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Abstract

A common challenge in machine learning model development is that models perform differently
between the offline development phase and the eventual deployment phase. Fundamentally,
the goal of such a model is to maximize performance during deployment, but such performance
can not be measured offline. As such, we propose to augment the standard offline sample
efficient hyperparameter optimization to instead search offline for a diverse set of models
which can have potentially superior online performance. To this end, we utilize Constraint
Active Search to identify such a diverse set of models, and we study their online performance
using a variant of Best Arm Identification to select the best model for deployment. The
key contribution of this article is the theoretical analysis of this development phase, both in
analyzing the probability of improvement over the baseline as well as the number of viable
treatments for online testing. We demonstrate the viability of this strategy on synthetic
examples, as well as a recommendation system benchmark.

1 Introduction

Developing a machine learning model for production requires a series of modeling decisions, e.g., the choice
of data, loss function, model structure, regularization. These choices may be broadly referred to as the
“hyperparameters” of an ML model, and any choice of them will yield a viable model. An appropriate or
optimal selection of them is often guided by loss or accuracy achieved on a validation set which is disjoint
from the training set. The purpose of this validation objective is to avoid overfitting to performance the
training loss by estimating the model performance on unseen data (Bishop, 2007).

There remains, however, a gap even between performance in an offline validation setting and online performance.
Such a gap is well-known in industrial ML settings, where deployed models often fail to live up to the
expectations set during an offline development process. Most notably, for our purposes, Krauth et al. (2020)
states, after extensive empirical testing on recommender systems, that

... offline metrics are correlated with online performance over a range of environments.
However, improvements in offline metrics lead to diminishing returns in online performance.

Radlinski et al. (2008) showed an example where the improvement of the click-through rate deteriorates the
quality of a search engine. Kato et al. (2020) calls out the need to adapt offline models to account for the
current network state as a key component in advancing wireless technology. The offline/online gap is even
more prominent in circumstances where deployed ML systems can produce unphysical outcomes which must
be avoided (Brenowitz et al., 2020).

In acknowledgement of these gaps, a naive use of sample-efficient offline optimization tools, such as Bayesian
optimization (Jones et al., 1998; Frazier, 2018), can lead to underperformance in online setting. To address
this issue, strategies have been developed for incorporating supplemental information (including online
information) into the model development process (Swersky et al., 2013). Special tooling has been developed to
support monitoring of deployed ML systems to utilize metrics recorded deployment (both model performance
and contextual/environment drift) for subsequent ML model redesign (Banerjee et al., 2020).
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Figure 1: A graphical depiction of how our two-phase strategy precedes a deployment of a new ML model. In
the offline development phase we explore an offline metric to find viable models for subsequent testing online,
the best performing of which is deployed long-term.

State-space models such as the Kalman filter have been developed to allow for data assimilation: models are
developed offline but later altered or updated using online (real-time) information to improve their accuracy
(Wan & Van Der Merwe, 2000; Kwiatkowski & Mandel, 2015). Chen et al. (2017) used offline data to modify
the design space (decision variables) and allow their online genetic algorithm to more efficiently maintain
high performance of a reservoir system. These strategies, however, are in pursuit of a continually/iteratively
run online tracking/optimization process.

In this article, we consider the setting where we have only a fixed window on which to conduct online
development. Of course, the topic of online performance optimization has been addressed by many researchers.
Multi-armed bandits (Robbins, 1952; Komiyama et al., 2015) provide a strategy for constantly testing multiple
treatments so as to minimize cumulative regret during the testing phase (which could extend indefinitely).
Best arm identification (BAI) (Audibert et al., 2010) is used to measure performance of multiple strategies
online and choose one for eventual long-term deployment. We consider only the BAI circumstances (ignoring
cumulative regret during online development/testing), as they most closely match our deployed circumstances.

Our proposed strategy for improving deployed performance works in two phases: an offline and an online
development phase. First, during the offline development phase, we replace the standard hyperparameter
optimization that eventually outputs a single model with Constraint Active Search (Malkomes et al., 2021)
to create a diverse set of models with high offline performance. Second, we conduct a subsequent online
development phase using a BAI-inspired algorithm (Algorithm 1 in Section 2.2) to identify the one model
which performs best in an online setting. This model is then deployed, by itself, for a long period of time,
during which the performance will be ultimately be judged. This process is depicted in Figure 1.

2 Proposed two-phase strategy for online performance optimization

This strategy is closest to that of Letham & Bakshy (2019) who built multi-task Gaussian processes to
incorporate offline (simulator) data into a sample-efficient online policy search. The key difference is that the
strategy employed there involves a sequential online optimization process, which requires us to deploy new
models adaptively. To do so, the administrator of the system might be required to examine the new model
for each sequential step. Here, we are restricting our online optimization process to be fully fixed before the
online development takes place; in effect, this is a one-shot online optimization. This reflects a common set
of circumstances in industry where the deployment occurs rather infrequently and the online development
process can only be conducted with a single set of models in a fixed window which is much shorter than the
deployed period. See Paleyes et al. (2020) for some analysis of these circumstances.

