
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Anonymous Authors1

Abstract
Activation functions are one of the key compo-
nents of a deep neural network. The most com-
monly used activation functions can be classed
into the category of continuously differentiable
(e.g. tanh) and piece-wise linear functions (e.g.
ReLU), both having their own strengths and draw-
backs with respect to downstream performance
and representation capacity through learning. In
reinforcement learning, the performance of con-
tinuously differentiable activations often falls
short as compared to piece-wise linear functions.
We show that the dying neuron problem in RL is
not exclusive to ReLUs and actually leads to addi-
tional problems in the case of continuously differ-
entiable activations such as tanh. To alleviate the
dying neuron problem with these activations, we
propose a Hadamard representation that unlocks
the advantages of continuously differentiable acti-
vations. Using DQN, PPO and PQN in the Atari
domain, we show faster learning, a reduction in
dead neurons and increased effective rank.

1. Introduction
The Rectified Linear Unit (ReLU) (Fukushima, 1969; Nair
& Hinton, 2010) and its variants (Xu et al., 2015; Klambauer
et al., 2017) have emerged as the most widely used and gen-
erally best-performing activation functions up until this day
(Jarrett et al., 2009; Goodfellow et al., 2016). The strength
of the ReLU activation lies in its ability to naturally avoid
vanishing gradients when used in deeper networks, in con-
trast to the continuously differentiable activation functions,
such as the sigmoid and the hyperbolic tangent (Glorot &
Bengio, 2010).

A common drawback of using the ReLU activation is its

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e
d

ia
n

 H
u

m
a
n

-N
o
rm

a
li
z
e
d

 S
c
o
re

Ta
n
h

R
e
D

o

C
R

e
LU

R
e
LU

Ta
n
h
 (

H
R

)

Atari (51 Games, 40M Frames)

Figure 1: Median Human-Normalized performance train-
ing PQN in the Atari domain where the activation function
of the hidden layers is changed. A massive performance
discrepancy in performance can be observed when select-
ing different activation functions. Notably, in Atari, the
application of a Hadamard representation with hyperbolic
tangent leads to over 100% performance gains. Note that
the Hadamard representation is not suitable for the ReLU
activation, as it amplifies its sparsity by taking the product
of sparse activations.

limited expressivity in the context of shallow networks (see
Fig. 2), as well as the phenomenon known as the dying
ReLU problem (He et al., 2015; Lu et al., 2019). As training
progresses, the number of dying ReLUs tend to increase,
resulting in a dying network and loss of network capacity
(Dubey et al., 2022).

In reinforcement learning (RL) (Sutton & Barto, 2018), the
dying neuron phenomenon is much more prevalent than
in supervised learning due to the use of non-stationary tar-
gets (Sokar et al., 2023). However, even though training
results in a large number of dying ReLUs (Gulcehre et al.,
2022; Sokar et al., 2023), the ReLU function still remains
the most popular activation for performance reasons (Hen-
derson et al., 2018). Similar to supervised learning (Teney
et al., 2024), continuously differentiable activation functions
such as the hyperbolic tangent are therefore not favored in
RL (see Fig. 1). However, one might argue that their sym-
metrical, bounded shape and smooth gradient landscape

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

offer optimization advantages that the ReLU lacks. Recent
findings also indicate that a hidden layer activated by a hy-
perbolic tangent displays a high effective rank and thus a
high layer expressivity (Kumar et al., 2021; Gulcehre et al.,
2022). Despite being a theoretically sound candidate, its
lack of success in RL has not been thoroughly investigated.

5 0 5
30

20

10

0

10

20

30
Loss = 13.39

Target
Tanh

5 0 5
30

20

10

0

10

20

30
Loss = 128.48

Target
ReLU

5 0 5
30

20

10

0

10

20

30
Loss = 1.71

Target
Tanh (HR)

Figure 2: A regression of three shallow neural network
architectures on a random complex sinusoidal function
(y = 10 ∗ torch.sin(7 ∗ x) + 15 ∗ torch.sin(10 ∗ x) +
5 ∗ torch.cos(5 ∗ x)). The Tanh (HR) network emerges
as the strongest function approximator, even while having
less trainable parameters (501 vs 601 for Tanh & ReLU).
To make a fair comparison, the Tanh and ReLU networks
have one single hidden layer of size 200, while the Tanh
(HR) network has a hidden layer of size 100. For the Tanh
(HR) network however, we use two parallel linear layers
preceding the hidden layer in order to be able to use the
single hidden layer as the Hadamard product of two activa-
tions (see Section 4). For experiments comparing deeper
networks, we refer the reader to Appendix C.1.

This paper provides insights into the hyperbolic tangent’s
suboptimality, revealing that RL gradients lead to bias-
inducing dying neurons and under-utilization of the full
network capacity. Based on these insights, we mitigate said
effects by augmenting the original hidden layer architecture.
Specifically, we provide an alternative to the conventional
parameterization of these layers. Our contributions can be
summarized as follows:

• We show that, in reinforcement learning, dying hyper-
bolic tangents are a phenomenon of a similar scale as
the dying ReLU problem, and argue how they inher-
ently have a more profound effect on performance.

• A Hadamard representation (HR) is proposed, defining
a hidden layer as the Hadamard product of two separate,
individually parameterized activation vectors.

• We empirically show that, without hyperparameter tun-
ing or the use of auxiliary losses, Hadamard repre-
sentations yields notable performance gains in multi-
ple algorithms in the Atari domain, and reveal how
it decreases dying neurons and increases the internal
representations’ effective rank.

2. Related Work
This section provides related work from the perspective of:
(i) the loss of capacity through learning neural networks and
(ii) the effect of different network architectures in RL.

Network Capacity in RL. Liu et al. (2019) investigated
the need for sparse representations in the continuous control
domain. Gulcehre et al. (2022) analyzed network expres-
siveness in RL by measuring the effective rank (Kumar et al.,
2021) of the representation, and found that hyperbolic tan-
gent representations generally maintain high rank while not
suffering strongly from rank decay as training continues.
Related work used normalization techniques and action pe-
nalization to counteract high variance in pixel-based robotic
control (Bjorck et al., 2022). Other work by Lyle et al.
(2022) investigated capacity loss in RL and similarly found
that, as training progresses, the inherent network capacity
of RL algorithms decays. Further research by Nikishin et al.
(2022) used network resets to counteract the primacy bias
and (Sokar et al., 2023) evaluated and mitigated the dying
ReLU phenomenon in DQN, both operating in the sample
efficiency setting. Nikishin et al. (2023) further studied
plasticity injection for long-term training and Delfosse et al.
(2024) applied rational activations (Molina et al., 2019) in
RL to increase plasticity. Concurrent work by Dohare et al.
(2024) used continual back-propagation to further alleviate
plasticity loss. In another related direction, recent work has
investigated network sparsity in RL, showing that a large
part of network capacity might be unnecessary when train-
ing reinforcement learning (Arnob et al., 2021; Graesser
et al., 2022; Sokar et al., 2022; Tan et al., 2023; Obando-
Ceron et al., 2024). This provides insights into why a ReLU
can achieve strong performance despite resulting in a signif-
icant number of dead neurons.

Network Architecture in RL The origin of network opti-
mization problems with hyperbolic tangents and sigmoids
were empirically investigated by Glorot & Bengio (2010),
where, according to the authors, a lot of mystery still sur-
rounds the subject. Work by (Srivastava et al., 2015) in
supervised learning first looked at the idea of using products
of hidden layers together with a ’gate’ that determined the
amount of information flow (Hochreiter & Schmidhuber,
1997). Using these ideas, the Resnet was invented (He et al.,
2016) and also showed strong performance in combination
with RL (Espeholt et al., 2018). Further work by Henderson
et al. (2018) showed differences in RL performances over
different network architectures and nonlinear activations.
Work by Abbas et al. (2023) successfully applied ReLU
concatenation (Shang et al., 2016) to improve continual
learning while keeping a similar performance when training
from scratch. Finally, recent work by Grooten et al. (2024)
investigated raw pixel masking for distractions in RL using
a parallel CNN input layer.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

3. Preliminaries
We consider an agent acting within its environment as a
discrete Markov Decision Process (MDP) defined as a tuple
(S,A, T,R, γ). S is the state space, A is the action space,
T : S ×A → P(S) is the environment’s transition function,
R : S × A → R is the environment’s reward function
and γ ∈ [0, 1) is the discount factor. A replay buffer B is
used to store visited states st ∈ S that were followed by
actions at ∈ A and resulted in the rewards rt ∈ R and the
next states st+1. One entry in B contains a tuple of past
experience (st, at, rt, st+1). The agent’s goal is to learn a
policy π : S → A that maximizes the expectation of the
discounted return V π(s) = Eτ [

∑∞
t=0 γ

tR(st, at) | st = s],
where τ is a trajectory following the policy π.

