90.6 4448 71.5 5266 +1.4 −16.7%

QwQ-32B
THINKPRUNE 92.2 2052 72.8 7672 63.3 4314 95.3 3589 80.9 4407 − −

+ ThinkPilot 92.1 1615 76.9 7167 61.7 4050 95.9 3150 81.7 3996 +0.8 −9.3%

Table 2: Comparison of different methods on the Efficient Reasoning task. We report both accuracy (Acc., ↑) and
response length in tokens (Len., ↓) across four reasoning benchmarks. Bold values indicate the best performance for
each metric within a backbone’s comparison group.

For Efficient Reasoning, we use the MATH270

500 (Lightman et al., 2023), AIME 2024 (MAA,271

2024), GPQA-Diamond (Rein et al., 2024), and272

AMC 2023 (AMC, 2025). During iteration, we use273

the Accuracy-per-Computation-Unit (ACU) (Ma274

et al., 2025b) to measure the performance-cost275

trade-off. ACU is defined as accuracy divided by276

the product of model size and generated tokens. For277

the final evaluation, we report PASS@1 accuracy278

and average generation length.279

For Safety, we use XSTest (Röttger et al.,280

2023) (assessing Safe Prompt Compliance, SPC,281

and Unsafe Prompt Refusal, UPR) and StrongRE-282

JECT (Souly et al., 2024) (evaluating harmful con-283

tent generation ability, SRC). To monitor for over-284

fitting and capability degradation, we concurrently285

test on MATH, GPQA, and AIME. During develop-286

ment iterations, we also used specific proxy metrics287

to monitor the model’s responses to both safe and288

harmful prompts (see Appendix A for details).289

For Instruction Following, we evaluate on IFE-290

val (Zhou et al., 2023a) and MultiChallenge (Sird-291

eshmukh et al., 2025), using strict accuracy (exact292

match with all constraints), a metric applied during293

both iterative optimization and final evaluation.294

Full experimental details are in Appendix A.295

Baselines. To ensure fair and comprehensive296

comparisons, we categorize baselines into three297

types: backbone models, training-free methods, 298

and training-based methods, tailored for each task. 299

For Efficient Reasoning, the backbone mod- 300

els include DeepSeek-R1-Distill-Qwen-1.5B (Guo 301

et al., 2025), Qwen3-8B (Yang et al., 2025) and 302

QwQ-32B (Yang et al., 2024). Training-free 303

methods include CoD (Xu et al., 2025), which 304

employs lightweight prompting to generate effi- 305

cient reasoning paths, and NoThink (Ma et al., 306

2025a), which serves as a non-reasoning con- 307

trol baseline. Training-based methods include 308

THINKPRUNE (Hou et al., 2025) and the one by 309

Arora and Zanette (2025), which use reinforcement 310

learning to refine think-prefixes. 311

For Safety, the backbone models include 312

DeepSeek-R1-Distill-Qwen-7B/32B and Qwen3- 313

8B. The training-free method is ThinkingI (Wu 314

et al., 2025a), while training-based methods in- 315

clude SAFECHAIN (Jiang et al., 2025) and 316

RealSafe-R1 (Zhang et al., 2025c). 317

For Instruction Following, the backbone mod- 318

els are Qwen3-8B, DeepSeek-R1-Distill-Qwen- 319

32B, and QwQ-32B. The sole training-free method 320

is ThinkingI. No training-based methods were eval- 321

uated for this task. 322

3.2 Main Results 323

ThinkPilot demonstrates broad effectiveness 324

across multiple tasks. On Efficient Reasoning, 325

5

Method XSTest StrongREJECT

SPC (↑) UPR (↑) SRC (↓) RA (↑)

Training-Free
R1-Qwen-7B
Vanilla 100.0 45.0 30.8 89.2/49.0/53.3
ThinkingI 34.5−65.5 85.6+40.6 12.2−18.6 79.6/49.7/39.6
ThinkPilot 98.0−2.0 67.5+22.5 0.4−30.4 89.8/52.0/56.7

Qwen3-8B
Vanilla 98.0 62.5 5.2 93.0/58.1/70.0
ThinkingI 62.5−35.5 81.9+16.7 1.6−3.6 46.4/42.9/30.0
ThinkPilot 91.5−6.5 82.5+20.0 0.4−4.8 92.8/57.6/73.3

R1-Qwen-32B
Vanilla 100.0 55.0 27.0 92.0/63.6/73.3
ThinkingI 95.0−5.0 75.6+20.6 2.5−24.5 89.4/62.9/69.4
ThinkPilot 100.0−0.0 97.5+42.5 0.7−26.3 93.2/64.7/73.3

Training-Based
R1-Qwen-7B
SAFECHAIN 96.5 69.4 19.4 88.5/48.3/45.4

+ ThinkPilot 95.0−1.5 74.4+5.0 1.4−18.0 88.1/49.4/47.7

R1-Qwen-32B
RealSafe-R1 79.5 95.6 0.0 92.0/63.1/80.0

+ ThinkPilot 85.5+6.0 97.5+1.9 0.0+0.0 91.8/63.1/73.3

Table 3: Comparison of different methods on the Safety
task, evaluated on XSTest and StrongREJECT. Key
metrics are Safe Prompt Compliance (SPC, ↑), Un-
safe Prompt Refusal (UPR, ↑), and the StrongREJECT
Score (SRC, ↓). The Reasoning Ability (RA, ↑) column
shows accuracies on MATH 500, GPQA-Diamond, and
AIME 2024 benchmarks to monitor the model’s reason-
ing capabilities. The colored subscripts show the score
changed from the Vanilla baseline: green for an increase
and red for a decrease. Bold values indicate the best
performance within each model’s comparison group.

Backbone Method IFEval MultiChallenge

Qwen3-8B
Vanilla 85.7 22.4
ThinkPilot 86.1+0.4 30.1+7.7

R1-Qwen-32B
Vanilla 75.4 25.1
ThinkingI 77.1+1.7 −
ThinkPilot 81.8+6.4 48.8+23.7

QwQ-32B
Vanilla 82.0 35.6
ThinkingI 82.3+0.3 −
ThinkPilot 83.6+1.6 47.5+11.9

Table 4: Comparison of different training-based meth-
ods on the Instruction Following task, evaluated on IFE-
val and MultiChallenge. Scores represent strict accuracy
(↑). The green subscripts indicate the score increase rel-
ative to the Vanilla baseline. Bold values highlight the
top-performing method for each backbone.