2



Under review as submission to TMLR

To define our setting and notation, during the two stage process we search for configurations x in a search
space X ; in principle, this space could include categorical parameters, but for ease of exposition we assume
that X ⊂ Rd. In particular, we let y : X → R denote the expected deployed performance of the model x in
the testing phase and y0 be the expected baseline deployed performance; these expectations are taken over
the deployed circumstances. We use ỹ : X → R to denote the offline performance metric. In our later analysis,
we primarily assume that y(x) is the probability of a random user receiving a successful recommendation
from model x. No assumption is made regarding the structure of ỹ except that it is somewhat correlated to
y (so that studying ỹ offline gives us insights about y online).

Our motivation in designing our strategy is to maximize the probability of the next deployed model x(T )

improving over the baseline,

P
[
y

(
x(T )

)
> y0

]
.

Maximization is used here for simplicity, and this could be easily be rephrased as minimization. Here, the
probability is defined over the space of y and ỹ functions, as well as the random outcomes from the offline
and online development phases.

2.1 Offline development phase

During the offline development phase, we allot ourselves a budget of M total offline model trainings in which
to find K candidates x1, x2, . . . , xK . These will subsequently be tested online to find one candidate x(T ) for
long-term deployment. Unfortunately, during the offline development phase, we lack access to y and can only
evaluate ỹ.

We assume that ỹ is expensive to evaluate, and thus searching the space X for high performing outcomes
must be done in a sample efficient fashion. For such a problem, grid search and random search (Bergstra
& Bengio, 2012) provide simple optimization strategies, while Bayesian optimization (BO) (Frazier, 2018)
provides significantly stronger performance (Turner et al., 2021). These optimization strategies are powerful
for optimizing ỹ, but they ignore the fact that we actually hope to optimize y. As a result, any K candidates
selected from that optimization process were found without a specific goal of producing diverse outcomes.

The first key contribution of this work consists of proposing the use of Constraint Active Search (CAS) during
this offline development phase (Malkomes et al., 2021). This strategy was developed with the goal of finding
a diverse set of satisfactory outcomes rather than simply optimizing; that makes it ideal for using ỹ to define
satisfactory outcomes on which y will later be measured. We denote the performance threshold as τ , thus
defining the satisfactory region as

S = {x|ỹ(x) ≥ τ} .

After CAS has been run for M iterations on ỹ with threshold τ , we have found some number, J , of satisfactory
models: x′

1, . . . , x′
J ∈ S. If, unfortunately, J < K, then either the τ value may be reconsidered to include

more models, M could be increased to try to find more models, or fewer than K models can be considered
for the online development phase. The more likely case is that J ≥ K, meaning that we must subselect
K candidate models x1, . . . , xK ∈ S for use in the online development phase. We use a strategy based on
K-determinantal point processes (K-DPP) which uses the learned covariance from the CAS to disperse points
in S; more information is provided in Appendix B.

2.2 Online development phase

In the online development phase, we run a version of best arm identification (BAI) (Audibert et al., 2010)
with T total samples provided to the K models generated during the offline development phase; Algorithm 1
describes our strategy. For each round t = 1, 2, . . . , T , we choose an arm xI(t) and receive a corresponding
reward

X(t) ∼ Bernoulli
(
y

(
xI(t)

))
. (1)
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Algorithm 1 Thresholded successive elimination
Require: Arms x1, . . . , xK , # of Rounds T , threshold y0, confidence level η ∈ (0, 1).

Initialize the upper confidence bound Ui(0) = 1 for each i ∈ [K].
Initialize the active set Ψ(1) = {x1, . . . , xK}.
for Each round t = 1, 2, . . . , T do

Draw arm xI(t) : I(t) = arg maxxi∈Ψ(t) Ui(t − 1).

Update the lower bound Li(t) = ŷi(t) −
√

log(Ni(t)2/η)
2Ni(t) , for xi ∈ Ψ(t).

Update the upper bound Ui(t) = ŷi(t) +
√

log(Ni(t)2/η)
2Ni(t) , for xi ∈ Ψ(t).

Update the active set Ψ(t + 1) =
{

i ∈ [K]|Ui(t) ≥ y0, Ui(t) ≥ maxi∈[K] Li(t),
}

.
end for
Output x(T ) = arg maxi Ni(T ).

The notation [ℓ] is used to mean [ℓ] ≡ {1, 2, . . . , ℓ}. We define

ŷi(t) = 1
Ni(t)

∑
t:I(t)=i

X(t),

where Ni(t) be the number of draws on arm i at the end of round t. We also denote ŷi,n be the value of ŷi(t)
when Ni(t) = n.

