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Abstract
We present experiments and their corresponding theory, demonstrating that synaptic neural
balancing can significantly enhance deep learning speed, accuracy, and generalization due
to the symmetry that it creates in the synaptic weights. Given an additive cost function
(regularizer) of the synaptic weights, a neuron is said to be in balance if the total cost of
it incoming weights is equal to the total cost of its outgoing weights. For large classes of
networks, activation functions, and regularizers, neurons can be balanced fully or partially
using scaling operations that do not change their functionality. Furthermore, these balancing
operations are associated with a strictly convex optimization problem with a single optimum
and can be carried in any order. In our simulations, we systematically observe that: (1) Fully
balancing before training results in better performance as compared to several other training
approaches; (2) Interleaving partial (layer-wise) balancing and stochastic gradient descent
steps during training results in faster learning convergence and better overall accuracy (with
L1 balancing converging faster than L2 balancing; and (3) When given limited training
data, neural balanced models outperform plain or regularized models. and this is true both
for both feedforward and recurrent networks. In short, the evidence supports that neural
balancing operations with their symmetry ought to be added to the arsenal of methods
used to regularize and train neural networks.
Keywords: Neural Balance, Weight Symmetry, Bioplausible Regularization, Neural Net-
works

1. Introduction

Neural balance refers to the idea of achieving or keeping a certain equilibrium in a neural
network during training or after training, whereby such equilibrium may facilitate better
information flow, or lower energy expenditure Shwartz-Ziv (2022). As such, there are different
notions of neural balance including, for example, the notion of balance between excitation
and inhibition in biological neural networks (Froemke, 2015; Field et al., 2020; Howes and
Shatalina, 2022; Kim and Lee, 2022; Shirani and Choi, 2023). Here we develop the concept
of synaptic neural balance which refers to any systematic relationship between the input and
output synaptic weights of individual neurons, or layers of neurons. Specifically, we consider
the case where the cost of the input weights is equal to the cost of the output weights, where
the cost is defined by some regularizer. One of the most basic examples of such a relationship
is when the sum of the squares of the input weights of a neuron is equal to the sum of the
squares of its output weights. In this work, we briefly describe the theory of synaptic neural
balance and demonstrate its applications to deep learning regularization. We now describe
the base case of synaptic neural balance.
Base Case: Consider a neuron with a ReLU activation function inside a network trained to
minimize a regularized error function E = E +R, where E is the data-dependent error and
R is the regularizer (typically L2 regularizer). If we multiply the incoming weights of the
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neuron by some λ > 0 and divide the outgoing weights of the neuron by the same λ, it is easy
to see that this scaling operation does not affect in any way the contribution of the neuron to
the rest of the network. Thus, the error E which depends only on the input-output function
of the network is unchanged. However, the value of the L2 regularizer changes continuously
with λ, and the corresponding contribution is given by:∑

i∈IN
(λwi)

2 +
∑

i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1)

where IN and OUT denote the set of incoming and outgoing weights respectively,
A =

∑
i∈IN w2

i , and B =
∑

i∈OUT w2
i . When λ moves away from 1, the contribution

increases in one direction and decreases in the other. In the direction where it decreases, we
can solve for the value λ∗ associated with the mimimal cost. Without taking derivatives,
we note that the product of the two terms on the right-hand side of Equation 1 is equal to
AB and does not depend on λ. Thus, the minimum is achieved when these two terms are
equal, which yields: (λ∗)4 = B/A for the optimal λ∗. The corresponding new set of weights,
vi = λ∗wi for the input weights and vi = wi/λ

∗ for the outgoing weights, must be balanced:∑
i∈IN v2i =

∑
i∈OUT v2i . This is because the optimal scaling factor for the optimal synaptic

weights can only be λ∗ = 1.
There have been isolated previous studies of this kind of synaptic balance (Du et al., 2018;

Stock et al., 2022; Arora et al., 2018) under special conditions. Yang et al. (2022) proposed
to replace the L2 regularization term in the loss with the sum of products of l2 norms of
the input and output weights. Saul (2023) computes multiplicative rescaling factors—one at
each hidden unit— to balance the weights. Neyshabur et al. (2015a,c) show that training
with stochastic gradient descent does not work well in highly unbalanced neural networks.
Learning in neural networks can be accelerated with rescaling transformations Zhao et al.
(2022); Armenta et al. (2023) without mentioning balancing the weights though.

Furthermore, there are many intriguing questions that can be raised. For instance: Why
does balance occur? Does it occur only with ReLU neurons? Does it occur only with L2

regularizers? Does it occur only in fully connected feedforward architectures? Does it occur
only at the end of training? What happens if we iteratively balance neurons at random in a
large network? And can partial or full balancing, before or during learning, be used as an
effective regularization technique? All these questions, but the last one, are addressed by the
theory of synaptic neural balance that we have developed and briefly describe in the next
section. The last question, on using balancing as a learning regularizer, is our main topic.

2. The Theory of Synaptic Neural Balance

We present a brief summary of the main point of the theory. The complete theory is described
in the Appendix with the detailed proofs of all the theorems.
Theorem: (Balance and Regularizer Minimization) Consider a neural network with BiLU
activation functions in all the hidden units and overall error function of the form:

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (2)
where each function gw(w) is continuously differentiable, depends on the magnitude |w|

alone, and grows monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the
weights W and any hidden unit i in the network and any λ > 0 we can multiply the incoming
weights of i by λ and the outgoing weights of i by 1/λ without changing the overall error E.
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Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 1: Test accuracy for a Recurrent Neural Network trained on the IMDB sentiment
analysis dataset. A full balance before the commencement of training universally
results in a higher test accuracy during training.

Then, for any neuron, there exists at least one optimal value λ∗ that minimizes R(W ). Any
optimal value must be a solution of the consistency equation:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (3)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized
balance equation: ∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (4)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the
optimal value λ∗ is unique and equal to:

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(5)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (6)

Proof: The proof is given in the Appendix. We use the optimal value λ∗, which we proved
how to find in the Appendix, for our experiments in the next Section.

3. Experiments and Results

In our experiments, we train and compare various neural network architectures using full
neural balancing, partial balancing, and L1 or L2 regularization. The term “plain” is used
to refer to training of neural networks without balancing or regularizers. The balancing
operations for each neuron in each layer take place in parallel so they do not impose a
bottleneck during training. To ensure reproducibility and fairness, experiments comparing
training methodologies use the same range of 8 seeds, learning rates, and train/test splits.

3.1. Full Balance Before Training

Full balance is obtained by iteratively balancing all BiLU neurons in the network until
convergence is achieved. Compared to a standard initialization, the application of full
balancing results in faster convergence, and higher overall accuracy when using the same
model architecture, hyperparameters, and training methodologies. Larger model sizes tend
to exhibit a stronger correlation between the use of neural balancing, and the model’s rate of
convergence.
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Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 2: Test accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial
balancing outperforms the other training methodologies on all model sizes

3.2. Partial Balance During Training

Partial balance is implemented by balancing the neurons in a layer-wise fashion, starting from
the input layer and moving towards the output layer or vice-versa (no significant differences
are observed). Due to the gradual nature of partial balance, the periodicity of the balancing
operation is key to its implementation. In partial balance, the balancing operation can be
performed up to once per epoch. Through the use of partial balancing during training, it
has been observed that the ratio of the norms of a neuron’s output to input weights tends to
equalize, irrespective of the periodicity of epochs that we perform partial balancing operations.
We have also observed that partial balancing helps the network converge faster and achieve
a balanced state as is expected in a fully-trained network, same is in full balancing.
3.3. Discussion

Summing up our experiments we observe the following quantitative results. In FCNs,
Neural Balance yields a notable improvement in model performance and convergence speed.
Specifically, this method results in a 3-5% performance increase over plain models, and
more than a 1% improvement over optimally L1-regularized models. Additionally, L1 neural
balancing facilitates convergence at a rate 1.5 to 10 times faster, contingent on model size.

In RNNs, L1 neural balancing contributes to a 2-5% increase in convergence speed,
with the application of L2 neural balancing leading to a more than 15% acceleration in
convergence when training on 5% of the data. These findings underscore the efficacy of
L1 neural balancing in optimizing both performance and training efficiency across different
model architectures. We have extended our experiments to the Appendix due to the page
limit.

