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ABSTRACT

We propose EventFormer– a computationally efficient event-based representation
learning framework for asynchronously processing event camera data. Event-
Former treats sparse input events as a spatially unordered set and models their
spatial interactions using self-attention mechanism. An associative memory-
augmented recurrent module is used to correlate with the stored representation
computed from past events. A memory addressing mechanism is proposed to
store and retrieve the latent states only where these events occur and update them
only when they occur. The representation learning shift from input space to the
latent memory space resulting in reduced computation cost for processing each
event. We show that EventFormer achieves 0.5% and 9% better accuracy with
30000× and 200× less computation compared to the state-of-the-art dense and
event-based method, respectively, on event-based object recognition datasets.

1 INTRODUCTION

Ultra-low power, high dynamic range (> 120dB), high temporal resolution, and low latency
makes event-based cameras (Brandli et al., 2014; Suh et al., 2020; Son et al., 2017; Finateu et al.,
2020) attractive for real-time machine vision applications such as robotics and autonomous driv-
ing (Falanga et al., 2020; Hagenaars et al., 2020; Sun et al., 2021; Zhu et al., 2018; Gehrig et al.,
2021). Convolutional and recurrent neural network-based methods, originally developed for frame-
based cameras, have demonstrated good perception accuracy on event camera (Gehrig et al., 2019;
Baldwin et al., 2022; Cannici et al., 2020b). But they rely on temporal aggregation of the events to
create a frame-like dense representation as input thereby discarding the inherent sparsity of event
data and resulting in high computational cost (Figure 2). Recent works have explored event-based
processing methods for object recognition to exploit data sparsity. Examples of such methods
include Time-surface based representation relying on hand-crafted features (Lagorce et al., 2016;
Sironi et al., 2018; Ramesh et al., 2019), 3D space-time event-cloud (Wang et al., 2019), and Graph-
based methods (Li et al., 2021c; Schaefer et al., 2022). These methods adopt event-based processing
to achieve lower computational costs but do not achieve similar performance compared to the dense-
representation based methods (Figure 2). This necessitates computationally efficient algorithms that
exploit sparsity and achieve high accuracy.

We propose an associative memory-augmented asynchronous representation learning framework
for event-based perception, hereafter referred to as EventFormer, that enables computationally ef-
ficient event-based processing with high performance (Figure 1). As events are triggered asyn-
chronously, an event-based processing algorithm must generate and maintain a higher-order repre-
sentation from the events, and efficiently update that representation to correlate a new event with
the past events across space and time. One way to address this is to include a recurrent module at
each pixel to track history of past events (Cannici et al., 2020a). However, the associated process-
ing and memory requirement of such a method increases exponentially with the number of pixels.
Motivated by recent works in memory augmented neural networks(Kumar et al., 2016; Ma et al.,
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Figure 1: Comparison with existing works. (a) Event-based perception algorithms where percep-
tion latency k∆ is proportional to the event-generation rate(∆). (b) Existing works include (left)
dense processing that aggregates events into a frame and use CNN, event-based processing includ-
ing (mid) GNN on spatiotemporal event-graph, or (right) PointNet like architectures treating events
as point-cloud. These methods either re-process (frame and point cloud) or store the past events
(graph) to spatiotemporally correlate with new events. (c) EventFormer encodes the spatiotemporal
interaction of the past events into a compact latent memory space to efficiently retrieve and correlate
with the new events without requiring to store or re-process the past events.

2018; Karunaratne et al., 2021), we address the preceding challenge by maintaining a spatiotempo-
ral representation associated with past events, occurring at various pixels, as the hidden states of
an Associative Memory. As learning spatiotemporal correlation is shifted from the high-dimension
input (pixel) space to a compact latent memory space, EventFormer requires an order of magni-
tude lower floating point operations (FLOPs) per event to update the memory. To the best of our
knowledge, EventFormer is the first associative memory-augmented spatiotemporal representation
learning method for event-based perception. The key contributions of this paper are:

• EventFormer maps the spatiotemporal representation of the incoming event stream into the
hidden states of an associative memory and uses a lightweight perception head directly
operating on these states to generate perception decisions.

• The spatiotemporal representation update mechanism activates only ‘when’ and only
‘where’ there is a new event using unstructured set-based processing without requiring
to store and re-process the past events.

• We propose a new query-key association-based memory access mechanism to enable spa-
tial location-aware memory access to retrieve the past states of the current event locations.

Given a new event (or a set of events), our model generates a spatial representation by computing
their spatial interaction through self-attention mechanism (Vaswani et al., 2017)and retrieves the
past spatiotemporal states related to that pixel location(s) from the memory. The retrieval process
exploits a novel location-based query and content-based key-value association mechanism to extract
correlations among the past events at neighboring pixels. Once we get the past states, along with our
present spatial representation, a recurrent module takes them as input and generates the refined state
information. The associated hidden states of the memory are updated with the new information. We
evaluate EventFormer on object recognition task from event-camera data. In our experiments on
existing benchmark datasets, N-Caltech101 (Orchard et al., 2015) and N-Cars (Sironi et al., 2018),
EventFormer shows an excellent computational advantage over the existing methods (both dense
and event-based) while achieving performance comparable to the dense methods (Figure 2).