4. Augmenting Hyperbolic Tangents
Continuously differentiable activations such as the hyper-
bolic tangent (tanh) and the sigmoid (σ) activations are
fundamentally different than the ReLU or its piece-wise lin-
ear descendants, which are non-symmetric and have a large
part of the input space mapped to zero (leading to sparsity).
The hyperbolic tangent and the sigmoid output values in the
ranges [−1, 1] and [0, 1], respectively. These functions are
defined as tanh(x) = ex−e−x

ex+e−x and σ(x) = 1
1+e−x .

Both functions have the advantage of being differentiable
everywhere, as well as being bounded. Furthermore, the sig-
moid is well suited for output probabilities, while the tanh
is convenient when requiring a zero-centered symmetrical
output. However, both functions exhibit the vanishing gra-
dient problem for saturating activations (Glorot & Bengio,
2010; Goodfellow et al., 2016).

Dying Hyperbolic Tangents

Although the literature has focused on the dying ReLU prob-
lem (He et al., 2015; Lu et al., 2019; Gulcehre et al., 2022;
Sokar et al., 2023), we find that hidden layers activated
by hyperbolic tangents similarly show strong dying neuron
behavior, particulary in the RL context with the moving
target from the Bellman iterations. When using any acti-
vation function in a deep neural network, a single neuron
αi, i ∈ Rw, with w the layer dimension, is saturated or
dying if:

αi ≈ Ω, ∀st ∈ B (1)

Where Ω represents the saturation value and st is an obser-
vation in buffer B. In practice, a mini-batch of observations
is evaluated instead of the whole dataset in B. For the
hyperbolic tangent, given that it is an asymptotic function
near its saturation point, an approximate equality is consid-
ered (|αi| ≠ 1, ∀st ∈ B) . To approximate the condition

given in Eq. 1, the amount of dying hyperbolic tangents
is calculated by using a kernel density estimation (KDE)
(Silverman, 1986) on the activations αi, i ∈ Rw of each in-
dividual neuron in the activation layer. In order to visualize
activations in a hidden layer, a fixed subset of the KDE’s
of the neurons αi is taken. A clear visualization of dying
hyperbolic tangents during training in the Atari Breakout
environment can be seen by analyzing sixteen individual
neuron KDE’s in Fig. 3. Massive KDE spikes at either 1
or -1 represent the absence of neuron variance over a batch
of observations, meaning that the neuron has lost its value
to propagate useful information. More details on the KDE
calculation and dying neuron classification can be found in
Appendix B.

Hyperbolic Tangents turn Weights into Biases

When dying neurons occur in ReLU-activated layers, it basi-
cally prunes these neurons and the associated weights to the
next layer. However, in hyperbolic tangent activated layers,
dying neurons lead to an unintended phenomenon where
weights associated with dead neurons effectively become
biases.

Theorem 4.1. When any set of neurons αj in a hidden layer
zj collapses into nonzero values, the output to the next layer
effectively changes from (Ajzj +Bj) to (Aj

−∗z
j
i−∗ +Bj+1

+ Aj
∗z

j
i∗), where Aj

−∗z
j
−∗ represent the active neurons mul-

tiplied by their corresponding forward-connected weights
and Aj

∗z
j
i∗ = Bj+1

∗ represent the dead neurons multiplied
by their corresponding weights, resulting in the hidden bias
Bj+1

∗ .

Proof. Let us consider a set of neurons αj
i and forward

connected weights wj
αi

in layer zj . The influence of these
neurons on the next layer zj+1 is calculated as:

zj+1 =
∑
i

αj
iw

j
αi

+Bj+1. (2)

If the set of neurons dies and collapses into 0 (αj
i = 0, ∀s ∈

S), which occurs when using ReLU activations, the influ-
ence on the next layer becomes 0, representing basic prun-
ing: ∑

i

0 · w̄j
αi

= 0, ∀s ∈ S. (3)

Where w̄j
αi

is the set of weights connected to the dying neu-
rons. However, for a hyperbolic tangent activation, if the set
of neurons saturate into either -1 or 1 (αj

i = {1,−1},∀s ∈
S), the output is∑

i

{1,−1} · w̄j
αi

= Bj+1
∗ , ∀s ∈ S. (4)

As a result, the weight vector w̄j
αi

corresponding to the
dying activations only influences a bias Bj+1

∗ on the next

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0

5

De
ns

ity
0

10

0

10

0

5

0

5

De
ns

ity

0

10

0

10

0

5

0

5

De
ns

ity

0

10

0

20

0

5

1 0 1
0

5

De
ns

ity

1 0 1
0

5

1 0 1
0

10

1 0 1
0

10

(a) Tanh - 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0.0

2.5

0

1

0

500

D
e
n
si
ty

0

1000

0

200

0

2

0

5

D
e
n
si
ty

0

2

0.0

0.5

0

1

1 0 1
0

10000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

20

1 0 1
0

200

(b) Tanh - 107 iterations

Figure 3: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed representation zt after training
DQN (Mnih et al., 2015) in the Breakout environment using a hyperbolic tangent activation for zt. Each neuron represents
one dimension of the representation zt ∈ R512. Red outlines represent dying neurons, where a near infinite sized density
spike occurs at either 1 or -1.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

5

10

15

Co
nt

rib
ut

io
n

to
 Q

-v
al

ue
s

Seaquest
Dead neurons
Live neurons

Figure 4: 10M iterations (40M frames) training DQN with
a hyperbolic tangent activation in the Seaquest environment.
The average contribution to the Q-values of the live and dead
neurons in the final hidden layer is observed. If a neuron
dies, it retains the same value for any input observation,
but a multiplication of the nonzero saturation value with its
outgoing weights implements a substantial ‘hidden’ bias on
the Q-values.

layer. Note that the bias Bj+1
∗ is constant for any input

observation.

This emergent bias can hinder the optimization process by
introducing unintended fixed contributions to a networks’
hidden layers or output layer, reducing the flexibility of
the network’s representations and potentially reducing its
performance in RL or supervised learning. For example, in
Atari’s Seaquest environment, we can see that this bias is
substantial and nonzero (see Fig. 4).

Hadamard Representations (HR)

As Fig. 3 indicates that the activation of zt with a hyperbolic
tangent leads to saturation and dying neurons, an augmen-
tation of the representation architecture is proposed. In the
conventional encoder setting, a network’s hidden layer can
be defined as zenc(x) = f(A1x + B1), with Ai and Bi

representing weight and bias parameters, the function f()
representing a nonlinear activation function while x is the
set of activations from the previous layer. In order to reduce
the information dependence on a single set of neurons, we
propose using a Hadamard representation that augments
the original representation with a parallel representation
layer z∗. This can be interpreted as using a single highway
layer with a closed carry gate (Srivastava et al., 2015), or
as an augmented version of the Gated Linear Unit (GLU)
(Dauphin et al., 2017). The final representation is defined
as a Hadamard product between the aforementioned activa-
tions z(x) = zenc(x) ·z∗(x), where z∗(x) = f(A2x+B2).
A visualization of the proposed architecture can be found in
Fig. 5.

