
“I think I could probably use Large Language Models to solve my tasks.”
Detecting Client Motivational Language in Psychotherapy

Anonymous ACL submission

Abstract

Understand the client’s motivation is crucial001
for successful therapies. When met with re-002
sistance, the therapists are advised to soften003
it first instead of persisting with goal-related004
actions and thus risking rapport ruptures. Moti-005
vational Interviewing is such an approach: the006
client’s utterances are coded as they are for or007
against a certain behaviour change, plus their008
commitment strength. Yet, there are fewer than009
200 samples labelled with strength value. Re-010
cently, Large Language Models (LLMs) have011
shown impressive capabilities in few-shot learn-012
ing. We compare in-context learning (ICL)013
and instruction fine-tuning (IFT) with varying014
training size. Our experiments show that both015
approaches can learn under low-resourced set-016
tings and are sensitive to the instruction for-017
matting. Still, IFT is cheaper, more stable to018
prompt choice, and yields better performance019
with more data. However, when the label dis-020
tribution is heavily imbalanced that the models021
are unable to learn, ICL is preferred because it022
can exploit the LLMs more effectively.023

1 Introduction024

Resistance to social influence is a well-known phe-025

nomenon in psychology and social sciences. Cog-026

nitive Behavioral Therapy (CBT) is a psychologi-027

cal treatment that helps clients manage their prob-028

lems by analysing their unhelpful thoughts and029

behaviours. CBT has been employed widely to030

treat depression and anxiety. In CBT therapies, re-031

sistance proves to be a serious issue, limiting its032

effectiveness (Westra and Norouzian, 2018). Mo-033

tivational Interviewing (MI) is an evidence-based034

client-centred approach to strengthen one’s moti-035

vations for behaviour change (Miller and Rollnick,036

2023). The core skill of MI is to tailor the thera-037

peutic interventions based on the individuals’ moti-038

vational level using the trans-theoretical model of039

stages of changes (Prochaska and Velicer, 1997).040

Figure 1: Two sample dialogues from AnnoMI (Wu et al.,
2023) dataset. The upper one shows a strong resistance
from the client (i.e., labelled as “sustain” for type and
“high” for strength in our tasks). In the other dialogue,
the client sounds willing to change though still reluctant
(i.e., labelled as “change” and “low” respectively).

Understanding client motivational language dur- 041

ing therapy helps explain treatment outcomes in 042

psychotherapy up to 35% of variance (Lombardi 043

et al., 2014; Poulin et al., 2019). Observably, in the 044

context of CBT, if the client language shows resis- 045

tance and ambivalence, the therapists are advised 046

to adopt MI instead of persisting and thus risking 047

alliance ruptures, which eventually leads to treat- 048

ment dropout (Westra and Norouzian, 2018; Ew- 049

bank et al., 2021). Similarly, Forman et al. (2022) 050

find that MI is likely to backfire if the client already 051

shows motivation to change early in the session, 052

suggesting personalised interventions at different 053

levels of motivation. 054

Despite the popularity of self-reported (i.e., ques- 055

tionnaires) measure, observational coding mea- 056

sures is found to correlate better with treatment 057

processes and outcomes in MI (Lombardi et al., 058

2014; Poulin et al., 2019). And the strength (i.e., 059

the degree of certainty one holds for their utter- 060

ance), rather than the frequency, of the motivational 061

language is a better predictor (Aharonovich et al., 062
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2008; Campbell et al., 2010; Gaume et al., 2016).063