4. Conclusions

Synaptic balancing provides a novel approach to regularization that is supported by an
underlying theory. Synaptic balancing is very general in the sense that it can be applied with
all usual cost functions, including all Lp cost functions to create symmetry in the synaptic
weights of the neurons. Synaptic balancing can be carried in full or in partial manner, due to
the convexity connection provided by the main theorem. It can be applied at any time during
the learning process: at the start of learning, at the end of learning, or during learning, by
alternating balancing steps with stochastic gradient steps. These approaches can improve
learning in terms of speed, accuracy or generalization abilities. Thus, in short, balancing is
a novel effective approach to regularization that can be added to the list of tools available
to effectively regularize networks, like dropout, and other regularization tools due to the
symmetry that it creates in the synaptic weights of the neurons.
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Appendix A. Appendix

Here we detail the additional theory, datasets, models, and training procedures used in the
experiments in the main paper, separated into subsections which correspond to that of the
main paper. We also included some supplemental experiments that are not present in the
main paper.

In order to ensure that our results are reproducible, when we compare training method-
ologies, we do so using a sample size of 8 different, and random, seeds per methodology, with
those seeds being shared with the other training methodologies. We train all of our models
on a server equipped with 8 Nvidia RTX A6000 Ada Generation graphics cards, with 384
GB of total memory, run on CUDA version 12.4.

A.1. Establishing Partial Balancing

In our experiments, we annotate 2 different kinds of neural balancing operations: L1 Neural
Balancing, and L2 Neural Balancing. The names represent the norms used when balancing
the input and output weights, with the L1 norm being used for L1 Neural Balancing, and
the L2 norm being used for L2 Neural Balancing.

A.2. Toy Experiment on a Circle Toy Dataset

To validate our initial hypothesis, which is that the balancing operation results in the
equalization of the norms of the input and output weights for every neuron in a neural
network, we observe the ratio between the aforementioned norms during training. We do this
through a toy network trained on a simple 2-dimensional dataset for a binary classification
task, where the limited number of layers and ’neurons’ allow us to measure weights without
the computational intensity attributed to accessing values from a large network. We compare
the use of full balancing with partial balancing during training. Both methodologies result
in the optimal factor λ∗ calculated during balancing to converge to 1, confirming that the
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norms of the input and output weights for each neuron equalize through the use of balancing.
fig. 1 contains partial balancing performed every epoch on a 5-neuron toy model trained on a
2-dimensional concentric circle toy dataset showing that the input and output weight norms
equalize for each neuron.
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Figure 1: Partial balancing performed
every epoch on a 5-neuron
toy model trained on a 2-
dimensional dataset for a binary
classification task showing that
the input and output weight
norms equalize for each neuron
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Figure 2: Full balancing performed every
epoch on a 5-neuron toy model
trained on a 2-dimensional
dataset for a binary classifica-
tion task showing that the input
and output weight norms equal-
ize for each neuron

To contextualize the rate of convergence of the norms from the partial balancing toy
experiment, we measure the input and output norms of each neuron after a full-balance has
been performed on the network. While the full-balance guarantees that the input and output
norms of each neuron will always be close to each other, since full balancing is performed
until that requirement is met, it remains useful as a benchmark for the rate of convergence
of partial-balancing. fig. 2 delineates the rate of convergence of the input and output norms,
doing so almost immediately, due to the methodology of full balancing. fig. 1 demonstrates
the efficacy of partial-balancing, resulting in a rapid, and computationally less expensive
method of ’balancing’ neurons.

A.3. Assessment of Full Balance Before Training

In the main paper, we assess the use of the full balancing operation before the start of
training to demonstrate its efficacy at increasing the rate of convergence and overall test
accuracy of various model architectures and training styles. Partial balancing at every epoch
after a full balance results in the least change due to the fundamentally similar nature of
the full balancing operation to the partial balancing operation, hence its omission from the
plots. Repeated partial balancing results in wthe same outcome weights when using the
same seed, albeit, over time since those weights aren’t balanced from the start. In these
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Figure 3: A demonstration of the effect of a full neural balance before the start of training
on various sizes of fully connected networks, using various training methodologies.
Regardless of L2 Regularization, neural partial balancing, or plain accuracy used
in training, a neural full balance results in faster convergence, and a higher overall
accuracy.

Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Figure 4: Accompanying fig. 3, Test accuracy during training of Plain, L1 Regularized, and
L2 Regularized Fully Connected Networks trained on MNIST, comparing full
balancing before training with no full balance before training. As observed in fig. 3,
full balancing before training results in faster convergence, as well as universally
higher attained test accuracy.

experiments, we use fully connected neural networks in a few sizes to demonstrate the range
of the balancing operation. Full balance before training is shown to increase the rate of
convergence, as well as the overall accuracy obtainable during training. To assess full neural
balance before training, we performed a full balancing operation on the neurons of the model
after the initialization of the model’s weights, and before the commencement of training.

A.4. Partial Balance with FCNs

In the main paper, we assess the use of the partial balancing operation during training to
demonstrate its efficacy at increasing the rate of convergence and overall test accuracy of
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Figure 5: Accompanying table 2, comparison of neural balance, L1 and L2 Regularization on
MNIST. We observe that as the models grow bigger, neural balance helps model
converge faster and perform better than the other techniques.

Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 3: Test accuracy across training comparisons of partial balancing, L2 Regularization,
and Plain Accuracy for FCNs of varying sizes on MNIST. We observe that L1
partial balancing outperforms the other training methodologies on all model sizes

various model architectures and training styles. As included in the main paper in section 3.2,
we supplement our tabular results in fig. 5 with plots that delineate the positive impact of
partial and full neural balance as performed through the balancing operation during/before
training. Following the line of inquiry on the performance of neural balancing on FCNs
trained on MNIST, we assess its performance on FashionMNIST using the same model
architectures. We use FCNs of various sizes, and perform a partial balance on the model
at every epoch, identically to the MNIST experiments. We observed similar results on
performance and convergence on FashionMNIST. Regardless of the size of the model, or the
methodology used to train said model, neural balancing significantly increases the rate of
convergence, as well as its overall test accuracy.
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Figure 7: A comparison between partial balancing, L2 Regularization, and Plain Accuracy on
a 3 Layer RNN using the IMDB sentiment analysis dataset. We also contrast the
standard initialization with a full neural balancing operation performed before the
start of training. We observe that neural partial balancing performed every epoch,
paired with a full balance before training, results in the best overall accuracy, and
convergence speed.
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Figure 6: Test accuracy across training comparisons of partial balancing, L2 Regularization,
and Plain Accuracy for FCNs of varying sizes on Fashion MNIST. We observe that
L1 partial balancing outperforms the other training methodologies on all model
sizes.

A.5. Full Balance with RNNs on IMDB

In the main paper, we assess the use of the partial balancing operation during training to
demonstrate its efficacy at increasing the rate of convergence and overall test accuracy of a
recurrent neural network architecture, comparing various training styles in the process. For
these experiments, we use the IMDB sentiment analysis dataset. The IMDB dataset is a
collection of positively/negatively labeled text containing movie reviews from the popular
movie review website IMDB. We use a recurrent neural network with 3 hidden layers to
demonstrate the efficacy of the partial balancing operation.

10



Extended Abstract Track
Short Title

Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 4: Accompanying fig. 7, Test accuracy for a Recurrent Neural Network trained on
the IMDB sentiment analysis dataset, comparing Plain, L1 Regularized, and L2
Regularized models with and without a full balance at the start of training. A full
balance before the commencement of training universally results in a higher test
accuracy during training.
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Figure 8: A comparison between partial balance, standard regularization, and Plain Accuracy,
on various Fully Connected Networks trained on 1% of the MNIST dataset. We
observe that neural balancing consistently has a positive impact on the rate of
convergence and overall accuracy of the model.

A.6. Neural Balance in Limited Data Environments

As mentioned in the main paper, we assess the performance of a full neural balance, as well
as partial balance during training. These experiments are executed by stratifying samples
equally according to their class labels to maintain a balanced distribution of classes within
the training data. Accompanying ??, we add plots to visualize the tabular information, and
to demonstrate the efficacy of neural balance at incresing the rate of convergence of training.
fig. 8 delineates the efficacy of partial balance at improving overall accuracy and training
speed.

A.7. Neural Balancing in Transformers

Transformers models, characterized by their attention mechanism, represent the state of
the art in the field of Natural Language Processing. In our study, neural balancing is only
applied to the feed-forward, linear layers in the transformer block, as any manipulation of
the attention matrix strongly affects the model output. We observe that the best training
method is the ’clean’ style, where neither neural balancing, nor L2 regularization is applied
to the model. For these experiments, we use the IMDB sentiment analysis dataset, and we
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Type Plain L1 Regularization L2 Regularization
No NB at Start 83.66% 81.95% 83.36%
NB at Start 83.52% 81.65% 83.21%

Table 5: Accompanying fig. 9, Test accuracy for a Transformer Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized
models with and without a full balance at the start of training.

use a transformer model with 8 attention heads, and 6 feedforward encoder layers, each with
a hidden dimensionality of 2048 units.
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Figure 9: A comparison of various combinations of full balancing and training methodologies
using a transformer model. The combination of L2 regularization and neural
balancing fails after some epochs, and the clean model without any form of
balancing performs the best out of the training styles.