Preventing Dying Neurons

Our key hypothesis is that the Hadamard representation can
prevent saturation, hence alleviating vanishing gradients and
dying neurons (See Eq. 1). To support our hypothesis, we
investigate the derivative of a product of two functions. For
the product of two arbitrary functions g(x) ·h(x), the deriva-
tive is defined as g′(x)h(x) + g(x)h′(x). In the context of
using a sigmoid activation function for f(x), the derivative
of z(x) becomes:
z′(x) = A1σ(A1x+B1)(1− σ(A1x+B1))σ(A2x+B2)

+A2σ(A1x+B1)σ(A2x+B2)(1− σ(A2x+B2))

If a neuron from f(A1x + B1) = 0 ∀ x, the gradient of
the product becomes 0 while if a positive saturation is ex-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

1 0 11 0 1

Figure 5: A visualisation of the Hadamard representation. Horizontal bars represent weight vectors and zt represents a
hidden layer. Between each hidden layer, two parallel independently parameterized activation layers are formed, where the
Hadamard product of the two activation layers represents the actual propagated hidden layer.

perienced i.e. f(A1x + B1) = 1 ∀ x, z′(x) can remain
nonzero. For a product of two hyperbolic tangent functions,
the derivative is defined as:

z′(x) = A1 sech2(A1x+B1) tanh(A2x+B2)

+ A2 sech2(A2x+B2) tanh(A1x+B1).

In this context, sech2 is the derivative of the hyperbolic
tangent function. Unlike the sigmoid, the hyperbolic tangent
saturates to nonzero values, ensuring that if and only if
both parts are saturated, product saturation occurs. Thus,
when g(x) saturates, h(x) still keeps a non-trivial gradient
in the product, providing a mechanism to avoid vanishing
gradients. We visualize the kernel densities during training
with a Hadamard representation in Fig. 6. The individual
representations before taking the Hadamard product can be
found in Appendix B.

Taking a more formal approximation of neuron collapse, we
start by defining the probability of a single neuron saturating
as p. Furthermore, in the case of a sigmoid or hyperbolic
tangent, we assume symmetric saturation probabilities to
both ends, defining the probability of a neuron saturating
to one end of the spectrum as 0.5p. Lastly, we make an
independence assumption between two individual neurons.
Under these assumptions, we show that interpreting a neu-
ron as the product of two individual neurons can change
saturation probabilities depending on the neuron’s activation
function.

Hyperbolic Tangent: In the case of the hyperbolic tan-
gent, product saturation only occurs if strictly both neurons
are saturated. This results in a probability of p · p = p2.
Taking a product of hyperbolic tangent activated neurons
thus reduces the neuron saturation probability from p to p2.

Sigmoid: For the sigmoid function, product saturation oc-
curs in two scenarios: Either one of the neurons is saturated
towards zero or both neurons are saturated towards 1. The
probability that a single neuron does not saturate towards

zero is (1 − 0.5p), and subsequently the probability that
neither neuron saturates towards zero is (1− 0.5p)2. The
probability that at least one of the two neurons saturates to
zero is therefore 1 − (1 − 0.5p)2 = p − 0.25p2. Adding
the probability that both neurons saturate towards 1, which
is (0.5p)2 = 0.25p2, the final probability of the neuron
product saturation is p − 0.25p2 + 0.25p2 = p. Taking
a product of sigmoid activated neurons therefore does not
reduce the probability of neuron collapse.

Rectified Linear-Unit: In the case of a ReLU activation,
the probability of a single neuron dying is taken as p. As we
look at the product of two neurons, the probability that one
of the two neurons does not saturate is therefore 1− p, and
the probability that both neurons do not saturate is (1−p)2.
The probability that at least one neuron saturates is thus
equal to 1− (1− p)2 = 2p− p2. As the ReLU saturation
results in strict zeroes, this results in the product also being
zero. Taking a product of ReLU activated neurons therefore
increases the final neuron saturation probability from p to
2p−p2. For an overview, we refer the reader to both Table 1
and the corresponding empirical evidence in Appendix C.3.

Table 1: Predicted dying neuron probabilities with and with-
out a Hadamard representation.

Activation Prob. Prob. with HR ∆

Tanh p p2 −(p− p2)
Sigmoid p p 0
ReLU p 2p− p2 +(p− p2)

5. Experiments
We analyze the effect of a Hadamard representation on a
hidden layer’s fraction of dying neurons, its effective rank
and the downstream performance. In the qualitative analysis,
we evaluate DQN (Mnih et al., 2015) and PPO (Schulman
et al., 2017) on 8 common, non-exploration driven Atari

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0

1

D
e
n
si
ty

0.0

0.5

0

1

0

1

0

1

D
e
n
si
ty

0

2

0

1

0

20

0

2

D
e
n
si
ty

0.0

0.5

0

1

0

1

1 0 1
0

2

D
e
n
si
ty

1 0 1
0

2

1 0 1
0.0

0.5

1 0 1
0

1

(a) Tanh (HR) - 106 iterations

0.0

0.5

De
ns

ity

0

1

0

2

0

1

0

1

De
ns

ity

0

1

0.0

0.5

0

2

0.0

2.5

De
ns

ity

0

1

0

1

0

5

1 0 1
0

1

De
ns

ity

1 0 1
0

2

1 0 1
0

2

1 0 1
0

1

(b) Tanh (HR) - 107 iterations

Figure 6: Kernel Density Estimations (KDE) over a subset of 16 neurons in the compressed representation zt after training
DQN in the Breakout environment using a Hadamard representation (HR) with hyperbolic tangents. The Hadamard
representation tends to quickly utilize the full range of the hyperbolic tangent while also mitigating dying neurons.

environments for 40M frames. Finally, a larger performance
analysis is done using the recent Parallelized Q-Network
(PQN) (Gallici et al., 2024) on 51 Atari environments for
40M frames.

Mitigating dying Hyperbolic Tangents

As defined in Eq. 1, the number of dead neurons is equal to
the amount of neurons that display the same saturated output
for any given observation st. Over 8 Atari environments,
the average amount of dead neurons during training can
be seen in Fig.7(a). For the ReLU activation, around 60%
of the neurons in the representation zt die during training,
while for the sigmoid and hyperbolic tangent activation this
number is around 40%. When using a hyperbolic tangent
Hadamard representation, a reduction in dead neurons as
compared to using a single hyperbolic tangent can be ob-
served. We credit this to the inherent ability of a Hadamard
product of hyperbolic tangents to minimize long-term ac-
tivation saturation, as explained in Section 4. Quantitative
results of dead neurons can be found in Table 2, which tends
to confirm the predictions from Table 1.

Table 2: Average dying neuron fractions in 8 Atari Games
with and without a Hadamard representation (HR).

Activation Without HR With HR ∆

Tanh 0.39 0.30 -23%
Sigmoid 0.44 0.45 +2%
ReLU 0.62 0.73 +18%

For more activation-specific dying neuron graphs, we refer
the reader to Appendix C.3.

Increasing Effective Rank

We additionally investigate the effective rank (Kumar et al.,
2021) of the representation zt during training, which can be
seen in Fig. 7(b). As observed by Gulcehre et al. (2022),
a representation activated by a hyperbolic tangent or a sig-
moid, already has a relatively high effective rank compared
to a representation activated by a ReLU. Furthermore, simi-
lar to the results in our supervised learning experiments (see
Fig. 2), using a Hadamard representation with hyperbolic
tangents significantly improves said effective rank, which is
strongly correlated to a network’s ‘expressivity’. Alterna-
tively, we found that employing a Hadamard representation
with ReLU activations significantly decreased the effective
rank of the representation, as was expected from earlier pre-
dictions in Table 1. More details on the ReLU Hadamard
representation, dying neuron calculations and effective rank
calculations can be found in Appendices C.4, B.1 and B.2,
respectively.

Performance in Atari

The influence of a Hadamard representation on downstream
performance is visualized in Fig. 7(c). Correlating with the
reduction in dying neurons and an increase in effective rank,
a significant improvement over the standard hyperbolic tan-
gent baseline is obtained, as well as an improvement over
the default ReLU baseline. Furthermore, a comparison is
made with the novel Rational (Delfosse et al., 2024) acti-
vation function as the activation in the final hidden layer.
Fig. 7(c) shows that, although the Rational activation seems
to be a stable learnable activation, it remains comparable to
the ReLU.

