Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Anonymous Authors'

Abstract

Activation functions are one of the key compo-
nents of a deep neural network. The most com-
monly used activation functions can be classed
into the category of continuously differentiable
(e.g. tanh) and piece-wise linear functions (e.g.
ReLU), both having their own strengths and draw-
backs with respect to downstream performance
and representation capacity through learning. In
reinforcement learning, the performance of con-
tinuously differentiable activations often falls
short as compared to piece-wise linear functions.
We show that the dying neuron problem in RL is
not exclusive to ReL.Us and actually leads to addi-
tional problems in the case of continuously differ-
entiable activations such as tanh. To alleviate the
dying neuron problem with these activations, we
propose a Hadamard representation that unlocks
the advantages of continuously differentiable acti-
vations. Using DQN, PPO and PQN in the Atari
domain, we show faster learning, a reduction in
dead neurons and increased effective rank.

1. Introduction

The Rectified Linear Unit (ReLU) (Fukushima), (1969} Nair|
and its variants (Xu et al.} 2015}, [Klambauer

have emerged as the most widely used and gen-
erally best-performing activation functions up until this day

(Jarrett et al.| 2009} [Goodfellow et al.,[2016). The strength
of the ReLU activation lies in its ability to naturally avoid
vanishing gradients when used in deeper networks, in con-
trast to the continuously differentiable activation functions,

such as the sigmoid and the hyperbolic tangent
Bengio, 2010).

A common drawback of using the ReLU activation is its

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Atari (51 Games, 40M Frames)

-
i

.
N

Tanh (HR)

Median Human-Normalized Score
o
N

e
o

Figure 1: Median Human-Normalized performance train-
ing PQN in the Atari domain where the activation function
of the hidden layers is changed. A massive performance
discrepancy in performance can be observed when select-
ing different activation functions. Notably, in Atari, the
application of a Hadamard representation with hyperbolic
tangent leads to over 100% performance gains. Note that
the Hadamard representation is not suitable for the ReLLU
activation, as it amplifies its sparsity by taking the product
of sparse activations.

limited expressivity in the context of shallow networks (see
Fig. [2)), as well as the phenomenon known as the dying
ReL.U problem (He et al., 2015} [Lu et al,2019). As training
progresses, the number of dying ReLUs tend to increase,
resulting in a dying network and loss of network capacity

(Dubey et al.| 2022).
In reinforcement learning (RL) (Sutton & Bartol, [2018), the

dying neuron phenomenon is much more prevalent than
in supervised learning due to the use of non-stationary tar-
gets (Sokar et al}, [2023). However, even though training
results in a large number of dying ReLUs
[2022} [Sokar et al., [2023)), the ReLU function still remains
the most popular activation for performance reasons
derson et all,[2018). Similar to supervised learning
2024), continuously differentiable activation functions
such as the hyperbolic tangent are therefore not favored in
RL (see Fig.[T). However, one might argue that their sym-
metrical, bounded shape and smooth gradient landscape

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

offer optimization advantages that the ReLU lacks. Recent
findings also indicate that a hidden layer activated by a hy-
perbolic tangent displays a high effective rank and thus a
high layer expressivity (Kumar et al., 2021} |Gulcehre et al.|
2022). Despite being a theoretically sound candidate, its
lack of success in RL has not been thoroughly investigated.

Loss = 13.39

Loss = 128.48 Loss = 1.71

30

204

WM i

30
201
104
04
- Target —201 — Target

-10 w
RelU === Tanh (HR)

—30+ -30+

o

T T T
-5 0 5

Figure 2: A regression of three shallow neural network
architectures on a random complex sinusoidal function
(y = 10 * torch.sin(7 * x) + 15 x torch.sin(10 x) +
5 % torch.cos(5 * x)). The Tanh (HR) network emerges
as the strongest function approximator, even while having
less trainable parameters (501 vs 601 for Tanh & ReLU).
To make a fair comparison, the Tanh and ReLU networks
have one single hidden layer of size 200, while the Tanh
(HR) network has a hidden layer of size 100. For the Tanh
(HR) network however, we use two parallel linear layers
preceding the hidden layer in order to be able to use the
single hidden layer as the Hadamard product of two activa-
tions (see Section). For experiments comparing deeper
networks, we refer the reader to Appendix @

This paper provides insights into the hyperbolic tangent’s
suboptimality, revealing that RL gradients lead to bias-
inducing dying neurons and under-utilization of the full
network capacity. Based on these insights, we mitigate said
effects by augmenting the original hidden layer architecture.
Specifically, we provide an alternative to the conventional
parameterization of these layers. Our contributions can be
summarized as follows:

* We show that, in reinforcement learning, dying hyper-
bolic tangents are a phenomenon of a similar scale as
the dying ReLU problem, and argue how they inher-
ently have a more profound effect on performance.

* A Hadamard representation (HR) is proposed, defining
a hidden layer as the Hadamard product of two separate,
individually parameterized activation vectors.

* We empirically show that, without hyperparameter tun-
ing or the use of auxiliary losses, Hadamard repre-
sentations yields notable performance gains in multi-
ple algorithms in the Atari domain, and reveal how
it decreases dying neurons and increases the internal
representations’ effective rank.

2. Related Work

This section provides related work from the perspective of:
(1) the loss of capacity through learning neural networks and
(ii) the effect of different network architectures in RL.

Network Capacity in RL. [Liu et al.|(2019) investigated
the need for sparse representations in the continuous control
domain. (Gulcehre et al.[(2022) analyzed network expres-
siveness in RL by measuring the effective rank (Kumar et al.|
2021)) of the representation, and found that hyperbolic tan-
gent representations generally maintain high rank while not
suffering strongly from rank decay as training continues.
Related work used normalization techniques and action pe-
nalization to counteract high variance in pixel-based robotic
control (Bjorck et al. 2022). Other work by Lyle et al.
(2022) investigated capacity loss in RL and similarly found
that, as training progresses, the inherent network capacity
of RL algorithms decays. Further research by [Nikishin et al.
(2022)) used network resets to counteract the primacy bias
and (Sokar et al.| [2023)) evaluated and mitigated the dying
ReLU phenomenon in DQN, both operating in the sample
efficiency setting. |Nikishin et al.| (2023) further studied
plasticity injection for long-term training and |Delfosse et al.
(2024)) applied rational activations (Molina et al.|2019) in
RL to increase plasticity. Concurrent work by [Dohare et al.
(2024) used continual back-propagation to further alleviate
plasticity loss. In another related direction, recent work has
investigated network sparsity in RL, showing that a large
part of network capacity might be unnecessary when train-
ing reinforcement learning (Arnob et al.| [2021} |Graesser|
et al.l 2022; [Sokar et al., 2022} [Tan et al.| 2023} |Obando-
Ceron et al., 2024)). This provides insights into why a ReLU
can achieve strong performance despite resulting in a signif-
icant number of dead neurons.

Network Architecture in RL The origin of network opti-
mization problems with hyperbolic tangents and sigmoids
were empirically investigated by |Glorot & Bengio| (2010),
where, according to the authors, a lot of mystery still sur-
rounds the subject. Work by (Srivastava et al., [2015) in
supervised learning first looked at the idea of using products
of hidden layers together with a *gate’ that determined the
amount of information flow (Hochreiter & Schmidhuber,
1997). Using these ideas, the Resnet was invented (He et al.}
2016)) and also showed strong performance in combination
with RL (Espeholt et al., 2018). Further work by Henderson
et al.| (2018) showed differences in RL performances over
different network architectures and nonlinear activations.
Work by |Abbas et al.| (2023) successfully applied ReLLU
concatenation (Shang et al., [2016) to improve continual
learning while keeping a similar performance when training
from scratch. Finally, recent work by Grooten et al.[(2024))
investigated raw pixel masking for distractions in RL using
a parallel CNN input layer.

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

3. Preliminaries

We consider an agent acting within its environment as a
discrete Markov Decision Process (MDP) defined as a tuple
(S, A, T,R,~). S is the state space, A is the action space,
T:S8 x A— P(S) is the environment’s transition function,
R:S x A — TRis the environment’s reward function
and v € [0,1) is the discount factor. A replay buffer B is
used to store visited states s; € S that were followed by
actions a; € A and resulted in the rewards r; € R and the
next states s;41. One entry in B contains a tuple of past
experience (s, at,Tt, St+1). The agent’s goal is to learn a
policy 7 : & — A that maximizes the expectation of the
discounted return V7 (s) = E,[>,° v R(s¢, ar) | 8¢ = s,
where 7 is a trajectory following the policy 7.