While our problem is similar to the BAI problem, a notable difference from the best arm identification
problem is that the control arm (arm 0) with performance y0 is considered deterministic; our goal is to find
an arm with its expected performance larger than y0. Our algorithm is inspired by the upper confidence
bound algorithm (Lai & Robbins, 1985; Auer et al., 2002) as well as the recent good arm identification
algorithm (Kano et al., 2019) and thresholding bandit algorithm (Locatelli et al., 2016). While the good
arm identification and thresholding bandit problems are aimed at finding more than one arms that are
above/below the threshold, we are interested in finding at least one arm above the threshold.

Algorithm 1 produces Li(t) and Ui(t), which are the lower and upper confidence bounds, respectively of y(xi)
by using the samples until round t. Here, we define Ui(t) = 1 and Li(t) = 0 when Ni(t) = 0. Conceptually,
Algorithm 1 is simple. At each round, we draw an arm based on the upper confidence bound. Using on the
confidence region [Li(t), Ui(t)], we discard arms that are unlikely to be the best. At the end of round T , we
choose the most sampled arm x(T ) ∈ {0, 1, 2, . . . , K}.

3 Theoretical analysis of our strategy

In this section, we provide some analysis of the components of our algorithm under reasonable assumptions
regarding the development/deployment conditions.

3.1 Theoretical analysis of subselection of models

We assume that the satisfactory region S is a compact subset of X . We make the following assumption on
the GP, which is standard in the Bayesian optimization.
Assumption 1. (Continuity, Theorem 2 in Srinivas et al. (2012)) There exists constants a, b > 0 such that

P
[

sup
x,x′∈X

|y(x) − y(x′)|
|x − x′|

> L

]
≤ ae−(L/b)2

.

Assumption 2. (Existence of improvement) There exists x∗ ∈ S such that

y(x∗) > y0.

Let y∗ = y(x∗) and D = y∗ − y0.
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Assumption 1 is widely used in the field of Gaussian process optimization. Assumption 2 is very mild; it
only requires at least one point of improvement in the satisfactory region. Of course, if no such point exists,
then either the modeling process must be improved (a common fear from all modelers), a different ỹ must be
defined to more strongly correspond to y, or τ must be adjusted to include such a point.
Remark 1. (Volume of the region of improvement) Let

Simp := {x ∈ S : y(x) > y0}

and Vol(Simp) be the volume of the region of improvement. Assumption 1 and Assumption 2 imply that this
volume is positive.
Assumption 3. (Constant-ratio covering number) Let ξ(r) ∈ N be the smallest number such that there
exists x1, x2, . . . , xξ(r), and for any point x ∈ S, there exists xi such that |x − xi| ≤ r and

min
i,j∈[ξ(r)]

Vol({x ∈ S : |x − xi| ≤ r})
Vol({x ∈ S : |x − xj | ≤ r}) ≥ CCov,

for some CCov > 0.
Remark 2. (Bound on covering number) By the assumption of the compactness of S, the covering number
always exists. For example, if S is a d-dimensional ball with its volume Vol(S), then the covering number
is ξ(r) ≤ Vol(S)(r/(2

√
d))−d. The assumption on the constant ratio CCov is very mild. In Appendix A, we

show a corner case where a constant-ratio covering does not exist.

Given these assumptions, the quality of the best solution among the random sample from the satisfactory
region is bounded as defined in Theorem 1.
Theorem 1. (Quality of random samples from the satisfactory region) Let x1, x2, . . . , xK be i.i.d. samples
from S. Then, there exists a model-dependent constant Cmodel > 0 such that

P
[
max

i
y(xi) ≥ y0

]
≥ 1 − δ

for K ≥ Cmodel log(1/δ).

See Appendix C for a proof of this theorem.
Remark 3. (Randomness in Theorem 1) The probability in Theorem 1 is taken with respect to the
randomness of the sample path (note that y(·) is drawn from a Gaussian process) and the randomness of
selecting x1, x2, . . . , xK from S.
Remark 4. (I.i.d. sampling required in Theorem 1) This proof requires that x1, x2, . . . , xK be drawn i.i.d.
from S. In reality, these points are not i.i.d.; the K-DPP strategy defined in Appendix B has the effect of
dispersing points in a max-cover fashion. Even so, we consider that this is a reasonable approximation to
i.i.d. sampling.
Remark 5. (Minimum bound on K) The value K appears in Theorem 1 that guarantees the improvement
with probability 1−δ is dependent on the model. Unfortunately, knowing this bound is functionally impossible
because the full knowledge of y on S (i.e., the performance of the model in the online develepment phase)
is unknown in our setting. In Section 3.3, we further consider the choice of K and identify that the online
development phase places only a mild upper bound of K <

√
T .

3.2 Theoretical analysis of online development phase

The following theorem analyzes the probability of improving over the deployed baseline performance y0 when
running Algorithm 1.
Theorem 2. (Bound on probability of improving over the deployed baseline) Assume that there exists at
least one point xi such that y(xi) > y0. Let ∆ = (maxi y(xi) − y0) /2. Then, for T such that√

log((T/K)2/η)
2(T/K) ≤ ∆, (2)
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we have
y(x(T )) ≥ y0

with probability at least 1 − (Kπ2η)/6.