The task of predicting client motivational lan-064

guage can be broken down into two subtasks. The065

first one, called type task, is to detect the direc-066

tion of motivation: whether the client is willing067

to change or not. The other one, called strength068

task, is to detect the commitment level: if the client069

is willing to change or still shows resistance, how070

strong do they hold such belief? Our experiments071

utilise AnnoMI (Wu et al., 2023), consisting of MI072

dialogues annotated with the types of client lan-073

guage, but not the strength. Using MI Skill Code074

(Miller et al., 2003; Amrhein et al., 2008), we ob-075

tain in total 178 examples with strength annotation,076

making the second task a low-resourced one.077

Recently, Large Language Models (LLMs) have078

demonstrated their impressive capabilities in few-079

shot learning (Brown et al., 2020; Chung et al.,080

2022; Touvron et al., 2023). Ziems et al. (2023)081

argues that due to reduced costs and increased ef-082

ficiency in data annotation, LLMs can potentially083

transform the field of Computational Social Sci-084

ences such as psychology and linguistics.085

The most popular paradigm to utilise the power086

of LLMs is via in-context learning (ICL), where the087

inference is performed given an instruction with088

a few or no examples. However, ICL is highly089

sensitive to the prompt format, the choice, and the090

order of the demonstrated examples (Zhao et al.,091

2021). Optimising the prompts is, by no means, a092

trivial task. In contrast, fine-tuning (FT) is arguably093

a better and cheaper paradigm and instruction FT094

has proven its capabilities over ICL even in few-095

shot learning (Liu et al., 2022; Schick and Schütze,096

2022; Logan IV et al., 2022).097

In this paper, we aim to put the LLMs to the098

test of detecting the types and strength of client099

motivational language with the latter task having100

fewer than 200 gold-labeled samples. Our goal is101

to explore these following research questions:102

RQ1: How does retrieval-based ICL compare103

with IFT in different training size settings?104

With varying training samples for the type and a105

fixed number for strength tasks, we compare ICL106

approach by Su et al. (2023) and IFT. The results107

show that both can perform under low-resourced108

setting. Yet, IFT yields better performance as the109

training data increases, whereas that of ICL re-110

mains quite stable when the number of in-context111

examples is low (i.e. fewer than 5).112

RQ2: How does IFT with multitask predictions113

compare with single-task predictions? 114

During real therapies, the therapists need to per- 115

form two tasks simultaneously. Inspired by Varia 116

et al. (2023), we combine two tasks into one in- 117

struction and fine-tune the models in a multitasking 118

scenario and compare with single-task instructions. 119

Overall, single-task learning leads to higher scores. 120

Our analysis reveals that ICL is preferable to IFT 121

when the training data is heavily imbalanced as ICL 122

can exploit the massive underlying knowledge of 123

LLMs to solve the task. In contrast, with IFT, the 124

models are unable to learn properly without data. 125

2 Related Works 126

Detecting MI Behaviour Codes: Automatic de- 127

tection of MI behaviour codes is a popular research 128

topic. As manual annotation is costly and time- 129

consuming, automated methods are expected to as- 130

sist with training by helping trainers quickly under- 131

stand the therapy sessions and thus give effective 132

feedback (Tavabi et al., 2020; Nakano et al., 2022). 133

MI behaviour codes have been utilised to assess 134

the quality of not only MI but also CBT sessions 135

(Ewbank et al., 2021; Chen et al., 2021). Even 136

though linguistic features are still the most popular 137

(Pérez-Rosas et al., 2017; Cao et al., 2019; Tavabi 138

et al., 2021; Gibson et al., 2022), researchers have 139

employed speech and facial expressions in a mul- 140

timodal system. Acoustic features, however, are 141

found to contribute little to the prediction (Aswame- 142

nakul et al., 2018; Singla et al., 2020; Tavabi et al., 143

2020). In contrast, Nakano et al. (2022) show that 144

integrating both linguistic and facial information is 145

effective to detect client behaviour codes. 146

Detecting Certainty Language: Different lin- 147

guistic markers of speaker commitment such as be- 148

lief/factuality (Diab et al., 2009; Prabhakaran et al., 149

2015; Rudinger et al., 2018), modality (Pyatkin 150

et al., 2021), projection (de MARNEFFE et al., 151

2019) have been well studied by linguistics and 152

NLP community. Expert systems employ uncer- 153

tainty expressions, or hedges, to communicate de- 154

grees of belief to the users (Clark, 1990), which 155

arguably facilitates the decision-making processes 156

(Zhou et al., 2023). Furthermore, researchers exam- 157

ine hedges to understand the social power between 158

interlocutors (Prabhakaran et al., 2018), rapport 159

in peer-tutoring (Raphalen et al., 2022), and re- 160

viewers’ confidence in their evaluation of scientific 161

papers (Ghosal et al., 2022). Though most works 162

has pursued machine learning solutions, rule-based 163
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approach is still a popular choice in detecting cer-164

