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ABSTRACT

Recent works show great interest in designing Graph Neural Networks (GNNs)
that scale to large graphs. While previous work focuses on designing advanced
sampling techniques for existing GNNs, the design of non-parametric GNNs,
an orthogonal direction for scalable performance, has aroused lots of concerns
recently. For example, nearly all top solutions in the Open Graph Benchmark 1

leaderboard are non-parametric GNNs. Unlike most GNNs which alternately
do feature propagation and non-linear transformation in each GNN layer, non-
parametric GNNs execute the non-parametric propagation in advance and then feed
the propagated features into simple and scalable models (e.g., Logistic Regression).
Despite their high predictive performance and scalability, non-parametric GNNs
still face two limitations. First, due to the propagation of over-smoothed features,
they suffer from severe performance degradation along with the propagation depth.
More importantly, they only consider the graph structure and ignore the feature
influence during the non-parametric propagation, leading to sub-optimal propagated
features. To address these limitations, we present non-parametric attention (NPA), a
plug-and-play module that is compatible with non-parametric GNNs, to get scalable
and deep GNNs simultaneously. Experimental results on six homophilic graphs
and five heterophilic graphs demonstrate NPA enjoys high performance – achieves
large performance gain over existing non-parametric GNNs, deeper architecture –
improves non-parametric GNNs with large model depth, and high scalability – can
support large-scale graphs with low time costs. Notably, it achieves state-of-the-art
performance on the large ogbn-papers100M dataset.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved great success in many graph-based applications in
recent years, such as natural language processing (Liu & Wu, 2022; Wu et al., 2021), computer
vision (Liu et al., 2021; Shi & Rajkumar, 2020), recommendation system (Wu et al., 2022; Gao et al.,
2022), and drug discovery (Gaudelet et al., 2021; Deng et al., 2022). By recursively propagating the
node embedding along edges, GNNs can enhance the representation of each node with its distant
neighbors, thus improves the model performance. However, most existing GNNs have to repeatedly
perform the computationally expensive and recursive feature propagation with the participation of the
entire graph at each training epoch, leading to high computation costs in a single machine and high
communication costs in distributed settings (Zhang et al., 2022a). Therefore, they can not scale well
to large graphs, which hinders their popularity and development in many real scenarios.

An intuitive idea to tackle the scalability issue is to apply more advanced sampling techniques to
existing GNNs, such as node-wise sampling (Hamilton et al., 2017; Chen et al., 2018a), layer-wise
sampling (Chen et al., 2018b; Huang et al., 2018) and graph-wise sampling (Chiang et al., 2019; Zeng
et al., 2020). Although these sampling techniques can alleviate the scalability issue to a certain extent,
the computation and communication cost is still high due to the recursive propagation. Besides,
the sampling quality highly influences the predictive performance of GNNs, and it is hard for these
methods to tackle the trade-off between the training scalability and model performance.

Fortunately, some recent works attribute the success of GNNs to the non-parametric feature prop-
agation rather than the parametric non-linear transformation. For example, as shown in SGC (Wu

1https://ogb.stanford.edu/docs/leader_nodeprop
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Figure 1: Example of two limitations in non-parametric GNNs.

et al., 2019), the non-parametric propagated features with a simple logistic regression model achieves
comparable classification performance as GCN, while maintaining high scalability. As a new way
to tackle the scalability issue, non-parametric GNNs have achieved lots of concern recently, and
most top solutions in Open Graph Benchmark (Hu et al., 2020) are non-parametric GNNs. Fol-
lowing this direction, various non-parametric and scalable GNNs are proposed to further improve
the predictive performance of SGC, such as SIGN (Frasca et al., 2020b), S2GC (Zhu & Koniusz,
2021), GBP (Chen et al., 2020a) and NAFS (Zhang et al., 2022b). Despite their high scalability and
predictive performance, existing non-parametric GNNs still face the following two limitations:

Propagation with Over-smoothed Features. Each node in a K-layer GNN can propagate its
node feature K-steps to distant nodes, thus the node embedding can be smoothed and enhanced.
However, as shown in Figure 1, such node information may be propagated to the full graph with a
large propagation depth, making the node representation indistinguishable and leading to the bad
predictive performance, i.e., the over-smoothing issue (Li et al., 2018). As discussed in Eq. 5, if
we propagate the node feature infinite times in a connected graph, the final node embedding is only
related to the node degrees. By combining the embedding of different propagation steps, some recent
non-parametric GNNs can slightly alleviate the over-smoothing problem, and get better predictive
performance with larger propagation depth. However, Figure 1 shows that the over-smoothed node
embeddings (i.e., nodes with deep color) are continually propagated to their neighbors in the latter
propagation process. Such redundant and noisy information will be propagated along the edges and
harm the embedding of more nodes. To sum up, existing methods cannot fundamentally solve this
over-smoothing issue due to the propagation of over-smoothed features.

Propagation with Fixed Weights. Existing non-parametric GNNs are built on the assumption
of graph homogeneity, i.e., adjacent nodes are more likely to have the same label. However, the
assumption does not hold in many real graph datasets. As shown in Figure 1 and introduced in
Section 3.1, the propagation weight between two nodes in current non-parametric GNNs is only
related to graph structures (e.g., the node degrees) and it is fixed in different propagation steps.
Therefore, existing non-parametric GNNs may assign a large and fixed propagation weight to two
nodes with different labels (i.e., nodes with different colors), making the embeddings of nodes with
different labels indistinguishable. Besides the uncertain graph homogeneity, nodes with the same
label may have a different extent of homogeneity (i.e., the label similarity), such as the nodes near
and far from the decision boundary. Therefore, the weight should be adapted to their similarity rather
than just the graph structure.

In this paper, we propose non-parametric attention (NPA), a plug-and-play module that is compatible
with different non-parametric GNNs, to get scalable and deep GNNs simultaneously. As the over-
smoothed features are global to capture the full graph information, they will not bring too much
new information to current node embedding. Therefore, NPA introduces global attention to
tackle the propagation of the over-smoothed features. Specifically, it assigns a node-adaptive attention
weight to the newly propagated features to measure the newly generated global information compared
with the previous feature. In this way, it can adaptively remove the over-smoothed and redundant
feature information in each propagation step. Besides, as introduced in Appendix A.1, assigning larger
weights to neighbors with more similar features leads to a more easy-to-learn classifier. To tackle
the fixed propagation weights issue in the local feature propagation, NPA further proposes local
attention to consider the similarity of propagated features when calculating the propagation
weights and assigns more attention (i.e., larger propagation weight) to similar nodes adaptively in
each propagation step. As introduced in Section 2.3, the key difference of existing non-parametric
GNNs is how they combine different steps of propagated features. Since the goal of NPA is to
improve the quality of different steps of propagated features, NPA is orthogonal and compatible with
all kinds of existing non-parametric GNNs.
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Our main contributions are as follows: (1) New perspective. To the best of our knowledge, this is
the first work to explore the two limitations of existing non-parametric GNNs, i.e., the propagation
with over-smoothed features and fixed weights; this new finding opens up a new direction towards
scalable and deep GNNs. (2) New method. Based on our new findings, we propose NPA, a non-
parametric attention method to tackle the above limitations. As a plug-and-play module, NPA is
the first attempt to improve the propagation process of non-parametric GNNs, and it is compati-
ble with existing non-parametric GNNs, to support scalable and deep GNNs simultaneously. (3)
High scalability and SOTA predictive performance. Experimental results show that non-parametric
GNNs equipped with NPA get large performance gains on five real-world datasets. Non-parametric
GNNs with NPA can go deeper with better predictive performance. Specifically, NPA helps them to
achieve the state-of-the-art performance on the large ogbn-papers100M dataset.

2 PRELIMINARY

2.1 NOTATIONS AND PROBLEM FORMULATION.

In this paper, we consider an undirected graph G = (V ,E) with |V| = n nodes and |E| = m edges.
We denote A as the adjacency matrix of G. Correspondingly, the degree matrix of A is denoted as
D = diag (d1, d2, · · · , dn) ∈ Rn×n, where di =

∑
vj∈V Aij . The node feature matrix is denoted

as X = {x1,x2, ...,xn} in which xi ∈ Rf represents the feature vector of node vi. We test the
effectiveness of NPA in the widely used semi-supervised node classification task, and the goal is to
predict the labels for nodes in the unlabeled set Vu with the supervision of labeled set Vl.