See Appendix D for a proof of Theorem 2.
Remark 6. (Randomness in Theorem 2) The probability distribution employed in Theorem 2 is taken with
respect to the randomness of the rewards. Since Algorithm 1 is deterministic, x(T ) is deterministic when the
reward sequence is fixed.
Remark 7. (Exponential convergence) Theorem 2 states that the minimum value of Kπ2η/6 such that
Eq. (2) holds is

π2T 2

6K
exp

(
−2T∆2

K

)
,

which decays exponentially to T given other parameters. Additionally, if ∆ can, somehow, be estimated a
priori, we can use Eq. (2) as guidance to set a lower bound on T .
Remark 8. (Required exploration before pruning Ψ) The value η provides a direct mechanism for increas-
ing/decreasing Ui. Setting 0 < η ≪ 1 will add a large amount to Ui, which will have the effect of allowing all
arms to remain in Ψ even after some poor early performance. As Ni grows, the performance ŷi will eventually
dominate the quantity. But our Bernoulli reward structure (and the resulting bounds on ŷi that it implies)
provides an opportunity to force exploration without defining an explicit initialization phase.
Remark 9. (Uniform confidence bounds) We note that the proof of Theorem 2 is based on event B, which
implies that all the confidence region is valid consistently over all arms and rounds. While such a bound is
conservative, most of the theoretical analyses on MAB/BAI rely in such a bound (e.g., Auer et al. (2002);
Gabillon et al. (2012)). The exponential rate of concentration (Remark 7) justifies the use of such a bound.
We should also note that Algorithm 1 is free from any forced exploration/initialization phase. Early in the
BAI process, the confidence region is quite massive, meaning that the online development process likely needs
no initialization to perform effectively.
Remark 10. (Reward assumption) In Eq. (1), we assume the reward is Bernoulli and thus ŷi,n unbiased
estimator of y(xi). It is straightforward to extend our results to the case of real-valued rewards with
sub-Gaussian noise because we have the same concentration inequality for sub-Gaussian random variables.
For a structural model where single feedback X(t) does not give an unbiased estimator of y(xi), we can create
a similar algorithm if we can build an anytime confidence bound that holds consistently over any number of
samples (i.e., an equivalent to Event B in the proof of Theorem 2).

3.3 Implication of choice of K

We consider the relationship between K and the probability of improving over the baseline. A large K
increases the probability of finding at least one improvement. On the other hand, a small K increases the
probability of actually returning x(T ) = arg maxx∈{x1,...,xK} y(x). Namely, results in Section 3.1 state that

P
[
max

i
y(xi) < y0

]
=

(
1 − Vol(Simp)

Vol(S)

)K

= e−CK ,

where C = log
((

1 − Vol(Simp)
Vol(S)

)−1
)

. At the same time, Remark 7 states that

P
[

y
(

x(T )
)

≥ y0

∣∣∣ max
i

y(xi) > y0 + ∆
]

= π2T 2

6K
exp

(
−2T∆2

K

)
.

The value that miminizes the sum of these two terms is derived as

min
K>0

(
e−CK + π2T 2

6K
exp

(
−2T∆2

K

))
,
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which demonstrates K = Θ̃
(√

T
)

, where Θ̃ is Landau notation that ignores a polylogarithmic factor.

There are several practical considerations related to the choice of K. First, the optimal choice of K is model
dependent; when the satisfactory region involves very small volume of improvement Vol(Simp), it favors a
large value of K. Meanwhile, a large value of K indicates that we test many candidate models in the testing
phase, which not only decreases the chance of finding the best arm but also makes the online development
process more stochastic.

Additionally, one result of the online development is a confidence interval on the expected performance of
x(T ) during deployment – many industrial settings may enforce a maximum possible size of this confidence
interval before deployment. Such a requirement could encourage smaller K (assuming that T is fixed). This
is in addition to the CAS process which, because it often requires expensive trainings, is generally run on a
limited budget and may only produce roughly K satisfactory results (as opposed to the

√
T which might be

viable during online development).

4 Experimentation

We provide numerical experiments to demonstrate the consistency of our strategy on synthetic problems
as well as the viability of our strategy in a recommender system benchmark. We have chosen M and T
arbitrarily; in a standard industrial setting, M might be chosen based on development deadlines and T might
be chosen to generate a desired confidence interval for the eventually deployed model. We fix η = 0.01 to
require a minimum amount of exploration before eliminating arms. For CAS and BO, we fit a constant mean
with generalized least squares and use a C4 Matérn covariance kernel with process variance and length scales
learned through maximum likelihood estimation (Fasshauer & McCourt, 2015). CAS uses expected coverage
improvement (ECI) (Malkomes et al., 2021) as its acquisition function; BO uses expected improvement
(Frazier, 2018).