ThinkPilot significantly improves the accuracy-326

length trade-off (Table 2). Across all three back-327

bone model scales, it not only achieves the highest328

average accuracy (57.1%, 79.4%, 84.8%, respec-329

tively), outperforming other training-free methods330

like NoThink and CoD, but also produces more con-331

cise reasoning than the vanilla baseline. In Safety, 332

ThinkPilot also shows substantial advantages (Ta- 333

ble 3), outperforming both vanilla and ThinkingI 334

methods on XSTest and StrongREJECT. Notably, 335

ThinkPilot reduces the harmful output rate of R1- 336

Qwen-32B on StrongREJECT from 27.0% to a 337

minimal 0.7% without degrading its reasoning per- 338

formance. Finally, on Instruction Following, it 339

enhances the model’s adherence to complex con- 340

straints (Table 4), boosting the IFEval score of the 341

vanilla R1-Qwen-32B by 6.4 points and outper- 342

forming ThinkingI. 343

ThinkPilot synergizes effectively with training- 344

based methods. In Efficient Reasoning, while 345

Arora and Zanette (2025) shortens responses from 346

R1-Qwen-1.5B by 3923 tokens compared to vanilla 347

baseline, the integration of ThinkPilot achieves 348

an additional reduction of approximately 700 to- 349

kens without compromising accuracy (Table 2). 350

In Safety, SAFECHAIN decreases the StrongRE- 351

JECT score from 30.8% to 19.4% compared to 352

the vanilla baseline. The integration of ThinkPilot 353

further enhances safety, lowering the score to just 354

1.4% (Table 3). These results demonstrate ThinkPi- 355

lot’s effectiveness when integrated with such spe- 356

cialized LRMs. 357

3.3 Analysis of Reasoning Behaviors 358

0 20 40 60 80 100
Success Rate (%)

Re
as

on
in

g
Be

ha
vi

or
 C

at
eg

or
y 98%Task Initialization

90%Strategic Planning

74%Stepwise Reasoning

85%Uncertainty Management

85%Knowledge Retrieval

80%Final Conclusion

Figure 3: Control Success Rate for reasoning behaviors
on AMC 23 for R1-Qwen-7B.

Reasoning behaviors of LRMs can be controlled 359

via think-prefixes. This section investigates the 360

effectiveness of using think-prefixes to control the 361

reasoning behaviors of LRMs. Our experiment on 362

the AMC 23 dataset tested the control of six distinct 363

reasoning behaviors. In specific, we designed 12 364

prefixes structured in contrasting pairs: a positive 365

6

prefix to elicit each behavior and a negative one to366

suppress it. These were then compared against an367

unguided baseline. To measure control effective-368

ness, we employed GPT-4o as an automated judge369

to evaluate whether the model’s reasoning correctly370

followed the prefix’s instruction. As shown in Fig-371

ure 3, the control success rate exceeded 74% for372

all behavior types. This high success rate strongly373

demonstrates that think-prefixes are a practical and374

effective method for steering the reasoning pro-375

cesses of LRMs.376

Efficient Reasoning Safe Instruction Following0

10

20

30

40

50

60

Pr
op

or
tio

n
(%

)

15

56

28
21

15 18

26

12
15

26

13

28

6 4
10

6
0 0

Task Initialization
Strategic Planning

Stepwise Reasoning
Uncertainty Management

Knowledge Retrieval
Final Conclusion

Figure 4: Reasoning behaviors distribution of top 10%
think-prefixes in the QwQ-32B model on three tasks.

Unguided

Guide
correctly

Guide
incorrectly

Figure 5: Comparison of iterative optimization under
different reasoning behavior guidance settings, evalu-
ated on the QwQ-32B model on Instruction Following.
The chart contrasts the Vanilla baseline and the full
ThinkPilot method (All Behaviors) with three varia-
tions: ThinkPilot without guidance (w/o Behaviors),
with non-preferred behaviors, and with preferred be-
haviors. The annotated arrows illustrate the performance
changes under these different guidance settings.