4. Augmenting Hyperbolic Tangents

Continuously differentiable activations such as the hyper-
bolic tangent (tanh) and the sigmoid (o) activations are
fundamentally different than the ReL.U or its piece-wise lin-
ear descendants, which are non-symmetric and have a large
part of the input space mapped to zero (leading to sparsity).
The hyperbolic tangent and the sigmoid output values in the
ranges [—1,1] and [0, 1] respectively These functions are

defined as tanh(z) = and o(z) = 7=

P
Both functions have the advantage of being differentiable
everywhere, as well as being bounded. Furthermore, the sig-
moid is well suited for output probabilities, while the tanh
is convenient when requiring a zero-centered symmetrical
output. However, both functions exhibit the vanishing gra-
dient problem for saturating activations (Glorot & Bengiol
2010; \Goodfellow et al., [2016)).

Dying Hyperbolic Tangents

Although the literature has focused on the dying ReL.U prob-
lem (He et al.l 2015} |Lu et al., 2019} |Gulcehre et al., 2022}
Sokar et al., [2023), we find that hidden layers activated
by hyperbolic tangents similarly show strong dying neuron
behavior, particulary in the RL context with the moving
target from the Bellman iterations. When using any acti-
vation function in a deep neural network, a single neuron
a;, 1 € RY, with w the layer dimension, is saturated or
dying if:

a; ~Q, Vs; € B €))]

Where €2 represents the saturation value and s; is an obser-
vation in buffer B. In practice, a mini-batch of observations
is evaluated instead of the whole dataset in B. For the
hyperbolic tangent, given that it is an asymptotic function
near its saturation point, an approximate equality is consid-
ered (Jo;| # 1, Vs; € B) . To approximate the condition

given in Eq. [I] the amount of dying hyperbolic tangents
is calculated by using a kernel density estimation (KDE)
(Silverman, [1986)) on the activations «a;, 7 € R™ of each in-
dividual neuron in the activation layer. In order to visualize
activations in a hidden layer, a fixed subset of the KDE’s
of the neurons «; is taken. A clear visualization of dying
hyperbolic tangents during training in the Atari Breakout
environment can be seen by analyzing sixteen individual
neuron KDE’s in Fig. [3] Massive KDE spikes at either 1
or -1 represent the absence of neuron variance over a batch
of observations, meaning that the neuron has lost its value
to propagate useful information. More details on the KDE
calculation and dying neuron classification can be found in

Appendix [B]

Hyperbolic Tangents turn Weights into Biases

When dying neurons occur in ReLU-activated layers, it basi-
cally prunes these neurons and the associated weights to the
next layer. However, in hyperbolic tangent activated layers,
dying neurons lead to an unintended phenomenon where
weights associated with dead neurons effectively become
biases.

Theorem 4.1. When any set of neurons o’ in a hidden layer
27 collapses into nonzero values, the output to the next layer
effectively changes from (AT + BI)to (A’ + Bitt

+ Al z]), where A_* z’ , represent the active neurons mul-
tlplzed by their correspondmg forward-connected weights
and ALzl = BI™ represent the dead neurons multiplied
by,tff” correspondmg weights, resulting in the hidden bias
BT

7*1*

Proof. Let us consider a set of neurons a' and forward
connected weights w?, in layer 27. The 1nﬂuence of these
neurons on the next layer 2711 is calculated as:

goz'wj

If the set of neurons dies and collapses into 0 (af =0,Vse
S), which occurs when using RelLU activations, the influ-
ence on the next layer becomes 0, representing basic prun-

ing:
> 0w, =0,

Where zfﬂa is the set of weights connected to the dying neu-
rons. However, for a hyperbolic tangent activation, if the set
of neurons saturate into either -1 or 1 (a7 = {1,—1},Vs €
S), the output is

2T = + B+t 2)

Vs €S. 3)

Z{l, ~1}-wl), =BT, VseS.)
As a result, the weight vector 'u'JfJZ corresponding to the

dying activations only influences a bias BI™! on the next

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Density
«

=
[

Density
«

Density

o w

Density

o w

(a) Tanh - 108 iterations

>
21
] 05 \J 25 \ 1
g
(=]
0 0.0 0.0 0
2z 1000 200
@ 500 21
3
0 0 0 0
> 1
25 2 05
8
0 0 0.0 0

(b) Tanh - 107 iterations

Figure 3: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed representation z; after training
DQN (Mnih et al.| [2015) in the Breakout environment using a hyperbolic tangent activation for z;. Each neuron represents
one dimension of the representation z, € R?'2. Red outlines represent dying neurons, where a near infinite sized density

spike occurs at either 1 or -1.

Seaquest
—— Dead neurons
Live neurons
" 154
K 15
=}
©
2
O 10 W
o
o
c
k] | l
+ 5 i
3 |'l| it {
=
]
c
o
O 01
0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

Figure 4: 10M iterations (40M frames) training DQN with
a hyperbolic tangent activation in the Seaquest environment.
The average contribution to the Q-values of the live and dead
neurons in the final hidden layer is observed. If a neuron
dies, it retains the same value for any input observation,
but a multiplication of the nonzero saturation value with its
outgoing weights implements a substantial ‘hidden’ bias on
the Q-values.

layer. Note that the bias BI* is constant for any input
observation. O

This emergent bias can hinder the optimization process by
introducing unintended fixed contributions to a networks’
hidden layers or output layer, reducing the flexibility of
the network’s representations and potentially reducing its
performance in RL or supervised learning. For example, in
Atari’s Seaquest environment, we can see that this bias is
substantial and nonzero (see Fig.[d).

Hadamard Representations (HR)

As Fig. [B]indicates that the activation of z; with a hyperbolic
tangent leads to saturation and dying neurons, an augmen-
tation of the representation architecture is proposed. In the
conventional encoder setting, a network’s hidden layer can
be defined as z°"“(z) = f(Aiz + Bi), with A; and B;
representing weight and bias parameters, the function f()
representing a nonlinear activation function while z is the
set of activations from the previous layer. In order to reduce
the information dependence on a single set of neurons, we
propose using a Hadamard representation that augments
the original representation with a parallel representation
layer z*. This can be interpreted as using a single highway
layer with a closed carry gate (Srivastava et al., [2015), or
as an augmented version of the Gated Linear Unit (GLU)
(Dauphin et al.| |2017). The final representation is defined
as a Hadamard product between the aforementioned activa-
tions z(x) = z°"¢(x) - z*(x), where z*(x) = f(Aax+ Bs).
A visualization of the proposed architecture can be found in

Fig. 3]
Preventing Dying Neurons

Our key hypothesis is that the Hadamard representation can

prevent saturation, hence alleviating vanishing gradients and

dying neurons (See Eq.[I). To support our hypothesis, we

investigate the derivative of a product of two functions. For

the product of two arbitrary functions g(z)-h(x), the deriva-
tive is defined as ¢’ (x)h(z) + g(x)h'(x). In the context of

using a sigmoid activation function for f(x), the derivative

of z(x) becomes:

Z/(i) = Alo(Alx + Bl)(l — O’(Al"E + Bl))O'(AQIE + Bg)

+A20’(A1£L’ + Bl)J(AQI' + Bg)(]. — O’(AQ.’E + BQ))

If a neuron from f(A;x + B1) = 0V z, the gradient of
the product becomes 0 while if a positive saturation is ex-

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Ay
B Q)

i Kv

B Q)

Z @Zi

L/
\

As
Q)

_
ﬁ' L
%,

J
© z;

Ay
.

./
N\

Figure 5: A visualisation of the Hadamard representation. Horizontal bars represent weight vectors and z; represents a
hidden layer. Between each hidden layer, two parallel independently parameterized activation layers are formed, where the
Hadamard product of the two activation layers represents the actual propagated hidden layer.

perienced i.e. f(Ajz + By) = 1V z, 2/(z) can remain
nonzero. For a product of two hyperbolic tangent functions,
the derivative is defined as:

2/(x) = Ay sech?(A 1z + By) tanh(Ayz + Bs)
+ A, sechz(Agcc + By) tanh(A4 2z + By).

In this context, sech? is the derivative of the hyperbolic
tangent function. Unlike the sigmoid, the hyperbolic tangent
saturates to nonzero values, ensuring that if and only if
both parts are saturated, product saturation occurs. Thus,
when g(x) saturates, h(x) still keeps a non-trivial gradient
in the product, providing a mechanism to avoid vanishing
gradients. We visualize the kernel densities during training
with a Hadamard representation in Fig.[6] The individual
representations before taking the Hadamard product can be
found in Appendix

Taking a more formal approximation of neuron collapse, we
start by defining the probability of a single neuron saturating
as p. Furthermore, in the case of a sigmoid or hyperbolic
tangent, we assume symmetric saturation probabilities to
both ends, defining the probability of a neuron saturating
to one end of the spectrum as 0.5p. Lastly, we make an
independence assumption between two individual neurons.
Under these assumptions, we show that interpreting a neu-
ron as the product of two individual neurons can change
saturation probabilities depending on the neuron’s activation
function.