As a baseline, we compare our strategy involving testing K arms during the online development phase against
a more standard choice of only 1 arm as identified through BO. We also consider the choice of K arms,
randomly sampled from S with UCB used during the online development phase (denoted as “RS+UCB”).
The line “Best CAS” represents the arm identified during CAS which has best online performance (indepedent
of whether it was part of the K subselection). The numerical results are presented in the form “MM (SS)”
where MM the mean and SS the standard deviation of the experiments. Here, randomness is considered
over the output of the full development process.

4.1 Synthetic experiments

To demonstrate the implications of our proposed strategy, we created 20 offline/online problems using variations
of objective functions parametrized like Gaussians (representative functions are depicted in Figure 1). The
online objectives vary slightly from the online objectives: a smaller region with high performance and a slight
mismatch between the contour levels.

The offline Gaussian function has center [0.5, 0.5] with co-variance 0.05 × I. The online function center is
translated from [0.5, 0.5] in a random direction by a predetermined magnitude λ ∈ {0.01, 0.05, 0.1, 0.15, 0.2};
the complete definition of these objectives is shown in Appendix E. We set τ = 0.75 (the function range is
[0, 1]) and the CAS parameter to r = 0.08. We ran the online development phase for T = 1000 rounds.

Table 1 shows the results for the set of experiments where we subselected K = 4 candidates. In situations where
offline and online objective are very similar, the diversity afforded by CAS should hurt online performance.
As the offline and online objectives diverge, however, we expect our proposed strategies to outperform the
best configuration achieved during the offline phase. Table 2 confirms the expectation that using more arms
during the online phase increases the online performance (at the cost of fewer samples per arm). Additional
results (varying y0 and τ) are presented in Appendix E; those results also suggest that our hypothesis that
DPP subselection favors more diversity than ECI – we expect diversity to improve online performance the
discrepancy between offline and online increase.
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Table 1: Demonstration of our two-phase strategy on synthetic problems with increasing levels of difference
between ỹ and y; we have fixed K = 4, y0 = 0.7, τ = 0.75, M = 25, T = 1000. As expected, our strategy has
a consistent improvement over the BO-based solution when ỹ and y are rather different and a value y(x) > y
exists for x ∈ S. The “–” results indicate that at least one replication failed to produce a successful arm
during Algorithm 1, which should be expected given the Best CAS expected value 0.69 < y0.

Magnitude shift between offline and online (λ)
Selected Model 0.01 0.05 0.10 0.15 0.20

BO 1.00 (0.00) 0.91 (0.01) 0.70 (0.02) 0.46 (0.03) 0.27 (0.04)
RS + UCB 0.74 (0.01) 0.76 (0.02) 0.75 (0.02) 0.68 (0.02) 0.59 (0.02)

Our Strategy 0.95 (0.01) 0.91 (0.02) 0.84 (0.02) 0.77 (0.03) – (–)
Best CAS 0.95 (0.01) 0.95 (0.01) 0.91 (0.02) 0.84 (0.03) 0.69 (0.04)

Table 2: Demonstration of our two-phase strategy on synthetic problems with varying choices of K; we have
fixed λ = 0.1, y0 = 0.7, τ = 0.75, M = 25, T = 1000. The BO and Best CAS outcomes are independent of K,
as represented by “...” in the table. As expected Remark 5, increasing K has a strictly positive effective on
online development performance (up to the stated threshold).

Number of models in online development (K)
Selected Model 2 3 4 5

BO 0.70 (0.02) ... ... ...
RS + UCB 0.70 (0.02) 0.73 (0.02) 0.75 (0.02) 0.76 (0.02)

Our Strategy 0.76 (0.03) 0.78 (0.03) 0.84 (0.02) 0.86 (0.02)
Best CAS 0.91 (0.02) ... ... ...

4.2 Recommender system experiment

Next, we consider the popular “Learning to rank” problem (Qin & Liu, 2013) as an example recommender
system on which to test our strategy. Our goal is to tune hyperparameters of XGBoost models to get optimum
online deployment performance according to the normalized discounted cumulative gain (NDCG), which
rewards accurate rankings. In our offline phase, we train XGBoost models using the training set and search
for hyperparameters computing average NDCG on the validation set to form ỹ.

During the online development phase, we ran T = 4000 queries by uniformly selecting elements (with
replacement) from the test set. For each query, we collect binary rewards corresponding to Bernoulli samples
with probability of success (the y function) equal to the top-1 NDCG score of the candidate model prediction
vs. test ranking. A perfect ranking will have a probability 1 of receiving a positive reward. Figure 2 provides
some perspective on the relationship between ỹ and y.

Table 3: Demonstration of our two-phase strategy on the content ranking problem; we have fixed K = 4,
y0 = 0.33, M = 100, T = 4000. For MQ2008 we used τ = 0.57, and for MSLR-WEB10K we used τ = 0.69.
We show expected online deployment results.