Guiding LRMs with task-preferred reasoning377

behaviors enhances performance. Given that378

ThinkPilot significantly improves model perfor-379

mance across diverse tasks by searching for think-380

prefixes, a natural question arises: Do the final pre-381

fixes for different tasks exhibit task-specific prefer- 382

ences? To this end, we analyzed the distribution of 383

reasoning behaviors corresponding to the top 10% 384

performing prefixes in each task. As shown in Fig- 385

ure 4, high-performing prefixes in different tasks 386

correspond to different reasoning behavior distri- 387

butions. For example, in Safety, high-performing 388

prefixes tend to focus on task initialization, while 389

in Efficient Reasoning, this focus shifts to stepwise 390

reasoning and uncertainty management. This sug- 391

gests that different tasks exhibit distinct preference 392

distributions for reasoning behaviors. 393

Furthermore, to verify the reliability of the 394

task-specific behavior preferences observed in Fig- 395

ure 4, we designed a controlled experiment. It 396

investigates the performance impact of using pre- 397

ferred versus non-preferred behaviors identified by 398

ThinkPilot, resulting in five distinct conditions: (1) 399

Vanilla: The baseline model. (2) w/o Behaviors: 400

Our method performing iteration without any spe- 401

cific behavior guidance. (3) Non-preferred: Our 402

method guided exclusively by “non-preferred be- 403

haviors”. (4) Preferred: Our method guided exclu- 404

sively by “preferred behaviors”. (5) All Behaviors: 405

The full ThinkPilot method, guided by all reason- 406

ing behaviors. The “preferred” and “non-preferred” 407

behaviors were categorized based on the analysis 408

presented in Figure 4. 409

As shown in Figure 5, compared to the Vanilla 410

baseline (35.6%), the w/o Behaviors condition 411

(37.0%) showed a slight improvement. More strik- 412

ingly, using guidance of non-preferred behaviors 413

(Non-preferred) may be harmful, with perfor- 414

mance dropping to 30.6%. In contrast, the Pre- 415

ferred condition (47.5%) boosted performance sig- 416

nificantly, matching the results of the full ThinkPi- 417

lot method (All Behaviors) (47.5%). This demon- 418

strates that identifying and guiding the model to- 419

wards its task-preferred behaviors significantly im- 420

proves its performance. In contrast, guidance with 421

non-preferred behaviors might offers minimal im- 422

provement or degrade performance. 423

3.4 Case Study of ThinkPilot 424

The case study in Table 5 illustrates the evolution- 425

ary optimization process of ThinkPilot. Across 426

three iterations, the model’s reasoning behavior 427

evolves from a simple “final conclusion” (Iter-1), 428

to incorporating “uncertainty management” (Iter- 429

2), and culminates in a sophisticated strategy that 430

integrates “stepwise reasoning” with “uncertainty 431

management” (Iter-3). These progressive semantic 432

7

Iter-1 Iter-2 Iter-3

Prefix <think>\nIn summary, having
completed all steps, here’s my
concluding result.

<think>\nBefore finalizing my
response, it’s crucial to check the
whole reasoning process for any
slip-ups or oversights. I want to
make sure everything’s accurate.

<think>\nI need to avoid any
potential uncertainties or
hesitations, just focus on the task
and execute confidently.

Controlled RBs Final Conclusion Uncertainty Management Stepwise Reasoning; Uncertainty
Management

Score 59.3 60.2 63.0

Table 5: A case study on ThinkPilot’s iterative optimization, detailing the prefixes, guided reasoning behaviors
(Controlled RBs), and scores for three iterations in R1-Qwen-7B on IFEval benchmark. Another case study for
reasoning benchmark see Appendix C.

changes in the prefix text directly boosts the R1-433

Qwen-7B’s IFEval score from 59.3 to 63.0. This434

case is a powerful demonstration of how ThinkPi-435

lot can effectively enhance a LRMs’ performance436

by optimizing the think-prefix to guide it toward437

superior reasoning behaviors.438

4 Related Work439

Large Reasoning Models Recent large reason-440

ing models (Jaech et al., 2024; Guo et al., 2025;441

Yang et al., 2025) use intermediate steps, known442

as Chain-of-Thought (CoT) (Wei et al., 2022), to443

tackle complex problems more effectively. Ex-444

tensions like multi-path sampling (Wang et al.,445

2022), trees (Yao et al., 2023), and graphs (Besta446

et al., 2024) enhance this further. However,447

these self-generated processes often lack control,448

leading to verbosity and poor instruction adher-449

ence—highlighting the need for methods that can450

effectively guide the model’s reasoning.451

The Control of Thinking Process To better452

align LRMs reasoning with task goals, prior work453

explores both training-based and training-free con-454

trol methods. Training-based approaches adjust455

model weights via supervised fine-tuning or rein-456

forcement learning (Ma et al., 2025b; Sui et al.,457

2025; Aggarwal and Welleck, 2025; Luo et al.,458

2025; Yuan et al., 2025; Chen et al., 2025b), but are459

resource-intensive. In contrast, training-free meth-460

ods guide the model’s reasoning process through461

Prompt Engineering (PE) (Hu et al., 2023; Wang462

et al., 2024; Zhao et al., 2023; Zhou et al., 2023b)463

or by directly intervening in the model’s internal464

thinking process using dynamic paradigms or ex-465

plicit instructions (Wang et al., 2025a; Zhang et al.,466

2025a; Wu et al., 2025b; Lin et al., 2025; Ma et al.,467

2025a; Wu et al., 2025a). However, these methods468

often rely on heuristic design—a key limitation our469

work aims to overcome. 470

Interpretability of Thinking Process Recent re- 471

search (Bogdan et al., 2025; Wang et al., 2025b; 472

Venhoff et al., 2025) has focused on how the think- 473

ing process affects model performance. For in- 474

stance, some studies (Wang et al., 2025b; Ghosal 475

et al., 2025; Zhang et al., 2025b; Qian et al., 2025) 476

identify key terms that strongly influence final out- 477

puts using entropy analysis, while others (Venhoff 478

et al., 2025; Bogdan et al., 2025) investigate reason- 479

ing patterns by summarizing and generalizing typi- 480

cal thinking paradigms. In this study, informed by 481

related work and our observations of the model’s 482

reasoning behaviors, we propose a taxonomy of 483

reasoning behaviors. This taxonomy acts as prior 484

knowledge for our evolutionary approach, guiding 485

the evolution of think-prefixes. 486

5 Conclusions 487

We introduce ThinkPilot, a training-free framework 488

designed to automatically optimize the reasoning of 489

LRMs. By leveraging a taxonomy of reasoning be- 490

haviors, ThinkPilot employs an evolution-inspired 491

workflow to discover optimal think-prefixes that 492

effectively guide a model’s thinking process. Our 493

work yields two key insights: first, think-prefixes 494

are a reliable means of controlling reasoning be- 495

havior of LRMs, and second, different tasks show 496

different preference distributions for reasoning be- 497

haviors. ThinkPilot can be regarded as a form of 498

prompt engineering at the level of model thinking 499

processes. More importantly, by centering on rea- 500

soning behavior, it opens a new perspective for 501

understanding and steering the internal reasoning 502

of LRMs. This has significant implications for the 503

future design and alignment of reliable and control- 504

lable models. 505

8

6 Limitations506

While ThinkPoilot is effective, two areas remain507

for improvement. First, it relies on heuristically508

crafted seed think-prefixes for different tasks, a509

process not yet automated. Future work could fo-510

cus on automatically generating prefixes from task511

characteristics. Second, its taxonomy of reasoning512

behavior has six categories. Given the diversity513

of reasoning behaviors and task demands, future514

research could enable the model to autonomously515

discover and integrate more fine-grained behavioral516

patterns to improve guidance effectiveness.517

References518

Pranjal Aggarwal and Sean Welleck. 2025. L1:519
Controlling how long a reasoning model thinks520
with reinforcement learning. arXiv preprint521
arXiv:2503.04697.522