Hyperbolic Tangent: In the case of the hyperbolic tan-
gent, product saturation only occurs if strictly both neurons
are saturated. This results in a probability of p - p = pZ.
Taking a product of hyperbolic tangent activated neurons
thus reduces the neuron saturation probability from p to p2.

Sigmoid: For the sigmoid function, product saturation oc-
curs in two scenarios: Either one of the neurons is saturated
towards zero or both neurons are saturated towards 1. The
probability that a single neuron does not saturate towards

zero is (1 — 0.5p), and subsequently the probability that
neither neuron saturates towards zero is (1 — 0.5p)?. The
probability that at least one of the two neurons saturates to
zero is therefore 1 — (1 — 0.5p)? = p — 0.25p%. Adding
the probability that both neurons saturate towards 1, which
is (0.5p)? = 0.25p?, the final probability of the neuron
product saturation is p — 0.25p? + 0.25p? = p. Taking
a product of sigmoid activated neurons therefore does not
reduce the probability of neuron collapse.

Rectified Linear-Unit: In the case of a ReLU activation,
the probability of a single neuron dying is taken as p. As we
look at the product of two neurons, the probability that one
of the two neurons does not saturate is therefore 1 — p, and
the probability that both neurons do not saturate is (1 — p)?.
The probability that at least one neuron saturates is thus
equal to 1 — (1 — p)? = 2p — p?. As the ReL.U saturation
results in strict zeroes, this results in the product also being
zero. Taking a product of ReLU activated neurons therefore
increases the final neuron saturation probability from p to
2p —p?. For an overview, we refer the reader to both Table
and the corresponding empirical evidence in Appendix

Table 1: Predicted dying neuron probabilities with and with-
out a Hadamard representation.

Activation Prob. Prob. with HR A
Tanh p p’ -(p—-p?
Sigmoid P P 0
ReLU p 2p — p? +(p - p?)

5. Experiments

We analyze the effect of a Hadamard representation on a
hidden layer’s fraction of dying neurons, its effective rank
and the downstream performance. In the qualitative analysis,
we evaluate DQN (Mnih et al., [2015)) and PPO (Schulman
et al., [2017) on 8 common, non-exploration driven Atari

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

P\

Density
o ~
o o
> @

Density

Density

0.0 0

2
0.5 1
0 0 0.0 0
1 0

-1 0 1 -1 0 1 -1 0 1 b

Sid=lr

Density

1

(a) Tanh (HR) - 10° iterations

Density
o
o

o

)

Density
N
n

KL
N

o
)

Suals

Density

o~

T 0 T 0 T 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1

(b) Tanh (HR) - 107 iterations

Figure 6: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed representation z; after training
DQN in the Breakout environment using a Hadamard representation (HR) with hyperbolic tangents. The Hadamard
representation tends to quickly utilize the full range of the hyperbolic tangent while also mitigating dying neurons.

environments for 40M frames. Finally, a larger performance
analysis is done using the recent Parallelized Q-Network
(PQN) (Gallici et al., 2024) on 51 Atari environments for
40M frames.

Mitigating dying Hyperbolic Tangents

As defined in Eq.[T] the number of dead neurons is equal to
the amount of neurons that display the same saturated output
for any given observation s;. Over 8 Atari environments,
the average amount of dead neurons during training can
be seen in Fig[7(a)] For the ReLU activation, around 60%
of the neurons in the representation z; die during training,
while for the sigmoid and hyperbolic tangent activation this
number is around 40%. When using a hyperbolic tangent
Hadamard representation, a reduction in dead neurons as
compared to using a single hyperbolic tangent can be ob-
served. We credit this to the inherent ability of a Hadamard
product of hyperbolic tangents to minimize long-term ac-
tivation saturation, as explained in Section[d] Quantitative
results of dead neurons can be found in Table[2] which tends
to confirm the predictions from Table

Table 2: Average dying neuron fractions in 8 Atari Games
with and without a Hadamard representation (HR).

Activation Without HR With HR A

Tanh 0.39 0.30 -23%
Sigmoid 0.44 0.45 +2%
ReLU 0.62 0.73 +18%

For more activation-specific dying neuron graphs, we refer
the reader to Appendix[C.3]

Increasing Effective Rank

We additionally investigate the effective rank (Kumar et al.|
2021) of the representation z; during training, which can be
seen in Fig. As observed by [Gulcehre et al.| (2022)),
a representation activated by a hyperbolic tangent or a sig-
moid, already has a relatively high effective rank compared
to a representation activated by a ReLU. Furthermore, simi-
lar to the results in our supervised learning experiments (see
Fig.[2), using a Hadamard representation with hyperbolic
tangents significantly improves said effective rank, which is
strongly correlated to a network’s ‘expressivity’. Alterna-
tively, we found that employing a Hadamard representation
with ReLLU activations significantly decreased the effective
rank of the representation, as was expected from earlier pre-
dictions in Table 1l More details on the ReLU Hadamard
representation, dying neuron calculations and effective rank
calculations can be found in Appendices [C.4] [B.T]and [B.2]
respectively.

Performance in Atari

The influence of a Hadamard representation on downstream
performance is visualized in Fig. Correlating with the
reduction in dying neurons and an increase in effective rank,
a significant improvement over the standard hyperbolic tan-
gent baseline is obtained, as well as an improvement over
the default ReLU baseline. Furthermore, a comparison is
made with the novel Rational (Delfosse et al., [2024) acti-
vation function as the activation in the final hidden layer.
Fig. shows that, although the Rational activation seems
to be a stable learnable activation, it remains comparable to
the ReLU.

Examining further ablations in Fig. shows that using
another piece-wise linear function such as the SELU acti-
vation (Klambauer et al.l|2017) or using an addition rather
than a product of hyperbolic tangents seems detrimental
to performance. Furthermore, taking a product of 3 hyper-

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Atari
1.0

—— Tanh

Atari

Atari

— Tanh

—— Sigmoid
—— Tanh (HR)
RelU

=)

Effective Rank

Fraction of dead neurons
N
S
3

N}

=
o
o

o
=)
=3

0.0

0.0 0.2

0.6
Iterations

(a) Dead Neurons (DQN)

0.8 1.0

le7

0.4 0.0 0.2 0.4

Iterations

(b) Effective Rank (DQN)

RelU
—— Tanh (HR)
—— Rational

Normalized Score

— Tanh

—— Sigmoid

—— Tanh (HR)
RelU

0.2

0.0
0.0

0.2

0.4 0.6
Iterations

(¢) Normalized Score (DQN)

0.8 1.0

le7

0.6 0.8 1.0

le7

Figure 7: (a) The average fraction of dead neurons, (b) the average effective rank (Kumar et al.l 2021, and (c) the baseline-
normalized score when training DQN in the Atari domain for 10M iterations (40M frames). Similar to the well-known dying
ReLU problem, hyperbolic tangent and sigmoid activations also exhibit strong dying neuron behavior. A Hadamard product
of hyperbolic tangents reduces dead neurons in z; and subsequently increases the effective rank of the representation.

Atari Atari

—— Latent Dim 1024

— Tanh
LayerNorm

—— Tanh (HR)

—— Tanh (HR)
10 — SEW
Tanh (+)
— Tanh (2HR)

°
m

°
Y

°

Normalized Score
=

Normalized Score

0.2

0.0

0.4 0.6
Iterations

0.8

1.0
le7

0.0

0.2

0.4 0.6
Iterations

0.8 1.0

1le7

(a) Ablations (DQN) (b) Ablations (DQN)

Normalized Score

Atari

Atari

12 | — Tanh
RelU

— sigmoid

—— Tanh (HR)

1.0

o
©

— Tanh
RelU

— sigmoid

—— Tanh (HR)

o
o
Effective Rank

320

1.0
le7

0.0

0.2

0.4 0.6
Iterations

0.8 1.0

le7

0.4
Iterations

0.6 0.8

(¢) Performance (PPO) (d) Effective Rank (PPO)

Figure 8: Baseline-normalized performance with the standard deviation over the means in the Atari domain, after training
DQN for 10M iterations (40M Frames). In (a), Tanh (HR) significantly outperforms Tanh. The Rational Activation (Delfosse
et al.,2024) is comparable to ReLU within 40M frames. In (b), several ablations including layer normalization (Ba et al.|

2016) and an increased dimension of z, € R10%4

with a reduced learning rate « = 5e—>5 are shown. In b), Tanh (+)

represents an addition rather than a Hadamard product, and Tanh (2HR) uses a triple Hadamard product. Normalized
performance (c) and effective rank (d) when training the PPO algorithm (Schulman et al.;|2017). Note that no hyperparameter

changes are done for the Hadamard representation.

bolic tangents (2HR) also appears to enhance performance,
though there seems to be a negative effect in the early stages
of training as compared to using a single Hadamard product.
We hypothesize that this is the result of increased contract-
ing behavior in the early stage of training due to increasing
multiplication of hyperbolic tangent activations whose ab-
solute values are < 1. Additional experiments combining
the ReLU activation with a Hadamard representation can be
found in Appendix [C.4]

5.1. The Immunity of the ReLU

Interestingly, it seems that the ReLLU activation’s perfor-
mance is much less correlated to its low effective rank and
high amount of dying neurons than the continuously dif-
ferentiable activations. As also indicated by [Ieney et al.
(2024)), the exact reasons for the broad success of the ReLU
activations are not yet fully understood. However, we have

offered a partial explanation for this resilience of the ReLU
in Section f} ReLU saturation represents network prun-
ing while hyperbolic tangent saturation leads to biases in
subsequent layers.