A.8. Neural Balance in Bioplausible Architectures

In the main paper, we detail the use of neural balancing operations in biologically plausible
systems. Specifically, we employ Direct Feedback Alignment (DFA) in place of backprop-
agation as the biologically plausible alternative, and perform partial balancing during the
training of the model to achieve neural balance.
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Type Accuracy
clean 97.764%
nb 97.764%
L2 with λ = 1e− 4 97.758%
L2 with λ = 1e− 5 97.764%

Figure 10: Comparison between neural
balancing and L2 with various
lambda values using a ’clean’
model as a benchmark, trained
with DFA on a 2-layer fully
connected network

Type Accuracy
clean 97.4525%
nb 97.4525%
L2 with λ = 1e− 4 95.417%
L2 with λ = 1e− 5 97.4525

Figure 11: Comparison between neural
balancing and L2 with various
lambda values using a ’clean’
model as a benchmark, trained
with DFA on a 7-layer fully
connected network

Appendix B. Full Proof and Theory

B.1. Homogeneous and BiLU Activation Functions

In this section, we generalize the basic example of the introduction from the standpoint
of the activation functions. In particular, we consider homogeneous activation functions
(defined below). The importance of homogeneity has been previously identified in somewhat
different contexts Neyshabur et al. (2015b). Intuitively, homogeneity is a form of linearity
with respect to weight scaling and thus it is useful to motivate the concept of homogeneous
activation functions by looking at other notions of linearity for activation functions. This
will also be useful for Section B.5 where even more general classes of activation functions are
considered.

B.1.1. Additive Activation Functions

Definition 1 A neuronal activation function f : R → R is additively linear if and only if
f(x+ y) = f(x) + (f(y) for any real numbers x and y.

Proposition 2 The class of additively linear activation functions is exactly equal to the
class of linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof Obviously linear activation functions are additively linear. Conversely, if f is
additively linear, the following three properties are true:
(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As
a result, f(n/m) = nf(1)/m for any integers n and m (m ̸= 0).
(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.
(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).
From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and
thus f must be linear.
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B.1.2. Multiplicative Activation Functions

Definition 3 A neuronal activation function f : R → R is multiplicative if and only if
f(xy) = f(x)(f(y) for any real numbers x and y.

Proposition 4 The class of continuous multiplicative activation functions is exactly equal
to the class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every
x, and all the even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant
in R.

Proof It is easy to check the functions described in the proposition are multiplicative.
Conversely, assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) =
f(xx) = f(x)f(x) and thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for
any x we must have f(x) = 0 because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1,
then for any x we must have f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus,
in the rest of the proof, we can assume that f(0) = 0 and f(1) = 1. By induction, it is easy
to see that for any x ≥ 0 we must have: f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any
integer (positive or negative). As a result, for any x ∈ R and any integers n and m we must
have: f(xn/m) = f(x)n/m. By continuity this implies that for any x ≥ 0 and any r ∈ R, we
must have: f(xr) = f(x)r. Now there is some constant c such that: f(e) = ec. And thus,
for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address negative values of
x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either equal to 1
or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1 the
function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd
(f(−x) = −f(x)).

We will return to multiplicative activation function in a later section.

B.1.3. Linearly Scalable Activation Functions

Definition 5 A neuronal activation function f : R → R is linearly scalable if and only if
f(λx) = λf(x) for every λ ∈ R.

Proposition 6 The class of linearly scalable activation functions is exactly equal to the class
of linear activation functions, i.e., activation functions of the form f(x) = ax.

Proof Obviously, linear activation functions are linearly scalable. For the converse, if f is
linearly multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking
λ = 1, we get f(x) = f(1)x and thus f is linear.

Thus the concepts of linearly additive or linearly scalable activation function are of limited
interest since both of them are equivalent to the concept of linear activation function. A
more interesting class is obtained if we consider linearly scalable activation functions, where
the scaling factor λ is constrained to be positive (λ > 0), also called homogeneous functions.
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B.1.4. Homogeneous Activation Functions

Definition 7 (Homogeneous) A neuronal activation function f : R → R is homogeneous if
and only if: f(λx) = λf(x) for every λ ∈ R with λ > 0.

Remark 8 Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus
f(0) = 0. Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0
instead of λ > 0).

Remark 9 Clearly, linear activation functions are homogeneous. However, there exists also
homogeneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.

We now provide a full characterization of the class of homogeneous activation functions.

B.1.5. BiLU Activation Functions

We first define a new class of activation functions, corresponding to bilinear units (BiLU),
consisting of two half-lines meeting at the origin. This class contains all the linear functions,
as well as the ReLU and leaky ReLU functions, and many other functions.

Definition 10 (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and
only if f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b
in R.

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1)
units, and symmetric linear units (a = −b), all of which can also be viewed as special cases
of piece-wise linear units Tavakoli et al. (2021), with a single hinge. One advantage of ReLU
and more generally BiLU neurons, which is very important during backpropagation learning,
is that their derivative is very simple and can only take one of two values (a or b).

Proposition 11 A neuronal activation function f : R → R is homogeneous if and only if it
is a BiLU activation function.

Proof Every function in BiLU is clearly homogeneous. Conversely, any homogeneous
function f must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any
positive x; and (3) f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in
BiLU with a = −f(−1) and b = f(1).

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a
single hidden layer, have universal approximation properties. In the next two sections, we
introduce two fundamental neuronal operations, scaling and balancing, that can be applied
to the incoming and outgoing synaptic weights of neurons with BiLU activation functions.

B.2. Scaling

Definition 12 (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i)
denote the synaptic scaling operation by which the incoming connection weights of neuron i
are multiplied by λ and the outgoing connection weights of neuron i are divided by λ.
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Note that because of the homogeneous property the scaling operation does not change

how neuron i affects the rest of the network. In particular, the input-output function of
the overall network remains unchanged after scaling neuron i bt any λ > 0. Note also that
scaling always preserves the sign of the synaptic weights to which it is applied, and the
scaling operation can never convert a non-zero synaptic weight into a zero synaptic weight,
or vice versa.

As usual, the bias is treated here as an additional synaptic weight emanating from a unit
clamped to the value one. Thus scaling is applied to the bias.

Proposition 13 (Commutativity of Scaling) Scaling operations applied to any pair of BiLU
neurons i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the
resulting network weights are the same, regardless of the order in which the scaling operations
are applied. Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).

This is obvious. As a result, any set I of BiLU neurons in a network can be scaled
simultaneously or in any sequential order while leading to the same final configuration
of synaptic weights. If we denote by 1, 2, . . . , n the neurons in I, we can for instance
write:

∏
i∈I Sλi

(i) =
∏

σ(i)∈I Sλσ(i)
(σ(i)) for any permutation σ of the neurons. Like-

wise, we can collapse operations applied to the same neuron. For instance, we can write:
S5(1)S2(2)S3(1)S4(2) = S15(1)S8(2) = S8(2)S15(1)

Definition 14 (Coordinated Scaling) For any set I of BiLU neurons in a network and any
λ > 0, we let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are
scaled by the same λ.

B.3. Balancing

Definition 15 (Balancing) Given a BiLU neuron in a network, the balancing operation
B(i) is a particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to
optimize a particular cost function, or regularizer, asociated with the incoming and outgoing
weights of neuron i.

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer,
but in the next section, we will consider more general classes of regularizers and study the
corresponding optimization process. For the L2 regularizer, as shown in the next section,
this optimization process results in a unique value of λ∗ such that sum of the squares of
the incoming weights is equal to the sum of the squares of the outgoing weights, hence the
term “balance”. Note that obviously B(B(i)) = B(i) and that, as a special case of scaling
operation, the balancing operation does not change how neuron i contributes to the rest of
the network, and thus it leaves the overall input-output function of the network unchanged.

Unlike scaling operations, balancing operations in general do not commute as balancing
operations (they still commute as scaling operations). Thus, in general, B(i)B(j) ̸= B(j)B(i).
This is because if neuron i is connected to neuron j, balancing i will change the connection
between i and j, and, in turn, this will change the value of the optimal scaling constant for
neuron j and vice versa. However, if there are no non-zero connections between neuron i
and neuron j then the balancing operations commute since each balancing operation will
modify a different, non-overlapping, set of weights.
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Definition 16 (Disjoint neurons) Two neurons i and j in a neural network are said to be
disjoint if there are no non-zero connections between i and j.

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be extended
to disjoint sets of neurons.

Definition 17 (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any
pair i and j of neurons in I there are no non-zero connections between i and j.