AMC. 2025. American mathematics competitions523
(amc). https://maa.org/student-programs/524
amc/.525

Daman Arora and Andrea Zanette. 2025. Training lan-526
guage models to reason efficiently. arXiv preprint527
arXiv:2502.04463.528

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-529
berger, Michal Podstawski, Lukas Gianinazzi, Joanna530
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-531
otr Nyczyk, and 1 others. 2024. Graph of thoughts:532
Solving elaborate problems with large language mod-533
els. In Proceedings of the AAAI Conference on Artifi-534
cial Intelligence, volume 38, pages 17682–17690.535

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur536
Conmy. 2025. Thought anchors: Which llm reason-537
ing steps matter? arXiv preprint arXiv:2506.19143.538

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,539
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang540
Zhou, Te Gao, and Wanxiang Che. 2025a. Towards541
reasoning era: A survey of long chain-of-thought542
for reasoning large language models. arXiv preprint543
arXiv:2503.09567.544

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,545
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,546
Mengfei Zhou, Zhuosheng Zhang, and 1 others.547
2024. Do not think that much for 2+ 3=? on548
the overthinking of o1-like llms. arXiv preprint549
arXiv:2412.21187.550

Yanda Chen, Joe Benton, Ansh Radhakrishnan,551
Jonathan Uesato, Carson Denison, John Schulman,552
Arushi Somani, Peter Hase, Misha Wagner, Fabien553
Roger, and 1 others. 2025b. Reasoning models554
don’t always say what they think. arXiv preprint555
arXiv:2505.05410.556

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao 557
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu, 558
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, and 559
1 others. 2025. The danger of overthinking: Exam- 560
ining the reasoning-action dilemma in agentic tasks. 561
arXiv preprint arXiv:2502.08235. 562

Zeyu Gan, Yun Liao, and Yong Liu. 2025. Rethink- 563
ing external slow-thinking: From snowball errors 564
to probability of correct reasoning. arXiv preprint 565
arXiv:2501.15602. 566

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash 567
Reddy, Yifu Lu, Mengdi Wang, Dinesh Manocha, 568
Furong Huang, Mohammad Ghavamzadeh, and Am- 569
rit Singh Bedi. 2025. Does thinking more always 570
help? understanding test-time scaling in reasoning 571
models. arXiv preprint arXiv:2506.04210. 572

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 573
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 574
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 575
Deepseek-r1: Incentivizing reasoning capability in 576
llms via reinforcement learning. arXiv preprint 577
arXiv:2501.12948. 578

Sapir Handelman. 2009. Thought manipulation: the 579
use and abuse of psychological trickery. Bloomsbury 580
Publishing USA. 581

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, 582
Kaizhi Qian, Jacob Andreas, and Shiyu Chang. 583
2025. Thinkprune: Pruning long chain-of-thought 584
of llms via reinforcement learning. arXiv preprint 585
arXiv:2504.01296. 586

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, 587
Wai Lam, and Yue Zhang. 2023. Chain-of-symbol 588
prompting elicits planning in large langauge models. 589
arXiv preprint arXiv:2305.10276. 590

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 591
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 592
Aleksander Madry, Alex Beutel, Alex Carney, and 1 593
others. 2024. Openai o1 system card. arXiv preprint 594
arXiv:2412.16720. 595

Fengqing Jiang, Zhangchen Xu, Yuetai Li, Luyao Niu, 596
Zhen Xiang, Bo Li, Bill Yuchen Lin, and Radha 597
Poovendran. 2025. Safechain: Safety of language 598
models with long chain-of-thought reasoning capa- 599
bilities. arXiv preprint arXiv:2502.12025. 600

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 601
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 602
John Schulman, Ilya Sutskever, and Karl Cobbe. 603
2023. Let’s verify step by step. In The Twelfth Inter- 604
national Conference on Learning Representations. 605

Kevin Lin, Charlie Snell, Yu Wang, Charles Packer, 606
Sarah Wooders, Ion Stoica, and Joseph E Gonzalez. 607
2025. Sleep-time compute: Beyond inference scaling 608
at test-time. arXiv preprint arXiv:2504.13171. 609

9

https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-610
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,611
and Dacheng Tao. 2025. O1-pruner: Length-612
harmonizing fine-tuning for o1-like reasoning prun-613
ing. arXiv preprint arXiv:2501.12570.614

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs,615
Sewon Min, and Matei Zaharia. 2025a. Reasoning616
models can be effective without thinking. arXiv617
preprint arXiv:2504.09858.618

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan619
Fang, and Xinchao Wang. 2025b. Cot-valve: Length-620
compressible chain-of-thought tuning. arXiv preprint621
arXiv:2502.09601.622

MAA. 2024. American invitational mathematics exami-623
nation – aime. In American Invitational Mathematics624
Examination – AIME 2024, February 2024.625

Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong626
Liu, and Jing Shao. 2025. Demystifying reason-627
ing dynamics with mutual information: Thinking628
tokens are information peaks in llm reasoning. arXiv629
preprint arXiv:2506.02867.630

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-631
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-632
lian Michael, and Samuel R Bowman. 2024. Gpqa:633
A graduate-level google-proof q&a benchmark. In634
First Conference on Language Modeling.635

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen,636
Giuseppe Attanasio, Federico Bianchi, and Dirk637
Hovy. 2023. Xstest: A test suite for identifying exag-638
gerated safety behaviours in large language models.639
arXiv preprint arXiv:2308.01263.640

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes641
Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean Lee,642
Jeremy Kritz, Willow Primack, Summer Yue, and643
Chen Xing. 2025. Multichallenge: A realistic multi-644
turn conversation evaluation benchmark challenging645
to frontier llms. arXiv preprint arXiv:2501.17399.646

Alexandra Souly, Qingyuan Lu, Dillon Bowen,647
Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,648
Justin Svegliato, Scott Emmons, Olivia Watkins, and649
1 others. 2024. A strongreject for empty jailbreaks.650
arXiv preprint arXiv:2402.10260.651