Evaluating Hadamard representations on PPO

To evaluate results on a policy-based algorithm, additional
experiments are run using the PPO algorithm (Schulman
et al.,[2017). For PPO, the internal architectural difference
with DQN and PQN is that the final hidden layer z; precedes
both a critic and an actor network, and thus receives policy
and value gradients. After training for 40M frames, the
performance and effective rank over time can be found in
Fig. Similarly to the results on DQN, the Tanh (HR)
exhibits the highest effective rank and good performance.
The Tanh (HR) and the ReL.U seem to have consistent strong
performance, whereas the pure hyperbolic tangent and sig-

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

moid activations can be unreliable across algorithms. This
is coherent with the fact that continuously differentiable
activations are generally not favored over the ReLU (Teney
et al.l [2024).

Evaluating Hadamard representations on PQN

To test the performance of the Hadamard representation over
a broader selection of environments, we evaluate the recent
Parallelized Q-Network (PQN) algorithm in the nearly full
Atari suite without hard-exploration environments, for a
total of 51 games with 5 seeds per game.

Atari (51 Games)

=
IS

RelLU
e Tanh (HR)
e CRelU
@ Tanh
e ReDo

Median Human-Normalized Score
© o o o &= &
N B o [+¢] o N

o
o

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Env Frames le7

Figure 9: Median Human-Normalized scores on PQN in 51
Atari games for 5 seeds over 40M frames. Labels represent
encoder activations. Employing a Hadamard representation
provides a significant performance improvement over the
recent PQN baseline (displayed as ReLU), the CReLU (Ab;
bas et al.,[2023)) and ReDo (7 = 0.025) (Sokar et al.| [2023).
Notably, the improvement over a conventionally parameter-
ized hyperbolic tangent activation is more than 100%.

PQN is a vectorized-friendly version of DQN, reporting both
a speed up from DQN as well as better convergence (Gal{
lici et al.,[2024). We run tests implementing the Hadamard
representation in all hidden layers. The median human-
normalized scores after training for 40M frames are shown
in Fig.[9] We can clearly see a similar trend for the 51-game
Atari suite. Using a Hadamard representation significantly
increases the median performance as compared to the base-
line PQN, the CReLU activation (Abbas et al.| 2023)), and
the ReDo + ReLU algorithm (Sokar et al.| [2023)). Addition-
ally, preliminary modified applications of ReDo to Tanh did
not prove to be effective in PQN. However, we believe that
future work in this direction would be worth pursuing.

6. Limitations

Using a Hadamard representation increases neural network
parameters as it doubles the incoming weights connected

to a hidden layer. However, in Fig.[9] a comparison against
the CReLU is shown, which also nearly doubles the net-
work’s parameters. Furthermore, recent work shows that
simply scaling baselines in Atari often leads to reduced
performance (Obando-Ceron et al., [2024; (Obando Ceron
et al.l 2024). Another limitation is that, due to the vast
amount of activation functions and the theoretical sound
candidacy of the hyperbolic tangent, our research focused
on the combination of hyperbolic tangents. Further research
into Hadamard representations could find more novel activa-
tion combinations. A hyperparameter search will also give
more insights into the strengths of the HR, as all baselines
are specifically tuned for the ReLU. Finally, integration of
a HR into more complex algorithms and architectures such
as Rainbow (Hessel et al., |2018)), Impala (Espeholt et al.
2018)) or SPR [Schwarzer et al.|(2021) would be interesting.

Table 3: Parameter count across different activations

Activation Total Parameters
Tanh (Width-2) 6,717,376
Tanh (HR) 3,373,382
CReLU 3,292,838

7. Conclusions and Discussion

This paper analyzed issues with continuously differentiable
activations in RL and demonstrated that these activation
functions also suffer from the dying neuron problem, but
with more acute downstream effects. To alleviate this prob-
lem and make better use of these functions’ properties, a
novel representation architecture called the Hadamard rep-
resentation (HR) is proposed. The HR augments the hidden
layers in a network by taking the Hadamard product with
parallel, independently parameterized activation layers. We
further analyzed and empirically showed that applying a
Hadamard representation to hyperbolic tangents reduces
the occurrence of dead neurons in the representation and
increases layer expressiveness. In DQN, PQN and PPO,
this approach significantly improved performance in Atari
games compared to both standard representation parameter-
ization and merely increasing the representation dimension.
Future work could focus on further identifying the intrica-
cies of the effects that different activation functions have on
the resulting representation, in an attempt to push the po-
tential of non piece-wise linear activations in reinforcement
learning or even in a supervised learning setting (see Fig. [2).
Also, we believe that an implementation of Hadamard-style
architectures in a continual learning setting as in|Abbas et al.
(2023) or in|Delfosse et al.|(2024) could be promising.

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,
M. C. Loss of plasticity in continual deep reinforcement
learning. In Chandar, S., Pascanu, R., Sedghi, H., and
Precup, D. (eds.), Proceedings of The 2nd Conference on
Lifelong Learning Agents, volume 232 of Proceedings of
Machine Learning Research, pp. 620-636. PMLR, 22—
25 Aug 2023. URL https://proceedings.mlr.
press/v232/abbas23a.htmll

Arnob, S. Y., Ohib, R., Plis, S. M., and Precup, D. Single-
shot pruning for offline reinforcement learning. CoRR,
abs/2112.15579, 2021. URL https://arxiv.org/
abs/2112.155709.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion, 2016. URL http://arxiv.org/abs/1607.
06450. cite arxiv:1607.06450.

Bjorck, J., Gomes, C. P., and Weinberger, K. Q. Is high
variance unavoidable in RL? a case study in continu-
ous control. In International Conference on Learning
Representations, 2022. URL https://openreview,
net/forum?id=9xhgmsNVHul

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
Language modeling with gated convolutional networks.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 933-941. PMLR, 06-11 Aug 2017.
URL https://proceedings.mlr.press/v70/
dauphinl7a.htmll

Delfosse, Q., Schramowski, P., Mundt, M., Molina, A.,
and Kersting, K. Adaptive rational activations to
boost deep reinforcement learning. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
1d=g90ysX1sVs.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman,
P., Mahmood, A. R., and Sutton, R. S. Loss of plas-
ticity in deep continual learning. Nature, 632(8026):
768-774, 2024. ISSN 1476-4687. doi: 10.1038/
s41586-024-07711-7. URL|https://doi.org/10.
1038/s541586-024-07711-7.

Dubey, S. R., Singh, S. K., and Chaudhuri, B. B.
Activation functions in deep learning: A com-
prehensive survey and benchmark. Neurocom-
puting, 503:92-108, 2022. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2022.06.111.
URL https://www.sciencedirect.com/
science/article/pii/S0925231222008426!

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, 1.,
Legg, S., and Kavukcuoglu, K. IMPALA: Scalable dis-
tributed deep-RL with importance weighted actor-learner
architectures. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 1407-1416. PMLR, 10-15 Jul 2018.
URL https://proceedings.mlr.press/v80/
espeholtl8a.html.

Fukushima, K. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Transactions
on Systems Science and Cybernetics, 5(4):322-333, 1969.
doi: 10.1109/TSSC.1969.300225.

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, 1.,
Foerster, J. N., and Martin, M. Simplifying deep tempo-
ral difference learning, 2024. URL https://arxiv,
org/abs/2407.04811.

Glorot, X. and Bengio, Y. Understanding the diffi-
culty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), Proceed-
ings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pp. 249—
256, Chia Laguna Resort, Sardinia, Italy, 13—15 May
2010. PMLR. URL https://proceedings.mlr.
press/v9/glorotl0a.htmll

Goodfellow, L., Bengio, Y., and Courville, A. Deep Learning.
Adaptive computation and machine learning. MIT Press,
2016. ISBN 9780262035613. URL https://books.
google.co.in/books?1d=Np9SDQAAQBAJ.