2.2 GRAPH NEURAL NETWORKS

Based on the graph homogeneity assumption that locally connected nodes are likely to share the same
label (McPherson et al., 2001), each node in most GNN models iteratively smooths the representations
of its neighbors for better node embedding. The commonly used GNN layer updates the node feature
embedding in the graph by propagating the features to their neighboring nodes:

X(l) = δ
(
ÂX(l−1)Θ(l)), Â = D̃r−1ÃD̃−r, (1)

where Ã = A + In is the adjacency matrix with self connection, X(l) is the propagated node
embedding matrix at layer l, X(0) is the original node feature matrix, Θ(l) are the trainable weights,
and δ is the activation function. Â is the normalized adjacency matrix, in which Âij represents how
much information node vj should propagate to its neighboring node vi. By setting r = 0.5, 1 and
0, the normalized adjacency matrix D̃r−1ÃD̃−r represents the symmetric normalization adjacency
matrix D̃−1/2ÃD̃−1/2 (Klicpera et al., 2019), the transition probability matrix ÃD̃−1 (Zeng et al.,
2020), and the reverse transition probability matrix D̃−1Ã (Xu et al., 2018), respectively.

As shown in Eq. 1, Most GNN layer contains two operations: non-parametric feature propagation P
and parametric feature transformation T. Figure 2(a) shows the pipeline of parametric GNNs. For
example, the l-th layer in GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017)
firstly executes the non-parametric feature propagation (i.e., P operation) on the node embedding
X(l−1). Then, the propagated feature matrix X̃(l−1) is transformed with trainable weights Θ(l) and
activation function δ (i.e., T operation) to generate new node embedding matrix X(l).

2.3 NON-PARAMETRIC GRAPH NEURAL NETWORKS

To scale GNNs to large graphs, existing methods can be generally classified into the following two
directions. One natural direction is to build more advanced sampling techniques (See details in
Appendix A.14) for existing GNNs, and the other direction is to build non-parametric GNNs.

The main idea of non-parametric GNNs is to decouple the feature propagation and non-linear
transformation in the GNN layer and finish the time-consuming feature propagation process without
model parameter training. For each node vi, non-parametric GNNs recursively propagates the original
node feature x0

i to its neighbors K steps. The propagation process at the t-th step is as follows

mt
i ← P

({
mt−1

j |j ∈ Ni

})
, (2)
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Figure 2: (Left) Example of parametric and non-parametric propagation. (Right) Illustration of
different non-parametric GNNs.

where m0
i = xi, and Ni are the neighbors of node vi. After K-steps propagation, mK

i at step K can
gather the neighborhood information from nodes that are K-hop away. The multi-step propagated
features Mi = {mt

i | 0 ≤ t ≤ K} are then combined into a single vector ci as:

ci ← F(Mi). (3)

The key difference between existing non-parametric GNNs is the combination function F . Specifi-
cally, SGC (Wu et al., 2019) adopts the Max operation and feeds mt

i to a simple logistic regression
model for model training. Besides, SIGN (Frasca et al., 2020b) considers both the local and global
information and adopts Concatenate operation on different steps of propagated features. Sim-
ilarly, S2GC (Zhu & Koniusz, 2021) proposes to average the propagated features with the Mean
operation. Besides, GBP (Chen et al., 2020a) assigns different weights to the propagated feature
matrix and proposes the Layer-wise weighted operation to combine them adaptively. Last,
motivated by the different smoothing speeds of nodes, NAFS (Zhang et al., 2022b) introduces the
Node-wise weighted operation to combine the propagated features in a node-adaptive manner.

Similar to these works, we also use non-parametric GNNs for higher training scalability. The key
difference lies in that we optimize non-parametric GNNs in an orthogonal way to the previous methods.
Specifically, recent advancements in non-parametric GNNs aim at optimizing the combination
function F . Different from them, our goal is to optimize the propagation method P to improve the
quality of the multi-step propagated features Mi = {mt

i | 0 ≤ t ≤ K}. Therefore, the proposed
NPA is compatible with the existing non-parametric GNNs and can be applied to them to further
improve their predictive performance.

3 OBSERVATION AND INSIGHT

In this section, we make a deep analysis of the two limitations that exist in non-parametric GNNs and
then provide some insights when designing our solution NPA.

3.1 OVER-SMOOTHED FEATURES

As stated by previous work (Wu et al., 2019; Zhu & Koniusz, 2021), the true success of GNNs lies
in the non-parametric feature propagation rather than the parametric feature transformation. With a
large propagation step, each node in non-parametric GNNs can propagate its feature information to
distant neighbors, thus capture the deep graph structure information. Despite its benefits, a too-large
propagation step may also lead to indistinguishable node embedding.

Concretely, if we execute ÂX for infinite times, the node embedding within the same connected
component would reach a stationary state. When adopting Â = D̃r−1ÃD̃−r, Â∞ follows

Â∞
i,j =

(di + 1)r(dj + 1)1−r

2m+ n
. (4)

which shows that the influence from node vi to vj is only determined by their degrees. Then, the
propagated feature matrix after infinite steps of propagation is

X∞ = Â∞X0, (5)
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Figure 3: An overview of the proposed NPA.

where X0 is the original node feature matrix. Therefore, two nodes with the same graph structure
information (e.g., the node degrees) will have the same propagated features no matter how different
their original feature is. More details of the over-smoothing issue are explained in Appendix A.13.

Generally, the smoothing speed of nodes in different graph regions varies a lot. For example, as
introduced in previous work (Zhang et al., 2022b), nodes with high degrees approach the stationary
state more rapidly than the nodes with low degrees. Therefore, in the t-th propagation step, part of
the nodes may already be over-smoothed while other nodes need further propagation due to their
under-smooth states. The propagation of those over-smoothed features is in fact the propagation of
feature noise, but this problem is under-explored in existing non-parametric GNNs.

3.2 FIXED PROPAGATION WEIGHTS

Most GNNs follow the graph homogeneity assumption that connected nodes are more likely to
share the same label, thus they assign the propagation weights only based on the graph structure
information.

Specifically, the t-th propagation step can be defined as

mt
i =

∑
j∈Ni

wijm
t−1
j , (6)

where wij is the propagation weight, and it measures how much information we should propagate
from node vj to vi.

According to different types of normalized adjacency matrix (i.e., different values of r in Eq. 1), the
propagation weights of these methods can be defined as

wij =
1

(d̃i)1−r(d̃j)r
, (7)

where wij = Âi,j is the i-th row and j-th column of the smoothing matrix Â, d̃i is the degree
of node vi obtained from the adjacency matrix with self-connections Ã = A + In. Note that the
propagation weights are fixed and applied in different steps of feature propagation.

Such fixed propagation weights may lead to low-quality node embedding in two perspectives. First,
the graph homogeneity assumption cannot be guaranteed in many graph datasets, i.e., some connected
nodes have different labels. As discussed in previous works (Zhu et al., 2020; Lim et al., 2021), the
feature propagation of neighboring nodes with different labels is harmful to the node embedding.
Besides, the homogeneity level for different nodes also varies (Du et al., 2022). For neighbors with
high homogeneity, we should increase the propagation weights to make their embedding more similar.
On the contrary, for neighbors with low homogeneity, we’d better decrease the propagation weights
to avoid noise. As introduced in Appendix A.1, assigning larger weights to immediate neighbors with
more similar features can lead to a more easy-to-learn classifier. Therefore, even for the graphs with
good homogeneity property, existing non-parametric GNNs do not model them well enough because
their propagation weights only consider the node degrees and ignore the feature similarity.
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3.3 DESIGN INSIGHTS OF NPA

Despite the scalability of existing non-parametric GNNs, they suffer from the limitations of over-
smoothed features and fixed propagation weights. Specifically, according to the observation in
Sec. 3.1, some node embedding may already be over-smoothed due to their high smoothing speed. The
over-smoothed features will not bring too much new information to current node embedding since they
are global to capture the full graph information. Therefore, in different steps of feature propagation,
we adopt global attention in NPA to node-adaptively measure the newly generated global
information compared to existing ones and thus avoid the over-smoothed features. Besides, as
introduced in Sec. 3.2, existing non-parametric GNNs adopt a fixed propagation weight and ignore the
feature similarity during the local feature propagation. Therefore, we propose local attention
in NPA to capture the similarity of propagated features in different steps of feature propagation, and
thus make better use of the graph homogeneity.

4 PROPOSED METHOD

In this section, we present NPA, a non-parametric attention method that includes two attention
mechanisms, i.e., local attention and global attention. Below, we first introduce an
overview of NPA and then explain these two attention mechanisms in detail. At last, we summarize
the advantages of the NPA over existing methods.

4.1 METHOD OVERVIEW

NPA is proposed to improve the propagation operation in non-parametric GNNs by tackling the issue
of over-smoothed features and fixed weights. As shown in Figure 3, it contains two non-parametric
attention mechanisms.