tainty and uncertainty cues in texts (Ulinski et al.,165

2018; Islam et al., 2020; Raphalen et al., 2022).166

To the best of our knowledge, we are the first in167

NLP to adopt verbal commitment expressions to168

understand speakers’ motivation in psychotherapy.169

In-Context Learning (ICL): ICL is the170

paradigm introduced by Brown et al. (2020) to171

demonstrate the few-shot learning capabilities in172

which LLMs are given a few examples as con-173

text to learn from. However, the choice and the174

order of the examples can strongly influence the175

model performance, from near state-of-the-art to176

near mere chance (Zhao et al., 2021). Prior works177

have offered insights into how to select the most178

suitable examples (Liu et al., 2021; Su et al., 2023),179

how to arrange examples in a certain order (Lu180

et al., 2022), and which aspects of the examples181

improve performance (Min et al., 2022). Addition-182

ally, Su et al. (2023) argue that retrieval-based ICL183

with wisely-selected demonstrations outperforms184

FT with varying number of training samples. Yet,185

their experiments are conducted with vanilla FT,186

not instruction FT.187

Instruction Fine-tuning (IFT): IFT is the188

paradigm to boost the LLMs’ capabilities to gener-189

alise to unseen tasks by fine-tuning the models on190

data consisting of pairs of instruction, output191

in a supervised manner (Chung et al., 2022; Zhang192

et al., 2023). Additionally, Varia et al. (2023) show193

that IFT can perform multitask predictions in one194

prompt: the models are trained with instructions195

to extract all four elements of the sentiment anal-196

ysis task. In both single and multitask settings,197

instruction-tuned models need only 25% and 6%198

of training data respectively to achieve compara-199

ble performance to models trained on 100% data200

(Gupta et al., 2023). Arguably, IFT is more cost-201

effective and yields better results than ICL even in202

low-resourced settings (Schick and Schütze, 2022;203

Logan IV et al., 2022; Mosbach et al., 2023). How-204

ever, these authors utilise ICL with no selection205

strategy for examples to use as context despite206

its importance. Furthermore, their prompt setup207

includes searching for a verbalizer to map the208

models’ vocabulary to the labels. For example, for209

sentiment analysis task, a verbalizer would map210

the output Yes to the label positive and No to211

negative. Our experiments do not search for the212

optimal labels to reduce engineering effort and to213

test the flexibility of IFT with LLMs.214

3 Client Language in Psychotherapy 215

“Commitment” phenomenon has a long history in 216

linguistics. Markers of commitment have been 217

identified and studied to understand the speakers’ 218

attitude towards the truth value conveyed in their 219

utterances (Boulat and Maillat, 2023). MI is an 220

evidence-based therapeutic approach to strengthen 221

ones’ motivations for behaviour change. In MI, 222

commitment to change is viewed as a leading in- 223

dicator for behaviour change and thus, eliciting 224

verbal commitments from the client is a critical 225

task for therapists (Amrhein et al., 2003; Miller 226

and Rollnick, 2023). 227

MI distinguishes three types of client motiva- 228

tional language, which indicates the direction of in- 229

tended behaviour. They include “change” (i.e., mo- 230

tivation towards behaviour change), “sustain” (i.e., 231

resistance towards behaviour change), and “neutral” 232

(i.e., no inclination towards any direction). Moti- 233

vational language varies in commitment strength 234

Amrhein et al. (2003), and can be expressed via 235

linguistic markers of certainty (Boulat and Maillat, 236

2023). Certainty is defined as the subjective de- 237

gree of confidence one holds about their behaviour 238

(Conner and Norman, 2022). For example, high 239

certainty markers include phrases such as ‘Without 240

doubt”, and “for sure” while low certainty is in- 241

dicated via phrases like “I guess” and “I think”. 242

In this paper, we employ the two linguistic terms 243

boosters and hedges to refer to high and low cer- 244

tainty markers respectively. Figure 1 illustrates one 245

example of the client showing a strong resistance 246

and another of having reluctance to change. 247

Broader research in psychotherapy also shows 248

a positive correlation between strength and be- 249

havioural outcomes: the more one is motivated 250

towards a goal, the stronger the intention-behaviour 251

relationship (Conner and Norman, 2022), thus the 252

more one should act upon their intention (Rhodes 253

et al., 2022). Moreover, recognising the client’s 254

motivational language helps determine the interven- 255

tion treatment, e.g., whether the therapist should 256

focus on addressing client’s resistance or move to 257

discuss action plans (Westra and Norouzian, 2018). 258

Compared with the frequency of client lan- 259

guage (i.e., counting each type), commitment 260

strength is a better measure of behaviour out- 261

comes(Aharonovich et al., 2008; Gaume et al., 262

2016). Campbell et al. (2010) argue that strength, 263

not frequency, is related to positive outcomes as 264

frequency fails to capture the correct commitment. 265
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Figure 2: Considered as a generation problem, the models should generate the correct label which is specified as
different options in the instruction.

For example, compare a highly motivated utterance266

“I want to get off drugs for good” with a low one “I267

sort of wish I could get off drugs”. One client ut-268

ters two times the former while another utters four269

times the latter. Using frequency measure, the sec-270

ond client is assigned a higher commitment level271

than the first one while it should be the reverse.272

Our paper employs the strength rating approach273

similar to that of Gaume et al. (2016)1: Each274

client utterance is first assigned a strength value275

of “medium”. If the utterance contains a booster276

word, its strength value changes to “high”. On the277

contrary, if it has one or more hedge words, it re-278

ceives “low” value. In this paper, we use the word279

lists of boosters and hedges by Hyland (2005);280

Islam et al. (2020); Zhou et al. (2023).281

4 Methodology282

We consider a set of dialogues where each consists283

of one therapist turn and one client turn. The former284

serves as dialogue history while the model should285

learn to make predictions for the latter depending286

on the task. One turn can be comprised of multiple287

sentences but the output label is associated with288

the turn, not with a sentence. If the client starts289

the conversations, not the therapist, the dialogue290

consists of one client turn only.291

Our experiments utilise Flan-T5 models which292

are fine-tuned on 1k8+ NLP tasks and shown to293

outperform other models with the same size up to294

26% (Chung et al., 2022). Additionally, instruction-295

tuned Flan-T5 as a starting checkpoint for single-296

task fine-tuning converges faster and yields better297

performance compared to non-instruction-tuned298

1The “neutral” type is originally not assigned a strength
value but in our experiments, we decide to annotate it similarly
to the other two types for the sake of completeness.