Graesser, L., Evci, U., Elsen, E., and Castro, P. S.
The state of sparse training in deep reinforcement
learning. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 7766-7792. PMLR, 17-23 Jul
2022. URLhttps://proceedings.mlr.press/
v162/graesser22a.htmll

Grooten, B., Tomilin, T., Vasan, G., Taylor, M. E., Mah-
mood, A. R., Fang, M., Pechenizkiy, M., and Mocanu,

https://proceedings.mlr.press/v232/abbas23a.html
https://proceedings.mlr.press/v232/abbas23a.html
https://arxiv.org/abs/2112.15579
https://arxiv.org/abs/2112.15579
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=9xhgmsNVHu
https://openreview.net/forum?id=9xhgmsNVHu
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://openreview.net/forum?id=g90ysX1sVs
https://openreview.net/forum?id=g90ysX1sVs
https://doi.org/10.1038/s41586-024-07711-7
https://doi.org/10.1038/s41586-024-07711-7
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://proceedings.mlr.press/v162/graesser22a.html
https://proceedings.mlr.press/v162/graesser22a.html

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D. C. Madi: Learning to mask distractions for general-
ization in visual deep reinforcement learning. In Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, AAMAS, 2024.

Gulcehre, C., Srinivasan, S., Sygnowski, J., Ostrovski,
G., Farajtabar, M., Hoffman, M., Pascanu, R., and
Doucet, A. An empirical study of implicit regulariza-
tion in deep offline RL. Transactions on Machine Learn-
ing Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=HF fJWx60IT.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 1026-1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 16, pp. 770-778. IEEE, June 2016. doi:

10.1109/CVPR.2016.90. URL http://ieeexplorel

ieee.org/document /7780459,

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, AAAT 18/TAAT’ 18/EAAT’ 18. AAAI
Press, 2018. ISBN 978-1-57735-800-8.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T.,
Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M. G., and Silver, D. Rainbow: Com-
bining improvements in deep reinforcement learn-
ing. In Mcllraith, S. A. and Weinberger, K. Q.
(eds.), AAAI, pp. 3215-3222. AAAI Press, 2018.
URL http://dblp.uni-trier.de/db/conf/
aaai/aaai2018.html#HesselMHSODHPAS18L

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997. doi: 10.
1162/neco0.1997.9.8.1735.

Huang, S., Dossa, R. E. ., Ye, C., Braga, J., Chakraborty, D.,
Mehta, K., and Aradjo, J. G. Cleanrl: High-quality single-
file implementations of deep reinforcement learning algo-
rithms. Journal of Machine Learning Research, 23(274):
1-18, 2022. URL http://jmlr.org/papers/
v23/21-1342 .htmll

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object

10

recognition? In 2009 IEEE 12th International Confer-
ence on Computer Vision, pp. 21462153, 2009. doi:
10.1109/ICCV.2009.5459469.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. Self-normalizing neural networks. In Advances in
Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 971-980,
2017.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Im-
plicit under-parameterization inhibits data-efficient deep
reinforcement learning. In International Conference on
Learning Representations, 2021.

Liu, V., Kumaraswamy, R., Le, L., and White, M. The util-
ity of sparse representations for control in reinforcement
learning. In Proceedings of the Thirty-Third AAAI Con-
ference on Artificial Intelligence and Thirty-First Inno-
vative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAT’19/IAAT’19/EAAT’ 19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi:
10.1609/aaai.v33i01.33014384. URL https://doi!
org/10.1609/aaai.v33101.33014384.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. Dy-
ing relu and initialization: Theory and numerical
examples. CoRR, abs/1903.06733, 2019. URL
http://dblp.uni-trier.de/db/journals/
corr/corrl903.html#albs-1903-06733.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1d=ZkC8wKoLbQ7.

Mnih, V., Kavukcuoglu, K., Silver, D, et al. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529-533, 2 2015. doi: 10.1038/nature14236.

Molina, A., Schramowski, P., and Kersting, K. Padé acti-
vation units: End-to-end learning of flexible activation
functions in deep networks. In International Conference
on Learning Representations, 2019.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In ICML 2010, pp. 807—
814, 2010.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S. (eds.), Proceedings of the

https://openreview.net/forum?id=HFfJWx60IT
https://openreview.net/forum?id=HFfJWx60IT
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
https://doi.org/10.1609/aaai.v33i01.33014384
https://doi.org/10.1609/aaai.v33i01.33014384
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://openreview.net/forum?id=ZkC8wKoLbQ7

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pp- 16828-16847. PMLR, 17-23 Jul 2022.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R.,
Dabney, W., and Barreto, A. Deep reinforcement learn-
ing with plasticity injection. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 37142-37159. Curran Associates,
Inc., 2023.

Obando-Ceron, J., Courville, A., and Castro, P. S. In deep
reinforcement learning, a pruned network is a good net-
work. arXiv preprint arXiv:2402.12479, 2024.

Obando Ceron, J. S., Sokar, G., Willi, T., Lyle, C., Fare-
brother, J., Foerster, J. N., Dziugaite, G. K., Precup,
D., and Castro, P. S. Mixtures of experts unlock pa-
rameter scaling for deep RL. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scar-
lett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 38520-38540. PMLR, 21-27 Jul
2024. URL https://proceedings.mlr.press/
v235/obando-ceron24b.htmll

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.

ArXiv, abs/1707.06347, 2017. URL https://api.

semanticscholar.org/CorpusID:28695052.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-Efficient Reinforcement Learn-
ing with Self-Predictive Representations. In International
Conference on Learning Representations, ICLR, 2021.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 2217-2225, New York, New York, USA, 20-22 Jun

2016. PMLR. URL https://proceedings.mlr.

press/v48/shangl6.html.

Silverman, B. W. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M.,
and Stone, P. Dynamic sparse training for deep rein-
forcement learning. In Raedt, L. D. (ed.), Proceedings of
the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI-22, pp. 3437-3443. International
Joint Conferences on Artificial Intelligence Organization,

11

7 2022. doi: 10.24963/ijcai.2022/477. URL https:
//doi.org/10.24963/17cai.2022/477. Main
Track.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Train-
ing very deep networks. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015.
URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
215a71a12769b056c3c32e7299f1cS5ed—-Paper.
pdf.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.htmll

Tan, Y., Hu, P, Pan, L., Huang, J., and Huang, L. RIx2:
Training a sparse deep reinforcement learning model from
scratch. CoRR, abs/2205.15043, 2023. URL https{
//arxiv.org/abs/2205.15043.

Teney, D., Nicolicioiu, A. M., Hartmann, V., and Abbasne-
jad, E. Neural redshift: Random networks are not random
functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
47864796, June 2024.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evaluation
of rectified activations in convolutional network. CoRR,
abs/1505.00853, 2015. URL http://arxiv.orqg/
abs/1505.00853!

https://proceedings.mlr.press/v235/obando-ceron24b.html
https://proceedings.mlr.press/v235/obando-ceron24b.html
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.mlr.press/v48/shang16.html
https://proceedings.mlr.press/v48/shang16.html
https://doi.org/10.24963/ijcai.2022/477
https://doi.org/10.24963/ijcai.2022/477
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2205.15043
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

A. Implementation Details

A.1. Hyperparameters

To evaluate, 8 different Atari environments are tested, using 5 different random seeds. For the mean scores, we take the
mean over the eight environments. Our normalized score is calculated according to our baseline, the original implementation

using a ReL.U activation.

All the hyperparameters used in our experiments for DQN and PPO, respectively, are as reported in cleanrl (Huang et al.|
2022). The hyperparameters can be found in Table 1 and Table 2.