Related Work: Dense methods convert events to dense frame-like representation and process
them with standard deep learning models such as CNNs (Maqueda et al., 2018; Gehrig et al., 2019;
Cannici et al., 2020a). These methods are synchronous in nature as they generate dense inputs
by binning and aggregating events in time and generate output only when the entire bin is pro-
cessed. Event-based methods update their representations with a new event and generate new out-
put. Methods such as (Lagorce et al., 2016; Sironi et al., 2018; Ramesh et al., 2019) compute time-
ordered representation (also known as time-surface) in an event-based manner with fewer compu-
tations. However, their reliance on fixed, hand-tuned representation results in sub-optimal perfor-
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mance compared to the data-driven methods (Gehrig et al., 2019). Recently, graph-based methods
(Messikommer et al., 2020; Li et al., 2021b; Schaefer et al., 2022) have been considered that gener-
ate a spatiotemporal event graph and process them with GNN. For a new event, the graph is updated
by removing nodes associated with past events and adding new ones. As these methods require
subsampling the events to reduce the size of the graph (and hence, computation), performance is
reduced as well. Also, they need to store the past events inside the graph to correlate with the
new event causing additional computation and memory overhead. Point cloud-based methods can
inherently process unstructured event camera data in a permutation invariant manner (Wang et al.,
2019; Vemprala et al., 2021). However, they process over a sliding window of time τ and need to
re-process the past events for every new event to establish correlations leading to redundant com-
putations. Memory Augmented Neural Networks typically combine an external associative memory
with a recurrent controller (Kumar et al., 2016; Ma et al., 2018; Karunaratne et al., 2021) resulting
in enhanced memory capacity compared to the vanilla recurrent module (Cho et al., 2014). Can-
nici et al. (2020) propose a pixel-wise memory-based representation learning for event-camera
data that stores states at each pixel location (Cannici et al., 2020a). However, it requires a com-
putationally expensive feature extractor as spatiotemporal correlations among these states are not
considered. Event camera has also been applied for more complex tasks including egomotion, mo-
tion segmentation(Parameshwara et al., 2021b), and depth prediction (Hidalgo-Carrió et al., 2020).
To broadly categorize, these methods either fall into dense frame-based representation where clas-
sical image processing (Mitrokhin et al., 2018) and end-to-end learning-based methods (Zhu et al.,
2019; Mitrokhin et al., 2019) have been applied or 3D-point cloud representation where GNNs has
been adopted(Mitrokhin et al., 2020) to learn to perform these dense prediction tasks. While most
of the existing works in this direction adopt a dense processing-based encoder-decoder structure, a
spike-based asynchronous formulation has also been explored in (Parameshwara et al., 2021a).
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Figure 2: Recognition performance vs compu-
tation. On N-Caltech101 dataset, EventFormer
has about 30000× lower compute cost than the
SoTA dense method (Cannici et al., 2020b) with
9% improvement in accuracy compared to the best
performing event-based method (Li et al., 2021c).

Preliminaries and Problem Formulation:
An event-based camera consists of sensors at
every pixel location that can respond to the
change of brightness asynchronously and in-
dependently (Gallego et al., 2020). Mathe-
matically, a set of events produced at pixel
locations (x, y)i (0 ≤ x ≤ W, 0 ≤
y ≤ H) during a time interval τ can be
defined as a time-ordered sequence, Eτ =
{(xi, yi, ti, pi) | ti ∈ τ, T = supi ti} where ti
denotes the event triggering timestamps, pi ∈
{−1, 1} as the polarity (relative change in
brightness), and T as the total time of obser-
vation. In this work, we consider the spatial
locations of the events as the input, that is:
Eτ = {(xi, yi)}. Our goal is to learn a com-
pute efficient parametric mapping F : Eτ →
MEτ

that can convert the raw event sequence
Eτ into a suitable representationMEτ

∈ R
m×d

(where m× d defines the dimension of the fea-
ture space) with event-based processing capa-
bility. This implies that F needs to have the
capability to update its representation as soon
as a new event(or a new event sequence) arrives
without storing or recomputing the past events.

Overview of the Framework: Eventformer consists of a positional encoder (Li et al., 2021a) fol-
lowed by a pairwise interaction module to compute the spatial interactions among the events (Figure
3). A recurrent module takes this output, Zt as the current input state, and computes the spatiotem-
poral representation Xt by retrieving the past hidden states Ht−1 stored in an associative memory,
M. The output of this recurrent module is used to update the memory representation Mt, which
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Figure 3: EventFormer architecture. EventFormer generates positional embedding πt from a
list of new events xt at time t, and calculates their pairwise interaction, Zt using self-attention.
A recurrent unit extracts the past states Ht−1 associated with xt from an associative memory and
computes Xt as the current states. This is further encoded into the latent memory space, Mt to
process future events. A linear layer usesMt to predict the target class.

Algorithm 1: Compute the event-based representation through EventFormer

Input: A list of n 2-dimensional pixel coordinates of the events at time t:
xt = {(xi, yi) | i ≤ n}

Output: Prediction vector Yt ∈ R
c where c denotes the number of classes.

Hyperparameter: The dimension of the representation vector d, row size of the
memory m, number of stacks for the Refine operator R.
Initialize the memory representation with the learned initializer,M0 ∈ R

m×d

1 πt ← Π(xt) :=
1√
d

(
cos(xtW

T
p ) ‖ sin(xtW

T
p )

)
;

2 Ht−1 ← Read(πt,Mt−1); ⊲ Read the past memory-representation
3 foreach r ∈ R do
4 πt ← Refiner(πt, πt); ⊲ Compute event interactions
5 Zt ← πt;

6 Xt ← R(Zt , Ht−1); ⊲ Compute the current states
7 M′

t ← Write(Mt−1,Xt); ⊲ Compute new memory representation
8 αt ← sigmoid(Erase(Mt−1,Xt)); ⊲ Compute the update factor
9 Mt = αtMt−1 + (1− αt)M′

t; ⊲ Update the memory

10 Mflat
t ← ReshapeMt into a 1-dimensional vector;

11 Yt ← FFpred(Mflat
t ); ⊲ Prediction at time t

12 return Yt.

is used by a classification head for the recognition task. To facilitate these operations, EventFormer
has three unique Operators: Read to retrieve the past representation, Write/Erase to update the
memory with new representation, and, Refine to compute the spatial correlation among the events.
Both Read and Write/Erase operators use multihead residual attention (Vaswani et al., 2017) as a
building block. The Refine operator adopts an efficient version of this building block (Shen et al.,
2021) to address the quadratic memory and compute requirement (that can become computation-
ally prohibitive for a very fast-moving object generating a large number of events at a given time)
of the traditional dot-product attention mechanism (Vaswani et al., 2017). Algorithm 1 shows an
implementation of the overall Eventformer architecture.