Examining further ablations in Fig. 8(a-b) shows that using
another piece-wise linear function such as the SELU acti-
vation (Klambauer et al., 2017) or using an addition rather
than a product of hyperbolic tangents seems detrimental
to performance. Furthermore, taking a product of 3 hyper-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Sigmoid
Tanh (HR)
ReLU

(a) Dead Neurons (DQN)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

100

150

200

250

300

350

400

450

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Sigmoid
Tanh (HR)
ReLU

(b) Effective Rank (DQN)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Rational

(c) Normalized Score (DQN)

Figure 7: (a) The average fraction of dead neurons, (b) the average effective rank (Kumar et al., 2021), and (c) the baseline-
normalized score when training DQN in the Atari domain for 10M iterations (40M frames). Similar to the well-known dying
ReLU problem, hyperbolic tangent and sigmoid activations also exhibit strong dying neuron behavior. A Hadamard product
of hyperbolic tangents reduces dead neurons in zt and subsequently increases the effective rank of the representation.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
Latent Dim 1024
Tanh
LayerNorm
Tanh (HR)

(a) Ablations (DQN)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh (HR)
SELU
Tanh (+)
Tanh (2HR)

(b) Ablations (DQN)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Sigmoid
Tanh (HR)

(c) Performance (PPO)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

280

300

320

340

360

380

400

420

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
ReLU
Sigmoid
Tanh (HR)

(d) Effective Rank (PPO)

Figure 8: Baseline-normalized performance with the standard deviation over the means in the Atari domain, after training
DQN for 10M iterations (40M Frames). In (a), Tanh (HR) significantly outperforms Tanh. The Rational Activation (Delfosse
et al., 2024) is comparable to ReLU within 40M frames. In (b), several ablations including layer normalization (Ba et al.,
2016) and an increased dimension of zt ∈ R1024 with a reduced learning rate α = 5e−5 are shown. In b), Tanh (+)
represents an addition rather than a Hadamard product, and Tanh (2HR) uses a triple Hadamard product. Normalized
performance (c) and effective rank (d) when training the PPO algorithm (Schulman et al., 2017). Note that no hyperparameter
changes are done for the Hadamard representation.

bolic tangents (2HR) also appears to enhance performance,
though there seems to be a negative effect in the early stages
of training as compared to using a single Hadamard product.
We hypothesize that this is the result of increased contract-
ing behavior in the early stage of training due to increasing
multiplication of hyperbolic tangent activations whose ab-
solute values are < 1. Additional experiments combining
the ReLU activation with a Hadamard representation can be
found in Appendix C.4.

5.1. The Immunity of the ReLU

Interestingly, it seems that the ReLU activation’s perfor-
mance is much less correlated to its low effective rank and
high amount of dying neurons than the continuously dif-
ferentiable activations. As also indicated by Teney et al.
(2024), the exact reasons for the broad success of the ReLU
activations are not yet fully understood. However, we have

offered a partial explanation for this resilience of the ReLU
in Section 4: ReLU saturation represents network prun-
ing while hyperbolic tangent saturation leads to biases in
subsequent layers.

Evaluating Hadamard representations on PPO

To evaluate results on a policy-based algorithm, additional
experiments are run using the PPO algorithm (Schulman
et al., 2017). For PPO, the internal architectural difference
with DQN and PQN is that the final hidden layer zt precedes
both a critic and an actor network, and thus receives policy
and value gradients. After training for 40M frames, the
performance and effective rank over time can be found in
Fig. 8(c-d). Similarly to the results on DQN, the Tanh (HR)
exhibits the highest effective rank and good performance.
The Tanh (HR) and the ReLU seem to have consistent strong
performance, whereas the pure hyperbolic tangent and sig-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

moid activations can be unreliable across algorithms. This
is coherent with the fact that continuously differentiable
activations are generally not favored over the ReLU (Teney
et al., 2024).

Evaluating Hadamard representations on PQN

To test the performance of the Hadamard representation over
a broader selection of environments, we evaluate the recent
Parallelized Q-Network (PQN) algorithm in the nearly full
Atari suite without hard-exploration environments, for a
total of 51 games with 5 seeds per game.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Env Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Atari (51 Games)
ReLU
Tanh (HR)
CReLU
Tanh
ReDo

Figure 9: Median Human-Normalized scores on PQN in 51
Atari games for 5 seeds over 40M frames. Labels represent
encoder activations. Employing a Hadamard representation
provides a significant performance improvement over the
recent PQN baseline (displayed as ReLU), the CReLU (Ab-
bas et al., 2023) and ReDo (τ = 0.025) (Sokar et al., 2023).
Notably, the improvement over a conventionally parameter-
ized hyperbolic tangent activation is more than 100%.

PQN is a vectorized-friendly version of DQN, reporting both
a speed up from DQN as well as better convergence (Gal-
lici et al., 2024). We run tests implementing the Hadamard
representation in all hidden layers. The median human-
normalized scores after training for 40M frames are shown
in Fig. 9. We can clearly see a similar trend for the 51-game
Atari suite. Using a Hadamard representation significantly
increases the median performance as compared to the base-
line PQN, the CReLU activation (Abbas et al., 2023), and
the ReDo + ReLU algorithm (Sokar et al., 2023). Addition-
ally, preliminary modified applications of ReDo to Tanh did
not prove to be effective in PQN. However, we believe that
future work in this direction would be worth pursuing.

6. Limitations
Using a Hadamard representation increases neural network
parameters as it doubles the incoming weights connected

to a hidden layer. However, in Fig. 9, a comparison against
the CReLU is shown, which also nearly doubles the net-
work’s parameters. Furthermore, recent work shows that
simply scaling baselines in Atari often leads to reduced
performance (Obando-Ceron et al., 2024; Obando Ceron
et al., 2024). Another limitation is that, due to the vast
amount of activation functions and the theoretical sound
candidacy of the hyperbolic tangent, our research focused
on the combination of hyperbolic tangents. Further research
into Hadamard representations could find more novel activa-
tion combinations. A hyperparameter search will also give
more insights into the strengths of the HR, as all baselines
are specifically tuned for the ReLU. Finally, integration of
a HR into more complex algorithms and architectures such
as Rainbow (Hessel et al., 2018), Impala (Espeholt et al.,
2018) or SPR Schwarzer et al. (2021) would be interesting.

Table 3: Parameter count across different activations

Activation Total Parameters

Tanh (Width·2) 6,717,376
Tanh (HR) 3,373,382
CReLU 3,292,838

7. Conclusions and Discussion
This paper analyzed issues with continuously differentiable
activations in RL and demonstrated that these activation
functions also suffer from the dying neuron problem, but
with more acute downstream effects. To alleviate this prob-
lem and make better use of these functions’ properties, a
novel representation architecture called the Hadamard rep-
resentation (HR) is proposed. The HR augments the hidden
layers in a network by taking the Hadamard product with
parallel, independently parameterized activation layers. We
further analyzed and empirically showed that applying a
Hadamard representation to hyperbolic tangents reduces
the occurrence of dead neurons in the representation and
increases layer expressiveness. In DQN, PQN and PPO,
this approach significantly improved performance in Atari
games compared to both standard representation parameter-
ization and merely increasing the representation dimension.
Future work could focus on further identifying the intrica-
cies of the effects that different activation functions have on
the resulting representation, in an attempt to push the po-
tential of non piece-wise linear activations in reinforcement
learning or even in a supervised learning setting (see Fig. 2).
Also, we believe that an implementation of Hadamard-style
architectures in a continual learning setting as in Abbas et al.
(2023) or in Delfosse et al. (2024) could be promising.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,

M. C. Loss of plasticity in continual deep reinforcement
learning. In Chandar, S., Pascanu, R., Sedghi, H., and
Precup, D. (eds.), Proceedings of The 2nd Conference on
Lifelong Learning Agents, volume 232 of Proceedings of
Machine Learning Research, pp. 620–636. PMLR, 22–
25 Aug 2023. URL https://proceedings.mlr.
press/v232/abbas23a.html.