Table 4: DQN Hyperparameters

Hyperparameter Value Description

Learning Rate 1x 1074 Learning rate for the optimizer
Discount Factor (vy) 0.99 Discount for future rewards

Replay Memory Size 1,000,000 Size of the experience replay buffer
Mini-batch Size 32 Number of samples per batch update
Target Network Update Frequency 1000 Update frequency for the target network
Initial Exploration 1.0 Initial exploration rate in e-greedy

Final Exploration 0.1 Final exploration rate in e-greedy

Final Exploration Frame 1,000,000 Frame number to reach final exploration
Exploration Decay Frame 1,000,000 Frames over which exploration rate decays
Action Repeat (Frame Skip) 4 Number of frames skipped per action
Reward Clipping [-1, 1] Range to which rewards are clipped
Input Dimension 84 x 84 Dimensions of the input image

Latent Dimension 512 Dimension of the latent representation
Input Frames 4 Number of frames used as input
Training Start Frame 80,000 Frame number to start training

Loss Function
Optimizer
Optimizer €

Mean Squared Error
Adam
1075

Loss function used for updates
Optimization algorithm used
Adam Epsilon

12

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Table 5: PPO Hyperparameters

Hyperparameter Value Description

Learning Rate 2.5 x 10™* Learning rate for the optimizer

Discount Factor () 0.99 Discount factor for future rewards
Number of Steps 128 Number of steps per environment before update
Anneal LR True Whether to anneal the learning rate

GAE Lambda 0.95 Lambda parameter for GAE

Number of Minibatches 4 Number of minibatches to split the data
Update Epochs 4 Number of epochs per update

Normalize Advantage True Whether to normalize advantage estimates
Clipping Coefficient 0.1 Clipping parameter for PPO

Clip Value Loss True Whether to clip value loss

Entropy Coefficient 0.01 Coefficient for entropy bonus

Value Function Coefficient 0.5 Coefficient for value function loss
Maximum Gradient Norm 0.5 Maximum norm for gradient clipping
Target KL None Target KL divergence between updates
Latent Dimension 512 Dimension of the latent representation
Optimizer Adam Optimization algorithm used

Optimizer € 1075 Adam Epsilon

Table 6: PQN Hyperparameters (Gallici et al., [2024)

Hyperparameter Value Description

Total Timesteps 10,000,000 Total timesteps for training

Timesteps for Decay 10,000,000 Timesteps for decay functions (epsilon and Ir)
Number of Environments 128 Number of parallel environments

Steps per Environment 32 Steps per environment in each update
Number of Epochs 2 Number of epochs per update

Number of Minibatches 32 Number of minibatches per epoch
Starting Epsilon 1.0 Starting epsilon for exploration

Final Epsilon 0.001 Final epsilon for exploration

Epsilon Decay Ratio 0.1 Decay ratio for epsilon

Epsilon for Test Policy 0.0 Epsilon for greedy test policy

Learning Rate 0.00025 Learning rate

Learning Rate Linear Decay True Use linear decay for learning rate

Max Gradient Norm 10.0 Max gradient norm for clipping
Discount Factor (7) 0.99 Discount factor for reward

Lambda () 0.65 Lambda for generalized advantage estimation
Episodic Life True Terminate episode when life is lost
Reward Clipping True Clip rewards to range [-1, 1]

Frame Skip 4 Number of frames to skip

Max No-Ops on Reset 30 Max number of no-ops on reset

Test During Training True Run evaluation during training

Number of Test Envs 8 Number of environments used for testing

13

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

A.2. Hadamard Implementation

Constructing a Hadamard representation is a straightforward process that only requires additional, parallel incoming weights.
Starting from a hidden layer, the Pytorch pseudocode is defined as follows:

hidden = previous hidden layer

linearl = nn.Linear (input_dim, output_dim
linear2 = nn.Linear (input_dim, output_dim
representationl = nn.Tanh (linearl (hidden)
representation2 = nn.Tanh(linear2 (hidden)
hadamard_representation = representationl x representation2

)
)
)
)

A.3. Reinforcement Learning

In DQN, the action a; is chosen following an e-greedy policy. With probability €, a random action is selected, and with
(1 — €), the action maximizing the Q-value is chosen. The target Y; is defined as:

Y—t =T + P)/Q/(Zt+17 argn;lf'XQ(Zt+la a))7 (5)
aec

where)’ (z, a) denotes the target Q-network, an auxiliary network that stabilizes the learning by providing a stable target
for Q(z, a). The parameters of Q) are updated less frequently to enhance learning stability. The loss function for training
the network is:

Lg= |Yt—Q(Zt7a)|2- (©6)

Proximal Policy Optimization (PPO) operates on a different principle, utilizing policy gradient methods for policy im-
provement. PPO seeks to update the policy by maximizing an objective function while preventing large deviations from
the previous policy through a clipping mechanism in the objective’s estimator. The clipped policy gradient loss LEXF is
defined as:

LCLIP () — [min(rt(ﬂ)flt, clip(r(0),1 — e, 1 + E)At)} : %

where () represents the ratio of the probabilities under the new policy versus the old policy, and Ay is the advantage
estimate at timestep ¢. This clipped surrogate objective ensures gradual and stable policy updates.

14

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

B. Kernel Density Estimations

As discussed in Section[d] we hypothesize that the differences between a hyperbolic tangent with and without an HR are
due to the increased ability of the product of hyperbolic tangents being able to negate dying neurons. We further see this

phenomenon when plotting a random selection of neurons from both the mask and the base representation in Fig. [T0(a)]

19
= 24 1 2054 1 0.5-\/\/\
z 10 2
a8 a8

0 0 0 4 0 0. 0 0.0

14 g F

29 1 214 14 5
2 2500 2
5 &
o o

0 0 0 0 0 0

gzoo 2 N >

2 2.5 225+ 0.5 51

& - a

0 0.0 — 0 0 0. 0.0 0
2
2 1] 2 20
a x 50 2.5 aq 0.5
[[
(=) o
0 - 0 . 0.0 - 0 : > 0 : 0.0 .
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 o0 1

(b) Final Tanh (HR) - 5 - 10° iterations

24
>14
c
L
o
0 0.0 0 0
>
10 4
@ 250 L 25 2‘\\
[
o
0 0 0)
> 1]
£ 5 10 A
5 2 05
3
o
0 0 0.0)
> 1000] 5000
2 1 b 500
2
v
o
0 0 - 0 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1

(¢) Tanh (no HR) - 5 - 10° iterations

Figure 10: Kernel Density Estimations (KDE) over a subset of 16 neurons in the representations z{"¢ and z; in (a), the
resulting Hadamard product z; in (b) and the representation z; when training without an HR (c). These representations are
obtained after training DQN in the 'Breakout’ environment. Red outlines represent dead (collapsed) neurons. In (a), a closer
look at neurons 3, 8 and 9 shows that when one of the representations saturates, the other is able to compensate, leading to a
non-dead neuron in their product z; in (b).

B.1. KDE calculation

Firstly, to stabilize the KDE computation and avoid singularity issues, a small noise ¢, following a normal distribution, is
added to each neuron’s activations:

o =a;+e e~N(0,0%)
where 02 = 1 x 1075, The bandwidth for KDE, crucial for the accuracy of the density estimate, is calculated using Scott’s
rule, adjusted by the standard deviation of the jittered activations:

i

bw=n"5 -std(c})

where n is the number of samples in «;. The density of activations is then estimated using a Gaussian kernel:

1 n ;L'—a'u
K| —
nobwZ < bw)

Jj=1

15

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Latent Kernel Density Estimation Latent Kernel Density Estimation
2.5
2.0
2.0
1.5
> >
2151]
3 5
o 0 1.0
1.0
0.5 051
0.0 : 7 - - ; ; T 0.0 T T T T T T T
-1.00 -075 -0.50 =025 0.00 025 050 075 100 -1.00 -0.75 -0.50 -025 000 025 050 075 1.00
Values Values
(a) Tanh - 107 iterations (b) Tanh (HR) - 107 iterations
e Latent Kernel Density Estimation 14 Latent Kernel Density Estimation
12 12
10 10
> 8 > 8
5 g
Q 64 o 6
44 4
24 J 2
0 r T r T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Values Values
(¢) Sigmoid - 107 iterations (d) Sigmoid (HR) - 107 iterations

Figure 11: Kernel Density Estimations of the final representation z; after training DQN for 107 iterations in the Breakout
environment. A hyperbolic tangent Hadamard representation allows the representation to avoid strong saturation, keeping
sufficient kernel density in the central sections of the hyperbolic tangent. As a sigmoid can saturate into zero, using a
Hadamard representation remains less effective for preventing saturation, as any zero will lead to a Hadamard product of
Zero.

Here, K denotes the Gaussian kernel function. In order to finally determine if a neuron is dead, the maximum value of the
estimated density function f(z) is compared against a predefined threshold:

max(f(z)) > w

where w represents the predetermined threshold. In practice, after analyzing the individual neuron KDE’s, using an w of 20
provides a strong approximation of actual dead neurons.