Operator details: An Operator(A,B) takesA ∈ R
n×d and B ∈ R

m×d as input and maps them into
the Q (query), K (key), and V (value) space using a linear transformation. The attention mechanism
maps the Q to outputs as follows:

Attn(Q,K, V ; a) = a(QK⊤)V (1)

QK⊤ ∈ R
n×m measures the pairwise similarity of the query and key vectors. a(QK⊤)V ∈ R

n×d

is a weighted sum of the value vectors where the weights are computed using scaled softmax ac-

tivation a(.) = softmax(./
√
d). The multihead residual attention computes multiple attention by
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Multihead Residual Attention Operator Building Block Memory Operators Memory Update

(a) (b) (c) (d)

Figure 4: Details of the memory operations. (a) block diagram of the multihead residual atten-
tion, (b) composition of an Operator(A,B), (c) Read operator calculates query from positional
embedding πt and key-value pair from past memory representation,Mt−1. The Write and Erase

operator computes query from Mt−1 and key-value pair from Xt, and, (d) An update to the as-
sociative memory occurs with a linear combination of the new value to be added M′

t and past
representationMt−1 weighted by an elementwise scaling factor generated by the Erase operator.

projecting Q,K, and V onto h separate d/h dimensional space, respectively. The output is a linear
combination of h-different attentions (Attn(., ., .; a)) applied to each of these h projections:

MultiHead(Q,K, V ;w, a) = concatenate(O1, ..., Oh)W o (2)

where Oi = Attn(QW q
i , KW k

i , V W v
i ; ai) (3)

w = {W q
i , W k

i , W v
i }hi=1 ∈ R

d× d

h and W o ∈ R
hdv×d are learnable parameters. A following

residual block completes the operation and generates output, O as follows:

O = Operator(A,B) := LayerNorm(Oh + FFo(Oh)) (4)

where Oh = LayerNorm(A+ MultiHead(Q,K, V ;w, a)) (5)

LayerNorm is layer normalization function (Ba et al., 2016). Figure 4 illustrates these operations.

Positional encoder: EventFormer generates positional embedding by mapping the event sequence
from a low-dimensional (2D) space to a higher-dimensional feature space. This is done by a
learnable Fourier feature-based positional encoder. At any given time t, the positional encoder,

Π : xt ∈ R
n×2 → πt ∈ R

n×d parameterized by Wp ∈ R
d

2
×2 maps a list of n 2-dimensional events,

xt to a d-dimensional feature space, πt using the following equation:

πt = Π(xt) :=
1√
d

(
concatenate

(
cos(xtW

T
p ), sin(xtW

T
p )

))
(6)

Spatial correlation: To compute a refined representation that considers spatial correlation among the
events, we compute self-attention among the positional embedding πt by using the Refine operator.
The efficient attention mechanism modifies the Equation 1 as follows:

EfficientAttn(Q,K, V ; aq, ak) = aq (Q)
(
ak

(
K⊤)V

)
(7)

where aq and ak denote the row-wise and column-wise scaled softmax activation, respectively. A
closer look at Equation 7 reveals that the memory and computation complexity has been reduced to
O(dn+d2) andO(d2n) respectively, which is linear with respect to the number of events, n. Finally,
we stack multiple Refine operators to compute Zt ∈ R

n×d as their higher-order interactions.

Associative memory augmented recurrent module: The proposed associative memory has a query-
key association-based memory access architecture with a separate association mechanism for state
retrieval and update operation (Figure 4). We define Mt ∈ R

m×d as the stored memory repre-
sentation at time t. The Read operator retrieves the past representation Ht−1 ∈ R

n×d using the
current event locations πt. It computes the query vectors from πt and key, value vectors using the
past stored representationMt−1. The final retrieved state is a weighted sum of the projectedMt−1
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Time progression

(a)

(b)

(c)

Figure 5: Temporal evolution of memory representation. (a) and (b) Change in memory represen-
tation over time for samples from two different classes. (c) tSNE plot of the memory representation
for 10 randomly selected classes from N-Caltech101 dataset.

where the weights are computed through the association between the event locations (πt) and the
abstract memory addresses (keys projected from Mt−1). This implies that a particular memory
representation gets more weight if its corresponding address (key) has a higher similarity with the
query (i.e., positional embedding). The retrieved Ht−1 is used as the past hidden state of the recur-
rent module, R, to compute the current spatiotemporal representation, Xt ∈ R

n×d. We use gated
recurrent unit (GRU) as the recurrent module. The Write and Erase operator jointly updateMt

with new information. The Write operator computes the query vectors from Mt−1 and the key-
value pair from Xt to query the location of the memory that needs to be updated and generate the
new representation,M′

t ∈ R
m×d. The purpose of Erase operator is to calculate a set of element-

wise scaling factors, αt ∈ {Rm×d | 0 ≤ αt ≤ 1} to control the amount of update at each memory
location. Additional details can be found in Appendix I. Finally, we update the memory using:

Mt = αtMt−1 + (1− αt)M′
t (8)

Classification head: A single feedforward layer FFpred(.) that maps the flattened memory represen-

tation,Mflat
t ∈ R

md to the prediction vector, Yt ∈ R
c where c is the number of classes.