Arnob, S. Y., Ohib, R., Plis, S. M., and Precup, D. Single-
shot pruning for offline reinforcement learning. CoRR,
abs/2112.15579, 2021. URL https://arxiv.org/
abs/2112.15579.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion, 2016. URL http://arxiv.org/abs/1607.
06450. cite arxiv:1607.06450.

Bjorck, J., Gomes, C. P., and Weinberger, K. Q. Is high
variance unavoidable in RL? a case study in continu-
ous control. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=9xhgmsNVHu.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
Language modeling with gated convolutional networks.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 933–941. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
dauphin17a.html.

Delfosse, Q., Schramowski, P., Mundt, M., Molina, A.,
and Kersting, K. Adaptive rational activations to
boost deep reinforcement learning. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=g90ysX1sVs.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman,
P., Mahmood, A. R., and Sutton, R. S. Loss of plas-
ticity in deep continual learning. Nature, 632(8026):
768–774, 2024. ISSN 1476-4687. doi: 10.1038/
s41586-024-07711-7. URL https://doi.org/10.
1038/s41586-024-07711-7.

Dubey, S. R., Singh, S. K., and Chaudhuri, B. B.
Activation functions in deep learning: A com-
prehensive survey and benchmark. Neurocom-
puting, 503:92–108, 2022. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2022.06.111.
URL https://www.sciencedirect.com/
science/article/pii/S0925231222008426.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: Scalable dis-
tributed deep-RL with importance weighted actor-learner
architectures. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 1407–1416. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
espeholt18a.html.

Fukushima, K. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Transactions
on Systems Science and Cybernetics, 5(4):322–333, 1969.
doi: 10.1109/TSSC.1969.300225.

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, I.,
Foerster, J. N., and Martin, M. Simplifying deep tempo-
ral difference learning, 2024. URL https://arxiv.
org/abs/2407.04811.

Glorot, X. and Bengio, Y. Understanding the diffi-
culty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), Proceed-
ings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pp. 249–
256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.
press/v9/glorot10a.html.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
Adaptive computation and machine learning. MIT Press,
2016. ISBN 9780262035613. URL https://books.
google.co.in/books?id=Np9SDQAAQBAJ.

Graesser, L., Evci, U., Elsen, E., and Castro, P. S.
The state of sparse training in deep reinforcement
learning. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 7766–7792. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/graesser22a.html.

Grooten, B., Tomilin, T., Vasan, G., Taylor, M. E., Mah-
mood, A. R., Fang, M., Pechenizkiy, M., and Mocanu,

9

https://proceedings.mlr.press/v232/abbas23a.html
https://proceedings.mlr.press/v232/abbas23a.html
https://arxiv.org/abs/2112.15579
https://arxiv.org/abs/2112.15579
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=9xhgmsNVHu
https://openreview.net/forum?id=9xhgmsNVHu
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://openreview.net/forum?id=g90ysX1sVs
https://openreview.net/forum?id=g90ysX1sVs
https://doi.org/10.1038/s41586-024-07711-7
https://doi.org/10.1038/s41586-024-07711-7
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://proceedings.mlr.press/v162/graesser22a.html
https://proceedings.mlr.press/v162/graesser22a.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D. C. Madi: Learning to mask distractions for general-
ization in visual deep reinforcement learning. In Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, AAMAS, 2024.

Gulcehre, C., Srinivasan, S., Sygnowski, J., Ostrovski,
G., Farajtabar, M., Hoffman, M., Pascanu, R., and
Doucet, A. An empirical study of implicit regulariza-
tion in deep offline RL. Transactions on Machine Learn-
ing Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=HFfJWx60IT.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR ’16, pp. 770–778. IEEE, June 2016. doi:
10.1109/CVPR.2016.90. URL http://ieeexplore.
ieee.org/document/7780459.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI
Press, 2018. ISBN 978-1-57735-800-8.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T.,
Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M. G., and Silver, D. Rainbow: Com-
bining improvements in deep reinforcement learn-
ing. In McIlraith, S. A. and Weinberger, K. Q.
(eds.), AAAI, pp. 3215–3222. AAAI Press, 2018.
URL http://dblp.uni-trier.de/db/conf/
aaai/aaai2018.html#HesselMHSODHPAS18.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. doi: 10.
1162/neco.1997.9.8.1735.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D.,
Mehta, K., and Araújo, J. G. Cleanrl: High-quality single-
file implementations of deep reinforcement learning algo-
rithms. Journal of Machine Learning Research, 23(274):
1–18, 2022. URL http://jmlr.org/papers/
v23/21-1342.html.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object

recognition? In 2009 IEEE 12th International Confer-
ence on Computer Vision, pp. 2146–2153, 2009. doi:
10.1109/ICCV.2009.5459469.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. Self-normalizing neural networks. In Advances in
Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 971–980,
2017.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Im-
plicit under-parameterization inhibits data-efficient deep
reinforcement learning. In International Conference on
Learning Representations, 2021.

Liu, V., Kumaraswamy, R., Le, L., and White, M. The util-
ity of sparse representations for control in reinforcement
learning. In Proceedings of the Thirty-Third AAAI Con-
ference on Artificial Intelligence and Thirty-First Inno-
vative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi:
10.1609/aaai.v33i01.33014384. URL https://doi.
org/10.1609/aaai.v33i01.33014384.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. Dy-
ing relu and initialization: Theory and numerical
examples. CoRR, abs/1903.06733, 2019. URL
http://dblp.uni-trier.de/db/journals/
corr/corr1903.html#abs-1903-06733.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=ZkC8wKoLbQ7.

Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, 2 2015. doi: 10.1038/nature14236.

Molina, A., Schramowski, P., and Kersting, K. Padé acti-
vation units: End-to-end learning of flexible activation
functions in deep networks. In International Conference
on Learning Representations, 2019.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In ICML 2010, pp. 807–
814, 2010.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S. (eds.), Proceedings of the

10

https://openreview.net/forum?id=HFfJWx60IT
https://openreview.net/forum?id=HFfJWx60IT
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
https://doi.org/10.1609/aaai.v33i01.33014384
https://doi.org/10.1609/aaai.v33i01.33014384
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-06733
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://openreview.net/forum?id=ZkC8wKoLbQ7

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pp. 16828–16847. PMLR, 17–23 Jul 2022.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R.,
Dabney, W., and Barreto, A. Deep reinforcement learn-
ing with plasticity injection. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 37142–37159. Curran Associates,
Inc., 2023.

Obando-Ceron, J., Courville, A., and Castro, P. S. In deep
reinforcement learning, a pruned network is a good net-
work. arXiv preprint arXiv:2402.12479, 2024.

Obando Ceron, J. S., Sokar, G., Willi, T., Lyle, C., Fare-
brother, J., Foerster, J. N., Dziugaite, G. K., Precup,
D., and Castro, P. S. Mixtures of experts unlock pa-
rameter scaling for deep RL. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scar-
lett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 38520–38540. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/obando-ceron24b.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-Efficient Reinforcement Learn-
ing with Self-Predictive Representations. In International
Conference on Learning Representations, ICLR, 2021.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 2217–2225, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.
press/v48/shang16.html.

Silverman, B. W. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M.,
and Stone, P. Dynamic sparse training for deep rein-
forcement learning. In Raedt, L. D. (ed.), Proceedings of
the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI-22, pp. 3437–3443. International
Joint Conferences on Artificial Intelligence Organization,

7 2022. doi: 10.24963/ijcai.2022/477. URL https:
//doi.org/10.24963/ijcai.2022/477. Main
Track.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Train-
ing very deep networks. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015.
URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
215a71a12769b056c3c32e7299f1c5ed-Paper.
pdf.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Tan, Y., Hu, P., Pan, L., Huang, J., and Huang, L. Rlx2:
Training a sparse deep reinforcement learning model from
scratch. CoRR, abs/2205.15043, 2023. URL https:
//arxiv.org/abs/2205.15043.