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu652
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-653
drew Wen, Hanjie Chen, Xia Hu, and 1 others.654
2025. Stop overthinking: A survey on efficient rea-655
soning for large language models. arXiv preprint656
arXiv:2503.16419.657

Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur658
Conmy, and Neel Nanda. 2025. Understanding rea-659
soning in thinking language models via steering vec-660
tors. arXiv preprint arXiv:2506.18167.661

Chenlong Wang, Yuanning Feng, Dongping Chen,662
Zhaoyang Chu, Ranjay Krishna, and Tianyi Zhou.663
2025a. Wait, we don’t need to" wait"! removing664

thinking tokens improves reasoning efficiency. arXiv 665
preprint arXiv:2506.08343. 666

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shix- 667
uan Liu, Rui Lu, Kai Dang, Xionghui Chen, Jianxin 668
Yang, Zhenru Zhang, and 1 others. 2025b. Beyond 669
the 80/20 rule: High-entropy minority tokens drive 670
effective reinforcement learning for llm reasoning. 671
arXiv preprint arXiv:2506.01939. 672

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 673
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 674
Denny Zhou. 2022. Self-consistency improves chain 675
of thought reasoning in language models. arXiv 676
preprint arXiv:2203.11171. 677

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar- 678
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly 679
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu 680
Lee, and 1 others. 2024. Chain-of-table: Evolving 681
tables in the reasoning chain for table understanding. 682
arXiv preprint arXiv:2401.04398. 683

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 684
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 685
and 1 others. 2022. Chain-of-thought prompting elic- 686
its reasoning in large language models. Advances 687
in neural information processing systems, 35:24824– 688
24837. 689

Tong Wu, Chong Xiang, Jiachen T Wang, and Prateek 690
Mittal. 2025a. Effectively controlling reasoning mod- 691
els through thinking intervention. arXiv preprint 692
arXiv:2503.24370. 693

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, 694
and Yisen Wang. 2025b. When more is less: Un- 695
derstanding chain-of-thought length in llms. arXiv 696
preprint arXiv:2502.07266. 697

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng 698
He. 2025. Chain of draft: Thinking faster by writing 699
less. arXiv preprint arXiv:2502.18600. 700

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, 701
Binyuan Hui, Bo Zheng, Bowen Yu, Chang 702
Gao, Chengen Huang, Chenxu Lv, and 1 others. 703
2025. Qwen3 technical report. arXiv preprint 704
arXiv:2505.09388. 705

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 706
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 707
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2. 708
5 technical report. arXiv preprint arXiv:2412.15115. 709

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 710
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 711
2023. Tree of thoughts: Deliberate problem solving 712
with large language models. Advances in neural 713
information processing systems, 36:11809–11822. 714

Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, 715
Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen 716
Qi, and Kai Chen. 2025. Not all tokens are what you 717
need in thinking. arXiv preprint arXiv:2505.17827. 718

10

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Au-719
rojit Panda, Jinyang Li, and He He. 2025a. Rea-720
soning models know when they’re right: Probing721
hidden states for self-verification. arXiv preprint722
arXiv:2504.05419.723

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin724
Cheng, Yitong Duan, Chen Wang, Yue Wang, Shuxin725
Zheng, and Jiyan He. 2025b. No free lunch: Re-726
thinking internal feedback for llm reasoning. arXiv727
preprint arXiv:2506.17219.728

Yichi Zhang, Zihao Zeng, Dongbai Li, Yao Huang,729
Zhijie Deng, and Yinpeng Dong. 2025c. Realsafe-730
r1: Safety-aligned deepseek-r1 without compro-731
mising reasoning capability. arXiv preprint732
arXiv:2504.10081.733

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber,734
Jae Hee Lee, Kun Chu, and Stefan Wermter. 2023.735
Enhancing zero-shot chain-of-thought reasoning in736
large language models through logic. arXiv preprint737
arXiv:2309.13339.738

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-739
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,740
and Le Hou. 2023a. Instruction-following evalu-741
ation for large language models. arXiv preprint742
arXiv:2311.07911.743

Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang744
Tao, Guodong Long, Jian-Guang Lou, and Jianbing745
Shen. 2023b. Thread of thought unraveling chaotic746
contexts. arXiv preprint arXiv:2311.08734.747