Specifically, for the t-th step feature propagation, NPA firstly introduces the feature similarity
(i.e., sim(mt−1

i ,mt−1
j )) of node vi and vj to local attention . In this way, both the graph

structure and node feature can be considered to better capture the graph homogeneity. After getting
the propagated feature m̂t

i with the local attention , NPA measures the distance between m̂t
i

and the existing one mt−1
i . For larger distance, NPA will assign m̂t

i a larger combination weight
since it brings more new information to existing node embedding mt−1

i .

4.2 LOCAL ATTENTION

During the t-th feature propagation, we first measure the local similarity between the current node
embedding mt−1

i and its neighborhood embedding mt−1
j and thus get sim(mt−1

i ,mt−1
j ). As

discussed in Appendix A.1, the graph homogeneity is closely related to the feature similarity, and it
is necessary to assign larger weights to more similar immediate neighbors. Therefore, we update the
propagation weight ŵt−1

ij as

ŵt−1
ij = wijsim(mt−1

i ,mt−1
j ), (8)

where sim(·) is defined as the following RBF format

sim(mt−1
i ,mt−1

j ) = e
−
∥mt−1

i
−m

t−1
j ∥2

2σ2 . (9)

As introduced in Eq. 7, wij is a fixed constant, while sim(mt−1
i ,mt−1

j ) varies in different steps of
propagation, and thus make the propagation weight ŵt−1

ij adaptive. We then use ŵt−1
ij to propagate

the node embedding and get the t-th propagated features m̂t
i as

m̂t
i =

∑
j∈Ni

ŵt−1
ij mt−1

j . (10)

Larger ŵt−1
ij means node vi pays more local attention to node vj during the propagation process,

since these two nodes are more similar in both the graph structure and the t − 1-step propagated
features.
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4.3 GLOBAL ATTENTION

Considering the propagation of over-smoothed features, we propose to update the node embedding
and thus control the smoothing level after each step of propagation. Specifically, given the propagated
node embedding m̂t

i and the embedding before propagation mt−1
i , we propose to measure how much

new global information m̂t
i will introduce like α̂t

i = 1− cos(m̂t
i,m

t−1
i ), where cos(·) is the cosine

similarity function. Larger α̂t
i means the newly propagated node embedding m̂t

i is less similar to
existing node embedding mt−1

i , and thus will introduce more benefits.

Therefore, we denote α̂t
i as the combination weight of m̂t

i. Then, the combination weight for mt−1
i

is defined as αt−1
i = 1− α̂t

i. To better control the relative scale of these two combination weights,
we normalize them with the temperature T as

ŵt
i =

eα̂
t
i/T

eα̂
t
i/T + eα

t−1
i /T

, wt−1
i =

eα
t−1
i /T

eα̂
t
i/T + eα

t−1
i /T

. (11)

At last, we weighted combine the propagated node feature m̂t
i and existing node feature mt−1

i , and
get the final t-th step node embedding ŵt

i as

mt
i = ŵt

im̂
t
i + wt−1

i mt−1
i . (12)

Generally, the over-smoothed features are too global and they introduce fewer benefits to existing
node embedding. With this global attention mechanism, NPA can control the smoothing
level of mt

i in an adaptive manner, and thus avoid the over-smoothing issue.

4.4 NOVELTY AND CHARACTERISTICS OF NPA

Novelty of Local Attention. The main novelty of local attention is its motivation (the
under-explored new limitation), i.e., the propagation with fixed weights in non-parametric GNNs.
To tackle this limitation, we simplify the parametric attention mechanism in (Veličković et al.,
2017; Zhang et al., 2018; Brody et al., 2022) to non-parametric local attention to maintain the high
scalability of non-parametric GNNs, and this is the first attempt to improve the propagation process
in non-parametric GNNs.

Novelty of Global Attention. Similarly, using adaptive weights in non-parametric GNNs is
common, such as GBP, NAFS, and (Chien et al., 2021; He et al., 2022). However, as discussed in
Eq. 3, existing non-parametric GNNs aim at optimizing the combination function F with adaptive
weights. Different from them, we adopt global attention to tackle the propagation of over-smoothing
features in the propagation process. And we aim to optimize the propagation method P (defined
in Eq. 2) to improve the quality of the multi-step propagated features, rather than the combination
function F in existing non-parametric GNNs.

More comparisons to weighted residual connection, NAFS and GAT are summarized in Ap-
pendix A.10. Besides, we have further analyzed the advantages (i.e., high scalability, high ef-
fectiveness and high compatibility) of NPA over existing methods in Appendix A.11.

5 EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed NPA module, we plug it into five typical non-parametric
GNNs and conduct extensive experiments on real-world datasets. Specifically, we aim to answer the
following questions: Q1: Does the performance of existing non-parametric GNNs get improved when
plugging NPA in? Q2: Do the local attention and the global attention in NPA really
help? Q3: Can NPA be used in both the homophilic and heterophilic graphs? Q4: Does NPA help
existing non-parametric GNNs toward deeper? Q5: Does NPA help existing non-parametric GNNs
perform better on different sparse scenarios? Q6: How does NPA affect the feature propagation time,
end-to-end training time and converge time in practical?

5.1 EXPERIMENTS SETUP

Datasets. We conduct the experiments on 1) three homophilic citation network datasets (i.e., Cora,
Citeseer, and PubMed) (Kipf & Welling, 2017), 2) three homophilic OGB datasets (i.e., ogbn-arxiv,
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Table 1: Node classification performance on homophilic graphs.

Method Citation datasets OGB datasets
Cora Citeseer PubMed ogbn-arxiv ogbn-products ogbn-papers100M

SGC 81.0±0.0 71.9±0.1 78.9±0.0 70.78±0.22 74.08±0.15 63.29±0.19
SGC+NPA 83.0±0.0 73.6±0.0 80.1±0.0 71.64±0.29 75.32±0.17 64.82±0.42

S2GC 83.5±0.0 73.6±0.1 80.2±0.0 72.01±0.25 76.84±0.20 65.03±0.35
S2GC+NPA 83.7±0.1 74.0±0.0 80.8±0.0 72.31±0.21 77.01±0.12 65.42±0.12

SIGN 82.1±0.3 72.4±0.8 79.5±0.5 71.93±0.30 76.83±0.39 64.28±0.14
SIGN+NPA 83.1±0.5 73.8±0.8 80.2±0.6 72.39±0.21 77.58±0.06 65.40±0.14

GBP 83.9±0.7 72.9±0.5 80.6±0.4 71.97±0.20 76.71±0.12 64.76±0.51
GBP+NPA 84.1±0.7 73.4±0.4 80.7±0.4 72.19±0.16 76.93±0.17 65.48±0.29

NAFS 84.1±0.6 73.5±0.4 80.3±0.4 71.10±0.62 75.27±0.21 64.70±0.40
NAFS+NPA 84.2±0.6 73.8±0.5 80.9±0.3 71.65±0.31 75.44±0.17 65.04±0.09

Table 2: SOTA performance on ogbn-papers100M

Method GAMLP GAMLP+NPA GLEM+GIANT+GAMLP GLEM+GIANT+GAMLP+NPA
Accuracy 67.71± 0.2 67.83± 0.11 70.37± 0.02 70.44± 0.04

ogbn-products, ogbn-papers100M) (Hu et al., 2020), and 3) five heterophilic datasets (i.e., Texas,
Wisconsin, Cornell, Film, and ogbn-mag) (Pei et al., 2020; Hu et al., 2020). For all datasets, we adopt
the official training/validation/test split. More details about these datasets are in Appendix A.2.

Baselines. We plug the proposed NPA module into six typical non-parametric GNNs and com-
pare them with their original versions, respectively. Following the taxonomy of the combination
function F in Eq. 3, we select 1) SGC (Wu et al., 2019) as a representative of Max operation,
2) SIGN (Frasca et al., 2020a) as a representative of Concatenate operation, 3) S2GC (Zhu &
Koniusz, 2021) as a representative of Mean operation, 4) GBP (Chen et al., 2020a) as a representative
of Layer-wise weighted operation, 5) NAFS (Zhang et al., 2022b) as a representative of
Node-wise weighted operation, and 6) GAMLP (Zhang et al., 2022c) as a representative of
Node-wise weighted operation, and the current SOTA model in ogbn-papers100M.

Implementations. To alleviate the influence of randomness, we repeat each method ten times and
report the mean predictive accuracy and the corresponding standard deviation. The hyper-parameters
of each method are tuned with random search or set according to the original paper if available.
Please refer to Appendix A.2 for more details. Our code is available in the anonymized repository
https://anonymous.4open.science/r/NPA.