For example, in a layered feedforward network, all the neurons in a layer form a disjoint set,
as long as there are no intra-layer connections or, more precisely, no non-zero intra-layer
connections. All the neurons in a disjoint set can be balanced in any order resulting in the
same final set of synaptic weights. Thus we have:

Proposition 18 If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons
in a network, we have:

∏
i∈I B(i) =

∏
i∈I Sλ∗

i
(i) =

∏
σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏
σ(i)∈I B(σ(i)) for

any permutation σ of the neurons.

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint
or not disjoint).

Definition 19 (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or
not disjoint) in a network, the coordinated balacing of these neurons, written as Bλ∗(I),
corresponds to coordinated scaling all the neurons in I by the same factor λ∗, Where λ∗

minimizes the cost functions of all the weights, incoming and outgoing, associated with all
the neurons in I.

Remark 20 While balancing corresponds to a full optimization of the scaling operation, it
is also possible to carry a partial optimization of the scaling operation by choosing a scaling
factor that reduces the corresponding contribution to the regularizer without minimizing it.

B.4. General Framework and Single Neuron Balance

In this section, we generalize the kinds of regularizer to which the notion of neuronal synaptic
balance can be applied, beyond the usual L2 regularizer and derive the corresponding balance
equations. Thus we consider a network (feedforward or recurrent) where the hidden units
are BiLU units. The visible units can be partitioned into input units and output units. For
any hidden unit i, if we multiply all its incoming weights IN(i) by some λ > 0 and all its
outgoing weights OUT (i) by 1/λ the overall function computed by the network remains
unchanged due to the BiLU homogeneity property. In particular, if there is an error function
that depends uniquely on the input-output function being computed, this error remains
unchanged by the introduction of the multiplier λ. However, if there is also a regularizer
R for the weights, its value is affected by λ and one can ask what is the optimal value of λ
with respect to the regularizer, and what are the properties of the resulting weights. This
approach can be applied to any regularizer. For most practical purposes, we can assume that
the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any
loss of generality, we can assume that it is lower-bounded by zero. If we want the minimum
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value to be achieved by some λ > 0, we need to add some mild condition that prevents the
minimal value to be approached as λ → 0), or as λ → +∞. For instance, it is enough if there
is an interval [a, b] with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in
the intervals (0, a] and [b,+∞). Additional (mild) conditions must be imposed if one wants
the optimal value of λ to be unique, or computable in closed form (see Theorems below).
Finally, we want to be able to apply the balancing approach

Thus, we consider overall regularized error functions, where the regularizer is very general,
as long as it has an additive form with respect to the individual weights:

E(W ) = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (7)

where W denotes all the weights in the network and E(W ) is typically the negative log-
likelihood (LMS error in regression tasks, or cross-entropy error in classification tasks). We
assume that the gw are continuous, and lower-bounded by 0. To ensure the existence and
uniqueness of minimum during the balancing of any neuron, We will assume that each
function gw depends only on the magnitude |w| of the corresponding weight, and that
gw is monotonically increasing from 0 to +∞ (gw(0) = 0 and limx→+∞ gw(x) = +∞).
Clearly, L2, L1 and more generally all Lp regularizers are special cases where, for p > 0, Lp

regularization is defined by: R(W ) =
∑

w |w|p.
When indicated, we may require also that the functions gw be continuously differentiable,

except perhaps at the origin in order to be able to differentiate the regularizer with respect
to the λ’s and derive closed form conditions for the corresponding optima. This is satisfied
by all forms of Lp regularization, for p > 0.

Remark 21 Often one introduces scalar multiplicative hyperparameters to balance the effect
of E and R, for instance in the form: E = E+βR. These cases are included in the framework
above: multipliers like β can easily be absorbed into the functions gw above.

Theorem 22 (General Balance Equation). Consider a neural network with BiLU activation
functions in all the hidden units and overall error function of the form:

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (8)

where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows
monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any
hidden unit i in the network and any λ > 0 we can multiply the incoming weights of i by
λ and the outgoing weights of i by 1/λ without changing the overall error E. Furthermore,
there exists a unique value λ∗ where the corresponding weights v (v = λ∗w for incoming
weights, v = w/λ∗ for the outgoing weights) achieve the balance equation:∑

v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (9)

Proof Under the assumptions of the theorem, E is unchanged under the rescaling of
the incoming and outgoing weights of unit i due to the homogeneity property of BiLUs.
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Without any loss of generality, let us assume that at the beginning:
∑

w∈IN(i) gw(w) <∑
w∈OUT (i) gw(w). As we increase λ from 1 to +∞, by the assumptions on the functions

gw, the term
∑

w∈IN(i) gw(λw) increases continuously from its initial value to +∞, whereas
the term

∑
w∈OUT (i) gw)w/λ) decreases continuously from its initial value to 0. Thus, there

is a unique value λ∗ where the balance is realized. If at the beginning
∑

w∈IN(i) gw(w) >∑
w∈OUT (i) gw(w), then the same argument is applied by decreasing λ from 1 to 0.

Remark 23 For simplicity, here and in other sections, we state the results in terms of a
network of BiLU units. However, the same principles can be applied to networks where only a
subset of neurons are in the BiLU class, simply by applying scaling and balancing operations
to only those neurons. Furthermore, not all BiLU neurons need to have the same BiLU
activation functios. For instance, the results still hold for a mixed network containing both
ReLU and linear units.

Remark 24 In the setting of Theorem 22, the balance equations do not necessarily minimize
the corresponding regularization term. This is addressed in the next theorem.

Remark 25 Finally, zero weights (w = 0) can be ignored entirely as they play no role in
scaling or balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit
were to be zero, it could be removed entirely from the network

Theorem 26 (Balance and Regularizer Minimization) We now consider the same setting as
in Theorem 22, but in addition we assume that the functions gw are continuously differentiable,
except perhaps at the origin. Then, for any neuron, there exists at least one optimal value λ∗

that minimizes R(W ). Any optimal value must be a solution of the consistency equation:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (10)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized
balance equation: ∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (11)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the
optimal value λ∗ is unique and equal to:

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(12)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(13)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:
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∑

w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (14)

Proof Due to the additivity of the regularizer, the only component of the regularizer that
depends on λ has the form:

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (15)

Because of the properties of the functions gw, Rλ is continously differentiable and strictly
bounded below by 0. So it must have a minimum, as a function of λ where its derivative is
zero. Its derivative with respect to λ has the form:

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (16)

Setting the derivative to zero, gives:

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (17)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value
for λ must satisfy:

λ =
(∑

w∈OUT (i)wg
′
w(w/λ)∑

w∈IN(i)wg
′
w(λw)

)1/2
(18)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g),
then the optimal value λ must satisfy:

λ =
(∑

w∈OUT (i)wg
′(w/λ)∑

w∈IN(i)wg
′(λw)

)1/2
(19)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) =
s(w)p|w|p−1, where s(w) denotes the sign of the weight w. Substituting in Equation 19, the
optimal rescaling λ must satisfy:

λ∗ =
(∑

w∈OUT (i)ws(w)|w|p−1∑
w∈IN(i)w|ws(w)|p−1

)1/2p
=

(∑
w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2 (20)

At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation 17 yields
immediately the generalized balance equation to be satisfied at the optimum:∑

w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (21)
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In the case of LP regularization, it is easy to check by applying Equation 21, or by direct
calculation that: ∑

w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (22)

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron
i satisfy the Lp balance (Equation 14). The change in the value of the regularizer is given by:

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (23)

By substituting λ∗ by its explicit value given by Equation 20 and collecting terms gives
Equation 13.

Remark 27 The monotonicity of the functions gw is not needed to prove the first part of
Theorem 26. It is only needed to prove uniqueness of λ∗ in the Lp cases.

Remark 28 Note that the same approach applies to the case where there are multiple additive
regularizers. For instance with both L2 and L1 regularization, in this case the function f has
the form: gw(w) = αw2 + β|w|. Generalized balance still applies. It also applies to the case
where different regularizers are applied in different disconnected portions of the network.

Remark 29 The balancing of a single BiLU neuron has little to do with the number of
connections. It applies equally to fully connected neurons, or to sparsely connected neurons.

B.5. Scaling and Balancing Beyond BiLU Activation Functions

So far we have generalized ReLU activation functions to BiLU activation functions in the
context of scaling and balancing operations with positive scaling factors. While in the
following sections we will continue to work with BiLU activation functions, in this section
we show that the scaling and balancing operations can be extended even further to other
activation functions. The section can be skipped if one prefers to progress towards the main
results on stochastic balancing.