3 EXPERIMENTS AND RESULTS

Datasets and metrics: We evaluate the performance of our method on standard event-based object
recognition benchmarks: N-Caltech101 and N-Cars (see Appendix D for details). We consider two
metrics: recognition accuracy and the number of floating point operations required to update the
representation for each new event (MFLOPs/ev).

Implementation: EventFormer follows an end-to-end feed-forward layer-based implementation. We
use 32×32 and 16×16 as memory dimensions (Rm×d) for N-Caltech101 and N-Cars dataset, re-
spectively. Unless otherwise specified, all the multihead residual attention blocks use h (number of
heads) = 4, and the number of stacks for the Refine operator, R = 2. Additional details including
training hyperparameters and time intervals can be found in Appendix E.

Representation Learning in Associative Memory: We first visualize the evolution of the learned
representation in the associative memory for different classes of N-Caltech101 (Figure 5). Initially,
the memory representation starts from the same initial state for all classes. As events are observed
over time, the memory states start to form unique patterns for different classes. The tSNE plot in
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Figure 6: Memory representation dynamics over sequential class update. (a) Change in pre-
diction probability of the target class over time. (b) Change in memory representation when class
changes occur. (c) Average memory update activity for a large-scale experiment similar to (a) and
(b), and (d) their corresponding perception latency distribution.

Figure 7: Memory representation dynamics over sequential input transformation. (a) Change
in prediction probability of the target class over time. (b) Change in memory representation when
transformed input appears. (c) Average memory update activity for a large-scale experiment similar
to (a) and (b), and (d) their corresponding perception latency distribution.

Figure 5(c) shows that the learned representations for various classes form a distinct cluster enabling
separation of the class boundaries even with a relatively simple classifier head.

Temporal Update of the Learned Representation with Class Change: We study the temporal up-
dates of the memory states when samples from two different classes are passed to EventFormer in
a streaming manner (Figure 6). The memory updates its representation as the object class changes,
enabling accurate classification results over time. We randomly take 3000 samples from the N-
Caltech101 dataset consisting of sequential class change (3000 unique class combinations). We plot
the distribution of the number of events required for the target class output to reach a 0.6 confi-
dence, hereafter referred to as the perception latency (Figure 6 (d)). The median perception latency
is ∼ 120 and ∼ 60 events for the initial and new class, respectively. The perception latency for
the initial class (red) has a wider distribution since the memory has to adapt its representation from
the initial state. We also plot the mean and standard deviation of the Frobenius norm of the differ-
ence between two successive memory representations ‖Mt+1 −Mt‖2, hereafter referred to as the
memory update activity, for the same experiment (Figure 6 (c)). Higher memory update activity,
observed when developing the representation of the initial class, stabilizes with more events of the
same class. The change in the class also results in increased memory update activity but less than the
initial case. This shows that EventFormer can adapt to new representations in real-time and re-use
important features already computed in the past thereby reducing perception latency.

Temporal Update of Learned Representation with Input Transformation: We study the temporal
update of the memory states over time while objects from the same class but with different transfor-
mations (rotation) are passed to EventFormer in a streaming manner (Figure 7). With the incoming
events from the rotated sample, we observe degradation in prediction probability due to represen-
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Figure 8: FLOP analysis. (a) Normalized FLOP contribution from the key components of Event-
Former (for n=1). (b) Change in relative compute cost for the Operators with increasing n.

Experiment
Associative

memory
Separate write

and erase operator
Refine

operator
Accuracy ↑ MFLOPs/ev ↓

(a) ✗ ✗ ✓ 0.670 0.014
(b) ✓ ✗ ✓ 0.752 0.041
(c) ✓ ✓ ✗ 0.703 0.035

(d) ✓ ✓ ✓ 0.848 0.048

Table 1: Ablation study of various key components of EventFormer on the N-Caltech101 dataset.

tation update, which stabilizes over time. We consider 3000 random samples from N-Caltech101
with combinations of two random rotations between 10 to 30 degrees. We observe that the mem-
ory update activity is less for input transformation of the same example (Figure 7 (c)), compared
to a completely new example (Figure 6 (c)). This shows that EventFormer can preserve learned
representation for a class even under input transformation enabling less memory update activity.

Computational Complexity: We analytically derive the computational complexity model of Event-
Former (details in Appendix C). We study the FLOP contributions from the key components in
Figure 8. For a single event (n=1), most of the FLOP costs are from the memory update block due
to itsO(md2+md+d2) compute complexity. The cost of memory update diminishes with a larger
n while the Read and Refine operator starts to dominate (Figure 8 (b)).

Hyperparameter Accuracy ↑ MFLOPs/ev ↓

R
1 0.759 0.042
2 0.848 0.048
4 0.864 0.061

m(= d)
16 0.550 0.012
32 0.848 0.048
48 0.882 0.108

Table 2: Performance of EventFormer on N-
Caltech101 with different hyperparameters.