5.2 EXPERIMENTAL RESULTS

End-to-end Performance comparison on homophilic graphs. To answer Q1 and verify the
performance improvement of NPA, we conduct node classification tasks on six homophilic graph
datasets. Table 1 shows the test accuracy of the baselines with and without the proposed NPA module.
Experimental results show that the proposed NPA consistently help all baseline methods achieve
better predictive performance on three citation datasets and three OGB datasets. Since each baseline
method represents one kind of the combination function F , the proposed NPA can plug in different
non-parametric GNNs and obtain performance improvements without losing scalability.

SOTA performance in ogbn-papers100M. To test the performance of NPA in extremely large
graph, we equip GLEM+GIANT+GAMLP with NPA, and the experimental results in Table 5 show
that NPA helps the non-parametric GNN model (i.e., GAMLP) to get the new SOTA results in the
large ogbn-papers100M dataset. Note that both GIANT (Chien et al., 2022) and GLEM (Zhao et al.,
2022) aim at improving the raw feature of OGB, and GAMLP is currently the SOTA GNN model in
this dataset, more concrete analysis can be found in Appendix A.3

Ablation study. To answer Q2, we conduct experiments with different GNNs on three citation
datasets to validate the effectiveness of the local attention and the global attention.
And the results show that both these two attention mechanisms are necessary and co-contribute to a
well-performed GNN model. More experimental results and analysis are in Appendix A.4. And we
also give interpretability analysis of these two attention mechanisms in Appendix A.9.
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Table 3: Node classification performance on heterophilic graphs. We define homophily as the fraction
of edges in a graph whose endpoints have the same label (Yu et al., 2022).

Method Texas Wisconsin Cornell Film ogbn-mag
homophily 0.04 0.11 0.18 0.17 0.30

SGC 57.30 ± 8.18 50.59 ± 4.62 59.73 ± 5.60 27.17 ± 1.23 35.71 ± 0.22
SGC+NPA 80.27 ± 5.55 83.73 ± 3.04 80.00 ± 5.57 36.28 ± 0.93 37.08 ± 0.28
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Figure 4: Test accuracy on PubMed under different sparse scenarios(feature, edge, and label sparsity).

End-to-end Performance comparison on heterophilic graphs. To test the effectiveness of NPA on
heterophilic graphs and answer Q3, we further conduct experiments on four heterophilic graphs. The
experimental results in Table 3 show that SGC can achieve much better predictive performance on
different heterophilic graphs with the help of NPA. The consistent performance improvement on these
four heterophilic graphs comes from both local attention and global attention, which
alleviate heterophily and over-smoothing problem, respectively. More details about the experimental
analysis can be found in Appendix A.7.

Towards Sparse Scenarios. Many real-world graphs are sparse, and nodes in sparse graphs need
deeper architecture to enhance their node embedding from distant neighbors. As NPA can help
non-parametric GNNs toward deeper (see experimental results in Appendix A.5, answered Q4), we
answer Q5 and conduct experiments on the PubMed dataset under different sparse scenarios: feature
sparsity, edge sparsity, and label sparsity. More details about the sparsity settings are in Appendix A.2.
Results in Figure 4 show that with the help of NPA, the test accuracy of the non-parametric SGC
model drops slower when the drop ratio gets larger and the number of training nodes gets fewer,
demonstrating NPA can help non-parametric GNNs perform better on different sparse scenarios.

Time cost. According to the complexity and scalability analysis in Appendix A.11, NPA will not
influence the scalability of existing non-parametric GNNs. But it indeed takes additional time to
equip NPA. To answer Q6, we conduct exhaustive experiments to measure the time cost for feature
propagation, end-to-end training, and training to converge under different settings. The experimental
results show that NPA only introduces a little more time in practice and would maintain the high
scalability of existing non-parametric GNNs. More details about the experimental results and analysis
can be found in Appendix A.6.

6 CONCLUSION

This paper presents NPA, a non-parametric attention method towards scalable and deep GNNs. Unlike
existing non-parametric GNNs which aim to improve the combination process of different steps of
propagated features, NPA propose a new and orthogonal perspective to directly optimize the quality
of propagated features. Specifically, considering the over-smoothed features and fixed weights in
the propagation process of existing non-parametric GNNs, NPA proposes the local attention
and global attention to tackle these two limitations respectively. As a plug-and-play module,
NPA is compatible with all kinds of non-parametric GNNs, to improve their predictive performance
while maintaining high training scalability. Experimental results on eleven real-world homophilic
and heterophilic graph datasets demonstrate that NPA can consistently improve the classification
accuracy of all non-parametric GNNs.
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A APPENDIX

The appendix is organized as follows:

A.1 Theoretical Analysis
A.2 Experimental Details
A.3 SOTA Performance on ogbn-papers100M
A.4 Ablation Study
A.5 Performance with Deeper Architecture
A.6 Time Cost Analysis of NPA
A.7 Experiments on Heterophilic Graphs
A.8 Insights in Model Designing
A.9 Interpretability Analysis of NPA
A.10 The Novelty and Characteristics of NPA
A.11 Advantages over Existing Methods
A.12 Limitations and Social Impact
A.13 Example of the Over-smoothing Issue
A.14 Details of Sampling-based GNNs

A.1 THEORETICAL ANALYSIS

Theorem 1. In discussed non-parametric GNNs, The classifier Φ(x) has 2 properties:

• property 1: Given feature xa ∈ Rf (f is feature dimension) and a non-zero scalar m ∈ R,
argmaxΦ(xa) = argmaxΦ(mxa).

• property 2: Given two features xa,xb ∈ Rf , if argmaxΦ(xa) = argmax(xb), then
argmaxΦ(xa + xb) = argmaxΦ(xa) = argmaxΦ(xb).

Proof. When Φ is a linear classifier, i.e., Φ(x) = softmax(Wx), due to the property of linear
transformation and softmax, Property 1 and Property 2 are held. When Φ is a Multi-Layer Perceptron,
i.e., Φ(x) = softmax(MLP (x)). Assume that the activation in MLP is ReLU. We decompose the
proof into each layer in MLP. Each layer contains a linear transformation and ReLU. Since ReLU is
monotonic increasing when x ≥ 0, it will not distort the relative relationship of two scalars. Due to
the property of linear transformation and ReLU, Property 1 and Property 2 are held in each hidden
layer. In the output layer, softmax will not distort the relative relationship of two scalars, either. Thus
Property 1 and Property 2 are also held in the final output.

We use xi to denote the feature of node vi and use yi to denote the label of node vi. Assume that the
graph is ideally homogeneous, i.e., ∀vj ∈ N(vi), yj = yi. In other words, if we have a well-trained
classifier Φ(x), we have:

∀vj ∈ N(vi), argmaxΦ(xi) = argmaxΦ(xj). (13)

Considering the node vi and its immediate neighbors vj ∈ N(vi) and the corresponding wij , we
assume that each neighbor’s feature is close to the xi with error ϵij:

xj = xi + ϵij, (14)

thus with weights wij ,
∑

vj∈N(vi)
wij = 1, the node’s feature xi can be reconstructed by its immedi-

ate neighbors with errors:
xi =

∑
vj∈N(vi)

wijxj −
∑

vj∈N(vi)

wijϵij. (15)

Here we sort the edge weights wij in the descendant order, i.e., {wij} = {wij1 > wij2 > ... >
wij|N(vi)|

}. And rearrange its immediate neighbors’ features such that the L2 norm of ϵij is ascendant,
i.e., {xj} = {xj1 , ...,xjk ,xjk+1

, ...,xj|N(vi)|
},∀k ∈ [1, |N(vi)| − 1], ∥ϵijk∥2 < ∥ϵijk+1

∥2, we have:
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Theorem 2. Assigning weight wijk to neighbor feature xjk in propagation can lead to learning a
well-trained classifier easier.

Proof. Since we assume that we have an ideal homogeneous graph, from the perspective of Eq. 13
of the homogeneous graph, Property 1 and Property 2 of well-trained classifier Φ in Theorem 1, we
have:

argmaxΦ(xi) = argmaxΦ(xj; vj ∈ N(vi))

= argmaxΦ(wijxj; vj ∈ N(vi))

= argmaxΦ(wijxj + wikxk; vj , vk ∈ N(vi))

= argmaxΦ(
∑

vj∈N(vi)

wijxj).