models (Longpre et al., 2023). As fine-tuning the 299

entire LLMs proves to be too costly, Parameter- 300

efficient fine-tuning (PEFT) aims to tackle this is- 301

sue by training the downstream tasks only on small 302

number of parameters which can either be a subset 303

of parameters of the existing models or a newly 304

added parameters (Lialin et al., 2023). We employ 305

LoRa (Hu et al., 2022), which performs parameter 306

update of the weight matrix by decomposing it into 307

lower-rank matrices and then train them separately. 308

When instruction-tuned models are employed 309

for classification, the tasks are formulated as a text 310

generation problem where the models should learn 311

to generate the correct label for a given instruction. 312

Therefore, label-related information is critical to 313

help identify the output space (Yin et al., 2023; 314

Kung and Peng, 2023). Figure 2 illustrates our in- 315

struction fine-tuning (IFT) process. An example 316

dialogue is “Therapist: Yeah. Hmm, that might be 317

a start. Client: I think I could- I think I could prob- 318

ably handle that.”. The correct options for three 319

instruction are “change”, “low”, and “change low” 320

respectively. The model is prompted to produce a 321

type and/or strength classification by concatenat- 322

ing the dialogue with the corresponding instruction 323

template depicted in Figure 2. Our goal is to auto- 324

matically detect of both the types and the strength 325

of client motivational language during therapies. 326

5 Experiments 327

5.1 Dataset 328

Type Data: Our experiments utilise AnnoMI (Wu 329

et al., 2022, 2023), which is available under Public 330

Domain License. It consists of 133 conversations 331

in English annotated by MI experts. Each client ut- 332

terance is assigned one type of motivation language 333

(i.e, “change”, “sustain”, or “neutral”). The dataset 334
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is heavily imbalanced: the number of “change”,335

“sustain”, and “neutral” utterances are 1178, 546,336

3093 respectively. We randomly select 600 utter-337

ances to serve as test set. From the remaining ut-338

terances, fast voke-k algorithm (Su et al., 2023)339

is employed to obtain 300 most diverse samples340

for the validation set and k samples for training set,341

with k ∈ {50, 100, 200, 300, 3k6}.342

Strength Data: MI Skill Code (MISC) is a be-343

havioral coding system, developed to assess MI344

session. It is open-source and available to down-345

load from CASAA’s website2. The number of sam-346

ples from MISC 2.0 and 2.1 (Miller et al., 2003;347

Amrhein et al., 2008) is 178, which is further split348

into 128 and 50 samples to serve as training and349

validation sets respectively. Mosbach et al. (2023)350

propose that 50 samples as validation set are suf-351

ficient to select the best performing checkpoints.352

Using the MISC 2.0 (Miller et al., 2003) guideline353

and the list of certainty markers from Section 3,354

the first author of this paper, who has both bache-355

lor and master degrees in Computational Linguis-356

tics, manually assigns a strength value (i.e., “high”,357

“medium”, or “low”) for each client turn in the test358

set from the previous task. When textual informa-359

tion alone is insufficient, we consult the videos to360

assist with annotation process.361

Mixed Data: In the mixed multitask settings,362

we mix a maximum number of k {instructions,363

outputs} pairs of each prompt formula, with k ∈364

{100, 200, 300}. As the number of gold-labelled365

samples with strength value is limited, mixed-366

200 and mixed-300 datasets contain more samples367

with the type prompt than the other two. The368

strength and multitask instructions use the same369

dialogues but with different labels: only 3 labels370

for strength samples but 9 for multitask data.371

5.2 Experimental Setup372

Baselines: Two baselines are employed: (1) zero-373

shot ICL settings with Flan-T5-XXL3 (Chung et al.,374

2022) and GPT-3.5-turbo4 and (2) traditional FT375

with RoBERTa-large5 (Liu et al., 2019).376

ICL setting: Due to restrictions in context377

length of Flan-T5-XXL, only one example is in-378

cluded as demonstration. For a fair comparison,379

GPT-3.5-turbo also learns in one-shot setting.380

2https://casaa.unm.edu/tools/misc.html
3https://huggingface.co/google/flan-t5-xxl
4https://platform.openai.com/docs/models/