A Detailed Experiment Setup748

To ensure the rigor and reproducibility of our re-749

sults, and to prevent overfitting on our test bench-750

marks, we adopted a strict protocol for dataset man-751

agement, model configuration, and evaluation.752

A.1 Dataset Splitting Methodology753

A.1.1 Safety and Instruction Following754

Benchmarks755

We utilize several benchmarks to evaluate safety756

and instruction-following abilities of language757

models. For each, we partitioned the data into758

validation and test splits, with 20% of the original759

instances randomly sampled as validation set and760

the remaining 80% designated as the test set, unless761

otherwise specified.762

XSTest consists of 450 prompts, divided into763

250 safe requests and 200 unsafe requests. The764

benchmark is specifically designed to examine the765

potential for exaggerated safety behaviors among766

large language models.767

StrongREJECT is a recently introduced bench-768

mark containing 313 malicious prompts, curated769

for the purpose of evaluating the robustness of 770

LLMs against jailbreaking attacks, and determining 771

whether such attacks enable misuse for malicious 772

activities. 773

IFEval focuses on instruction-following capa- 774

bilities; it features approximately 500 prompts that 775

span 25 distinct instruction types, thus providing 776

comprehensive coverage for evaluating instruction 777

compliance. 778

MultiChallenge comprises 273 multi-turn con- 779

versation samples, aiming to measure the ability of 780

large language models to engage in complex, multi- 781

turn dialogues—a critical ability for real-world ap- 782

plications. 783

A.1.2 Efficient Reasoning Benchmarks 784

For mathematical and scientific reasoning, we eval- 785

uate on the following datasets, each with their dis- 786

tinct validation/test configurations. 787

MATH 500 is derived from OpenAI’s Let’s Ver- 788

ify Step by Step paper and contains two splits—500 789

training and 500 test problems—each consisting of 790

challenging mathematics questions. For our experi- 791

ments, we use 500 samples from the training split 792

for validation and the entire test split as our test set. 793

AIME 2024 comprises 30 problems from the 794

2024 American Invitational Mathematics Examina- 795

tion (AIME), a renowned mathematics competition 796

for high school students that is well known for 797

its problem difficulty. The 2023 set, which also 798

contains 30 problems, serves as our validation set, 799

while the 2024 set is used for testing. 800

GPQA is a rigorous multiple-choice question- 801

answering dataset spanning biology, physics, and 802

chemistry, with questions crafted by domain ex- 803

perts. The GPQA_main split contains 448 ques- 804

tions and is used for validation, while GPQA-D 805

consists of 198 challenging domain transfer ques- 806

tions designated as our test set. 807

AMC 2023 contains 40 questions from the 2023 808

American Mathematics Competitions, with AMC 809

2022 having 43 questions and serving as valida- 810

tion. The AMC benchmarks target the evaluation of 811

mathematical problem-solving abilities, providing 812

diverse and difficult problems from annual nation- 813

wide contests. 814

11

A.2 Generation Parameters815

For all evaluations conducted across safety, instruc-816

tion following, and efficient reasoning domains,817

model responses were generated using a consistent818

set of decoding parameters to ensure comparability:819

Temperature: 0.6820

Top-p: 0.95821

Maximum Output Tokens: 32,768822

A.3 Two-Phase Evaluation Workflow823

Throughout all three domains, our experiments rig-824

orously adhered to strict data separation and con-825

sistent model configurations.826

In the first phase, all model development, in-827

cluding hyperparameter tuning and iterative opti-828

mization, was conducted solely on the validation829

sets, with domain-specific metrics such as Safe830

Prompt Compliance (SPC), Unsafe Prompt Re-831

fusal (UPR), instruction-following accuracy, and832

problem-solving accuracy continuously monitored833

to guide improvements.834

For the second phase, the held-out test sets were835

accessed only once after development was com-836

plete, and all reported results are from this single837

final evaluation. This protocol ensures the objectiv-838

ity and validity of our performance measurements,839

reflecting true generalization.840

12

B Detailed Prompt 841

B.1 The specific prompts of ThinkPilot 842

This section provides a detailed introduction to the Prompt design used in the crossover and mutation 843

modules of the ThinkPilot algorithm proposed in this paper. 844

B.1.1 The prompt used in the crossover module 845

I want to improve the model’s performance across various tasks using the prefix_thinking_direct
method, aiming for the best possible results.Below is an example of how I influence the model’s
behavior for a task:

query = "Write a letter to a friend in all lowercase letters ask them to go and vote."
prefix_thinking_direct = "<think>\nHmm, I need to carefully consider all requirements and
execute the task step by step, ensuring accuracy.</think>"
prompt_content = f"<|begin_of_sentence|><|User|>{{query}}<|Assistant|>{{prefix_thinking_direct}
}"

I am evaluating several versions of prefix_thinking_direct to determine which works best across a
variety of tasks.

Thinking Category Definitions (for reference):
1. Task Initialization: In the initial reasoning phase, the model identifies its task objectives,
constraints, and inputs.
2. Strategic Planning: Before formal execution, explicitly state or determine a structured action
plan or strategic blueprint.
3. Knowledge Retrieval: Review relevant knowledge for problem-solving.
4. Stepwise Reasoning: Execute specific, independent reasoning or computational steps following
the established plan or logical sequence.
5. Uncertainty Management: When encountering ambiguity, contradictions, or difficulties, the
model pauses execution and explicitly expresses its confusion, uncertainty, or reassessment.
6. Final Conclusion: Present the final conclusion

Below are 5 prefix examples ordered from highest to lowest score:
Prefix 1 (Highest score): case_vals[0]
Prefix 2: case_vals[1]
Prefix 3: case_vals[2]
Prefix 4: case_vals[3]
Prefix 5 (Lowest score): case_vals[4]

Task: Generate 5 new prefix_thinking_direct snippets with the following requirements:
1. Generate exactly 5 prefixes, each corresponding to one of the original prefixes above
2. New Prefix 1 should maintain the core style/approach of original Prefix 1, but incorporate
strengths from Prefixes 2-5
3. New Prefix 2 should maintain the core style/approach of original Prefix 2, but incorporate
strengths from other prefixes
4. Continue this pattern for all 5 prefixes
5. When creating each new prefix, analyze what thinking categories are strong/weak in the
original, and enhance it by borrowing effective elements from the other 4 prefixes
6. Each prefix must be enclosed in <think> and </think>

846

13

B.1.2 The prompt used in the mutation module847

The Mutation module utilizes a unified prompt template to generate diverse thinking process prefixes.848

The core logic of the prompt remains consistent across all tasks, but a specific task_context block is849

dynamically inserted based on the task type (Safety, Instruction Following, or Efficient Reasoning). This850

allows the model to adapt its thinking generation style to the specific demands of each task.851

Main Prompt Template The complete prompt sent to the model is structured as follows. The {prefix}852

is the original thought process segment to be mutated, and the {task_context} is one of the three variants853

described in the next section.854

Given the following prefix: {prefix}

Thinking Category Definitions:
1. Task Initialization: In the initial reasoning phase, the model identifies its task objectives,
constraints, and inputs.
2. Strategic Planning: Before formal execution, explicitly state or determine a structured action
plan or strategic blueprint.
3. Knowledge Retrieval: Review relevant knowledge for problem-solving.
4. Stepwise Reasoning: Execute specific, independent reasoning or computational steps following
the established plan or logical sequence.
5. Uncertainty Management: When encountering ambiguity, contradictions, or difficulties, the
model pauses execution and explicitly expresses its confusion, uncertainty, or reassessment.
6. Final Conclusion: Present the final conclusion

{task_context}

Please generate ***exactly NINE*** alternative versions, each wrapped in <think> and </think>.
Requirements:

Part 1 (6 prefixes): Category-based Interventions
1. Randomly select THREE categories from the 6 thinking categories above
2. For EACH selected category, generate TWO prefixes:
- One with NEGATIVE intervention (minimizing/reducing that category)
- One with POSITIVE intervention (emphasizing/enhancing that category)

Part 2 (3 prefixes): Style Variations
3. Generate THREE additional prefixes based on the original:
- More Detailed: Expand the original prefix with more specific details and elaboration
- More Concise: Simplify the original prefix to its essential elements
- Paraphrased: Rewrite the original prefix using different words but keeping the same meaning

Intervention Examples:
- Uncertainty Management negative: "I need to be confident and avoid hesitation words like wait,
maybe, perhaps"
- Uncertainty Management positive: "I should carefully consider uncertainties and potential issues"
- Strategic Planning negative: "Jump straight into execution without overthinking the plan"
- Strategic Planning positive: "First establish a clear step-by-step plan before starting"

All prefixes should:
- Sound like natural, informal human thinking
- Use conversational language ("Okay, so...", "Let me...", "I need to...")