Ablation study on the components: We con-
sider the experiments where EventFormer is
implemented without (a): the associative mem-
ory, (b): separate Write and Erase operator,
and (c): Refine operator and compare the re-
sults with (d): the complete EventFormer to
analyze the impact of different components.
For experiment (a), we pool the Xt to a 1-
dimensional vector (Vemprala et al., 2021) to
deal with the variable-sized sequence. Also, we
make the hidden size of the recurrent module
m×d so that the FFpred receives the same-sized
input. In experiment (b), we linearly project
the output of the Write operator into a R

m×2d

space and split it into two equal-sized vectors to get M′
t and αt. The results are shown in Table

1. Merging the write and erase operation marginally reduces the MFLOPs/ev, but at the expense of
less flexibility during memory updates and hence, lower accuracy. Without the Refine operator, the
model saves more computation but lacks the higher-order interaction modeling among the events,
causing marginal accuracy loss. Finally, absence of associative memory reduces maximum compu-
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N-Caltech101 N-Cars
Methods Representation Async. Accuracy ↑ MFLOPs/ev ↓ Accuracy ↑ MFLOPs/ev ↓
H-First Spike ✓ 0.054 - 0.561 -
Gabor-SNN Spike ✓ 0.284 - 0.789 -
HOTS Time-Surface ✓ 0.210 54.0 0.624 14.0
HATS Time-Surface ✓ 0.642 4.3 0.902 0.03
DART Time-Surface ✓ 0.664 - - -
EST Event-Histogram ✗ 0.817 4150 0.925 1050
Matrix-LSTM Event-Histogram ✗ 0.843 1580 0.926 1250
YOLE Voxel-Grid ✓ 0.702 3659 0.927 328.16
AsyNet Voxel-Grid ✓ 0.745 202 0.944 21.5
EvS-S Graph ✓ 0.761 11.5 0.931 6.1
AEGNN Graph ✓ 0.668 0.369 0.945 0.03

Ours Unstructured Set ✓ 0.848 0.048 0.943 0.013

Table 3: Performance comparison with state-of-the-art event-based and dense methods.

tation but also causes the model to lose spatial information (due to the pooling operation) resulting
in minimum performance.

Effect of Hyperparameters: We study the impact of hyperparameters R and m(= d) (Table 2). We
observe that increasing their values result in better performance but at the cost of higher MFLOPs/ev.
Therefore, we follow our initial setting (R=2 and m(= d)=32) to have a better balance between
accuracy and compute cost while comparing with the state-of-the-art methods.

Comparison with the state-of-the-art (SoTA): We compare EventFormer with SoTA dense and
event-based methods on these two datasets (Table 3). Following the previous work (Schaefer et al.,
2022), we report the average MFLOPs/ev on a window of 25000 events. Methods utilizing
hand-crafted features: H-First (Orchard et al., 2015), Gabor-SNN (Bovik et al., 1990), HOTS
(Lagorce et al., 2016), HATS (Sironi et al., 2018), DART (Ramesh et al., 2019), require fewer
MFLOPs/ev while performing worse than the data-driven methods. EST (Gehrig et al., 2019) and
Matrix-LSTM (Cannici et al., 2020b) are synchronous methods that learn the optimal representation
and achieve higher accuracy. However, they require compute-intensive feature extractors to work on
the learned representations. Whereas EventFormer does not require any complex feature extractors
since the learned representation in the memory captures both the spatial and temporal information.
It can achieve similar performance with 30000× less computation. YOLE (Cannici et al., 2019) and
AsyNet (Messikommer et al., 2020) modify the CNNs to enable asynchronous, sparse processing to
reduce the compute cost. However, they do not consider the temporal information in the events. EvS-
S (Li et al., 2021c) and AEGNN(Schaefer et al., 2022) are graph-based methods with asynchronous
and efficient graph nodes update. However, they use sub-sampling to restrict the graph size from
growing prohibitively large, leading to suboptimal performance. Our method, on the other hand,
inherently learns to leverage useful events to update the memory without requiring any redundant
computation (such as radius search). The memory mechanism enables learning better temporal cor-
relation compared to the graph-based methods. As a result, our method achieves 9% better accuracy
on N-Caltech101 while being 200× more efficient compared to (Li et al., 2021c).

Computation Latency: The latency of EventFormer implemented with PyTorch on an Nvidia
RTX3090 is 4.5ms/event on N-Caltech101 dataset which is 10× faster than the existing most effi-
cient method (Schaefer et al., 2022)(52ms/event). Unlike their method, we do not require searching
over a large graph to update the representation which reduces computational latency.

4 CONCLUSION AND FUTURE WORK

We propose a novel memory-augmented representation learning framework–EventFormer, for asyn-
chronous and efficient event-based perception. EventFormer learns to store, retrieve and update its
memory representation in the latent form of higher-order spatiotemporal dynamics of the events that
allow it to achieve high performance with minimal compute cost. Future works include EventFormer
on more complex tasks including object detection, depth estimation, and optical flow prediction.
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Supplement to “Associative Memory Augmented Asynchronous
Spatiotemporal Representation Learning for Event-based

Perception”

A APPENDIX

In this supplementary material, we provide experimental and additional details on EventFormer.

B DETAILS OF THE NOTATION USED IN THIS WORK

Type Description Notation Dimension

Scaler parameters

number of events n -
dimension of event-representation d -

row size of the memory m -
number of classes c -

Functions
positional encoder Π(.) -
recurrent module R(., .) -

classifier head FFpred(. ) -

Vector/Matrix

sequence of events at time t xt n× 2
positional embedding πt n× d

associative memory representation at t Mt m× d
retrieved state from the memory Ht−1 n× d

(past hidden state for the recurrent module)
representation with higher order Zt n× d

interaction among the events
current spatiotemporal representation Xt n× d

new memory representation at t M′
t m× d

scaling factors to control memory update αt m× d
prediction at time t Yt 1× c

Table 4: Different notations used to describe the operations of EventFormer

C DERIVATION OF COMPUTATIONAL COMPLEXITY MODEL OF

EVENTFORMER

Here we derive the computational complexity model of the proposed EventFormer architecture. Let
us define n as the number of events to be processed within time-interval τ , d as the dimension of the
representation, m as the number of rows in the memory, h be the number of heads in the residual
attention blocks (we use the same h in all the blocks), r as the number of stacks for the Refine

operator, and c be the number of class for the recognition task.