gpt-3-5
5https://huggingface.co/roberta-large

Retrieval-based method is utilised (Su et al., 2023) 381

for demonstration selection: the dialogue in the 382

training set which is most similar to the test dia- 383

logue is chosen as context. 384

IFT setting: We fine-tune Flan-T5-XXL with 385

instructions as specified in Section 4. In single- 386

task settings, each model is fed with either type or 387

strength instructions only. Our multitask settings 388

employ the multitask one while the mixed setup 389

uses all three instructions. Figure 2 depicts the 390

instructions used in our experiments. 391

Number of parameters: We use LoRa imple- 392

mented in peft library6 and train on all layers. The 393

trained parameters for Flan-T5-XXL is around 71 394

millions, accounting for roughly 0.6% of the total 395

11 billion parameters. As for RoBERTa-large, we 396

fine-tune all its 354 million parameter. 397

Hyper-parameters selection: RoBERTa is 398

trained until convergence with the learning rate 399

of 1e-5. As for Flan-T5, we use Weights and Bias7 400

to search for the best learning rate and finally settle 401

on 3e-4 for all models. The weight decay is set to 402

1e-6. The batch size is 8. We fine-tune the Flan-T5 403

for 30 epochs using adafactor (Shazeer and Stern, 404

2018) as the optimiser. For other values, we use the 405

default from huggingface (version 4.33.1) (Wolf 406

et al., 2020) implementation. Further details about 407

our training is in Appendix B. 408

Evaluation metrics: We employ accuracy 409

and f1 score macro-averaged calculated by 410

scikit-learn (version 1.3) (Pedregosa et al., 411

2011). In the multitask settings, the predictions 412

for each task are extracted from the model outputs 413

using regular expressions. Results are reported on 414

the test set, using models with best f1 scores on the 415

validation sets during training. 416

6 Results 417

6.1 Single-Task Learning: Type 418

Figure 3 shows the results of the type task (i.e., pre- 419

dicting whether the client has “change”, “neutral”, 420

or “sustain” attitude to behaviour change) on the 421

test set. Flan-T5 and GPT-3.5 with zero-shot obtain 422

f1 scores of 0.45 and 0.53 respectively. The per- 423

formance of Flan-T5 with zero-shot corresponds 424

to those of RoBERTa and Flan-T5 when trained 425

on 100 samples, whereas GPT-3.5 with zero-shot 426

yields the same score as RoBERTa trained on 200 427

samples. Interestingly, both GPT-3.5 and Flan-T5 428

6https://huggingface.co/docs/peft/index
7https://wandb.ai/
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Figure 3: F1 scores on type task with different training
samples shown on the horizontal axis.

with one-shot ICL exhibit similar behaviour: their429

performances stay relatively consistent regardless430

of the number of samples that can be selected as431

demonstrations. In contrast, for fine-tuning, nor-432

mally the model performance is positively corre-433

lated with the data size. Additionally, Flan-T5 with434

IFT converges with 200 samples, similar to the435

findings of Gupta et al. (2023).436

Hallucinated Output Label: Framed as a gen-437

eration problem, instruction-tuned models can pro-438

duce ill-formed outputs. When analysing the re-439

sults, we discover that Flan-T5 trained on 50 and440

100 samples generates such outputs: 2 for each441

condition. In contrast, ICL with either zero- or442

multiple shots does not cause the same issue. After443

2 hallucinated labels are replaced with “neutral”, F1444

scores for Flan-T5 models with 50 and 100 training445

data size jump from 0.36 and 0.47 to 0.59 and 0.62446

respectively. As a result, the new score obtained on447

100 samples completely outperforms two one-shot448

ICL variants while the one on 50 samples is analo-449

gous to one-shot Flan-T5. Observably, under this450

condition, IFT with varying training data from 50451

to 300 leads to comparable results unless trained452

on full dataset with thousands of examples.453

6.1.1 Ablation with Output Space Label454

50 100 200 300 full

all 0.59 0.62 0.60 0.61 0.74
simplified 0.56 0.58 0.59 0.59 0.71

Table 1: F1 scores in our ablation studies using all and
simplified instructions with different data size.

With IFT, specifying output space label proves455

Figure 4: Ablation studies of output space specified in
the instruction for type task. all consists of the label list
(in green) and the label description (in yellow), whereas
simplified instructions have label list only.

crucial for classification tasks (Kung and Peng, 456

2023; Yin et al., 2023). In addition to the label 457

list, one can add the label description to give extra 458

information about the meaning of the labels. Figure 459

4 illustrates two conditions all and simplified for 460

our ablation studies. Table 1 reports results on f1 461

scores across different training data size. All hallu- 462

cinated outputs are converted to “neutral” label. In 463

contrast to Kung and Peng (2023) who find that two 464

conditions exhibit similar effect, we observe that 465

all condition (i.e., having both label list and label 466

description) outperforms simplified with varying 467

data size. These results are similar to those of Yin 468

et al. (2023): the authors hypothesise that label 469

description might be used to disambiguate labels 470

with the same name but used in different tasks. 471

6.2 Single-Task Learning: Strength 472

accuracy f1

gpt 0-shot 0.43 0.35
gpt 1-shot 0.39 0.30

flant5 0-shot 0.30 0.29
flant5 1-shot 0.38 0.38

flant5 ift 0.67 0.61
roberta ft 0.52 0.48

Table 2: Accuracy and F1 scores for the strength task.