Given a neuron with activation function f(x), during scaling instead of multiplying and
dividing by λ > 0, we could multiply the incoming weights by a function g(λ) and divide the
outgoing weights by a function h(λ), as long as the activation function f satisfies:

f(g(λ)x) = h(λ)f(x) (24)

for every x ∈ R to ensure that the contribution of the neuron to the rest of the network
remains unchanged. Note that if the activation function f satisfies Equation 24, so does
the activation function −f . In Equation 24, λ does not have to be positive–we will simply
assume that λ belongs to some open (potentially infinite) interval (a, b). Furthermore, the
functions g and h cannot be zero for λ ∈ (a, b) since they are used for scaling. It is reasonable
to assume that the functions g and h are continuous, and thus they must have a constant
sign as λ varies over (a, b).
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Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or

h(λ) = 1 for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the
activation function f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ
in (a, b). For simplicity, let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for
every λ. Substituting in Equation 24 yields:

f(g(λ)x) = f(g(λ))f(x) (25)

for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that
defines multiplicative activation functions over the corresponding domain (see Proposition
4), and thus we can identify a key family of solutions using power functions. Note that we
can define a new parameter µ = g(λ), where µ ranges also over some positive or negative
interval I over which: f(µx) = f(µ)f(x).

B.5.1. Bi-Power Units (BiPU)

Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some c ∈ R. Then the activation
function must satisfy the equation:

f(λx) = λcf(x) (26)

for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation
function. More generally, these functions are characterized by the following proposition.

Proposition 30 The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R
and any λ > 0 consist of the functions of the form:

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(27)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in
addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units).
Note that in the general case where c > 0, C and D do not need to be equal. In particular,
one of them can be equal to zero, and the other one can be different from zero giving rise to
“rectified power units” (Figure 12).
Proof By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we
see that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must
have: f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c ̸= 0, then
f(0) = 0. In this case, if we want the activation function to be continuous, then we see
that we must have c ≥ 0. So in summary for x > 0 we must have f(x) = f(1)xc = Cxc.
For the function to be right continuous at 0, we must have either f(0) = f(1) = C with
c = 0 or f(0) = 0 with c > 0. We can now look at negative values of x. By the same
reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any λ > 0. Thus for any x < 0 we
must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if f is continuous, there are
two possibilities. If c = 0, then we must have C = f(1) = D(f − 1)− and thus f(x) = C
everywhere. If c ≠ 0, then continuity requires that c > 0. In this case f(x) = Cxc for x ≥ 0
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Linear Leaky ReLU BIPU (D=0,C=1,c=2) BIPU (D=1,C=1,c=2)

Figure 12:

with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to check
directly that the resulting functions satisfy the functional equation given by Equation 26.

B.5.2. Scaling BiPU Neurons

A BiPU neuron can be scaled by multiplying its incoming weight by λ > 0 and dividing its
outgoing weights by 1/λc. This will not change the role of the corresponding unit in the
network, and thus it will not change the input-output function of the network.

B.5.3. Balancing BiPU Neurons

As in the case of BiLU neurons, we balance a multiplicative neuron by asking what is the
optimal scaling factor λ that optimizes a particular regularizer. For simplicity, here we
assume that the regularizer is in the Lp class. Then we are interested in the value of λ > 0
that minimizes the function:

λp
∑

w∈IN
|w|p + 1

λpc

∑
w∈OUT

|w|p (28)

A simple calculation shows that the optimal value of λ is given by:

λ∗ =
(c∑OUT |w|p∑

IN |w|p
)1/p(c+1)

(29)

Thus after balancing the weights, the neuron must satisfy the balance equation:

c
∑
OUT

|w|p =
∑
IN

|w|p (30)

in the new weights w.
So far, we have focused on balancing individual neurons. In the next two sections, we

look at balancing across all the units of a network. We first look at what happens to network
balance when a network is trained by gradient descent and then at what happens to network
balance when individual neurons are balanced iteratively in a regular or stochastic manner.
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B.6. Network Balance: Gradient Descent

A natural question is whether gradient descent (or stochastic gradient descent) applied to a
network of BiLU neurons, with or without a regularizer, converges to a balanced state of the
network, where all the BiLU neurons are balanced. So we first consider the case where there
is no regularizer (E = E). The results in Du et al. (2018) may suggest that gradient descent
may converge to a balanced state. In particular, they write that for any neuron i:

d

dt

( ∑
w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)
= 0 (31)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming
and outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus
if one were to start from a balanced state and use an infinitesimally small learning rate one
ought to stay in a balanced state at all times.

However, it must be noted that this result was derived for the L2 metric only, and thus
would not cover other Lp forms of balance. Furthermore, it requires an infinitesimally small
learning rate. In practice, when any standard learning rate is applied, we find that gradient
descent does not converge to a balanced state (Figure 1). However, things are different when
a regularizer term is included in the error functions as described in the following theorem.

Theorem 31 Gradient descent in a network of BiLU units with error function E = E +R
where R has the properties described in Theorem 26 (including all Lp) must converge to a
balanced state, where every BiLU neuron is balanced.

Proof By contradiction, suppose that gradient descent converges to a state that is unbalanced
and where the gradient with respect to all the weights is zero. Then there is at least one
unbalanced neuron in the network. We can then multiply the incoming weights of such a
neuron by λ and the outgoing weights by 1/λ as in the previous section without changing
the value of E. Since the neuron is not in balance, we can move λ infinitesimally so as to
reduce R, and hence E . But this contradicts the fact that the gradient is zero.

Remark 32 In practice, in the case of stochastic gradient descent applied to E +R, at the
end of learning the algorithm may hover around a balanced state. If the state reached by the
stochastic gradient descent procedure is not approximately balanced, then learning ought to
continue. In other words, the degree of balance could be used to monitor whether learning
has converged or not. Balance is a necessary, but not sufficient, condition for being at the
optimum.

Remark 33 If early stopping is being used to control overfitting, there is no reason for the
stopping state to be balanced. However, the balancing algorithms described in the next section
could be used to balance this state.

B.7. Network Balance: Stochastic or Deterministic Balancing Algorithms

In this section, we look at balancing algorithms where, starting from an initial weight
configuration W , the BiLU neurons of a network are balanced iteratively according to some
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deterministic or stochastic schedule that periodically visits all the neurons. We can also
include algorithms where neurons are partitioned into groups (e.g. neuronal layers) and
neurons in each group are balanced together.

B.7.1. Basic Stochastic Balancing

The most interesting algorithm is when the BiLU neurons of a network are iteratively balanced
in a purely stochastic manner. This algorithm is particularly attractive from the standpoint
of physically implemented neural networks because the balancing algorithm is local and the
updates occur randomly without the need for any kind of central coordination. As we shall
see in the following section, the random local operations remarkably lead to a unique form of
global order. The proof for the stochastic case extends immediately to the deterministic case,
where the BiLU neurons are updated in a deterministic fashion, for instance by repeatedly
cycling through them according to some fixed order.

B.7.2. Subset Balancing (Independent or Tied)

It is also possible to partition the BiLU neurons into non-overlapping subsets of neurons,
and then balance each subset, especially when the neurons in each subset are disjoint of
each other. In this case, one can balance all the neurons in a given subset, and repeat this
subset-balancing operation subset-by-subset, again in a deterministic or stochastic manner.
Because the BiLU neurons in each subset are disjoint, it does not matter whether the neurons
in a given subset are updated synchronously or sequentially (and in which order). Since the
neurons are balanced independently of each other, this can be called independent subset
balancing. For example, in a layered feedforward network with no lateral connections, each
layer corresponds to a subset of disjoint neurons. The incoming and outgoing connections of
each neuron are distinct from the incoming and outgoing connections of any other neuron
in the layer, and thus the balancing operation of any neuron in the layer does not interfere
with the balancing operation of any other neuron in the same layer. So this corresponds to
independent layer balancing,

As a side note, balancing a layer h, may disrupt the balance of layer h + 1. However,
balancing layer h and h+2 (or any other layer further apart) can be done without interference
of the balancing processes. This suggests also an alternating balancing scheme, where one
alternatively balances all the odd-numbered layers, and all the evenly-numbered layers.

Yet another variation is when the neurons in a disjoint subset are tied to each other in
the sense that they must all share the same scaling factor λ. In this case, balancing the
subset requires finding the optimal λ for the entire subset, as opposed to finding the optimal
λ for each neuron in the subset. Since the neurons are balanced in a coordinated or tied
fashion, this can be called coordinated or tied subset balancing. For example, tied layer
balancing must use the same λ for all the neurons in a given layer. It is easy to see that this
approach leads to layer synaptic balance which has the form (for an Lp regularizer):∑

i

∑
w∈IN(i)

|w|p =
∑
i

∑
w∈OUT (i)

|w|p (32)

where i runs over all the neurons in the layer. This does not necessarily imply that each
neuron in the layer is individually balanced. Thus neuronal balance for every neuron in a
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layer implies layer balance, but the converse is not true. Independent layer balancing will lead
to layer balance. Coordinated layer balancing will lead to layer balance, but not necessarily
to neuronal balance of each neuron in the layer. Layer-wise balancing, independent or tied,
can be applied to all the layers and in deterministic (e.g. sequential) or stochastic manner.
Again the proof given in the next section for the basic stochastic algorithm can easily be
applied to these cases (see also Appendix B).