(16)

From another perspective, with Eq. 15, we have:

argmaxΦ(xi) = argmaxΦ(
∑

vj∈N(vi)

wijxj −
∑

vj∈N(vi)

wijϵij). (17)

Since both prediction argmaxΦ(
∑

vj∈N(vi)
wijxj) and argmaxΦ(

∑
vj∈N(vi)

wijxj −∑
vj∈N(vi)

wijϵij) are equal to the prediction argmaxΦ(xi), a expected classifier should
make the same prediction given the two inputs. If the two inputs are closer, the classifier is
much easier to train to make the same prediction. On the contrary, if the two inputs are far
away, the classifier must approximate a complex decision manifold in the feature space, which
could be intractable, leading to sub-optimal results. Thus, we measure the difference between∑

vj∈N(vi)
wijxj and

∑
vj∈N(vi)

wijxj −
∑

vj∈N(vi)
wijϵij:

diff. =∥(
∑

vj∈N(vi)

wijxj)− (
∑

vj∈N(vi)

wijxj −
∑

vj∈N(vi)

wijϵij)∥2

=∥
∑

vj∈N(vi)

wijϵij∥2

≤
∑

vj∈N(vi)

wij∥ϵij∥2,

(18)

and according to the rearrangement inequality, letting {wij} be the reversed order of {∥ϵij∥2} can
minimize the upper bound of the difference, which may further reduce the difference between two
inputs. To conclude, we showed that re-assigning propagation weights according to "how close
between the neighbor node feature and its center node feature" is beneficial in achieving optimal
prediction performance. From this perspective, our local attention is designed to additionally
assign more weights to the nodes that have more similar features with that of their center nodes.

A.2 EXPERIMENTAL DETAILS

Dataset Description. Cora, Citeseer, and PubMed2 are three popular citation network datasets, and
we follow the public training/validation/test split in GCN (Kipf & Welling, 2017). In these datasets,
papers from different topics are considered nodes, and the edges are citations among the papers. The
node attributes are binary word vectors, and class labels are the topics the papers belong to.

ogbn-arxiv is a directed graph, representing the citation network among all Computer Science (CS)
arXiv papers indexed by MAG (Wang et al., 2020). ogbn-products is an undirected and unweighted
graph, representing an Amazon product co-purchasing network. ogbn-papers100M is a directed
citation graph of 111 million papers indexed by MAG. ogbn-mag dataset is a heterogeneous network
composed of a subset of the MAG. It contains four types of entities: papers, authors, institutions, and
fields of study, as well as four types of directed relations connecting two types of entities. Only paper
node is associated with a 128-dimensional feature vector. The training/validation/test split in our

2https://github.com/tkipf/gcn/tree/master/gcn/data
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Table 4: Overview of the 11 Datasets

Dataset #Nodes #Features #Edges #Classes

Cora 2,708 1,433 5,429 7
Citeseer 3,327 3,703 4,732 6
PubMed 19,717 500 44,338 3

ogbn-arxiv 169,343 128 1,166,243 40
ogbn-products 2,449,029 100 61,859,140 47

ogbn-papers100M 111,059,956 128 1,615,685,872 172

Texas 183 1703 309 5
Wisconsin 251 1703 499 5

Cornell 183 1703 295 5
Film 7,600 931 33,544 5

ogbn-mag 1,939,743 128 21,111,007 349

experiment is the same as the public version. The public version provided by OGB3 is used in our
paper.

Texas, Wisconsin, and Cornell are three heterophilic datasets of WebKB (Craven et al., 1998), which
is a webpage dataset collected from computer science departments of various universities by Carnegie
Mellon University. Nodes represent web pages, and edges are hyperlinks between them. Film is the
actor-only induced subgraph of the film-director actor-writer network. The standard split protocol (Pei
et al., 2020) is used in our paper.

The statistical analysis of these eleven graph datasets is summarized in Table 4.

Hyper-parameters Setting. In the proposed NPA, α in local attention and temperature
T in global attention are two additional hyper-parameters that need to be tuned. α controls
the scale of sim(mt−1

i ,mt−1
j ) and determines how much it contribute to the updated weight ŵij .

Temperature T controls the scale of the combination weights. We conduct coarse-grained pre-
experiments to find the range of α in each baseline and dataset, and T can simply be selected within
[1,5,10,20,50]. We carefully tune the network depth for each method and dataset to get the best
performance. Take the SGC method for an example, the depth we used for Cora, Citeseer, PubMed,
ogbn-arxiv, ogbn-products and ogbn-papers100M is 10, 8, 14, 8, 13, 6, respectively.

As for the parametric classifiers, we categorize the classifiers of our baseline methods into two classes:
Logistics Regression (LR) and Multi-Layer Perceptron (MLP). For LR, since it’s sensitive to weight
decay, we only tune weight decay and remain all other hyper-parameters following the settings in
their original paper. For MLP, we only tune the lr, weight decay (if used in original papers), and
batch size (if used in original papers) and remain all other hyper-parameters following the settings in
their original paper.

Sparsity Setting. In feature sparsity, we randomly mask a portion (varying from 0.1 to 0.9) of node
features. In edge sparsity, we randomly drop a portion (varying from 0.1 to 0.9) of the edges in the
original graph. In both scenarios, the model needs to propagate more steps and pay more attention to
the neighbors with high homogeneity to reconstruct reasonable node representations. In label sparsity,
we enumerate the number of training nodes per class from 1 to 19. With less supervision signal, the
classifier may not be well-trained, and the model needs to generate better node embedding in the
non-parametric propagation process.

Reproduction Instructions. The experiments are conducted on a machine with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz, and a single NVIDIA TITAN RTX GPU with 24GB GPU memory.
The operating system of the machine is Ubuntu 16.04. For software versions, we use Python
3.6, Pytorch 1.7.1, and CUDA 11.0. Our code is available in the anonymized repository https:
//anonymous.4open.science/r/NPA.

3https://ogb.stanford.edu/docs/nodeprop/
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Table 5: sota performance on ogbn-papers100M

Method GAMLP GAMLP+NPA GLEM+GIANT+GAMLP GLEM+GIANT+GAMLP+NPA
Accuracy 67.71 67.83 70.37 70.44

Table 6: Ablation study on SGC and S2GC

Method Cora Citeseer PubMed
SGC 81.0±0.0 71.9±0.1 78.9±0.0
SGC+NPA (w/o local attention) 82.5±0.1 73.1±0.0 79.6±0.0
SGC+NPA (w/o global attention) 82.7±0.1 73.3±0.0 79.8±0.0

SGC+NPA 83.0±0.0 73.6±0.0 80.1±0.0

S2GC 83.5±0.0 73.6±0.1 80.2±0.0
S2GC+NPA (w/o local attention) 83.6±0.1 73.7±0.1 80.3±0.1
S2GC+NPA (w/o global attention) 83.6±0.1 73.9±0.1 80.6±0.1

S2GC+NPA 83.7±0.1 74.0±0.0 80.8±0.0

A.3 SOTA PERFORMANCE ON OGBN-PAPERS100M

As shown in current leaderboards4, the SOTA model in ogbn-papers100M is
GLEM+GIANT+GAMLP. GIANT is a node feature extraction method by self-supervised
multi-scale neighborhood prediction, and GLEM takes raw node attributes and generates numerical
node features with graph-structured self-supervision. To sum up, both GIANT and GLEM aim at
improving the raw feature of OGB, and GAMLP is currently the SOTA GNN model in this dataset.

In fact, GAMLP is also one type of non-parametric GNN. Specifically, with recursive attention,
GAMLP can tackle the over-smoothing issue by optimizing the combination function F with
adaptive weights. However, GAMLP also faces two issues like other non-parametric GNNs: 1)
Propagation with Over-smoothed Features; and 2) Propagation with Fixed Weights. So, we equip
GLEM+GIANT+GAMLP with NPA and get the final results in Table 5.

The experimental results in Table 5 show that NPA can further improve the performance
of both GAMLP and GLEM+GIANT+GAMLP. Notably, with the improved node features,
GLEM+GIANT+GAMLP+NPA achieves the SOTA performance in ogbn-papers100M.

A.4 ABLATION STUDY

We conduct an ablation study on three citation datasets to validate the effectiveness of the local
attention and the global attention. We compare the SGC and S2GC equipped with
NPA module (SGC+NPA and S2GC+NPA) with three corresponding baselines respectively: 1)
SGC/S2GC+NPA (w/o local attention), which indicates that the propagation weights are fixed and
only related to the graph structure, but global attention remains to control smoothing levels, 2)
SGC/S2GC+NPA (w/o global attention), which indicates that we put the over-smoothing issue aside,
but local attention remains to adjust the weights of neighbors with different homogeneity, 3)
SGC/S2GC, indicating the original version of SGC/S2GC.

Results in Table 6 show that the test accuracy of SGC/S2GC+NPA (w/o local attention) and
SGC/S2GC+NPA (w/o global attention) improves on all datasets comparing the SGC/S2GC, demon-
strating the effectiveness of both local attention and global attention. Specifically,
compared with SGC/S2GC+NPA, the test accuracy of SGC/S2GC+NPA (w/o local attention) drops
more than that of SGC/S2GC+NPA (w/o global attention), demonstrating that local attention
has more benefit on predictive performance. However, global attention plays another impor-
tant role: avoiding the over-smoothing issue and helping the model toward deeper. Thus, both local
attention and global attention are necessary and co-contribute to a well-performed and
deeper model.