This task utilises the strength data as speci- 473

fied in Section 5.1, consisting of 50 “high”, 35 474

“medium”, and 43 “low” labels in the training set. 475

Results on the test set of 600 samples are reported 476

in Table 2. Surprisingly, retrieval-based ICL with 477

1-shot fares quite poorly, even worse than fine- 478

tuned RoBERTa. Analysing the confusion matri- 479

ces, Flan-T5 and GPT-3.5 appear to struggle with 480

“medium” and “high” labels respectively with both 481

recall scores are below 0.1. 482

GPT-3.5 suffers a drop in performance when 483

shifting from zero-shot to one-shot. Previous works 484
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attribute it to majority label bias in which GPT-3485

merely reuses the class of the only example in the486

instructions (Zhao et al., 2021). However, we ob-487

serve no such phenomenon in this task. In fact,488

when calculating the overlap between model’ pre-489

dictions and in-context example’s labels, the over-490

lap occurs in 63 samples out of 600: GPT-3.5491

does not simply repeat the label of the example492

in roughly 90% of the times. The difference in our493

findings and those of Zhao et al. (2021) might be494

due to an upgrade from GPT-3 to GPT-3.5. Our495

results suggest that fine-tuning is still more stable496

and less sensitive than ICL.497

6.2.1 Ablation with Dialogue Context498

accuracy f1

gpt 1-shot w-th 0.39 0.30
gpt 2-shot w-th 0.43 0.34
gpt 3-shot w-th 0.42 0.33
gpt 4-shot w-th 0.43 0.35

gpt 1-shot wo-th 0.39 0.34
gpt 2-shot wo-th 0.38 0.33
gpt 3-shot wo-th 0.40 0.35
gpt 4-shot wo-th 0.37 0.33

Table 3: Results for GPT with and without the previous
therapist utterance in the demonstrations, shortened as
w-th and wo-th respectively.

One hypothesis about the poor performance of499

ICL is due to the mismatch between the dialogue500

served as context and the test dialogue. As in-501

dicated in Section 5.1, the test set is taken from502

AnnoMI dataset (Wu et al., 2023): each dialogue503

consists of one therapist turn and one client turn.504

However, the examples from MISC guidelines have505

only one client turn. Therefore, we conduct an ab-506

lation studies to understand the effect of this mis-507

match: in the original experiments, called w-th, the508

test dialogue have both therapist and client turns509

while in the wo-th condition, the test dialogue con-510

tains only the client turn. Additionally, we use511

GPT-3.5 with multiple shots using retrieval-based512

ICL (Su et al., 2023).513

Table 3 reports the results of our ablation. The514

overall trend suggests that having longer context515

history for the test sample helps improve the ICL516

performance despite some mismatch between the517

format of test sample and that of the demonstrated518

example. We revisit the majority label bias claimed519

by Zhao et al. (2021). Intuitively, the argument for520

retrieval-based ICL is to exploit this bias by retriev- 521

ing the most similar examples to the test sample, 522

and thus reusing the majority label. Yet, we find 523

no such bias. An examination of the predictions by 524

gpt 3-shot w-th reveals many cases where all 525

retrieved examples belong to one class (e.g., low) 526

but the prediction is of another (e.g., medium or 527

high). In fact, by using the majority label of the 528

retrieved examples as prediction increases accuracy 529

from 0.42 to 0.43. We leave the investigation of the 530

sensitivity of in-context examples to future works. 531

6.3 Multitask Learning 532

type strength
acc. f1 acc. f1

gpt 0-shot 0.53 0.49 0.45 0.39
gpt 1-shot 0.50 0.43 0.48 0.47
flant5 1-shot 0.43 0.34 0.34 0.34
flant5 ift 0.32 0.29 0.61 0.58

Table 4: Results on multitask learning.

Inspired by Varia et al. (2023), we experiment 533

with multitask learning where the models should 534

learn to predict the two tasks simultaneously by us- 535

ing the third instruction shown in Figure 2. Because 536

of hallucination issue, we use regular expressions 537

to get the predictions and replace the ill-formed la- 538

bels with either “neutral” or “medium” depending 539

on the task. Table 4 reports the results. These ex- 540

periments use the strength dataset (Section 5.1) 541

because the samples from MISC guidelines have 542

both type and strength labels. 543

The first observation is that overall, single-task 544

learning (STL) still yields better performance on 545

a large margin, especially for type task. Even us- 546

ing only 50 samples, both ICL and IFT achieve 547

F1 scores higher than 0.6 while with 128 samples 548

in multitask learning (MTL), 0.49 is the best F1 549

score. IFT performs surprisingly poorly. An exam- 550

ination of label distribution on both training and 551

test sets reveals that three variants of “neutral” (i.e., 552

neutral high, neutral medium, neutral low) make 553

up of nearly 60% in the test set. Yet, no “neutral” 554

samples exist in the training set, which explains 555

why the models are unable to learn properly. Ap- 556

pendix A shows the distribution of all 9 labels in 557

the dataset. Nevertheless, ICL appears to be less 558

effected by this imbalance training data: both Flan- 559

T5 and GPT-3.5 struggle more to learn “change” 560
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or “sustain”. As for the strength task, the per-561

formance in MTL, though slightly lower, is still562

comparable to STL.563

6.3.1 Multitask Learning with Mixed Data564

type strength
acc. f1 acc. f1

flant5 ift mix100 0.36 0.36 0.68 0.59
flant5 ift mix200 0.34 0.36 0.69 0.56
flant5 ift mix300 0.44 0.43 0.71 0.58