B.7.3. Remarks about Weight Sharing and Convolutional Neural Networks

Suppose that two connections share the same weight so that we must have: wij = wkl at all
times. In general, when the balancing algorithm is applied to neuron i or j, the weight wij

will change and the same change must be applied to wkl. The latter may disrupt the balance
of neuron k or l. Furthermore, this may not lead to a decrease in the overall value of the
regularizer R.

The case of convolutional networks is somewhat special, since all the incoming weights
of the neurons sharing the same convolutional kernel are shared. However, in general, the
outgoing weights are not shared. Furthermore, certain operations like max-pooling are not
homogeneous. So if one trains a CNN with E alone, or even with E + R, one should not
expect any kind of balance to emerge in the convolution units. However, all the other BiLU
units in the network should become balanced by the same argument used for gradient descent
above. The balancing algorithm applied to individual neurons, or the independent layer
balancing algorithm, will not balance individual neurons sharing the same convolution kernel.
The only balancing algorithm that could lead to some convolution layer balance, but not to
individual neuronal balance, is the coordinated layer balancing, where the same λ is used for
all the neurons in the same convolution layer, provided that their activation functions are
BiLU functions.

We can now study the convergence properties of balancing algorithms.

B.8. Convergence of Balancing Algorithms

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iteratively
and stochastically balanced. It is essential to note that balancing a neuron j may break the
balance of another neuron i to which j is connected. Thus convergence of iterated balancing
is not obvious. There are three key questions to be addressed for the basic stochastic
algorithm, as well as all the other balancing variations. First, does the value of the regularizer
converges to a finite value? Second, do the weights themselves converge to fixed finite values
representing a balanced state for the entire network? And third, if the weights converge, do
they always converge to the same values, irrespective of the order in which the units are
being balanced? In other words, given an initial state W for the network, is there a unique
corresponding balanced state, with the same input-output functionalities?

B.8.1. Notation and Key Questions

For simplicity, we use a continuous time notation. After a certain time t each neuron has been
balanced a certain number of times. While the balancing operations are not commutative as
balancing operations, they are commutative as scaling operations. Thus we can reorder the
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scaling operations and group them neuron by neuron so that, for instance, neuron i has been
scaled by the sequence of scaling operations:

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (33)

where nit corresponds to the count of the last update of neuron i prior to time t, and:

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (34)

For the input and output units, we can consider that their balancing coefficients λ∗ are
always equal to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.

Thus, we first want to know if R converges. Second, we want to know if the weights
converge. This question can be split into two sub-questions: (1) Do the balancing factors
λ∗
n(i) converge to a limit as time goes to infinity. Even if the λ∗

n(i)’s converge to a limit, this
does not imply that the weights of the network converge to a limit. After a time t, the weight
wij(t) between neuron j and neuron i has the value wijΛi(t)/Λj(t), where wij = wij(0) is
the value of the weight at the start of the stochastic balancing algorithm. Thus: (2) Do the
quantities Λi(t) converge to finite values, different from 0? And third, if the weights converge
to finite values different from 0, are these values unique or not, i.e. do they depend on the
details of the stochastic updates or not? These questions are answered by the following main
theorem..

B.8.2. Convergence of the Basic Stochastic Balancing Algorithm to a
Unique Optimum

Theorem 34 (Convergence of Stochastic Balancing) Consider a network of BiLU neurons
with an error function E(W ) = E(W ) +R(W ) where R satisfies the conditions of Theorem
22 including all Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic
balancing algorithm is applied throughout the network so that every neuron is visited from
time to time, then E(W ) remains unchanged but R(W ) must converge to some finite value
that is less or equal to the initial value, strictly less if the initial weights are not balanced.
In addition, for every neuron i, λ∗

i (t) → 1 and Λi(t) → Λi as t → ∞, where Λi is finite and
Λi > 0 for every i. As a result, the weights themselves must converge to a limit W ′ which
is globally balanced, with E(W ) = E(W ′) and R(W ) ≥ R(W ′), and with equality if only if
W is already balanced. Finally, W ′ is unique as it corresponds to the solution of a strictly
convex optimization problem in the variables Lij = log(Λi/Λj) with linear constraints of the
form

∑
π Lij = 0 along any path π joining an input unit to an output unit and along any

directed cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories
in the linear manifold that run from the origin to the unique optimal configuration.

Proof Each individual balancing operation leaves E(W ) unchanged because the BiLU
neurons are homogeneous. Furthermore, each balancing operation reduces the regularization
error R(W ), or leaves it unchanged. Since the regularizer is lower-bounded by zero, the value
of the regularizer must approach a limit as the stochastic updates are being applied.

For the second question, when neuron i is balanced at some step, we know that the
regularizer R decreases by:

27



Extended Abstract Track
∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(35)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must

become equal and constant to 1 and the result is obvious. So we can focus on the case where
the convergence does not occur in a finite number of steps (indeed this is the main scenario,
as we shall see at the end of the proof). Since ∆R → 0, we must have:∑

w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (36)

But from the expression for λ∗ (Equation 20), this implies that for every i, λ∗
n(i) → 1 as time

increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for every i as
t → ∞. However, it is easy to see that Λi(t) cannot contain a sub-sequence that approaches
0 or ∞ (Figure 13). Furthermore, not only ∆R converges to 0, but the series

∑
∆R is

convergent. This shows that, for every i, ∆i(t) must converge to a finite, non-zero value ∆i.
Therefore all the weights must converge to fixed values given by wij(0)Λi/Λj .

ȿ1(t)=1 ȿ2(t) ȿ3(t) ȿ4(t) ȿ5(t)=1
ȿ2(t)/ȿ1(t) ȿ3(t)/ȿ2(t) ȿ4(t)/ȿ3(t) ȿ5(t)/ȿ4(t)

Input Unit Output Unit

Figure 13: A path with three hidden BiLU units connecting one input unit to one output
unit. During the application of the stochastic balancing algorithm, at time t each
unit i has a cumulative scaling factor Λi(t), and each directed edge from unit j
to unit i has a scaling factor Mij(t) = Λi(t)/Λj(t). The λi(t) must remain within
a finite closed interval away from 0 and infinity. To see this, imagine for instance
that there is a subsequence of Λ3(t) that approaches 0. Then there must be a
corresponding subsequence of Λ4(t) that approaches 0, or else the contribution of
the weight w43Λ4(t)/Λ3(t) to the regularizer would go to infinity. But then, as
we reach the output layer, the contribution of the last weight w54Λ5(t)/Λ4(t) to
the regularizer goes to infinity because Λ5(t) is fixed to 1 and cannot compensate
for the small values of Λ4(t). And similarly, if there is a subsequence of Λ3(t)
going to infinity, we obtain a contradiction by propagating its effect towards the
input layer.
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Λ1 Λ2 Λ3 Λ4 Λ5Λ2/Λ1 Λ3/Λ2 Λ4/Λ3 Λ5/Λ4

Input Unit Output Unit

Figure 14: A path with five units. After the stochastic balancing algorithm has converged,
each unit i has a scaling factor Λi, and each directed edge from unit j to unit i has
a scaling factor Mij = Λi/Λj . The products of the Mij ’s along the path is given
by: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ5
Λ4

= Λ5
Λ1

. Accordingly, if we sum the variables Lij = logMij along the
directed path, we get L21+L32+L43+L54 = log Λ5− log Λ1. In particular, if unit
1 is an input unit and unit 5 is an output unit, we must have Λ1 = Λ5 = 1 and
thus: L21 + L32 + L43 + L54 = 0. Likewise, in the case of a directed cycle where
unit 1 and unit 5 are the same, we must have: L21 + L32 + L43 + L54 + L15 = 0.

Λ1

Λ6

Λ2 Λ3 Λ4

Λ7

Λ5

Λ2/Λ1

Λ3/Λ2 Λ4/Λ3

Λ7/Λ4

Λ6/Λ5

Λ7/Λ6

Figure 15: Two hidden units (1 and 7) connected by two different directed paths 1-2-3-4-7 and
1-5-6-7 in a BiLU network. Each unit i has a scaling factor Λi, and each directed
edge from unit j to unit i has a scaling factor Mij = Λi/Λj . The products of
the Mij ’s along each path is equal to: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ7
Λ4

= Λ5
Λ1

Λ6
Λ5

Λ7
Λ6

= Λ7
Λ1

. Therefore the
variables Lij = logMij must satisfy the linear equation: L21 +L32 +L43 +L74 =
L51 + L65 + L76 =log Λ7 − log Λ1.