4https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-papers100M

16



Under review as a conference paper at ICLR 2024

5 10 15 20 25 30
Step

0.70

0.72

0.74

0.76

0.78

0.80

Te
st

 A
cc

ur
ac

y

SGC+NPA
SGC

Figure 5: Test accuracy on PubMed along the propagation steps.

Table 7: Feature propagation time (second)

Method ogbn-arxiv ogbn-products
SGC 0.53 34.13
SGC+NPA 1.43 75.71
SGC+NPA (w/o local attention) 0.82 37.69
SGC+NPA (w/o global attention) 1.13 72.21

A.5 PERFORMANCE WITH DEEPER ARCHITECTURE.

Existing non-parametric GNNs suffer from the propagation of the over-smoothed features when the
propagation depth is large, resulting in the node representation indistinguishable and bad predictive
performance. Thanks to the global attention in NPA, non-parametric GNNs equipped with
NPA module can tackle this issue by assigning fewer combination weights to newly generated node
embedding m̂t

i when little new information will be introduced. To test the performance of NPA with
deeper GNNs, we select SGC as a baseline method and gradually enlarge the propagation depth on the
PubMed dataset. Figure 5 shows that SGC suffers a lower test accuracy when the propagation depth
gets larger, while SGC equipped with NPA (SGC+NPA) can always maintain a high test accuracy
no matter how large the propagation depth is, demonstrating NPA can help non-parametric GNNs
toward deeper.

A.6 TIME COST ANALYSIS OF NPA

Feature propagation time. As discussed in Section A.11, both SGC and SGC+NPA have the
same time complexity O(Kmf) in feature propagation process. But the calculation of the local
attention(O(Kmf)) and global attention(O(Knf)) actually needs to cost additional
time. To answer Q6, we firstly test the feature propagation time of 1) SGC, 2) SGC+NPA, 3)
SGC+NPA (w/o local attention), and 4) SGC+NPA (w/o global attention) on two large datasets:
ogbn-arxiv and ogbn-products. Results (in seconds) in Table 7 show that SGC+NPA costs more
time than SGC, but generally costs no more than 3 times the time of SGC. Thus, the additional
time cost of proposed NPA can be regarded as the time cost of SGC multiplied by a small constant
factor. SGC+NPA (w/o local attention) costs less time than that of SGC+NPA (w/o global attention)
since the time complexity of the local attention is usually larger than that of the global
attention.

Table 8: End-to-End training time (preprocessed and trained on CPU)

Method ogbn-arxiv ogbn-products
SGC 155 551
SGC+NPA 156 593
SGC+NPA (w/o local attention) 155 555
SGC+NPA (w/o global attention) 155 589
GCN 587 14400
GAT 34800 OOM
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Table 9: End-to-End training time (preprocessed on CPU and trained on GPU)

Method ogbn-arxiv ogbn-products
SGC 1.9 37
SGC+NPA 2.7 78
SGC+NPA (w/o local attention) 2.1 41
SGC+NPA (w/o global attention) 2.4 75
GCN 5.2 168
GAT 85 OOM

Table 10: Time for training to converge (preprocessed and trained on CPU)

Method ogbn-arxiv ogbn-products
SGC 1451 5130
SGC+NPA 1423 5102
S2GC 1441 5102
S2GC+NPA 1406 5095
SIGN 5508 48987
SIGN+NPA 5478 47602
GBP 1840 12700
GBP+NPA 1814 12705
NAFS 1401 5122
NAFS+NPA 1355 5100

End-to-end training time. We test the end-to-end training time (100 epochs, in seconds) of
the 4 non-parametric GNNs: 1) SGC, 2) SGC+NPA, 3) SGC+NPA (w/o local attention), and 4)
SGC+NPA (w/o global attention) and 2 parametric GNNs: 1) GCN, and 2) GAT on ogbn-arxiv and
ogbn-products datasets. For the sake of 1) unified comparison of preprocessing time and training
time and 2) demonstrating practical experiments, we conducted end-to-end training experiments on 1)
pure CPU and 2) CPU when preprocessing and GPU when training, respectively. Results in Table 8
and Table 9 show that the parametric GNNs cost increasingly more time than non-parametric GNNs
as the dataset gets larger. The difference between SGC and SGC+NPA is relatively small because
SGC+NPA only needs to take a little more time in the feature propagation process and the following
training process is the same with SGC.

Time for training to converge. We compare how long these methods take for training to converge
with or without NPA. We conduct experiments on all 5 baseline methods. For SGC and SGC+NPA,
S2GC and S2GC+NPA, NAFS and NAFS+NPA, since the NPA only has to do with the preprocessing
phase and only the input feature maps are different, the time for training to converge each pair
of methods take is similar. For GBP and GBP+NPA, following the original paper, the following
MLPs are different from vanilla MLPs so they take relatively more time. For SIGN and SIGN+NPA,
following the original paper, the following MLPs are larger so they take more time. The results (in
seconds) are shown in Table 10 and Table 11.

A.7 EXPERIMENTS ON HETEROPHILIC GRAPHS

The non-parametric GNNs baselines in this paper mostly make homophily assumptions, and thus
perform badly on datasets with heterophily. Our proposed NPA, as a plug-and-play module, naturally

Table 11: Time for training to converge (preprocessed on CPU and trained on GPU)

Method ogbn-arxiv ogbn-products
SGC 7.4 31
SGC+NPA 7.0 29
S2GC 6.8 29
S2GC+NPA 6.6 27
SIGN 34 492
SIGN+NPA 31 481
GBP 24 578
GBP+NPA 24 570
NAFS 7.1 29
NAFS+NPA 7.0 27
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Table 12: Node classification performance on heterophilic graphs. We define homophily as the
fraction of edges in a graph whose endpoints have the same label (Yu et al., 2022).

Method Texas Wisconsin Cornell Film ogbn-mag
homophily 0.04 0.11 0.18 0.17 0.30

SGC 57.30 ± 8.18 50.59 ± 4.62 59.73 ± 5.60 27.17 ± 1.23 35.71 ± 0.22
SGC+NPA 80.27 ± 5.55 83.73 ± 3.04 80.00 ± 5.57 36.28 ± 0.93 37.08 ± 0.28

Table 13: Ablation study about normalization

Method Cora Citeseer PubMed
SGC 81.0 71.9 78.9
SGC+rbf (proposed) 83.0 73.6 80.1
SGC+rbf+normalization 83.0 73.8 79.4

inherits their homophily assumption. However, NPA has the ability to improve the baseline methods
in a heterophily setting without any other modification: the results in Table 12 show that SGC can
achieve much better predictive performance on heterophilic graphs with the help of NPA.

Performance improvement on heterophilic graphs comes from both local attention and
global attention, which alleviate heterophily and over-smoothing problem, respectively.

local attention in NPA helps baseline methods in two folds: First, it sets different weights on
neighbors with the same label by feature similarity, aiming to select and consider the most "important"
neighbors in propagation. Second, it reduces the propagation weights with respect to the neighbors
with different labels, aiming to reduce the feature mix caused by those neighbors (which can be
viewed as noise in homophily assumption). The second perspective is still working when we directly
transfer the baseline methods with NPA in a heterophily setting. In local attention of NPA,
the two connected nodes but with different labels may have quite different features (for example
in the WebKB datasets different kinds of webpages contain different words), thus by calculating
the feature similarity in the propagation phase, nodes will have a smaller propagation weight with
respect to their neighbors with different labels. The node feature won’t get mixed with its heterophilic
neighbors’ features, resulting in a low misclassification rate.

In global attention, the over-smoothing problem is solved at the feature level, just like the
process in datasets with homophily.

In a word, the proposed NPA tackles both the heterophily and over-smoothing issue, making the
baseline methods perform better.

A.8 INSIGHTS IN MODEL DESIGNING

Here we offer some insights when choosing 1) with or without normalization in Eq. 10, 2) radial
basis function in Eq. 10, 3) the value of T in Eq. 11.

About Normalization. Since we can use the σ to control the similarity values, it can play a similar
role with normalization: by adjusting σ, the weights in Eq. 10 can be controlled within a reasonable
range (not too small or too large). We also test the SGC+rbf+normalization version on citation
datasets (omit the std since the std is usually smaller than 0.1) and results are shown in Table 13. We
find that the normalization after the radial basis function is not necessary but introduces additional
time costs.