Learning to rank dataset
Selected Model MQ2008 MSLR-WEB10K

BO 0.349 (0.005) 0.438 (0.001)
Our Strategy 0.358 (0.005) 0.441 (0.002)

We see in Figure 2 that there is enough correlation between ỹ and y to define a satisfactory region, but there
is also enough difference between these functions within the satisfactory region that our two-phase strategy
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Figure 2: The ỹ and y values in these learning to rank problems are strongly correlated for low performance,
but only somewhat correlated at high performance. The vertical dashed red line represents τ and the
horizontal dashed black line represents y0. left: MQ2008 dataset. right: MSLR-WEB10K dataset.

can find improvement over the best ỹ result. Table 3 shows the results for the online deployment phase, where
we have computed the top-1 NDCG score averaged over the entire test set to simulate the final deployment
performance. CAS can disperse enough to find potential improvements and that Algorithm 1 can be used in
online development to identify those improvements in online deployment.

5 Conclusion

We have proposed a two-phase strategy, depicted in Figure 1 for improving online deployed performance:
first utilizing CAS during offline model development to produce K viable options which are then sent to
Algorithm 1 for online model development to find a single model for long-term deployment. The theoretical
analysis provides confidence about the outcome of the online development phase, and the numerical studies
show the impact of possible decisions made in the offline development phase. As expected, our strategy
provides a noticeable improvement over the previously deployed baseline in circumstances where the offline
and online metrics are not perfectly correlated.

More work must be done on this topic to understand the implications of some of the free parameters in our
implementation, among them η, y0, τ . We also would like to extend the theory to more effectively account
for the non-i.i.d. nature of our K arm selection as it affects Theorem 1. Our proposal here assumes only a
single metric in the online setting, but we would like to be able to consider online performance with multiple
metrics (CAS would naturally be able to handle this already in the offline setting). Also, Theorem 2 studies
the probability of exceeding y0 for a Bernoulli reward, but future work could extend this as described in
Remark 10 as well as consider the magnitude of improvement (rather than existence of improvement). We
also could revisit the assumption of a fixed y0 value and allow y0 to be learned over the online development
process using some fraction of T .
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A Coverings with and without constant ratio

In Remark 2, we used an assumption about constant covering ratio. Figure 3 illustrates the coverings with
and without constant ratio. While it can, indeed, be the case that the satisfactory region takes such a shape,
we believe it is acceptable, in practice, to consider only the subset of S which has a constant covering ratio.
This is a byproduct of the fact that, while such a S region may exist, we have only the ability to identify
points in S through CAS. Therefore, our knowledge of that space (and subsequent ability to approximate
i.i.d. sampling within that space) will logically also have this constant covering property.
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Covering with a constant ratio Covering without a constant ratio

Figure 3: Illustrative example of covering with a constant ratio (left) and without a constant ratio (right). In
the right figure the sharp spine has very little associated volume.

B K model subselection

During the offline development phase, K models must be chosen from the J > K models found during the
CAS process. We could, simply, randomly choose K models, but we propose 2 strategies which we hypothesize
will be preferable.

DPP subselection During CAS, we fit a covariance kernel K : X × X → R to the observed data as part
of the Gaussian process-powered search. Here, we reuse the learned kernel in our subselection strategy. In
particular, we consider the K-DPP distribution (Kulesza & Taskar, 2011) defined over the kernel K with the
fixed set of J points found during CAS. We return the mode of that distribution as our K point subselection,
i.e., the K points for which det

((
K(x′

i, x′
j)

)
i,j∈[J|K]

)
is maximized, where

(
K(x′

i, x′
j)

)
i,j∈[J|K] denotes a

kernel matrix comprised of a K sized subset of points from the J points found during CAS.

This subselection strategy is partly chosen to encourage these K models to be widely dispersed throughout
S – this provides us some capacity to approximate i.i.d. sampling from S which is utilized in Theorem 1.
Rather than using a Euclidean geometric sense of dispersion (so as to spread points out in parameter space),
we use the covariance kernel to also inform this process so as to incorporate any anisotropy of ỹ learned
during CAS. Under the assumption that ỹ and y belong to the same reproducing kernel Hilbert space, a
lower covariance implies that the performance of y for each model x1, x2, . . . , xK are more likely to be
distributed independently. Given the one-shot nature of the online optimization, this provides us with as
high a probability as possible of finding a model which performs higher than the baseline.