Teney, D., Nicolicioiu, A. M., Hartmann, V., and Abbasne-
jad, E. Neural redshift: Random networks are not random
functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
4786–4796, June 2024.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evaluation
of rectified activations in convolutional network. CoRR,
abs/1505.00853, 2015. URL http://arxiv.org/
abs/1505.00853.

11

https://proceedings.mlr.press/v235/obando-ceron24b.html
https://proceedings.mlr.press/v235/obando-ceron24b.html
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.mlr.press/v48/shang16.html
https://proceedings.mlr.press/v48/shang16.html
https://doi.org/10.24963/ijcai.2022/477
https://doi.org/10.24963/ijcai.2022/477
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2205.15043
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

A. Implementation Details
A.1. Hyperparameters

To evaluate, 8 different Atari environments are tested, using 5 different random seeds. For the mean scores, we take the
mean over the eight environments. Our normalized score is calculated according to our baseline, the original implementation
using a ReLU activation.

All the hyperparameters used in our experiments for DQN and PPO, respectively, are as reported in cleanrl (Huang et al.,
2022). The hyperparameters can be found in Table 1 and Table 2.

Table 4: DQN Hyperparameters

Hyperparameter Value Description

Learning Rate 1× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount for future rewards
Replay Memory Size 1,000,000 Size of the experience replay buffer
Mini-batch Size 32 Number of samples per batch update
Target Network Update Frequency 1000 Update frequency for the target network
Initial Exploration 1.0 Initial exploration rate in ϵ-greedy
Final Exploration 0.1 Final exploration rate in ϵ-greedy
Final Exploration Frame 1,000,000 Frame number to reach final exploration
Exploration Decay Frame 1,000,000 Frames over which exploration rate decays
Action Repeat (Frame Skip) 4 Number of frames skipped per action
Reward Clipping [-1, 1] Range to which rewards are clipped
Input Dimension 84 x 84 Dimensions of the input image
Latent Dimension 512 Dimension of the latent representation
Input Frames 4 Number of frames used as input
Training Start Frame 80,000 Frame number to start training
Loss Function Mean Squared Error Loss function used for updates
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

Table 5: PPO Hyperparameters

Hyperparameter Value Description

Learning Rate 2.5× 10−4 Learning rate for the optimizer
Discount Factor (γ) 0.99 Discount factor for future rewards
Number of Steps 128 Number of steps per environment before update
Anneal LR True Whether to anneal the learning rate
GAE Lambda 0.95 Lambda parameter for GAE
Number of Minibatches 4 Number of minibatches to split the data
Update Epochs 4 Number of epochs per update
Normalize Advantage True Whether to normalize advantage estimates
Clipping Coefficient 0.1 Clipping parameter for PPO
Clip Value Loss True Whether to clip value loss
Entropy Coefficient 0.01 Coefficient for entropy bonus
Value Function Coefficient 0.5 Coefficient for value function loss
Maximum Gradient Norm 0.5 Maximum norm for gradient clipping
Target KL None Target KL divergence between updates
Latent Dimension 512 Dimension of the latent representation
Optimizer Adam Optimization algorithm used
Optimizer ϵ 10−5 Adam Epsilon

Table 6: PQN Hyperparameters (Gallici et al., 2024)

Hyperparameter Value Description

Total Timesteps 10,000,000 Total timesteps for training
Timesteps for Decay 10,000,000 Timesteps for decay functions (epsilon and lr)
Number of Environments 128 Number of parallel environments
Steps per Environment 32 Steps per environment in each update
Number of Epochs 2 Number of epochs per update
Number of Minibatches 32 Number of minibatches per epoch
Starting Epsilon 1.0 Starting epsilon for exploration
Final Epsilon 0.001 Final epsilon for exploration
Epsilon Decay Ratio 0.1 Decay ratio for epsilon
Epsilon for Test Policy 0.0 Epsilon for greedy test policy
Learning Rate 0.00025 Learning rate
Learning Rate Linear Decay True Use linear decay for learning rate
Max Gradient Norm 10.0 Max gradient norm for clipping
Discount Factor (γ) 0.99 Discount factor for reward
Lambda (λ) 0.65 Lambda for generalized advantage estimation
Episodic Life True Terminate episode when life is lost
Reward Clipping True Clip rewards to range [-1, 1]
Frame Skip 4 Number of frames to skip
Max No-Ops on Reset 30 Max number of no-ops on reset
Test During Training True Run evaluation during training
Number of Test Envs 8 Number of environments used for testing

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

A.2. Hadamard Implementation

Constructing a Hadamard representation is a straightforward process that only requires additional, parallel incoming weights.
Starting from a hidden layer, the Pytorch pseudocode is defined as follows:

hidden = previous hidden layer
linear1 = nn.Linear(input_dim, output_dim)
linear2 = nn.Linear(input_dim, output_dim)
representation1 = nn.Tanh(linear1(hidden))
representation2 = nn.Tanh(linear2(hidden))
hadamard_representation = representation1 * representation2

A.3. Reinforcement Learning

In DQN, the action at is chosen following an ϵ-greedy policy. With probability ϵ, a random action is selected, and with
(1− ϵ), the action maximizing the Q-value is chosen. The target Yt is defined as:

Yt = rt + γQ′(zt+1, argmax
a∈A

Q(zt+1, a)), (5)

where Q′(z, a) denotes the target Q-network, an auxiliary network that stabilizes the learning by providing a stable target
for Q(z, a). The parameters of Q′ are updated less frequently to enhance learning stability. The loss function for training
the network is:

LQ =
∣∣Yt −Q(zt, a)

∣∣2. (6)

Proximal Policy Optimization (PPO) operates on a different principle, utilizing policy gradient methods for policy im-
provement. PPO seeks to update the policy by maximizing an objective function while preventing large deviations from
the previous policy through a clipping mechanism in the objective’s estimator. The clipped policy gradient loss LCLIP is
defined as:

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (7)

where rt(θ) represents the ratio of the probabilities under the new policy versus the old policy, and Ât is the advantage
estimate at timestep t. This clipped surrogate objective ensures gradual and stable policy updates.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

B. Kernel Density Estimations
As discussed in Section 4, we hypothesize that the differences between a hyperbolic tangent with and without an HR are
due to the increased ability of the product of hyperbolic tangents being able to negate dying neurons. We further see this
phenomenon when plotting a random selection of neurons from both the mask and the base representation in Fig. 10(a).

0

1

De
ns

ity

0

2

0

10

0

1

0

1

De
ns

ity

0

1

0

1

0

2500

0

200

De
ns

ity

0.0

2.5

0

2

0

2

1 0 1
0

2

De
ns

ity

1 0 1
0

50

1 0 1
0.0

2.5

1 0 1
0

1

(a) Tanh (HR) - 5 · 106 iterations

0.0

0.5

D
e
n
si
ty

0

1

0

2

0.0

0.5

0

1

D
e
n
si
ty

0

1

0

1

0

5

0.0

2.5

D
e
n
si
ty

0.0

0.5

0

2

0

5

1 0 1
0

1

D
e
n
si
ty

1 0 1
0

20

1 0 1
0

2

1 0 1
0.0

0.5

(b) Final Tanh (HR) - 5 · 106 iterations

0

1

D
e
n
si
ty

0.0

0.5

0

2

0

2

0

250

D
e
n
si
ty

0

10

0

25

0

2

0

2

D
e
n
si
ty

0

10

0.0

0.5

0

1

1 0 1
0

1000

D
e
n
si
ty

1 0 1
0

1

1 0 1
0

500

1 0 1
0

5000

(c) Tanh (no HR) - 5 · 106 iterations

Figure 10: Kernel Density Estimations (KDE) over a subset of 16 neurons in the representations zenct and z∗t in (a), the
resulting Hadamard product zt in (b) and the representation zt when training without an HR (c). These representations are
obtained after training DQN in the ’Breakout’ environment. Red outlines represent dead (collapsed) neurons. In (a), a closer
look at neurons 3, 8 and 9 shows that when one of the representations saturates, the other is able to compensate, leading to a
non-dead neuron in their product zt in (b).