Finally, we prove that given an initial set of weights W , the final balanced state is unique
and independent of the order of the balancing operations. The coefficients Λi corresponding
to a globally balanced state must be solutions of the following optimization problem:

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (37)
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Figure 16: Consider two paths α + β and γ + δ from the input layer to the output layer
going through the same unit i. Let us assume that the first path assigns a
multiplier Λi to unit i and the second path assigns a multiplier Λ′

i to the same
unit. By assumption we must have:

∑
α Lij +

∑
β Lij = 0 for the first path, and∑

γ Lij +
∑

δ Lij = 0. But α+ δ and γ + β are also paths from the input layer to
the output layer and therefore:

∑
α Lij +

∑
δ Lij = 0 and

∑
γ Lij +

∑
β Lij = 0.

As a result,
∑

α Lij = logΛi =
∑

γ Lij = Λ′
i. Therefore the assignment of the

multiplier Λi must be consistent across different paths going through unit i.

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all
the visible (input and output) units. In this form, the problem is not convex. Introducing
new variables Mj = 1/Λj is not sufficient to render the problem convex. Using variables
Mij = Λi/Λj is better, but still problematic for 0 < p ≤ 1. However, let us instead introduce
the new variables Lij = log(Λi/Λj). These are well defined since we know that Λi/Λj > 0.
The objective now becomes:

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (38)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions
(exponentials). However, to show that it is a convex optimization problem we need to study
the constraints on the variables Lij . In particular, from the set of Λi’s it is easy to construct
a unique set of Lij . However what about the converse?

Definition 35 A set of real numbers Lij, one per connection of a given neural architecture,
is self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per
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C

B
A

Figure 17: The problem of minimizing the strictly convex regularizer R(Lij) =
∑

ij e
pLij |wij |p

(p > 0), over the linear (hence convex) manifold of self-consistent configurations
defined by the linear constraints of the form

∑
π Lij = 0, where π runs over

input-output paths. The regularizer function depends on the weights. The linear
manifold depends only on the architecture, i.e., the graph of connections. This is
a strictly convex optimization problem with a unique solution associated with the
point A. At A the corresponding weights must be balanced, or else a self-consistent
configuration of lower cost could be found by balancing any non-balanced neuron.
Finally, any other self-consistent configuration B cannot correspond to a balanced
state of the network, since there must exist balancing moves that further reduce
the regularizer cost (see main text). Stochastic balancing produces random paths
from the origin, where Lij= logMij = 0, to the unique optimum point A.

unit) such that: Λi = 1 for all visible units and Lij = log Λi/Λj for every directed connection
from a unit j to a unit i.

Remark 36 This definition depends on the graph of connections, but not on the original
values of the synaptic weights. Every balanced state is associated with a self-consistent set of
Lij, but not every self-consistent set of Lij is associated with a balanced state.

Proposition 37 A set Lij associated with a neural architecture is self-consistent if and only
if
∑

π Lij = 0 where π is any directed path connecting an input unit to an output unit or any
directed cycle (for recurrent networks).
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Remark 38 Thus the constraints associated with being a self-consistent configuration of
Lij’ s are all linear. This resulting linear manifold L depends only on the architecture, i.e.,
the graph of connections, but not on the actual weight values. The strictly convex function
R(Lij) depends on the actual weights W . Different sets of weights W produce different convex
functions over the same linear manifold. If E denotes the total number of connections, then
obviously dimL ≤ E. In order to infer all the Λi, there must exist at least one constrained
path going through each node i. Thus, in a layered feedforward network, the dimension of L
is given by: dimL = E −M , where here M denotes the size of the largest layer.

Remark 39 One could coalesce all the input units and all output units into a single unit, in
which case a path from an input unit to and output unit becomes also a directed cycle. In this
representation, the constraints are that the sum of the Lij must be zero along any directed
cycle. In general, it is not necessary to write a constraint for every path from input units
to output units. It is sufficient to select a representative set of paths such that every unit
appears in at least one path.

Proof If we look at any directed path π from unit i to unit j, it is easy to see that we must
have: ∑

π

Lkl = logΛi − log Λj (39)

This is illustrated in Figures 14 and 15. Thus along any directed path that connects any
input unit to any output unit, we must have

∑
π Lij = 0. In addition, for recurrent neural

networks, if π is a directed cycle we must also have:
∑

π Lij = 0. Thus in short we only need
to add linear constraints of the form:

∑
π Lij = 0. Any unit is situated on a path from an

input unit to an output unit. Along that path, it is easy to assign a value Λi to each unit by
simple propagation starting from the input unit which has a multiplier equal to 1. When the
propagation terminates in the output unit, it terminates consistently because the output unit
has a multiplier equal to 1 and, by assumption, the sum of the multipliers along the path
must be zero. So we can derive scaling values Λi from the variables Lij . Finally, we need to
show that there are no clashes, i.e. that it is not possible for two different propagation paths
to assign different multiplier values to the same unit i. The reason for this is illustrated in
Figure 16.

We can now complete the proof Theorem 34. Given a neural network of BiLUs with
a set of weights W , we can consider the problem of minimizing the regularizer R(Lij over
the self-admissible configuration Lij . For any p > 0, the Lp regularizer is strictly convex
and the space of self-admissible configurations is linear and hence convex. Thus this is a
strictly convex optimization problem that has a unique solution (Figure 17). Note that the
minimization is carried over self-consistent configurations, which in general are not associated
with balanced states. However, the configuration of the weights associated with the optimum
set of Lij (point A in Figure 17) must be balanced. To see this, imagine that one of the
BiLU units–unit i in the network is not balanced. Then we can balance it using a multiplier
λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new configuration including

Λ′
i is self-consistent. Thus, by balancing unit i, we are able to reach a new self-consistent
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configuration with a lower value of R which contradicts the fact that we are at the global
minimum of the strictly convex optimization problem.

We know that the stochastic balancing algorithm always converges to a balanced state.
We need to show that it cannot converge to any other balanced state, and in fact that the
global optimum is the only balanced state. By contradiction, suppose it converges to a
different balanced state associated with the coordinates (LB

ij) (point B in Figure 17). Because
of the self-consistency, this point is also associated with a unique set of (ΛB

i ) coordinates.
The cost function is continuous and differentiable in both the Lij ’s and the Λi’s coordinates.
If we look at the negative gradient of the regularizer, it is non-zero and therefore it must have
at least one non-zero component ∂R/∂Λi along one of the Λi coordinates. This implies that
by scaling the corresponding unit i in the network, the regularizer can be further reduced,
and by balancing unit i the balancing algorithm will reach a new point (C in Figure 17)
with lower regularizer cost. This contradicts the assumption that B was associated with a
balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm
must always converge to the same and unique optimal balanced state W ∗ associated with
the self-consistent point A. A particular stochastic schedule corresponds to a random path
within the linear manifold from the origin (at time zero all the multipliers are equal to 1,
and therefore for any i and any j: Mij = 1 and Lij = 0) to the unique optimum point A.

Remark 40 From the proof, it is clear that the same result holds also for any deterministic
balancing schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise
balancing and tied layer-wise balancing. In the Appendix, we provide an analytical solution
for the case of tied layer-wise balancing in a layered feed-forward network.

Remark 41 The same convergence to the unique global optimum is observed if each neuron,
when stochastically visited, is partially balanced (or favorably scaled) rather than fully balanced,
i.e., it is scaled with a factor that reduces R but not necessarily minimizes R. Stochastic
balancing can also be viewed as a form of EM algorithm where the E and M steps can be
taken fully or partially.

B.8.3. Convergence to a Unique Optimum for BiPU Stochastic Balancing

We have seen that a generalized form of scaling and balancing can be defined for more general
units than BiLUs, in particular for BiPUs. Thus now we consider a network of units with
activations functions f satisfying the relationship: f(λx) = λcf(x) (note that this includes
BiLU units for c = 1). We even allow c to vary from unit to unit.