ECI subselection Another alternative is to greedily maximize the Expected Coverage Increase (ECI)
proposed by Malkomes et al. (2021). First, we add the satisfactory point with highest ỹ value, then we
sequentially choose (K-1) candidates, the ith of which is chosen by maximizing

ECI(x|x1, . . . , xi−1) =
∑

x′∈Ω(x)\∪i−1
j=1Ωr(xj)

P (ỹ(x′) ≥ τ) ,

where Ωr(a) is the set of points at distance at most r from the point a. Here, the probability is considered
over the Gaussian process posterior that was fit to ỹ during CAS. Similar to the K-DPP strategy, we use the
generalized notion of distance given by the learned GP at termination. We use BoTorch to efficiently compute
ECI using Monte Carlo sampling along with adaptations to make this strategy differentiable (Balandat et al.,
2020).
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C Proof of Theorem 1

Proof of Theorem 1. First, we derive a lower bound on Vol(Simp). By Assumption 1, with probability 1−δ/2,
we have

sup
x,x′∈X

|y(x) − y(x′)|
|x − x′|

≤ Lδ/2, (3)

where Lδ/2 = b
√

log(2a/δ). Eq. (3) and Assumption 2 imply that any point x in a ball of size D/Lδ/2
centered at x∗ satisfies y(x) > y0. This fact, combined with Assumption 3 implies that

Vol(Simp)
Vol(S) ≥ CCov

ξ(D/Lδ/2) , (4)

which provides a lower bound on Vol(Simp).

Since we draw i.i.d. samples from S, we have

P
[
max

i
y(xi) ≥ y0

]
= 1 −

(
1 − Vol(Simp)

Vol(S)

)K

. (5)

Eq.(4) and (5) implies that, if we have

K ≥ log(δ/2)
log

(
1 − CCov

ξ(D/Lδ/2)

) = log(2/δ)
log

(
ξ(D/Lδ/2)

ξ(D/Lδ/2)−CCov

) , (6)

then we have (
1 − Vol(Simp)

Vol(S)

)K

≤ δ

2 .

In summary, with probability 1 − 2(δ/2) = 1 − δ, we have

P
[
max

i
y(xi) ≥ y0

]
≥ 1 − δ

for K such that Eq (6) holds.

D Proof of Theorem 2

Proof of Theorem 2. Without a loss of generality, we assume arm 1 is the best arm (i.e., 1 = arg maxi y(xi)).
By assumption, we have y(x1) > y0. Let Ψsub = {xi : y(xi) < y(x1) − ∆} be clearly suboptimal arms. Let

B =
⋂

i∈[K]

⋂
n∈[T ]

{
|ŷi,n − y(xi)| ≤

√
log(n2/η)

2n

}
.

We have

P[B] ≤ K
∑

n

η

n2 (by Hoeffding inequality)

≤ Kπ2η

6 .

Event B implies that ⋂
i∈[K]

⋂
t∈[T ]

{Ui(t) ≥ y(xi) ≥ Li(t)} . (7)

Eq. (7) implies
U1(t) ≥ y(x1) ≥ y(xi) ≥ Li(t)
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for all t and i, and thus arm 1 is never eliminated.

Let i : xi ∈ Ψsub be arbitrary. Assume that Ni(t) ≥ T/K. Then, for any t′ > t, we have

U1(t′) ≤ y(xi) + 2

√
log((Ni(t))2/η)

2Ni(t)
(by Eq. (7) and log(n)/n is decreasing for n ≥ 3)

≤ y(x1)
(by Eq. (2))

≤ U1(t′),
(by Eq. (7))

and thus arm i is never drawn again. Therefore, at least one arm in [K] \ Ψsub has been drawn more than
T/K times, and thus x(T ) /∈ Ψsub.

E Ablation study on synthetic tests

In Section 4.1 we presented a synthetic experimental setting and considered the implications of different ỹ
and y functions on the eventual outcome. Here we present a more comprehensive analysis of the implications
of different elements of our proposed two-phase strategy. Table 4 shows how the baseline performance which
is currently deployed affects our strategy. Table 5 shows the impact of our ỹ offline performance threshold on
the eventual online performance.

Table 4: We consider fixed experimental circumstances (K = 4, τ = 0.75, λ = 0.1) and the impact of changing
y0, the currently deployed baseline. This has no impact on online optimization strategies like UCB, but it
could impact Algorithm 1 because y0 is incorporated into the online development process. Specifically, for
y0 = 0.9 all arms will be pruned because they do not improve the baseline. The BO and Best CAS outcomes
are independent of y0, as represented by “...” in the table.

Currently deployed baseline performance (y0)
Selected Model 0.6 0.7 0.8 0.9

BO 0.72 (0.01) ... ... ...
Our Strategy 0.85 (0.01) 0.85 (0.01) 0.85 (0.01) – (–)

Best CAS 0.92 (0.01) ... ... ...

Table 5: We consider fixed experimental circumstances (K = 4, y0 = 0.5, λ = 0.1) and the impact of
changing τ , the offline performance threshold defining S. A small value for τ produces too much diversity
and deteriorates its performance; very low values should recover random search. Large values of this quantity
(≥ 0.9) should approximate CAS to BO alternative. The BO outcome is independent of τ , as represented by
“...” in the table.