Table 5: Results on multitask learning using mixed data.

In this setup, we experiment with mixing a maxi-565

mum number of samples from type and strength566

tasks with multitask samples (See Section 5.1). In567

other words, the models are fine-tuned with three568

instructions all together as depicted in Figure 2.569

This setup is similar to that of Varia et al. (2023)570

but we frame it as a cloze-quiz problem, not a gener-571

ation one. Our aim is to investigate whether adding572

data from other tasks can improve performance573

on a downstream task. More importantly, type574

data is expected to help the models learn to pre-575

dict “neutral” class. Results are reported in Table576

5. Though the models still struggle to learn “neu-577

tral” class, the more type samples are in the train-578

ing set, the higher the recall scores are. However,579

the higher the number of mixed data is, the more580

ill-formed outputs are generated for the strength581

task. As a result, performance on type increase582

while that on strength task decreases. The rea-583

sonable strength scores are due to a high amount584

of “medium” predictions by the models where the585

test set is imbalanced with nearly 60% samples be-586

longing to this class. Overall, our results contradict587

those of Varia et al. (2023): STL outperforms MTL588

in our setup.589

Our hypothesis is that the similarity in the la-590

bels of three instructions confuse the learning (e.g.,591

in some cases, the correct label is “neutral” but592

in other cases, it has to be “neutral high”, “neu-593

tral medium” or “neutral low”). Additionally, as594

the likelihood that the correct label starting with595

type class is twice higher than with strength596

class, the models are unable to learn it properly. In-597

deed, when employed the models trained on mixed598

dataset to make predictions on single tasks, the out-599

puts for strength task are overwhelmed with type600

labels. It is unclear whether the issue is due to sim-601

ilarity in label space or IFT is unsuitable for labels602

with multiple words. Schick and Schütze (2021) 603

claim that Pattern-Exploiting Training, a stricter 604

variant of IFT, can only work when the labels corre- 605

spond to a single token. In future works, we would 606

like investigate this problem further with varying 607

data size. 608

7 Conclusion and Future Works 609

Works in psychology suggest that monitoring client 610

motivational language is an essential skill to de- 611

liver successful therapies. Our belief is that a 612

motivation-aware multimodal system would have 613

implications for the development of personalised 614

healthcare agents. In this paper, we break it down 615

into two sub-tasks: predicting the direction of their 616

motivation (i.e., type task), and the verbal com- 617

mitment strength (i.e., strength task). Our experi- 618

ments employ GPT-3.5 and Flan-T5, and compare 619

retrieval-based ICL with IFT on varying training 620

data size. Regarding RQ1, our findings indicate 621

that both can perform under few-shot settings. Both 622

appear to be sensitive to the instructions: remov- 623

ing label descriptions for IFT or context history 624

for ICL hurts the performance. Still, we observe 625

that with ICL, the predictions can change when 626

adding something totally unrelated to the task it- 627

self (i.e., requesting a certain format of the output). 628

In contrast, IFT is more stable: adding more data 629

generally leads to better performance, while it has 630

no such effect for ICL. However, IFT suffers from 631

generating ill-formed outputs when trained with a 632

small number of samples. As for RQ2, when fram- 633

ing the multitask instructions as a single task of 634

choosing the correct option, ICL outperforms IFT 635

when the label distribution is heavily imbalanced, 636

e.g. some labels might not exist in the training data. 637

In this case, exploiting the massive knowledge of 638

the LLMs to solve the tasks is preferable. Mixing 639

data from different tasks appears to confuse the 640

models by the similarity and/or the multiple-word 641

format of the output labels. In the future works, 642

we would like to investigate this issue on varying 643

training data and model size. 644

8 Limitations 645

Annotation of AnnoMI dataset: As the conversa- 646

tions in AnnoMI (Wu et al., 2023) are role-play MI 647

videos used for educational purposes, they might 648

not reflect the real therapies in which the clients can 649

behave in a more unexpected manner, especially the 650

way they show their resistance. Furthermore, the 651
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labels are assigned to turns, not sentences. There-652