B.2. Effective Rank calculation

In line with|Kumar et al.| (2021), the effective rank of a feature matrix for a threshold ¢ (6 = 0.01), denoted as sranks(®),

k .

is given by sranks(®) = min {k : % >1-9 } where {o;(®P)} are the singular values of ® in decreasing order,
i=1"1

ie., o1 > --- > o4 > 0. Intuitively, the effective rank of a feature matrix represents the number of “effective” unique

components that form the basis for linearly approximating the resulting Q-values. The calculation in Python is done as

follows:

def compute_rank_from_features (feature_matrix, rank_delta=0.01):

sing_values = np.linalg.svd(feature_matrix, compute_uv=False)

cumsum = np.cumsum(sing_values)

nuclear_norm = np.sum(sing_values)

approximate_rank_threshold = 1.0 - rank_delta

threshold_crossed = (cumsum >= approximate_rank_threshold » nuclear_norm)
effective_rank = sing_values.shape[0] - np.sum(threshold_crossed) + 1

return effective_rank

16

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C. Additional Experiments

C.1. Shallow and Deep Function Approximation

To further showcase the effect of activations on complex function approximation, we compare the single hidden layer Tanh
(HR) network from Fig. [2] with a deep ReLU and Tanh network containing three hidden layers each. The comparison with
shallow networks can be found in Fig.[T2(a)]and a comparison with deep networks can be found in Fig.[T2(b)]

Shallow Tanh, Loss = 13.39

Shallow RelU, Loss = 128.48

Shallow Tanh (HR), Loss = 1.71

30 A
20 A 20 A 20 A
10 10 ' 10
" #
0 U N 04 \ i 0 1 M N
—10 —10 h —10
—20 1 —20 4 —20 1
— Target — Target — Target
=== Tanh Network RelLU Network === Tanh (HR) Network
—30 —30 —30

-6 -4 =2 0 2 4 6

(a) Comparison of shallow networks for a nonlinear regression task. The Tanh and ReLU networks have a single hidden layer of 200
neurons, while the Tanh (HR) has a single hidden layer of 100 neurons but two preceding linear layers. The Tanh and ReLU networks
have 601 parameters, while the Tanh (HR) network has 501 parameters. As found by |Gulcehre et al.|(2022), a shallow network activated
by ReLU has a lower effective rank and consequently reduced network expressivity as compared to a Tanh activated network. Using a
Hadamard representation, we achieve better function approximation while using less parameters.

Deep Tanh, Loss = 81.70

Deep RelU, Loss = 7.83

Shallow Tanh (HR), Loss = 1.71

30

—— Target 30
—=- Tanh Network 1 ': |
20 A . | oy 20 A
NRRN
oL |
ﬂ Hil H‘H’w?i 1l F‘:'EN
ol ([t TR R N .
n 0 H Flr” f tvi"rj |
| N
i I (i
~10 4 ~10 4 tJ \ E &JEEJW “Er JJ | ~10 4
o pit
—-201 —20 1 1 t GU E Ej —20 1
— Target i’ — Target
—30 1 _30+ ReLU Network 30 7 Tanh (HR) Network

|
o

|
IS

|
N
o
N
P

-6 -4 =2 0 2 4 6

(b) Comparison of two deep networks and one shallow network for the same nonlinear regression task. The Tanh and ReLU networks
have 3 hidden layers of 200 neurons each, while the Tanh (HR) network remains shallow. In line with common observations in deep

learning, the ReLU activation thrives in deeper networks, in contrast to the Tanh activation. Interestingly, the shallow Tanh (HR) network
still achieves better function approximation with only 0.6% of the deeper networks’ parameters (81001 vs 501). No hyperparameter
tuning or architecture search has been applied. Additional tests using deep Tanh (HR) networks gave similar function approximation as
compared to the shallow Tanh (HR) network.

17

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.2. Increasing Representation Parameters

Atari

—— Tanh

Atari

—— Latent Dim 1024

1.0 ~— Tanh (HR) 0a — Tanh
—— Latent Dim 1024 fa : —— Tanh (HR)
o
008 E
3 203
v ©
g oo g
N °
© G
Eoa 02
o o
= =1
(]
°
0.2 w 0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7 Iterations le7
(a) Performance (b) Dead Neurons
Atari Atari
800 1.2
—— 1024 LR le-5
700 1024 LR 5e-5
/\\//_,_,,.,«//"’ 1.0 — 1024LR le-4
600
¥ g 0.8
§ 500 3
2 3
2 400 Bos
° ©
£ 300 3
] So4
200 Tnh
— Tan
100 —— Tanh (HR) 02
—— Latent Dim 1024
0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7 Iterations le7
(c¢) Effective Rank (d) Learning Rates z; € R1024

Figure 13: Comparison of a normal hyperbolic tangent (Tanh), a hyperbolic tangent with a higher representation dimension
2, € R51271024 4nd 3 Hadamard representation using hyperbolic tangents. Comparisons are done on performance (a), the
fraction of dead neurons (b), the effective rank of the representation z; (c) and learning rates of the higher-dimensional
latent. Naturally, increasing the representation dimension z; increases the effective rank of the representation, but using
a larger representation dimension is not always preferable as it often requires different hyperparameters, and can lead to
reduced performance (Obando-Ceron et al.,|2024; |(Obando Ceron et al.,[2024).In (d), an ablation of learning rates shows
that using a larger layer can sometimes prefer lower learning rates. However, it also shows that the improvement due to
the Hadamard representation is likely not correlated with the parameter increase, as the Hadamard representation still
significantly outperforms any of the 1024-dimensional latent state learning rate ablations.

18

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.3. Validating dying neuron probability derivations

As discussed in Section[d] the effect of using a Hadamard representation strongly depends on the activation function. These
derivations are empirically validated by the results in Fig. [T4] In practice, since a neural network prefers symmetry, a
sigmoid saturates slightly faster to O than to 1. This could explain the very slight increase in dead neurons when using an
HR with activations. Note that, since we use neuron independence assumptions in our theoretically calculated dying neuron
probabilities, the empirical results differ in magnitude from the theoretical predictions.

Atari Atari
0.6 0.6

—— Sigmoid — Tanh
—— Sigmoid (HR) —— Tanh (HR)

Fraction of dead neurons
¢ o o o
w » w

Fraction of dead neurons
3 o o
w » w

o
N
e
N

<}
[
e
N

o
o
o
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7 Iterations le7

(a) Sigmoid with and without HR (b) Tanh with and without HR

Atari
1.0

RelU
RelU (HR)

o
©

e
0

Fraction of dead neurons
=] o
(o)) ~

o
n

o
IS

0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7

(¢) ReLU with and without HR

Figure 14: By evaluating the effect of an HR on dying neurons through the lens of probability theory, we predicted that only
the hyperbolic tangent benefits in this metric. Specifically, only a hyperbolic tangent was speculated to have a decrease
in dying neurons. Using an HR with sigmoid activations would have no notable difference, and for an HR with ReLU
activations an increase in dead neurons was expected. This empirically validates our hypotheses in SectionE}

19

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.4. ReLU activated Hadamard representation

Additional Atari experiments are provided comparing a ReLU activation with and without an HR. The normalized scores,

dying neurons and the effective rank during training can be seen in fig.[T3]

Atari Atari
1.0
1.0 RelU
ReLU (HR)
» 0.9
08 s
v 5
S] 0.8
v 0.6 ko]
el ©
8 Loz
goa E
2 S 06
®
0.2 ©
“ o5
0.0
0.4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6
Iterations le7 Iterations
(a) Normalized Score (b) Dead Neurons
Atari
250
200
X~
C
&
5 150
>
b=
[¥)
(U
£ 100
w
50
RelU
RelU (HR)
0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7
(c) Effective Rank

RelU
RelU (HR)

0.8 1.0

le7

Figure 15: As a Rectified Linear Unit creates sparse representations, it does not benefit from using an HR, since the final
representation will consist of the Hadamard product between two sparse representations. Therefore, a decrease in both

performance and effective rank and an increase in dead neurons can be expected.

20

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D. Atari
D.1. DQN & PPO Evaluation Details

For DQN and PPO, the Hadamard representation was applied to the final hidden layer of the Nature CNN. Furthermore, we
have normalized performance with respect to the ReLU baseline on which the experiments were build (Huang et al.| [2022).
The minimum and maximum score of the ReLLU baseline are taken for each environment, and the normalized score for each
environment is calculated as follows:

Score — Min Score

li =
Normalized Score Max Score — Min Score ®)

where Score refers to the raw performance score of the model being evaluated, Min Score is a single value representing the
lowest score obtained by the ReLU baseline (usually equivalent to random policy or even slightly worse), and Max Score is
a single value representing the highest score achieved by the ReLU baseline in the same environment. To average, we sum
the normalized scores for every run and take the mean.

The more official Human-Normalized Score, as referenced in Mnih et al.| (2015)), is calculated similarly but using human
and random performance benchmarks:

S — Random S
Human-Normalized Score = core andom Score)
Human Score — Random Score

where Human Score and Random Score refer to the scores recorded by human players and random agents, respectively.
Calculating our performance according to the Human-Normalized Score leads to the plot seen in Fig.[T6 Due to taking a
subset of the Atari domain in DQN and PPO, the VideoPinball environment is extremely dominant in the Human-Normalized
Score calculation. For a more realistic comparison of the methods, we therefore decided to use baseline-normalized scores
in the main paper.

Atari
—— Tanh
70 ReLU
60 —— Tanh (HR)
—— Sigmoid
Q
o 50
O
n
T 40
N
©
g 30
(@]
= 20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Iterations le7

Figure 16: Human-Normalized performance (in multiples) with the standard deviation over the means in the Atari domain
for 10M iterations (40M Frames).