B.1. KDE calculation

Firstly, to stabilize the KDE computation and avoid singularity issues, a small noise ϵ, following a normal distribution, is
added to each neuron’s activations:

α′
i = αi + ϵ, ϵ ∼ N (0, σ2)

where σ2 = 1× 10−5. The bandwidth for KDE, crucial for the accuracy of the density estimate, is calculated using Scott’s
rule, adjusted by the standard deviation of the jittered activations:

bw = n− 1
5 · std(α′

i)

where n is the number of samples in αi. The density of activations is then estimated using a Gaussian kernel:

f(x) =
1

n · bw

n∑
j=1

K

(
x− α′

ij

bw

)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

2.5
De

ns
ity

Latent Kernel Density Estimation

(a) Tanh - 107 iterations

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Values

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Latent Kernel Density Estimation

(b) Tanh (HR) - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(c) Sigmoid - 107 iterations

0.0 0.2 0.4 0.6 0.8 1.0
Values

0

2

4

6

8

10

12

14

De
ns

ity

Latent Kernel Density Estimation

(d) Sigmoid (HR) - 107 iterations

Figure 11: Kernel Density Estimations of the final representation zt after training DQN for 107 iterations in the Breakout
environment. A hyperbolic tangent Hadamard representation allows the representation to avoid strong saturation, keeping
sufficient kernel density in the central sections of the hyperbolic tangent. As a sigmoid can saturate into zero, using a
Hadamard representation remains less effective for preventing saturation, as any zero will lead to a Hadamard product of
zero.

Here, K denotes the Gaussian kernel function. In order to finally determine if a neuron is dead, the maximum value of the
estimated density function f(x) is compared against a predefined threshold:

max(f(x)) ≥ ω

where ω represents the predetermined threshold. In practice, after analyzing the individual neuron KDE’s, using an ω of 20
provides a strong approximation of actual dead neurons.

B.2. Effective Rank calculation

In line with Kumar et al. (2021), the effective rank of a feature matrix for a threshold δ (δ = 0.01), denoted as srankδ(Φ),

is given by srankδ(Φ) = min
{
k :

∑k
i=1 σi(Φ)∑d
i=1 σi(Φ)

≥ 1− δ
}

, where {σi(Φ)} are the singular values of Φ in decreasing order,
i.e., σ1 ≥ · · · ≥ σd ≥ 0. Intuitively, the effective rank of a feature matrix represents the number of “effective” unique
components that form the basis for linearly approximating the resulting Q-values. The calculation in Python is done as
follows:

def compute_rank_from_features(feature_matrix, rank_delta=0.01):
sing_values = np.linalg.svd(feature_matrix, compute_uv=False)
cumsum = np.cumsum(sing_values)
nuclear_norm = np.sum(sing_values)
approximate_rank_threshold = 1.0 - rank_delta
threshold_crossed = (cumsum >= approximate_rank_threshold * nuclear_norm)
effective_rank = sing_values.shape[0] - np.sum(threshold_crossed) + 1
return effective_rank

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C. Additional Experiments
C.1. Shallow and Deep Function Approximation

To further showcase the effect of activations on complex function approximation, we compare the single hidden layer Tanh
(HR) network from Fig. 2 with a deep ReLU and Tanh network containing three hidden layers each. The comparison with
shallow networks can be found in Fig. 12(a) and a comparison with deep networks can be found in Fig. 12(b).

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh, Loss = 13.39

Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow ReLU, Loss = 128.48

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(a) Comparison of shallow networks for a nonlinear regression task. The Tanh and ReLU networks have a single hidden layer of 200
neurons, while the Tanh (HR) has a single hidden layer of 100 neurons but two preceding linear layers. The Tanh and ReLU networks

have 601 parameters, while the Tanh (HR) network has 501 parameters. As found by Gulcehre et al. (2022), a shallow network activated
by ReLU has a lower effective rank and consequently reduced network expressivity as compared to a Tanh activated network. Using a

Hadamard representation, we achieve better function approximation while using less parameters.

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Deep Tanh, Loss = 81.70
Target
Tanh Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30

Deep ReLU, Loss = 7.83

Target
ReLU Network

6 4 2 0 2 4 6
30

20

10

0

10

20

30
Shallow Tanh (HR), Loss = 1.71

Target
Tanh (HR) Network

(b) Comparison of two deep networks and one shallow network for the same nonlinear regression task. The Tanh and ReLU networks
have 3 hidden layers of 200 neurons each, while the Tanh (HR) network remains shallow. In line with common observations in deep

learning, the ReLU activation thrives in deeper networks, in contrast to the Tanh activation. Interestingly, the shallow Tanh (HR) network
still achieves better function approximation with only 0.6% of the deeper networks’ parameters (81001 vs 501). No hyperparameter

tuning or architecture search has been applied. Additional tests using deep Tanh (HR) networks gave similar function approximation as
compared to the shallow Tanh (HR) network.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.2. Increasing Representation Parameters

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
Tanh (HR)
Latent Dim 1024

(a) Performance

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Latent Dim 1024
Tanh
Tanh (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

100

200

300

400

500

600

700

800

Ef
fe

ct
iv

e
Ra

nk

Atari

Tanh
Tanh (HR)
Latent Dim 1024

(c) Effective Rank

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Sc

or
e

Atari
1024 LR 1e-5
1024 LR 5e-5
1024 LR 1e-4

(d) Learning Rates zt ∈ R1024

Figure 13: Comparison of a normal hyperbolic tangent (Tanh), a hyperbolic tangent with a higher representation dimension
zt ∈ R512→1024 and a Hadamard representation using hyperbolic tangents. Comparisons are done on performance (a), the
fraction of dead neurons (b), the effective rank of the representation zt (c) and learning rates of the higher-dimensional
latent. Naturally, increasing the representation dimension zt increases the effective rank of the representation, but using
a larger representation dimension is not always preferable as it often requires different hyperparameters, and can lead to
reduced performance (Obando-Ceron et al., 2024; Obando Ceron et al., 2024).In (d), an ablation of learning rates shows
that using a larger layer can sometimes prefer lower learning rates. However, it also shows that the improvement due to
the Hadamard representation is likely not correlated with the parameter increase, as the Hadamard representation still
significantly outperforms any of the 1024-dimensional latent state learning rate ablations.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.3. Validating dying neuron probability derivations

As discussed in Section 4, the effect of using a Hadamard representation strongly depends on the activation function. These
derivations are empirically validated by the results in Fig. 14. In practice, since a neural network prefers symmetry, a
sigmoid saturates slightly faster to 0 than to 1. This could explain the very slight increase in dead neurons when using an
HR with activations. Note that, since we use neuron independence assumptions in our theoretically calculated dying neuron
probabilities, the empirical results differ in magnitude from the theoretical predictions.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Sigmoid
Sigmoid (HR)

(a) Sigmoid with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
Tanh
Tanh (HR)

(b) Tanh with and without HR

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(c) ReLU with and without HR

Figure 14: By evaluating the effect of an HR on dying neurons through the lens of probability theory, we predicted that only
the hyperbolic tangent benefits in this metric. Specifically, only a hyperbolic tangent was speculated to have a decrease
in dying neurons. Using an HR with sigmoid activations would have no notable difference, and for an HR with ReLU
activations an increase in dead neurons was expected. This empirically validates our hypotheses in Section 4.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

C.4. ReLU activated Hadamard representation

Additional Atari experiments are provided comparing a ReLU activation with and without an HR. The normalized scores,
dying neurons and the effective rank during training can be seen in fig. 15.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Atari
ReLU
ReLU (HR)

(a) Normalized Score

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 d

ea
d

ne
ur

on
s

Atari
ReLU
ReLU (HR)

(b) Dead Neurons

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

50

100

150

200

250

Ef
fe

ct
iv

e
Ra

nk

Atari

ReLU
ReLU (HR)

(c) Effective Rank

Figure 15: As a Rectified Linear Unit creates sparse representations, it does not benefit from using an HR, since the final
representation will consist of the Hadamard product between two sparse representations. Therefore, a decrease in both
performance and effective rank and an increase in dead neurons can be expected.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D. Atari
D.1. DQN & PPO Evaluation Details

For DQN and PPO, the Hadamard representation was applied to the final hidden layer of the Nature CNN. Furthermore, we
have normalized performance with respect to the ReLU baseline on which the experiments were build (Huang et al., 2022).
The minimum and maximum score of the ReLU baseline are taken for each environment, and the normalized score for each
environment is calculated as follows:

Normalized Score =
Score − Min Score

Max Score − Min Score
(8)

where Score refers to the raw performance score of the model being evaluated, Min Score is a single value representing the
lowest score obtained by the ReLU baseline (usually equivalent to random policy or even slightly worse), and Max Score is
a single value representing the highest score achieved by the ReLU baseline in the same environment. To average, we sum
the normalized scores for every run and take the mean.