Offline performance threshold (τ)
Selected Model 0.3 0.5 0.75 0.9

BO 0.72 (0.01) ... ... ...
Our Strategy 0.68 (0.02) 0.72 (0.02) 0.85 (0.01) 0.84 (0.01)

Best CAS 0.91 (0.01) 0.94 (0.00) 0.92 (0.01) 0.85 (0.01)
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F Experimental details for ranking problem

For the experiments in Section 4.2, we use the two datasets from the Microsoft "Learning to Rank" datasets:
MQ2008 and MSLR-WEB10K. We only use Fold 1 from each dataset and train XGBoost models on the training
set for ranking task. We only preprocessed the data by removing the the query IDs from the features.

F.1 Surrogate models for offline tuning

In order to save compute resource from conducting repeated XGBoost training during the offline HPO process.
We created two high quality surrogate models for the HPO task. To create a surrogate model, we first perform
HPO (with random search) of XGBoost models within the hyperparameter search space presented in Table 6
and save all the corresponding XGBoost hyperparameter values and the associated validation metric values.
For the MSLR-WEB10K dataset, we reduce the hyperparameter search space by removing alpha and gamma.
All XGBoost models are trained with NDCG as the learning objective function.1 We collected 1300 HPO
results for each dataset, this is a one-time compute cost that we can then use to create surrogate models.

We then fit an ExtraTreesRegressor model from Scikit-learn on the hyperparameter values and the validation
metric (we chose the ndcg- metric of the validation set) to create the surrogate model. These surrogate
models take fraction of a second to evaluate and can be used to perform offline HPO/CAS many times without
needing extensive compute resources. For example, training an XGBoost model on the MSLR-WEB10K
takes approximately 5-10 minutes on the c5.4xlarge AWS instances2

Table 6: XGBoost hyperparameter bounds for surrogate models

Parameter Name Type Bounds Log scaled
alpha double [0, 10] None

eta double [10−3, 1] True
gamma double [0, 5] None

lambda double [0, 10] True
max_delta_step double [10−3, 10] None

max_depth int [2, 16] None
num_boost_round int [10, 500] None

F.2 Offline phase with CAS

For the offline CAS experiments, we created a wrapper around the BoTorch Expected Coverage Improvement
implementation3 to run constraint active search. We conduct CAS on the same hyperparameter search
space as listed in Table 6. For both datasets, we choose a budget of 100, set the punchout radius r =
0.15 ×

√
number of parameters, and use 2 × number of parameters initialization samples drawn from a Sobol

sequence. We set the threshold to 0.57 for MQ2008 dataset and 0.69 for MSLR-WEB10K respectively. These values
represent approximately the 90th percentile of the offline evaluation metric (NDCG). For all experiments, we
select four satisfactory models/arms using the K-DPP strategy outlined Section B; these models/arms will be
used for the online phase of the experimentation.

For the BO baseline, we use the BoTorch Expected Improvement implementation. We use the same budget
and initialization set up as the CAS experiments. We repeat the offline phase 5 times for CAS and 20 times
for BO.

1https://xgboost.readthedocs.io/en/stable/parameter.html#learning-task-parameters
2Hardware specifications of the C5 instances can be found at https://aws.amazon.com/ec2/instance-types/c5/
3BoTorch tutorial on CAS: https://botorch.org/tutorials/constraint_active_search
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F.3 Online phase simulation

For the online MAB experiments, we use policy threshold successive elimination ( Algorithm 1) with threshold
y0 = 0.33 for the MQ2008 dataset and y0 = 0.42 for the MSLR-WEB10K dataset. We fix η = 0.5 for both
datasets.

During the online development phase, we ran T = 4000 queries by uniformly selecting elements (with
replacement) from the test set. For each query, we collect binary rewards corresponding to Bernoulli samples
with probability of success (the y function) equal to the top-1 NDCG score of the candidate model prediction
vs. test ranking. A perfect ranking will have a probability 1 of receiving a positive reward. Figure 2 provides
some perspective on the relationship between ỹ and y.

We repeat the online development phase 10 times per offline CAS replication. For the first 100 iterations of
the online development MAB simulation, we run a pure exploration policy before switching to Algorithm 1.
Final performance results are computed using the average top-1 NDCG score across the entire dataset after
selecting the models using MAB. We use the entire test set as a proxy for the online deployment performance
of the system.

For the BO baselines, we take the best offline model/arm from each experiment (replication) and then
compute the online deployment metric, top-1 NDCG, averaged over the entire test set. We then compute the
mean and standard error of these online deployment metric values.

F.4 Note on compute resources

We conduct majority of this experiment on AWS, using C5.4xlarge instances. We estimate the total CPU
hours to be between 100 - 200 hours, with majority of this time spent on creating the surrogate model (a
one-time compute cost). We estimate these surrogate models saved our compute resources (CPU-hour) by
1-2 orders of magnitude. Furthermore, we can save these surrogates for future experiments and fine-tuning of
the algorithms.
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