(i) Positional Encoder: Our positional encoder block consists of single matrix multiplication with
the input, that is to compute xtW

T
p , we need 2nd multiplications and nd(2−1) additions, so in total

3nd FLOPs.

(ii) Read Operator: Read operator consists of a residual multihead attention block with h heads. To
begin with, calculating the query matrix for each head, we need n( d

h
)2 multiplication and n d

h
( d
h
−1)

additions, so in total n d
h
(2 d

h
− 1) FLOPs. Similarly for the key and value matrix, we need total

2m d
h
(2 d

h
− 1) FLOPs. Then, to compute QK⊤, we need an additional mn(2 d

h
− 1) computation.

Similarly the product (QK⊤)V requires n d
h
(2m− 1) FLOPs. Upto now for each head, we require

total FLOPs:
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n
d

h
(2

d

h
− 1) + 2m

d

h
(2

d

h
− 1) +mn(2

d

h
− 1) + n

d

h
(2m− 1),

Therefore, for h heads, it becomes:

nd(2
d

h
− 1) + 2md(2

d

h
− 1) + hmn(2

d

h
− 1) + nd(2m− 1)

The following 2 residual connection involves pointwise addition of a n× d dimensional matrix and
the out-projection involves an additional nd(2d − 1) FLOPs. Finally, total FLOPs count for the
Read(πt,Mt-1) becomes:

nd(2
d

h
− 1) + 2md(2

d

h
− 1) + hmn(2

d

h
− 1) + nd(2m− 1) + 2nd+ 2nd(2d− 1)

(iii) Recurrent Module: Our recurrent module is a GRU that involves 3 matrix multiplication
(update, reset, hidden) for the current input, πt and hidden state Ht−1 each. Therefore 6 matrix mul-
tiplication in total followed by 5 elementwise addition and 2 elementwise multiplication. Therefore,
the total computation becomes:

6nd(2d− 1) + 7nd

(iv) Refine Operator: Unlike the Read(. , . ) operator, it projects the same input, Xt to query, key

and value space. Therefore, total computation for such project becomes 3n d
h
(2 d

h
− 1), followed by

additional ( d
h
)2(2n− 1) and n d

h
(2 d

h
− 1) FLOPs for K⊤V , and Q(K⊤V ) computation. Therefore,

for h heads and considering the additional cost for residual operations and out-projections, the final
cost becomes:

r

(

3nd(2
d

h
− 1) + (

d2

h
)(2n− 1) + nd(2

d

h
− 1) + 2nd+ 2nd(2d− 1)

)

here r accounts for the number of stacks.

(iv) Write and Erase Operator: Similar to the Read(. , . ) operator, we can calculate the total
FLOPs required for the Write(Mt−1, Zt) and Erase(Mt−1, Zt) operation combined as follows:

2

(

md(2
d

h
− 1) + 2nd(2

d

h
− 1) + hmn(2

d

h
− 1) +md(2n− 1) + 2md+ 2md(2d− 1)

)

+ 3md

here, the additional 3md accounts for the 2 pointwise addition and 1 multiplication in Equation 8.

(iv) Perception Output: The final output is calculated by a vector(∈ R
md)-matrix(∈ R

md×c) mul-
tiplication, which requires an additional c(2md− 1) FLOPs.

Total FLOPs: The total FLOPs accounting all the above computation becomes:
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3nd
︸︷︷︸

Positional Encoder

+nd(2
d

h
− 1) + 2md(2

d

h
− 1) + hmn(2

d

h
− 1) + nd(2m− 1) + 2nd+ 2nd(2d− 1)

︸ ︷︷ ︸

Read Operation

+

6nd(2d− 1) + 7nd
︸ ︷︷ ︸

Recurrent Module

+ r

(

3nd(2
d

h
− 1) + (

d2

h
)(2n− 1) + nd(2

d

h
− 1) + 2nd+ 2nd(2d− 1)

)

︸ ︷︷ ︸

Refine Operator

+2

(

md(2
d

h
− 1) + 2nd(2

d

h
− 1) + hmn(2

d

h
− 1) +md(2n− 1) + 2md+ 2md(2d− 1)

)

+ 3md

︸ ︷︷ ︸

Memory Update (includes both Write and Erase operation)

+ c(2md− 1)
︸ ︷︷ ︸

Output

(9)

D DETAILS OF THE DATASETS

N-Caltech101 (Orchard et al., 2015) is converted to event space from standard frame-based dataset
(Caltech101). It has 8246 event sequences from 101 class categories following the original Cal-
tech101 dataset. N-Caltech101 uses an event camera to record event streams generated by moving
images displayed on a monitor.

N-Cars (Sironi et al., 2018) is a real-world event-camera dataset with 24039 event sequences from
2-class instances (car or background). N-Cars utilizes an event camera mounted on a moving car
recording its surroundings in a real-world setting.

E TRAINING DETAILS

Data Preparation: For both of the datasets, we use the official test set portion to report the result
and split the remaining into 90% and 10% ratios for training and validation purposes. The event
coordinates are normalized by dividing them by the height and width (180× 240 for N-Caltech101
and 100× 120 for N-Cars) of the frame resolution. We use a 50 ms long sequence for each sample
to reduce training complexity. Each sample is chunked by a 1ms window, resulting in 50-sequences
for each sample.

Optimization: We use the standard categorical cross-entropy as the loss function to train the network
with Adam (Kingma & Ba, 2014) with batch size 128 for N-Cars and 64 for N-Caltech101 with an
initial learning rate of 1e−3 that decreases by a factor of 5 after every 25 epochs. The memory
representation is initialized by a set of learnable parametersM′ ∈ R

m×d. We also use a dropout
of 0.2 on the memory representation before passing them to the final classification layer. To avoid
gradient explosion during training, we use gradient clipping with a maximum gradient norm of 100.