21

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D.2. Individual Environment Scores

AmidarNoFrameskip-v4

BreakoutNoFrameskip-v4

300
400
@ Q
5 200 h IS
3 S
v Y 200
100
0 0
T T T T T T
0.0 05 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
PongNoFrameskip-v4 QbertNoFrameskip-v4
m— Tanh
15000 RelU
10 7 —— Tanh (HR)
= Rational
¢ o4 © 10000 -
o o
O O
(%] (%]
~10 5000
-20 0
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
SeaquestNoFrameskip-v4 SpacelnvadersNoFrameskip-v4
1500
4000
9 2 1000
o o
53 3
%] %]
2000
500
0 4
T T T o T T T
0.0 05 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
VideoPinballINoFrameskip-v4 AsterixNoFrameskip-v4
30000
400000
20000
< <
o o
A &
200000 |
10000
0 o4
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7

Figure 17: DQN Performance comparison on the individual Atari Environments. Plotted lines represent the mean taken over

5 seeds, with the standard deviations expressed as the shaded region.

22

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Amidar-v5 Breakout-v5
800 400
600 - 300 +
< <
S 400 4 S 200 4
(%] (%]
200 100
0 0 1
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
Pong-v5 Qbert-v5
15000
10 A
10000
g 07 o
o o
O O
(%] (%]
~10 4 5000 -
—— Tanh (HR)
/ ReLU
~20 - = Tanh o4
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
Seaquest-v5 Spacelnvaders-v5
2000 -
1000 -
1500 -
750 o
<4 <4
S 1000 S
o N 500 A
500
250
0
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7
VideoPinball-v5 Asterix-v5
60000 -
4000
40000
< <4
o o
O O
v 9 2000
20000
0 T T T 0 T T T
0.0 0.5 1.0 0.0 0.5 1.0
Iterations le7 Iterations le7

Figure 18: PPO Performance comparison on the individual Atari Environments. Plotted lines represent the mean taken over
5 seeds, with the standard deviations expressed as the shaded region.

23

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Alien-v5 Amidar-v5
[[
5 S
O O 0.3
[%2] [%2]
el °
g g
s T 02
£ 02 ! £
S W\ S
Zé RelU (Baseline) Zé
© = Tanh (HR) © 0.1
S —— CRelU g
:E 0.0 = Tanh :E
g B = ReDo g 0.0
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Assault-v5 Asterix-v5
e <
S S 3
(%2} [%2]
i i
T T
E E 2
£ £
o o
=2 =2
< 10 <
© ©
£ gl
3 3
T I
c f=4
3 o 3o
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Asteroids-v5 Atlantis-v5
< e
o o
O O
(2] (%2}
3 3
N 01 N 40
© ©
€ £
S S
= =
: J L 20
3 0.0 =3
- I
5 S o
s b
0 2 4 0 2 4
Env Frames le7 Env Frames le7
BankHeist-v5 BattleZone-v5
2 210
o o .
O O
2] [%2]
el el
() ()
N N
© ©
g 1 g 0.5
Z Z
C f=s
£ £
z z
50 € 0.0
s)
0 2 4 0 2 4
Env Frames le7 Env Frames le7

Figure 19: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

24

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

BeamRider-v5 Berzerk-v5
g 5
o RelU (Baseline) O
@ 0.75 0
s = Tanh (HR) o
@ —— CRelU 2
= = Tanh = 0.2
g o050 __ g
£ £
o (<]
Z Z
5 g
0.25
£ £
=3 =3
I sy 0.0
5 =
3 0.00 (5]
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Bowling-v5 Boxing-v5
0.2
5
0.0

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
Breakout-v5 Centipede-v5
[[
S o
& &
° °
[[
N Noos
© ©
£ 10 5
= =4
< <
© ©
£ £
= > 0.0
I T
f= c
2 o b
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
ChopperCommand-v5 CrazyClimber-v5

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7

Figure 20: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

25

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Defender-v5 DemonAttack-v5

RelU (Baseline) &0
Tanh (HR)
CRelU

Tanh
ReDo

40

20

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
DoubleDunk-v5 Enduro-v5

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
FishingDerby-v5 Freeway-v5

[[

o S

O O

wn 0w 10

o 2 °

[[

N N

© ©

£ £

S S 05

Z1 z

c c

© ©

£ £

3 3

T I

c c 0.0

2o i

= =

0 2 4 0 2 4

Env Frames le7 Env Frames le7
Frostbite-v5 Gopher-v5

1.0 10

0.0

Mean Human-Normalized Score
o
w

Mean Human-Normalized Score
w

Env Frames le7 Env Frames le7

Figure 21: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

26

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Gravitar-v5 Hero-v5
o <
S ReLU (Baseline) g 04 "
%2} (%2}
7 Tanh (HR) T
g —— CRelU g
© = Tanh =
© 0.1 ©
g = ReDo g
S 5 0.2
Z Z
c c
© ©
£ oo g
ey I
c c 0.0
© ©
Q) U
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
IceHockey-v5 Jamesbond-v5
2 10 26
o o
O O
[%2] (%]
el el
R o5 I
T T 4
€ €
£ £
2 2
T 0.0 :
5 S 2
€ €
3 3
I I
g g
o 3o
= =

0 2 4 0 2 4
Env Frames le7 Env Frames le7
Kangaroo-v5 Krull-v5

IS

N

Mean Human-Normalized Score
o

Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
KungFuMaster-v5 MsPacman-v5
o o
o o
O O
N o1s o
e o
[(9
N N 04
© ©
€ 10 £
o o
= =
< & 02
g os g
=3 =]
T I
< < 0.0
3 00 3
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7

Figure 22: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

27

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

NameThisGame-v5 Phoenix-v5

RelU (Baseline)
Tanh (HR)
CRelU

Tanh

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
Pong-v5 Qbert-v5
o e
o o
O O
[%2] [%2]
o - 1.0
[[
N 1.0 N
© ©
= £
£ £
2 2
< 05 c 05
© ©
£ £
3 3
I T
f=4 f=4
g 00 T 00
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Riverraid-v5 RoadRunner-v5
[1 [
210 o
8 8
%] v 75
el el
() ()
N N
© ©
£ os E 50
(=} o
Z Z
g g
= £ 25
3 3
I I
< 0.0 c
3 2 0.0
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Robotank-v5 Seaquest-v5
2 o
o o
O O
2] [%2]
R 3
N N
© ©
Z2 Z
c c
© ©
£ £
3 3
T T
c 0 f=
b 3 0.0
= =
0 2 4 0 2 4
Env Frames le7 Env Frames le7

Figure 23: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

28

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Spacelnvaders-v5 StarGunner-v5

RelU (Baseline)
Tanh (HR)
CRelU

Tanh
ReDo

Mean Human-Normalized Score
Mean Human-Normalized Score

0 2 4 0 2 4
Env Frames le7 Env Frames le7
Tennis-v5 TimePilot-v5

15

1.0

= -

0.5 r

Mean Human-Normalized Score
Mean Human-Normalized Score

0.0 -2
0 2 4 0 2 4
Env Frames le7 Env Frames le7
Tutankham-v5 UpNDown-v5

15

1.0

0.5

Mean Human-Normalized Score
Mean Human-Normalized Score

0.0 o
0 2 4 0 2 4

Env Frames le7 Env Frames le7
Venture-v5 VideoPinball-v5

< <

S S 400

(2] [%2]

T 0.04 °

() (]

= N

© ®

£ E

0.02

S S 200

< <

© ©

€ €

S 0.00 S

T I

c c

3 T 0

= =

0 2 4 0 2 4

Env Frames le7 Env Frames le7

Figure 24: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

29

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

WizardOfWor-v5 YarsRevenge-v5

175 RelU (Baseline)
== Tanh (HR) 0.5
== CRelU

1.50 = Tanh
= ReDo

0.4

1.00 0.3

0.75

Mean Human-Normalized Score
Mean Human-Normalized Score

0.1

0.0
0.00

0 2 4 0 2 4
Env Frames le7 Env Frames le7

Zaxxon-v5

1.4

1.2

1.0

0.8

0.6

0.4

Mean Human-Normalized Score

0.0

0 2 4
Env Frames le7

Figure 25: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

30

	Introduction
	Related Work
	Preliminaries
	Augmenting Hyperbolic Tangents
	Experiments
	The Immunity of the ReLU

	Limitations
	Conclusions and Discussion
	Implementation Details
	Hyperparameters
	Hadamard Implementation
	Reinforcement Learning

	Kernel Density Estimations
	KDE calculation
	Effective Rank calculation

	Additional Experiments
	Shallow and Deep Function Approximation
	Increasing Representation Parameters
	Validating dying neuron probability derivations
	ReLU activated Hadamard representation

	Atari
	DQN & PPO Evaluation Details
	Individual Environment Scores