fore, many samples contain no information to help653

the models make predictions (e.g., “-forms.”). The654

MISC guidelines, however, suggest a fine-grained655

annotation based on sentences or phrases. Addi-656

tionally, we observe many samples consisting of657

multiple sentences whose direction and strength658

of motivation can move from one end to another659

as the client speak. This explains partly the low660

inter-annotator agreement on AnnoMI.661

Annotation of certainty level: As explained in662

Section 3, we use lists of linguistic certainty mark-663

ers to manually annotate the strength value of an664

utterance. Yet, our observation is that some mark-665

ers’ class can depend on context. For example, “I666

think” is often classified as “low” strength because667

it shows the lack of confidence of the speaker. How-668

ever, when watching the videos, we sometimes do669

not detect such low confidence. In fact, “I think”670

as a hedge word might probably imply politeness671

or reflect social and power relations between the672

interlocutors (Prabhakaran et al., 2018). Addition-673

ally, the motivation for this paper is to have a sanity674

check on whether LLMs can be employed for low-675

resourced tasks in psychotherapy and if yes, how676

we can best leverage them. Therefore, we only have677

one annotator for the test set in the strength task.678

In future works, we would approach the annotation679

process in a more controlled manner.680

Multimodal system: We only utilise textual681

features to make predictions. Prior works suggest682

incorporating visual features (i.e., facial expres-683

sions) for the type task (Nakano et al., 2022) as684

the client might hint their resistance by keeping685

silent and/or looking away. As for the strength686

task, experiments in linguistics show that acoustic687

features (e.g., pitch accents) convey speaker’s com-688

mitment (Michelas et al., 2016). When annotating689

the test set, we do observe that whether the speaker690

is fluent or hesitates about their actions can be a691

signal for their certainty level.692

9 Ethical Concerns693

MI is a therapy originally developed to help peo-694

ple change their harmful behaviours such as alco-695

holism (Miller and Rollnick, 2023). Due to its696

effectiveness, MI practitioners have applied it to697

other fields, including those involving unethical698

practices such as sales or marketing8. We acknowl-699

8https://motivationalinterviewing.org/
non-ethical-practice-mi

edge that an MI-aware agent can be misused to 700

target low-motivated users for motivation tricks 701

for behaviour change that benefits the providers 702

instead of the clients (i.e., buy more products, ask 703

for donation against their will), just as how an MI 704

expert can misuse the technique. Our belief is that 705

an MI-aware agent can have implications for the 706

development of intelligent systems in healthcare 707

domain. Mental health is always a big issue in mod- 708

ern society. Additionally, an MI-aware agent can 709

motivate people for positive behaviour change such 710

as being more physically active (Olafsson et al., 711

2020). 712
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A Label Distribution 1143

training (full) validation test

change 854 79 169
neutral 2372 179 355
sustain 391 42 76

Table 6: Label distribution for type task.

training validation test

high 50 20 122
medium 35 15 357
low 43 15 121

Table 7: Label distribution for strength task.

training validation test

change high 24 10 36
change medium 18 8 82
change low 24 8 51

neutral high 0 0 58
neutral medium 0 0 237
neutral low 0 0 60

sustain high 26 10 28
sustain medium 17 7 38
sustain low 19 7 10

Table 8: Label distribution for multitask learning.

Table 6 and Table 7 show the label distribution 1144

for type and strength tasks respectively. 1145

Table 8 shows the number of labels and Figure 5 1146

depicts the percentage of each label for multitask 1147

learning in Section 6.3. In the mixed datasets, we 1148

add the data with type and strength labels but the 1149

amount of multitask data remains unchanged. 1150

B Training Details 1151

We use Quadro RTX 8000 (48 GB in memory) 1152

and GeForce RTX 2080 (11 GB in memory) to 1153

fine-tune Flan-T5 and RoBERTa respectively. As 1154

Flan-T5-XXL version is 45 GB, we load it in 8 1155

bit for both training and inference so it can be fit- 1156

ted in one RTX 8000 GPU. To search for the best 1157

learning rate with Flan-T5, we use Weights and 1158

Bias9 to randomly sample from the range of 5e-3 1159

9https://wandb.ai/
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Figure 5: Label distribution for multitask learning (Section 6.3). The training set contains no samples of any
“neutral” variants even though they make up for nearly 60% of the test set.

to 5e-5 in 30 trials on the Flan-T5-XL version (3B1160

parameters) instead of Flan-T5-XXL (11B) to re-1161

duce computational costs. We use a fixed seed for1162

reproducibility purposes.1163

Training time varies depending on data size. Us-1164

ing the full dataset of type task (i.e., 3k6 samples),1165

the fine-tuning takes roughly 6 hours using early1166

stopping. With data size ranging from 50 to 300,1167

it takes from 30 minutes to 3 hours for 30 epochs1168

without early stopping. Inference time on the test1169

set using Flan-T5-XXL takes roughly 2.5 hours.1170

However, but the instruction-tuned models with1171

LoRa adapters take more than twice the latency1172

even after the adapters have been merged with the1173

original models.1174
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