F ADDITIONAL ABLATION EXPERIMENT

Impact of polarity: In our current formulation, we did not consider polarity information of the
events during the event-encoding part. We conduct an additional experiment to evaluate the impact
of polarity by taking them as an additional input alongside the positional coordinates of the events.
In this formulation, we consider Eτ = {(xi, yi, pi)} where pi denotes the polarity of the event at the
(xi, yi) location. At a given time t, while we use the same positional encoder, Π to process xt, we
use a separate MLP layer parameterized by Wpol ∈ R

d×1 to map the list of n event polarities, pt
to a d-dimensional feature space, pot. Finally, we add πt and pot together to generate a refined πt

that now contains both the polarity and positional information. We keep the subsequent operations
unchanged. Following the same training and evaluation procedure on N-Caltech101 dataset, this
modified architecture achieved a slightly better accuracy of 0.849 (compared to the original 0.848)
with negligible additional compute cost.
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Figure 9: Network architectures for dense prediction tasks. (a) Convolution-based hierarchical
encoder-decoder structure with skip connections in between. (b) Possible adaptation of EventFormer
to work with existing decoder structure with no skip-connection.

G FEASIBILITY STUDY OF APPLYING EVENTFORMER ON COMPLEX TASK

Method
IoU MFLOPs/ev

(Encoder)boxes floor

EV-IMO 0.70 0.59 4786.7
EVDodgeNet 0.67 0.61 2575.0

SpikeMS 0.59 0.46 18.5

EventFormer
(m=64,d=32)

0.47 0.44 0.064

EventFormer
(m=64,d=64)

0.49 0.43 0.193

EventFormer
(m=256,d=32)

0.55 0.53 0.160

Table 5: Comparison of preliminary Event-
Former adaptation with other methods on EV-
IMO dataset.

Motion Segmentation: Our primary focus in
this work was to develop an event-based spa-
tiotemporal representation learning framework
and we used classification as an example task
to demonstrate the efficacy of our method. In
this section, we further evaluate our method on
a dense task–motion segmentation as an exam-
ple of tasks more complex than classification.
Unlike the classification task, motion segmen-
tation is a dense prediction task. Existing works
(Mitrokhin et al., 2019; Sanket et al., 2020;
Parameshwara et al., 2021) on such dense task
leverage hierarchical encoder-decoder network
architecture where the encoder encodes the
high-dimensional space into a compact latent-
space while the decoder decodes it back to
its original shape. Therefore, applying Event-
Former on such dense tasks requires its own de-
coder to reconstruct the dense output from its
latent memory representation. While designing a novel decoder architecture is out of the scope of
this work, we use the existing convolution-based decoder structure for this experiment. We reshape
the memory representationM ∈ R

m×d intoMn ∈ R
a×b×d (where m = a × b) to give it a 2D-

positional bias and pass it to the decoder as shown in Figure. 9 so that end-to-end training with the
decoder enables it to learn the required 2D-latent representation in the encoded space.

Dataset and Experimental Setup: We train and evaluate our method on a sub-set of EV-IMO
dataset (Mitrokhin et al., 2019). EV-IMO consists of challenging scenarios where different objects
move at varying speeds and directions. A monocular event-based camera captures the motions.
Since our primary objective for this experiment is only to provide some insights on how to scale our
method on complex tasks, we use a subset of the available five different sequences (boxes and floor)
to reduce the training time. We center-crop the events by a 256×256 spatial window (i.e., we do not
consider the events that fall outside this window) and use a 20ms long sequence for every sample.
Each sequence is chunked by a 1ms temporal window resulting in 20 sequences per sample. We use
Adam with a learning rate of 5× 10−3 and trained for 80 epochs. We consider the Intersection over
Union (IoU) and MFLOPs/ev as the performance metrics. Since all the methods (including ours)
employ similar decoder structures, we consider only the encoder part to compare the MFLOPs/ev.
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Figure 10: Qualitative motion-segmentation performance on EV-IMO dataset.

Figure 11: Incremental prediction perfor-
mance comparison. Our method can con-
verge to its peak performance significantly
faster than the existing methods.

Preliminary Performance: We compare the per-
formance with existing state-of-the-art dense and
event-based motion-segmentation methods (Table.
5). Both the EV-IMO (Mitrokhin et al., 2019)
and EVDodgeNet (Sanket et al., 2020) are dense
processing-based methods that aggregate events
into a frame-based representation. SpikeMS
(Parameshwara et al., 2021) considers the incoming
events as spikes and adopts a spiking-neural-network
(SNN) based encoder-decoder structure to process
them asynchronously. For our method, we consider
three different settings: m = 64, a = b = 8, d = 32,
m = 64, a = b = 8, d = 64, and m = 256, a = b =
16, d = 32. We observe that the better performance
of the dense methods comes with the cost of much
higher computational complexities. Our method can
achieve comparable performance with SpikeMS while being 115× more efficient. We also observe
that the performance of our method improves with higher memory capacity across the space. An-
other interesting observation is that the performance gain from higher m is much larger compared
to the higher d. This implies that representation with more fine-grained spatial information is nec-
essary for dense prediction tasks. This is also helpful in terms of computational benefits since our
FLOP model has a sub-linear relationship with m. Our unstructured formulation enables us to per-
form incremental prediction, even for dense tasks. Figure. 11 shows the comparison with existing
methods on such incremental prediction tasks. For the dense method, we integrate the events with
incremental time-window starting from 1ms up to 20ms with 1ms interval. As shown, our method
can outperform both methods at the early stage, requiring much fewer events. We also visualize the
qualitative performance of our method in Figure. 10. Although our method can achieve high IoU
very fast, it fails to capture the local details of the object. This is because, unlike existing methods,
our decoder can not utilize any skip connections. Such skip connections are necessary for the ex-
isting encoder-decoder network architectures to recover the local spatial information that may have
been lost during the encoding process (Drozdzal et al., 2016). These results indicate that existing
decoder architectures may not be optimum to work on our representation and novel architectural
innovations are required in this regard. We leave this as a potential future research direction.
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Figure 12: Scaling of EventFormer compute cost with increasing m and d from 16 to 2048.