It is easy to see that most of the analyses above done for BiLU units apply to this
generalization. In particular, if we apply stocahstic generalized balancing, in the limit the
positive multipliers of each connection wij must satisfy:

Mij = Λi/Λ
cj
j (40)

As above, we can define a new set of variables Lij = logMij and, for any p > 0, the regularizer
R(L) =

∑
ij e

pLij |wij |p is strictly convex. What is different, however, is the set of constraints
on the variables Lij . These are the constraints that allow one to compute the variables Λi
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Figure 18: SGD applied to E alone, in general, does not converge to a balanced
state, but sGD applied to E +R converges to a balanced state. (A-C)
Simulations use a deep fully connected autoencoder trained on the MNIST dataset.
(D-F) Simulations use a deep locally connected network trained on the CIFAR10
dataset. (A,D) Regularization leads to neural balance. (B,E) The training
loss decreases and converges during training (these panels are not meant for
assessing the quality of learning when using a regularizer). (C,F) Using weight
regularization decreases the norm of weights. (A-F) Shaded areas correspond to
one s.t.d around the mean (in some cases the s.t.d. is small and the shaded area
is not visible).

uniquely from the variables Lij (or, equivalently, the variables Mij). This is addressed by
the following theorem.

Theorem 42 Under the same conditions of Theorem 34, but using activation functions
that satisfy for each unit i the relationship f(λx) = λcif(x), the corresponding stochastic
generalized balancing algorithm converges to the unique minimum of a strictly convex op-
timization problem in the variables Lij. The strictly convex objective function is given by
R(L) =

∑
ij e

pLij |wij |p. The constraints are linear and of the form:

∑
i∈π

(
n∏

k=i

ck

)
Lii−1 = 0 (41)

for each path π from an input unit to an output unit, going sequentially through the units
0, 1, . . . , n, where 0 corresponds to the input unit, and n corresponds to the output unit of the
path. The set of paths in the constraints must cover all the units in the network.
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Figure 19: Even if the starting state is balanced, SGD does not preserve the
balance unless the learning rate is infinitely small. (A-C) Simulations
use a deep fully connected autoencoder trained on the MNIST dataset. (D-
F) Simulations use deep locally connected network trained on the CIFAR10
dataset. (A-F) The initial weights are balanced using the stochastic balancing
algorithm. Then the network is trained by SGD. (A,D) When the learning rate
(lr) is relatively large, without regularization, the initial balance of the network
is rapidly disrupted. (B,E) The training loss decreases and converges during
training (these panels are not meant for assessing the quality of learning when
using a regularizer). (C,F) Using weight regularization decreases the norm of
the weights. (A-F) Shaded areas correspond to one s.t.d around the mean (in
some cases the s.t.d. is small and the shaded area is not visible).

Proof Let us assume that there is a consistent set of multipliers Λ0, . . . ,Λn associated
with the coefficients Lii−1 = logMii−1 along the path π, with Λ0 = Λn = 1. Since
Mii−1 = Λi/Λ

ci−1

i−1 , we can derive the multipliers Λi iteratively by propagating information
from the input unit to the output unit, in the form:

Λi = Mii−1Λ
ci−1

i−1 or log Λi = Lii−1 + ci−1 log Λi−1 (42)

Using the boundary conditions Λ0 = Λn = 1 gives the formula in Theorem 42. The same
arguments given for BiLU units can be used to complete the proof.

Remark 43 Note that if all the units have the same exponent c associated with the scaling
of their activation functions, then the linear constraints have the simplified form:

35



Extended Abstract Track
∑
i∈π

cn+1−iLii−1 = 0 (43)

Universal Approximation Properties of BiLU Neurons

Here we show that any continuous real-valued function defined over a compact set of the
Euclidean space can be approximated to any degree of precision by a network of BiLU
neurons with a single hidden layer. As in the case of the similar proof given in Baldi (2021)
using linear threshold gates in the hidden layer, it is enough to prove the theorem for a
continuous function f : 0, 1 → R.

Theorem 44 (Universal Approximation Properties of BiLU Neurons) Let f be any continu-
ous function from [0, 1] to R and ϵ > 0. Let gλ be the ReLU activation function with slope
λ ∈ Rs. Then there exists a feedforward network with a single hidden layer of neurons with
ReLU activations of the form gλ and a single output linear neuron, i.e., with BiLU activation
equal to the identity function, capable of approximating f everywhere within ϵ (sup norm).

Proof To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous
over a compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1
and x2 in the [0, 1] interval:

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ϵ (44)

Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive
slices of width h = 1/N , so that within each slice the function f cannot jump by more than
ϵ. Let us connect the input unit to all the hidden units with a weight equal to 1. Let us have
N hidden units numbered 1, . . . , N with biases equal to 0, 1/N, 2/N, ...., N1/N respectively
and activation function of the form gλk

. It is essential that different units be allowed to have
different slopes λk. The input unit is connected to all the hidden units and all the weights
on these connections are equal to 1. Thus when x is in the k-th slice, (k − 1)/N ≤ x < k/N ,
all the units from k + 1 to N have an output equal to 0, and all the units from 1 to k have
an output determined by the corresponding slopes. All the hidden units are connected to
the output unit with weights β1, . . . , βN , and β0 is the bias of the output unit. We want
the output unit to be linear. In order for the ϵ approximation to be satisfied, it is sufficient
if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the point
f((k − 1)/N) to the point f(k/N). In other words, if x ∈ [(k − 1)/N, k/N), then we want
the output of the network to be:

β0 +
k∑

i=1

βiλi(x− (i− 1)h) =

f(
k − 1

N
) +

f( k
N )− f(k−1

N )

h
(x− (k − 1)h)

(45)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand
side of Equation 45, we can solve for the weights β’s and the slopes λ’s.
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As in the case of the similar proof using linear threshold functions in the hidden layer
(see Baldi (2021),) this proof can easily be adapted to continuous functions defined over a
compact set of Rn, even with a finite number of finite discontinuities, and into Rm.

Analytical Solution for the Unique Global Balanced State

Here we directly prove the convergence of stochastic balancing to a unique final balanced state,
and derive the equations for the balanced state, in the special case of tied layer balancing
(as opposed to single neuron balancing). The Proof and the resulting equations are also
valid for stochastic balancing (one neuron at a time) in a layered architecture comprising a
single neuron per layer. Let us call tied layer scaling the operation by which all the incoming
weights to a given layer of BiLU neurons are multiplied by λ > 0 and all the outgoing
weights of the layer are multiplied by 1/λ, again leaving the training error unchanged. Let
us call layer balancing the particular scaling operation corresponding to the value of λ that
minimizes the contribution of the layer to the L2 (or any other Lp) regularizer vaue. This
optimal value of λ∗ results in layer-wise balance equations: the sum of the squares of all the
incoming weights of the layer must be equal to the sum of the squares of all the outgoing
weights of the layer in the L2 case, and similarly in all LP cases.

Theorem 45 Assume that tied layer balancing is applied iteratively and stochastically to the
layers of a layered feedforward network of BiLU neurons. As long as all the layers are visited
periodically, this procedure will always converge to the same unique set of weights, which will
satisfy the layer-balance equations at all layers, irrespective of the details of the schedule.
Furthermore, the balance state can be solved analytically.

Proof Every time a layer balancing operation is applied, the training error remains the
same, and the L2 (or any other Lp) regularization error decreases or stays the same. Since
the regularization error is always positive, it must converge to a certain value. Using the
same arguments as in the proof of Theorem 34, the weights must also converge to a stable
configuration, and since the configuration is stable all its layers must satisfy the layer-wise
balance equation. The key remaining question is why is this configuration unique and can we
solve it analytically? Let A1, A2, . . . AN denote the matrices of connections between the layers
of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly positive multipliers, representing the
limits of the products of the corresponding λ∗

i associated with each balancing step at layer i,
as in the proof of Theorem 34. In this notation, layer 0 is the input layer and layer N is the
output layer (with Λ0 = 1 and ΛN = 1).

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N ,
with Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying
M1 . . .MN = 1 to ensure that the training error remains unchanged. In other words, to find
the values of the Mi’s we must minimize the Lagrangian:

L(M1, . . . ,MN ) =
N∑
i=1

||MiAi||2 + µ(1−
N∏
i=1

Mi) (46)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the
general Lp case. From this, we get the critical equations:
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∂L
∂Mi

= 2Mi||Ai||2 − µM1 . . .Mi−1Mi+1 . . .MN = 0

for i = 1, . . . , N and

N∏
i=1

Mi = 1

(47)

As a resut, for every i:

2Mi||Ai||2 −
µ

Mi
= 0 or µ = 2M2

i ||Ai||2 (48)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier
µ as: Mi = (µ/2||Ai||2)1/2. By writing again that the product of the Miis equal to 1, we
finally get:

µN = 2N
N∏
i=1

||Ai||2 or µ = 2

N∏
i=1

||Ai||2/N (49)

Thus we can solve for Mi:

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||2/N

||Ai||2
for i = 1, . . . , N (50)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer
the unique and final state of the weights, where A∗

i = MiAi = ΛiAl/Λl−1. Note that each
Mi depends on all the other Mj ’s, again showcasing how the local balancing algorithm leads
to a unique global solution.
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