Why choose radial basis function(rbf). We choose the radial basis function because we can use
the hyper-parameter σ to control the scale of the value of similarity, which can flexibly deal with
different initial feature distributions. By adjusting σ, we can regulate the scale of the similarity values,
which is instrumental in addressing varying initial feature distributions. In cases where initial features
exhibit close proximity overall (even between disconnected nodes), a smaller σ can be employed
to discern similarity scores effectively. Conversely, when initial features are considerably far apart
overall (even between connected nodes), a larger σ can be used to guarantee that weights between
two connected nodes (with the same label) are not unreasonably low. Besides, we need to balance the
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Table 14: Comparison of radial basis function and cosine function

Method Cora Citeseer PubMed
SGC 81.0 71.9 78.9
SGC+rbf (proposed) 83.0 73.6 80.1
SGC+cos+normalization 82.5 74.0 79.5

Table 15: Ablation study about T

Method Cora Citeseer PubMed
SGC 81.0 71.9 78.9
SGC+NPA 83.0 73.6 80.1
SGC+NPA (w/o T ) 82.8 73.6 79.9

structure and feature factors in propagation weights. Choosing a proper σ can prevent the value from
one factor from overwhelming that of the other one.

Another possible choice is the cosine function. But cosine does not have a parameter to control the
value of similarity and thus has a drawback in its inflexibility to face different feature distributions. To
prevent the cosine similarity value from squeezing in a range near 1 (when initial features are similar
overall) or squeezing in a range near 0 (when initial features are not similar overall), normalization
becomes necessary to control the value distinguishable and in a reasonable range. We also test this
setting (SGC+cos+normalization) on citation datasets and results are shown in Table 14

Value of T in Eq. 11. When regarding global attention, the motivation to use T in Eq. 11 is to
imitate the role of σ in the radius basis function. We can use different T to control the values in a
proper range. In our experiments, choosing the value of T is coarse: simply try some values: 1, 5, 10,
20, and 50 are enough. We report the ablation study about T on the citation dataset in Table 15. We
can see that introducing T can benefit the performance of some datasets, which indicates that T is
indeed beneficial in a different distribution.

A.9 INTERPRETABILITY ANALYSIS OF NPA

We here explain how the local attention and global attention work and why they are
effective, respectively.

To explain how local attention works and why it helps, we define the average homogeneous
edge weight, average heterogeneous edge weight, and Edge Weight Margin at step t as

average homogeneous edge weight =

∑
i,j∈V,yi=yj

ŵt
ij∑

i,j∈V,yi=yj
1

(19)

average heterogeneous edge weight =

∑
i,j∈V,yi ̸=yj

ŵt
ij∑

i,j∈V,yi ̸=yj
1

(20)

Edge Weight Margin =
avg. homo. weight− avg. hetero. weight

avg. hetero. weight
. (21)

Edge Weight Margin measures how much more attention we put on the neighbors with the same labels
(which are called homogeneous neighbors) compared with those with different labels (which are
called heterogeneous neighbors). Since homogeneity in the real-world graphs is uncertain, we hope
the propagation can focus on the homogeneous neighbors and ignore the heterogeneous neighbors
(which can be seen as noise).

Figure 6 shows that on the PubMed dataset, SGC+NPA which is equipped with local attention
can enlarge Edge Weight Margin and put more attention on homogeneous neighbors by the mea-
surement of local similarity. However, the original SGC uses fixed edge weights, which are only
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Figure 6: Edge Weight Margin on the PubMed dataset
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Figure 7: The over-smoothing step distribution (PubMed dataset)
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Figure 8: Edge Weight Margin on the Cora dataset
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related to the graph structure, thus can not adjust the local attention flexibly, and takes on a
low, straight blue line in Figure 6. Furthermore, an interesting observation in Figure 6 is that as the
step gets larger, the Edge Weight Margin of SGC+NPA decreases since propagation will still take
in a little part of the features of heterogeneous neighbors considering the graph structure, but the
red curve will not intersect with the straight blue line standing for SGC. Rather, the curve tends to
converge to a dashed green line above the SGC’s line. We can observe a similar phenomenon in the
Cora dataset (see Figure 8), which implies the generality of this observation.

To explain how global attention works and why it helps, we first put an observation that the
steps which make node feature over-smoothed are varied. Following the previous work (Zhang et al.,
2022b), we assume the node feature m̂t

i is over-smoothed if its combination weight α̂t
i is less than a

small threshold ϵ. By assigning ϵ = 0.05, we define the over-smoothing step for node i as

over-smoothing step(i) = min{t|α̂t
i ≤ 0.05}, (22)

and plot a histogram of the number of nodes with the over-smoothing step t in Figure 7. Figure 7
shows that even with NPA, most node features get over-smoothed within 4 steps, while few node
features won’t get over-smoothed until propagating more than 8 steps. This observation corresponds
to the two designs in global attention. First, since most node features will get over-smoothed
within a few steps, it’s necessary to use α̂t

i to measure how much new global information will
be introduced. When the node features tend to be over-smoothed, the weights to combine newly
propagated node embedding are much smaller, resulting in the avoidance of the over-smoothing
issue. Second, since the over-smoothing steps of nodes can vary, we should measure the global
attention node-wisely. At each step, nodes with different over-smoothed steps should have
different combination weights. Thus, global attention helps avoid the over-smoothing issue
and adapts to various over-smoothing steps of node features.

A.10 THE NOVELTY AND CHARACTERISTICS OF NPA

Compatibility with parametric GNNs. In fact, both the local attention and global
attention in NPA can also be compatible with parametric GNNs. Take the widely used GCN as
an example, we can calculate the local attention based on the node embedding on the current layer,
and then use the generated local attention to improve the adjacency matrix used in the propagation of
its next layer. Besides, based on the similarity of previous node embedding and the newly propagated
node embedding in the current layer, we can calculate the global attention and then use it to tackle
the over-smoothing issue of the propagated node embedding. However, since parametric GNNs
(e.g., GAT and DAGNN) can use parametric attention to achieve this goal, it may be unnecessary to
introduce NPA.

Novelty of Local Attention. The main novelty of local attention is its motivation (the
under-explored new limitation), i.e., the propagation with fixed weights in non-parametric GNNs.
To tackle this limitation, we simplify the parametric attention mechanism in (Veličković et al.,
2017; Zhang et al., 2018; Brody et al., 2022) to non-parametric local attention to maintain the high
scalability of non-parametric GNNs, and this is the first attempt to improve the propagation process
in non-parametric GNNs.

Novelty of Global Attention. Similarly, using adaptive weights in non-parametric GNNs is
common, such as GBP, NAFS, and (Chien et al., 2021; He et al., 2022). However, as discussed in
Eq. 3, existing non-parametric GNNs aim at optimizing the combination function F with adaptive
weights. Different from them, we adopt global attention to tackle the propagation of over-smoothing
features in the propagation process. And we aim to optimize the propagation method P (defined
in Eq. 2) to improve the quality of the multi-step propagated features, rather than the combination
function F in existing non-parametric GNNs.

Similar to global attention, another naive idea is the weighted residual connection in (Shen
et al., 2016), which is used to train very deep networks. Weighted residual connection computes new
features as below:

xi+1 = xi + λi∆Li, (23)

where λi is the weight scalar, ∆Li is realized by two Conv-BN-ReLUs in the original paper, while
here is realized by the propagation of features Axi. Original weighted residual connection set the
λi as learnable parameters optimized alone model training. However, when adopted in our scalable
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Table 16: Comparison of global attention and weighted residual connection. Due to space
limitations in the table, we use wrc as an abbreviation for weighted residual connection.

Method Cora Citeseer PubMed
SGC 81.0 71.9 78.9
SGC+wrc 82.3 73.0 79.5
SGC+local attention 82.7 73.3 79.8
SGC+local attention+wrc 82.9 73.3 79.8
SGC+NPA 83.0 73.6 80.1

S2GC 83.5 73.6 80.2
S2GC+wrc 82.8 73.4 80.1
S2GC+local attention 83.6 73.9 80.6
S2GC+local attention+wrc 83.3 73.7 80.2
S2GC+NPA 83.7 74.0 80.8

GNN setting, it cannot scale to large graphs since the propagation and training are not decoupled. To
make the GNNs with weighted residual connection scalable, λi can be treated as a hyperparameter
and here we grid search it. However, we verify that it cannot beat our global attention, and is
even not a right choice from the perspective of both experiments and theoretical analysis.

Table 16 shows the experimental comparison of our global attention and weighted residual
connection. For SGC, the weighted residual connection can bring some benefits in predictive accuracy
but can hardly make more improvement over local attention, while global attention
(SGC+NPA) can make a further improvement over local attention. For S2GC, the weighted
residual connection even harms the performance of both S2GC and S2GC+local attention, let alone
surpassing the performance achieved by global attention (S2GC+NPA).