Scaling of Computational Complexity: Our compute model derived in Appendix C shows ex-
ponential relation with d while sub-linear relation with m. For more complex and dense tasks with
higher spatial resolution, EventFormer may need to scale up its memory size at the cost of additional
compute overhead. We conduct an additional experiment to better understand how our computa-
tional cost would increase with higher memory size, and the result is shown in Figure 12. We ob-
serve that the compute cost increases at a significantly lower rate for higher m compared to a higher
d. For both m = d = 2048, our EventFormer formulation requires about 210 MFLOPs/ev, which is
still 10× lower compared to the existing dense encoder architecture of EveDodgeNet (Sanket et al.,
2020).

H LATENCY SCALING FOR LARGER EVENT COUNTS

n
Latency

(ms)
Throughput

(Kev/s)

1 4.53 0.22
10 4.62 2.16

100 4.78 20.92
1000 4.91 203.66

10000 7.54 1333.33
20000 14.15 1413.42
30000 20.8 1442.31

Table 6: EventFormer latency and through-
put with an increasing number of events.

We perform additional timing experiments to un-
derstand the change in latency with an increasing
number of events. Table 6 shows the result. We
can observe that our latency has a highly sub-linear
relationship with respect to the number of events.
Also, the throughput increases with the number of
events thanks to the parallel processing capabilities
of the modern hardware accelerators (GPU in our
case). We also measure the time required for a dense
method (Matrix-LSTM (Cannici et al., 2020b)) to
process a block of 30000 events which is 35.93ms
for N-Caltech101 dataset. It is noteworthy to men-
tion that Matrix-LSTM utilizes its own highly opti-
mized CUDA kernels to reduce their latency signif-
icantly. While developing such an optimized kernel
for EventFormer is out of the scope of this work, we
also expect a similar latency reduction for our method through such software optimization.
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N-Caltech101 N-Cars
Methods Representation Async. Accuracy ↑ Latency(ms) ↓ Accuracy ↑ Latency(ms) ↓
H-First Spike ✓ 0.054 - 0.561 -
Gabor-SNN Spike ✓ 0.284 - 0.789 0.071 (Intel i7)
HOTS Time-Surface ✓ 0.210 - 0.624 0.038 (Intel i7)
HATS Time-Surface ✓ 0.642 - 0.902 0.002 (Intel i7)
DART Time-Surface ✓ 0.664 - - -
EST Event-Histogram ✗ 0.817 - 0.925 0.001(RTX2080Ti)
Matrix-LSTM Event-Histogram ✗ 0.843 - 0.926 0.002(GTX1080Ti)
YOLE Voxel-Grid ✓ 0.702 - 0.927 -
AsyNet Voxel-Grid ✓ 0.745 - 0.944 -
EvS-S Graph ✓ 0.761 0.004(Intel i7) 0.931 -
AEGNN Graph ✓ 0.668 - 0.945 -

Ours Unstructured Set ✓ 0.848 0.0007 (RTX3090) 0.943 0.0005 (RTX3090)

Table 7: Latency and Accuracy comparison with state-of-the-art event-based and dense methods.

I DETAILS OF THE MEMORY OPERATORS:

Read: During Read operation, we want to know: what are the past states at the current event
location? To do so, we use the multihead residual attention block to perform query-key-based
associations in the memory. To be more specific, we query the past memory representationMt−1

using the positional embedding of the current event locations, πt. The complete retrieval of the past
hidden representation,Ht−1 involves the following operations:

Ht−1 = Read(πt,Mt−1) := LayerNorm(Or + FFor(Or)) (10)

where Or = LayerNorm(πt + MultiHead(Qr,Kr, Vr;w, a)) (11)

Here, Qr represents the query vector calculated from πt, and Kr, Vr represents the key and value
vectors computed from theMt−1.

Write and Erase: Similar to the Read operator, we adopt residual multi-head attention block for
Write operator to calculate the new memory representation,M′

t. However, this time we compute
the query vectors fromMt−1 and key-value pair from the refined spatiotemporal representation, Xt.
The idea here is that we want to query the location of the memory that needs to be updated while
the contents to be updated are provided by the new representation.

M′
t = Write(Mt−1,Xt) := LayerNorm(Ow + FFow(Ow)) (12)

where Ow = LayerNorm(Mt−1 + MultiHead(Qw,Kw, Vw;w, a)) (13)

Here, Qw represents the query vector calculated from Mt−1, and Kw, Vw represents the key and
value vectors computed from theXt. We also introduce Erase operator (follows the same operations
of Write operator) that calculates a set of element-wise scaling factors, αt ∈ {Rm×d | 0 ≤ αt ≤ 1}
to control the strength of update:

αt = sigmoid(Erase(Mt−1,Xt)) (14)

J LATENCY COMPARISON:

A direct comparison of the latency of our and other methods in Table 7 is challenging as differ-
ent methods have provided their latency measurements using different hardware configurations and
software setups. However, we still show the latency/event reported in the original papers for the
methods and corresponding hardware configuration. A common methodology was used in all these
works where the average latency/event was measured considering the average run time per sample
divided by the average number of events per sample.
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