855

14

- Feel like someone talking to themselves while working
- Include Problem Setup and Plan Generation as baseline

IMPORTANT: The output format below shows labels in brackets like [Category 1 - Negative
Intervention] for guidance only.
DO NOT include these bracketed labels in your actual output - generate ONLY the prefix content
inside <think> tags.

Output format (exactly 9 sections):
<think>[Category 1 - Negative Intervention]</think>
<think>[Category 1 - Positive Intervention]</think>
<think>[Category 2 - Negative Intervention]</think>
<think>[Category 2 - Positive Intervention]</think>
<think>[Category 3 - Negative Intervention]</think>
<think>[Category 3 - Positive Intervention]</think>
<think>[More Detailed]</think>
<think>[More Concise]</think>
<think>[Paraphrased]</think>

Example of CORRECT output:
<think>Okay, so I need to write a poem about summer. Let me just start writing without
overthinking it.</think>

Example of INCORRECT output:
<think>[Category 1 - Negative Intervention] Okay, so I need to write a poem about sum-
mer.</think>

856

Task-Specific Contexts (task_context) The following three task_context blocks are used for their 857

respective task types. 858

(1)Safety task 859

860
Task Description:
This is a safety task. When presented with a user’s query, your job is to carefully determine
whether the request is safe. For safe queries, provide a normal, high-quality response. For unsafe
or sensitive requests that violate ethical, legal, or platform guidelines, you must explicitly refuse
to answer and clearly state the reason for the refusal.
Key points to remember:
Recognize if the request involves legal, ethical, or platform safety concerns For compliant and
safe queries, respond helpfully and positively
For unsafe, sensitive, or prohibited queries, firmly refuse and do not provide the requested
information Respond succinctly, courteously, but with clear boundaries

861

(2)Instruction Following task 862

863
Task Description:
This is an instruction-following task with low computational requirements, no need for complex
logical calculations, hence minimal transitional words needed. Plan Generation is particularly
sensitive and requires strong positive intervention.
Each prefix should naturally guide thinking about:
- Understanding what’s being asked ("So I need to do X and also Y")

864

15

- Noticing specific requirements ("And I have to use caps at least 3 times")
- Planning the approach ("Let me first identify the main points")
- Being aware of constraints ("I should balance being concise with...")

865

(3)Efficient Reasoning task866

867
Task Description:
The goal of this task is to achieve **maximum reasoning efficiency**. This means producing the
correct output with the **minimum necessary steps, complexity, and verbosity**.
The thought process should feel streamlined, direct, and purposeful. It should actively avoid
detours, redundant checks, or overly detailed explanations that do not contribute directly to the
final answer. The emphasis is on the **quality and directness of the reasoning path**, not its
exhaustive nature.

868

B.2 Prompt for Analyzing and Inferring Behavioral Categories869

Here is the prompt designed for behavioral category analysis, mainly used to classify the types of reasoning870

behaviors triggered by the prefix in the model.871

You are an expert analyst of AI reasoning patterns. Your task is to carefully classify a given
thinking process prefix based on the type of reasoning behavior it is targeting within the model’s
thinking chain. The prefix does not directly describe the reasoning behavior itself but provides an
instruction aimed at guiding the model’s thinking process to execute a specific type of reasoning
behavior. Follow the definitions and examples provided to identify the correct reasoning behavior
the prefix is designed to evoke.

1. Reasoning Behavior Definitions This section defines each reasoning behavior category.
Task Initialization: In the initial reasoning phase, the model identifies its task objectives, con-
straints, and inputs.
Strategic Planning: Before formal execution, explicitly state or determine a structured action plan
or strategic blueprint.
Stepwise Reasoning: Execute specific, independent reasoning or computational steps following
the established plan or logical sequence.
Uncertainty Management: When encountering ambiguity, contradictions, or difficulties, the model
pauses execution and explicitly expresses its confusion, uncertainty, or reassessment.
Knowledge Retrieval: Review relevant knowledge for problem-solving.
Final Conclusion: Present the final conclusion.

2. Examples of Correct Classification These examples show how the definitions are applied to
a given prefix to identify the reasoning behavior it is targeting. [Note: The section below is
populated with a random sample of few-shot examples from a larger dataset during runtime. The
structure is as follows.]

— Example 1 —
Prefix:
[Example 1 Prefix Text]
Correct Labels: [Example 1 Labels]

— Example 2 —
Prefix:

872

16

[Example 2 Prefix Text]
Correct Labels: [Example 2 Labels]

3. Your Task
Now, apply your understanding from the definitions and examples to classify the prefix below.
Prefix to Analyze: [PREFIX_TO_ANALYZE]

4. Output Instructions Provide your answer as a string of numbers corresponding to the identified
categories. Do NOT include any other text, explanations, or formatting. For example, if the prefix
is targeted to Uncertainty Management (category 4) and Knowledge Retrieval (category 5), your
output must be exactly "45".

Labels:
873

B.3 Prompt for Control Success Rate for reasoning behaviors 874

This evaluation prompt is used to assess the effectiveness of behavioral interventions on reasoning 875

processes. The prompt template includes four placeholders: {baseline_record} for the original thinking 876

process, {target_behavior} for the specific reasoning behavior being modified, {direction} indicating 877

whether to enhance (Positive) or suppress (Negative) the behavior, and {intervened_record} for the post- 878

intervention thinking process. An expert evaluator uses this structured format to determine intervention 879

success by comparing the presence and strength of the target behavior before and after intervention. 880

You are a top-tier AI reasoning behavior analysis expert. Your task is to precisely evaluate whether
a thought intervention experiment is successful.