The reasons why weighted residual connection performs badly are two-fold: 1) whether λi is
learnable or not, it cannot adapt to each node. In one step, all nodes share the same weight, but our
global attention can perform node-wisely to adapt to the truth that different nodes can have different
smoothing speeds, which is also verified by experiments in Figure 7; 2) Whether λi is learnable or
not, the weighted residual connection is equivalent to simple propagation xi+1 = Axi thus does not
bring any new information or high-order feature cross. In weighted residual connection, any xi can be
decomposed as x0 +

∑i
1 λi∆Li. Supposing a weighted combination function (e.g. S2GC and GBP),

by choose a series of weights wi, the final features x̂ =
∑k

i=0 wixi = w0x0+
∑k

i=1 wi

∑k
j=i λixi =

w0x0 +
∑k

i=1 wi(k − i + 1)λixi. However, this is equivalent to simple propagation xi+1 = Axi

since we can just choose a new series of weights ŵi such that ŵ0 = w0, ŵi = wi(k− i+1)λi, i > 0.

Comparison with NAFS (1) Different motivation. The goals of our method and NAFS are orthogo-
nal. Similar to existing works (e.g., GBP and SIGN), NAFS highlights how to combine the propagated
features, and it proposes a node-adaptive solution based on the Smoothing Weight. As discussed in
Eq. 3, existing non-parametric GNNs aim at optimizing the combination function F , but our goal
is to optimize the propagation method P (defined in Eq. 2) to improve the quality of the multi-step
propagated features.

(2) Different design principles. The global attention of our method is to control the node smoothing
level at different propagation steps. Thus it adopts global attention to measure how much new
information the propagated feature will introduce. Different from our method, the “Smoothing
Weight” in NAFS only measures the distance between each node feature and its stationary state,
without considering the over-smoothing issue during the feature propagation process. In this way, the
over-smoothed feature will hurt the embedding quality of its neighbors in NAFS.

Comparison with graph attention network (GAT). (1) New Motivation. The main motivation of
GAT is that the importance of different neighborhood nodes is different, thus it assigns different
weights to adjacent nodes with the attention mechanism.

• Different from GAT, the main motivation of local attention in NPA is to consider
the feature influence in the feature propagation since existing non-parametric GNNs follow
the propagation process of SGC and only consider the graph structure information in feature
propagation.
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• Similar to existing non-parametric GNNs, GAT will also face the over-smoothing issue if
we stack multiple GNN layers. Although some methods are proposed to tackle the over-
smoothing issue by optimizing the combination function, the over-smoothed features will
also be propagated to distant neighbors, thus decreasing the embedding quality.

(2) New Solution.

• Both the local attention in NPA and GAT adopts the attention mechanism to assign
different weights to adjacent nodes, but the way they get the attention score is different.
Specifically, GAT adopts a single-layer feedforward neural network parametrized by a
weight vector, while NPA directly measures the similarity between two propagated node
features. Besides, another difference is that our local attention can be pre-computed in the
feature pre-processing, thus achieving higher scalability.

• To tackle this new motivation introduced above, the global attention is new to both non-
parametric GNNs (e.g., GBP and NAFS) and parametric GNNs (e.g., GCN and GAT) since
it aims to control the smoothing level of different layers of propagated features.

Specifically, as discussed in Eq. 3, existing non-parametric GNNs aim at optimizing the combination
function F with adaptive weights. Different from them, we adopt global attention to tackle the
propagation of over-smoothing features in the propagation process. And we aim to optimize the
propagation method P (defined in Eq. 2) to improve the quality of the multi-step propagated features,
rather than the combination function F in existing non-parametric GNNs.

A.11 ADVANTAGES OVER EXISTING METHODS

High Scalability. NPA will not influence the scalability of existing non-parametric GNNs since
it will not introduce any trainable parameters during the propagation process. NPA only needs to
calculate the feature similarity of adjacent nodes, thus both SGC and SGC+NPA have the same time
complexity O(Kmf), where K is the maximum propagation step, f is the feature dimension, and m
and n are the number of edges and nodes respectively. Besides, NPA only requires storing the local
and global attention weights, and the memory cost is O(m+ n), which grows linearly with the edge
number m in typical real-world graphs. Due to the low memory cost and high efficiency, NPA is
helpful to scale existing non-parametric GNNs to large graphs.

High Effectiveness. NPA improves non-parametric GNNs with non-parametric attention. Specifi-
cally, the local attention can help to better capture the graph homogeneity and the global
attention enables non-parametric GNNs to capture deep structural information without the
over-smoothing issue, making the non-parametric GNNs more effective.

High Compatibility Both the local and global attention introduced in NPA is proposed to improve
the propagation process (defined in Eq. 2), rather than the combination process (defined in Eq. 3)
considered by previous non-parametric GNNs. Therefore, NPA can benefit from recent advancements
in non-parametric GNNs and be used as a plug-and-play module to further improve their performance.

A.12 LIMITATIONS AND SOCIAL IMPACT

Social Impact. NPA can be employed in areas where graph modeling is the foremost choice, such as
citation networks, social networks, chemical compounds, transaction graphs, road networks, etc. The
effectiveness of NPA when improving the predictive performance and training scalability in those
areas may bring a broad range of societal benefits. For example, accurately predicting the malicious
accounts on transaction networks can help identify criminal behaviors such as stealing money and
money laundering. Prediction on road networks can help avoid traffic overload and save people’s
time. A significant benefit of NPA is that it can support both scalable and deep graph learning.

Limitations. NPA faces the risk of information leakage in the smoothed features and attention
weights. In this regard, we encourage researchers to understand the privacy concerns of NPA and
investigate how to mitigate the possible information leakage.
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Figure 9: An example of the over-smoothing issue.

A.13 EXAMPLE OF THE OVER-SMOOTHING ISSUE

To better clarify the over-smoothing issue during the feature propagation process of non-parametric
GNNs. We set the normalized adjacency matrix as D̃−1/2ÃD̃−1/2, and then propagate it with an
extremely large step (i.e., 26). As shown in Figure 9, no matter how different their original node
features are, nodes with the degrees (e.g., node 4 and node 6) in a connected graph will have the
same node feature after a large step of feature propagation. As a result, such indistinguishable node
features will lead to the bad predictive performance of deep GNNs.

The insight and comparison of NPA in overcoming over-smoothing. There have been some
works addressing over-smoothing issues. Similar to non-parametric GNNs, SHADOW-GNN (Zeng
et al., 2021) can also scale to large graphs with a low-end GPU with limited memory capacity due to
the minibatch computation, but it’s time-consuming for model training is still high. Besides, similar
to APPNP, GPRGNN (Chien et al., 2021) decouples the feature propagation and transformation. But
they are hard to scale to large graphs since the time and memory-consuming feature propagation
process can not be pre-processed as non-parametric GNNs. Finally, GCNII (Chen et al., 2020b)
tackles the over-smoothing issue with the initial residual connection and identity mapping, but it
also faces the scalability issue like the traditional GCN. Non-parametric GNNs can achieve the best
tradeoff among memory consumption, training efficiency, and predictive performance.

The over-smoothing issue in non-parametric GNNs may exist in two cases. The former case is the
final node embedding used for the downstream tasks, the latter is the node embedding during the
feature propagation. A series of non-parametric GNNs (e.g., SIGN, GBP, and NAFS) have been
proposed to address the over-smoothing issues for the former case, i.e., optimizing the combination
function F (e.g., concatenate and weighted means) in Eq. 3. However, the issue of propagation with
over-smoothed features (i.e., the latter case) has not been explored before in non-parametric GNNs.
To the best of our knowledge, NPA is the first work that tackles this issue.

A.14 DETAILS OF SAMPLING-BASED GNNS

An intuitive method to tackle the recursive neighborhood expansion problem in large-scale GNNs is
sampling. And existing sampling techniques can be classified into three types: node-wise sampling,
layer-wise sampling, and graph-wise sampling.

As a commonly used node-wise sampling method, GraphSAGE (Hamilton et al., 2017) samples
a fixed-size set of neighbors in each propagation process. Besides, VR-GCN (Chen et al., 2018a)
improves the node-wise sampling with variance reduction. In the layer level, Fast-GCN (Chen et al.,
2018b) samples a fixed size of nodes at each layer, and ASGCN (Huang et al., 2018) adopts the
adaptive layer-wise sampling with better variance control. For the graph-wise sampling, Cluster-
GCN (Chiang et al., 2019) clusters the nodes and samples the nodes in the same clusters, and
GraphSAINT (Zeng et al., 2020) directly samples a subgraph for model training.

Despite the success of these sampling-based GNNs, the sampling quality highly influences their
predictive performance, and the computation and communication cost is still high in large graphs.
Therefore, as an orthogonal way to tackle the scalability issue, our proposed method NPA is built on
the more scalable non-parametric GNNs.
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