The more official Human-Normalized Score, as referenced in Mnih et al. (2015), is calculated similarly but using human
and random performance benchmarks:

Human-Normalized Score =
Score − Random Score

Human Score − Random Score
(9)

where Human Score and Random Score refer to the scores recorded by human players and random agents, respectively.
Calculating our performance according to the Human-Normalized Score leads to the plot seen in Fig. 16. Due to taking a
subset of the Atari domain in DQN and PPO, the VideoPinball environment is extremely dominant in the Human-Normalized
Score calculation. For a more realistic comparison of the methods, we therefore decided to use baseline-normalized scores
in the main paper.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0

10

20

30

40

50

60

70

No
rm

al
ize

d
Sc

or
e

Atari
Tanh
ReLU
Tanh (HR)
Sigmoid

Figure 16: Human-Normalized performance (in multiples) with the standard deviation over the means in the Atari domain
for 10M iterations (40M Frames).

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

D.2. Individual Environment Scores

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

Sc
or

e

AmidarNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200

400

Sc
or

e

BreakoutNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

PongNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

QbertNoFrameskip-v4
Tanh
ReLU
Tanh (HR)
Rational

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

Sc
or

e

SeaquestNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

Sc
or

e

SpaceInvadersNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

200000

400000

Sc
or

e

VideoPinballNoFrameskip-v4

0.0 0.5 1.0
Iterations 1e7

0

10000

20000

30000

Sc
or

e

AsterixNoFrameskip-v4

Figure 17: DQN Performance comparison on the individual Atari Environments. Plotted lines represent the mean taken over
5 seeds, with the standard deviations expressed as the shaded region.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0.0 0.5 1.0
Iterations 1e7

0

200

400

600

800
Sc

or
e

Amidar-v5

0.0 0.5 1.0
Iterations 1e7

0

100

200

300

400

Sc
or

e

Breakout-v5

0.0 0.5 1.0
Iterations 1e7

20

10

0

10

Sc
or

e

Pong-v5

Tanh (HR)
ReLU
Tanh

0.0 0.5 1.0
Iterations 1e7

0

5000

10000

15000

Sc
or

e

Qbert-v5

0.0 0.5 1.0
Iterations 1e7

0

500

1000

1500

2000

Sc
or

e

Seaquest-v5

0.0 0.5 1.0
Iterations 1e7

250

500

750

1000

Sc
or

e

SpaceInvaders-v5

0.0 0.5 1.0
Iterations 1e7

0

20000

40000

60000

Sc
or

e

VideoPinball-v5

0.0 0.5 1.0
Iterations 1e7

0

2000

4000

Sc
or

e

Asterix-v5

Figure 18: PPO Performance comparison on the individual Atari Environments. Plotted lines represent the mean taken over
5 seeds, with the standard deviations expressed as the shaded region.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0.0

0.2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Alien-v5

ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0.0

0.1

0.2

0.3

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Amidar-v5

0 2 4
Env Frames 1e7

0

10

20

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Assault-v5

0 2 4
Env Frames 1e7

0

1

2

3

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Asterix-v5

0 2 4
Env Frames 1e7

0.0

0.1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Asteroids-v5

0 2 4
Env Frames 1e7

0

20

40

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Atlantis-v5

0 2 4
Env Frames 1e7

0

1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

BankHeist-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

BattleZone-v5

Figure 19: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0.00

0.25

0.50

0.75
M

ea
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

BeamRider-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0.0

0.2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Berzerk-v5

0 2 4
Env Frames 1e7

0.0

0.2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Bowling-v5

0 2 4
Env Frames 1e7

0

5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Boxing-v5

0 2 4
Env Frames 1e7

0

10

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Breakout-v5

0 2 4
Env Frames 1e7

0.0

0.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Centipede-v5

0 2 4
Env Frames 1e7

0

1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

ChopperCommand-v5

0 2 4
Env Frames 1e7

0

2

4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

CrazyClimber-v5

Figure 20: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0

1

2
M

ea
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Defender-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0

20

40

60

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

DemonAttack-v5

0 2 4
Env Frames 1e7

0

5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

DoubleDunk-v5

0 2 4
Env Frames 1e7

0

1

2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Enduro-v5

0 2 4
Env Frames 1e7

0

1

2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

FishingDerby-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Freeway-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Frostbite-v5

0 2 4
Env Frames 1e7

0

5

10

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Gopher-v5

Figure 21: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0.0

0.1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Gravitar-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0.0

0.2

0.4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Hero-v5

0 2 4
Env Frames 1e7

0.5

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

IceHockey-v5

0 2 4
Env Frames 1e7

0

2

4

6

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Jamesbond-v5

0 2 4
Env Frames 1e7

0

2

4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Kangaroo-v5

0 2 4
Env Frames 1e7

0

5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Krull-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

1.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

KungFuMaster-v5

0 2 4
Env Frames 1e7

0.0

0.2

0.4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

MsPacman-v5

Figure 22: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0

1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

NameThisGame-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0

2

4

6

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Phoenix-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Pong-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Qbert-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Riverraid-v5

0 2 4
Env Frames 1e7

0.0

2.5

5.0

7.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

RoadRunner-v5

0 2 4
Env Frames 1e7

0

2

4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Robotank-v5

0 2 4
Env Frames 1e7

0.0

0.1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Seaquest-v5

Figure 23: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0

1

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

SpaceInvaders-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0

5

10

15

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

StarGunner-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

1.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Tennis-v5

0 2 4
Env Frames 1e7

2

0

2

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

TimePilot-v5

0 2 4
Env Frames 1e7

0.0

0.5

1.0

1.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Tutankham-v5

0 2 4
Env Frames 1e7

0

2

4

6

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

UpNDown-v5

0 2 4
Env Frames 1e7

0.00

0.02

0.04

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Venture-v5

0 2 4
Env Frames 1e7

0

200

400

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

VideoPinball-v5

Figure 24: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Hadamard Representations: Augmenting Hyperbolic Tangents in RL

0 2 4
Env Frames 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
M

ea
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

WizardOfWor-v5
ReLU (Baseline)
Tanh (HR)
CReLU
Tanh
ReDo

0 2 4
Env Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

YarsRevenge-v5

0 2 4
Env Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
Hu

m
an

-N
or

m
al

ize
d

Sc
or

e

Zaxxon-v5

Figure 25: PQN Performance comparison on the individual Atari Environments. Labels represent encoder activations.
Plotted lines represent the mean taken over 5 seeds, with the standard deviations expressed as the shaded region.

30

	Introduction
	Related Work
	Preliminaries
	Augmenting Hyperbolic Tangents
	Experiments
	The Immunity of the ReLU

	Limitations
	Conclusions and Discussion
	Implementation Details
	Hyperparameters
	Hadamard Implementation
	Reinforcement Learning

	Kernel Density Estimations
	KDE calculation
	Effective Rank calculation

	Additional Experiments
	Shallow and Deep Function Approximation
	Increasing Representation Parameters
	Validating dying neuron probability derivations
	ReLU activated Hadamard representation

	Atari
	DQN & PPO Evaluation Details
	Individual Environment Scores