Core Evaluation Criteria (Please strictly follow):
This experiment’s interventions are divided into "Positive" and "Negative" types. Their meanings
are very specific:

• Positive (Enhance/Add): We expect the model to more explicitly and significantly demon-
strate the "target reasoning behavior" after intervention. If the original thinking lacks this
behavior, it should be added after intervention; if the original thinking already has this behavior,
it should be strengthened after intervention.

• Negative (Weaken/Remove): We expect the model to weaken or completely not demonstrate
the "target reasoning behavior" after intervention. If the original thinking has this behavior, it
should be weakened or removed after intervention.

Examples:

• For a "7. Final Conclusion - Positive" intervention, if the original thinking only provides an
answer, then the post-intervention thinking should include a clear, summarizing statement.

• For a "7. Final Conclusion - Negative" intervention, if the original thinking has a summary
statement, then the post-intervention thinking should directly provide the answer, omitting the
summary part.

Evaluation Task Details:

1. Original Thinking Process (Baseline):
881

17

{baseline_record}

2. Intervention Details:

• Target Reasoning Behavior: {target_behavior}

• Intervention Direction: {direction}

3. Post-Intervention Thinking Process:

{intervened_record}

Please make your judgment based on the above criteria and comparison. Your response
must strictly follow the format below, without adding any preface, summary, or numbering.
Your entire response must begin directly with "Analysis Conclusion:"

Analysis Conclusion: [Please fill in only "Success" or "Failure" here]

Brief Reasoning: [Please explain your judgment in one or two sentences here. Please clearly
indicate whether and how the post-intervention process enhances/adds or weakens/removes the
target behavior compared to the original process.]

882

C One more study case883

We present an additional case study to complement the example in Table 5. Table 6 illustrates how884

Controlled RBs dynamically evolve through iterations on reasoning task, when evaluated on the AIME885

2024 benchmark using the R1-Qwen-7B model. As shown, the process shifts from Knowledge Retrieval886

to Strategic Planning as the system converges toward optimal reasoning behaviors, with scores on the887

reasoning task improving from 50.0 to 60.0.888

Iteration Iter-1 Iter-2 Iter-3

Prefix <think>\nI need to keep my
knowledge base active. During
the problem-solving process, I
will actively retrieve and list all
potentially useful formulas and
concepts to have them ready for
use.

<think>\nOkay, I’m going to dive
right into solving this without
spending too much time
identifying the detailed objectives
or constraints. I don’t want to
overthink what exactly the task
involves—better to just get
moving.

<think>\nAlright, I need to start
solving this problem. Let me just
jump right into executing the
steps without spending too much
time planning it all out.

Controlled
RBs

Knowledge Retrieval Stepwise Reasoning;
Task Initialization

Strategic Planning

Score 50.0 56.7 60.0

Table 6: A case study on ThinkPilot’s iterative optimization, detailing the prefixes, guided reasoning behaviors
(Controlled RBs), and scores for three iterations.

D Ethics, Broader Impact, and Licenses889

Ethics. A portion of our research is dedicated to the responsible and ethical development of AI systems,890

including but not limited to improving the safety and alignment of reasoning models. We emphasize891

instruction following across a variety of real-world scenarios, particularly those with heightened require-892

ments for reliability and ethical standards. Our methodology adheres to widely accepted ethical standards893

in AI research, prioritizing transparency and minimizing potential societal harms. In evaluating model894

performance on safety-related benchmarks, we have used datasets that may contain sensitive content. All895

18

such datasets are sourced from reputable and reliable providers, ensuring research integrity and ethical 896

compliance. Although some datasets include sensitive material, their use is strictly limited to academic 897

research purposes and is carefully managed under controlled and ethical conditions. 898

Broader Impact. Improving the safety alignment of language models in reasoning tasks has significant 899

potential for positive outcomes in high-impact domains such as healthcare, finance, and education. At the 900

same time, we recognize and take seriously the risks associated with misuse or unintended consequences 901

when deploying these models. We encourage proactive research and regulatory measures to identify, 902

monitor, and mitigate such risks. 903

Licenses. In this paper, we utilize the following models and datasets: (1) Models: DeepSeek-R1-Distill- 904

Qwen-1.5B (Apache 2.0 License), Qwen3-8B (Apache 2.0 License), QwQ-32B (Apache 2.0 License), 905

THINKPRUNE (Apache 2.0 License), Arora and Zanette (2025) (Apache 2.0 License), DeepSeek-R1- 906

Distill-7B (Apache 2.0 License), DeepSeek-R1-Distill-32B (Apache 2.0 License), SAFECHAIN (Apache 907

2.0 License), and RealSafe-R1 (Apache 2.0 License). (2) Datasets: XSTest (Attribution 4.0 International), 908

StrongREJECT (MIT License), IFEval (Apache 2.0 License), MultiChallenge (Not specified), MATH 909

500 (MIT License), AIME 2024 (Not specified), GPQA-D (MIT License), AMC 2023 (Not specified), 910

GPQA_main (MIT License), AMC 2022 (Not specified), and AIME 2023 (Not specified). For more 911

details about the licenses and usage permissions, please refer to the official documentation of each model 912

and dataset. 913

19

	Introduction
	ThinkPilot
	Initialization and Evaluation
	Evolution and Iteration

	Experiments and Analysis
	Experimental Setup
	Main Results
	Analysis of Reasoning Behaviors
	Case Study of ThinkPilot

	Related Work
	Conclusions
	Limitations
	Detailed Experiment Setup
	Dataset Splitting Methodology
	Safety and Instruction Following Benchmarks
	Efficient Reasoning Benchmarks

	Generation Parameters
	Two-Phase Evaluation Workflow

	Detailed Prompt
	The specific prompts of ThinkPilot
	The prompt used in the crossover module
	The prompt used in the mutation module

	Prompt for Analyzing and Inferring Behavioral Categories
	Prompt for Control Success Rate for reasoning behaviors

	One more study case
	Ethics, Broader Impact, and Licenses

