
Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Tianfu Wang 1 Long Yang 2 Chao Wang 1 Chuan Qin 3 Liwei Deng 4 Li Shen 5 Hui Xiong 3

Abstract

Virtual Network Embedding (VNE) is a funda-
mental resource allocation challenge that is asso-
ciated with hard and multifaceted constraints in
network function virtualization (NFV). Existing
works for VNE struggle to handle such complex
constraints, leading to compromised system per-
formance and stability. In this paper, we propose a
CONstraint-Aware Learning framework, named
CONAL, for efficient constraint handling in VNE.
Concretely, we formulate the VNE problem as a
constrained Markov decision process with viola-
tion tolerance, enabling precise assessments of
both solution quality and constraint violations. To
achieve the persistent zero violation to guarantee
solutions’ feasibility, we propose a reachability-
guided optimization with an adaptive reachability
budget method. This method also stabilizes pol-
icy optimization by appropriately handling sce-
narios with no feasible solutions. Furthermore,
we propose a constraint-aware graph representa-
tion method to efficiently learn cross-graph rela-
tions and constrained path connectivity in VNE.
Finally, extensive experimental results demon-
strate the superiority of our proposed method over
state-of-the-art baselines. Our code is available at
https://github.com/GeminiLight/conal-vne.

1. Introduction
Network Function Virtualization (NFV) is a promising tech-
nique that facilitates the deployment of multiple Virtual
Networks (VNs) tailored to user network demands within
a shared Physical Network (PN) infrastructure (Yi et al.,
2018). It is vital for domains such as cloud computing, edge
computing and 5G, where dynamic and efficient resource
management is essential (Zhuang et al., 2020). Virtual Net-
work Embedding (VNE), a fundamental resource allocation
problem in NFV, is critical for maintaining high Quality of
Service (QoS). This process, involving the mapping of VNs
to PNs, represents a significant challenge. It is an NP-hard

1USTC 2PKU 3HKUST (GZ) 4UESTC 5SYSU. Correspon-
dence to: Hui Xiong <xionghui@ust.hk>.

Combinatorial Optimization Problem (COP) characterized
by intricate and hard constraints (Rost & Schmid, 2020).

Traditional solutions to VNE ranging from exact to heuristic
methods often suffer from either expensive computation
times or limited performance in complex network scenar-
ios (Zhang et al., 2018; Fan et al., 2023). Recently, Re-
inforcement Learning (RL) has been a potential direction
for VNE, which learns effective solving policies without
relying on high-quality labeled data. Typically, existing
RL-based methods solve the VNE problem as a Markov
Decision Process (MDP) (Haeri & Trajković, 2017; Yan
et al., 2020; Zhang et al., 2024b), where a neural policy
is iteratively optimized through interactions with an envi-
ronment. They construct VNE solutions by sequentially
selecting an available physical node to place each virtual
node, until the solution is completed or constraints are vi-
olated. However, the hard constraints of VNE require a
persistent zero-violation at each decision timestep, which
results in numerous failure samples where constraints are vi-
olated during training. For failure samples, existing studies
(e.g., Yao et al. (2020); Zhang et al. (2022)) consider them as
noisy and only train with data that violate no constraint; or
others, like Yan et al. (2020) and He et al. (2023a), consider
fixed penalties to them and discourage violations.

Although these RL-based algorithms (Zhang et al., 2022; He
et al., 2023a; Zhang et al., 2024b) have shown efficacy, they
still suffer from several significant problems in handling
complex constraints of VNE. Firstly, ignoring failure sam-
ples makes policies prone to violating critical constraints,
while employing fixed penalties in reward signals does not
accurately reflect the severity of constraint violations. Thus,
these methods underestimate valuable sample information
and hamper the learning of constraint-aware policies, which
results in low feasibility guarantees. Secondly, it is hard
to avoid to encounter unsolvable instances whose feasible
sets are empty in practical scenarios, due to insufficient
physical resource availability or excessive virtual resource
requests. It is impractical to distinguish solvable and un-
solvable instances, since checking the instance solvability
of an NP-hard problem is time-consuming. Failure samples
caused by unsolvable instances further complicate the con-
straint learning process, and negatively impact the stability
of training and policy performance. See Appendix C for
a preliminary study, which highlights the negative impact

1

https://github.com/GeminiLight/conal-vne

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

of unsolvable instances on training stability. Thirdly, VNE
constraints are complex and multifaceted, involving cross-
graph status interactions and bandwidth-constrained path
connectivity assessments, which are not adequately captured
by the feature extractors used in current studies.

To address these challenges, we propose a CONstraint-
Aware Learning framework for VNE, named CONAL,
achieving high solution feasibility guarantee and training sta-
bility. Concretely, to optimize performance while enhancing
constraint satisfaction, we formulate the VNE problem as
Constrained MDP (CMDP) (Altman, 2021) with violation-
tolerance. Although constraint violations often trigger early
termination during solution construction, leading to incom-
plete solutions and complicating the measurement of both
solution quality and violation degree, this method enables
complete solution construction and precise measurement.
Additionally, we introduce a reachability analysis into the
optimization objective to achieve persistent zero constraint
violation required by VNE. To handle the existence of un-
solvable instances whose constraints are impossibly satis-
fied, we propose an adaptive reachability budget method to
make the policy optimization more stable. It dynamically de-
cides the violations caused by a surrogate policy as budgets
based on the instance’s solvability, rather than always setting
budgets to zero. Furthermore, to finely perceive the complex
constraints of VNE, we propose a constraint-aware graph
representation method tailored for VNE, which includes
a heterogeneous modeling module for cross-graph status
interactions. We also devise several feasibility-consistency
augmentations and utilize contrastive learning to bring rep-
resentations under different views close, which enhances
the sensitivity of policy towards path-bandwidth constraints.

Our main contributions are summarized as follows: (1) We
propose a violation-tolerant CMDP modeling approach for
VNE, which precisely evaluates the quality of solution and
the degree of constraint violation. To achieve persistent zero
constraint violation, we also present a reachability-guided
optimization objective. (2) We present a pioneering work
on the study of unsolvable instances negatively impacting
the stability of policy optimization in COP, and propose a
novel adaptive reachability budget method to handle such
challenges. (3) We propose a constraint-aware graph repre-
sentation method tailored for VNE, where a path-bandwidth
contrast module with feasibility-consistency augmentations
perceives connectivity at a fine-grained level. (4) We con-
duct extensive experiments in various network scenarios,
showing the CONAL’s superiority on performance, training
stability, generalization, scalability and practicability.

2. Problem Definition
System Modeling. In real-world network systems, as illus-
trated in Figure 1, user network services are virtualized as
VN requests that continuously seek resources from the PN.

Arriving VN Requests

PN
Infrastructure

VN

…

VNE Instance

40 10 50

2010

PN Infrastructure

30

20

40

VN Request Physical Server

Service Function

Computing Resource#

VN and its lifetime

Node Mapping

Link Mapping

Bandwidth Resource

Physical Link

Virtual Link
10 20

30

1010

20

10 30

3040

Success

Reject
Success

Online Network System

Figure 1: A brief example of VNE problem. In the network system,
VN requests arrive sequentially at the infrastructure to require the
resources of PN. For the VNE instance, embedding a VN to the PN
consists of node and link mapping processes, while considering
intricate and hard constraints.

Each arrived VN request, along with the current situation
of the PN, constitutes an instance I , and we collect all such
instances with a set I . For each instance, I = (Gv,Gp) ∈ I ,
where the PN Gp and VN Gv are modeled as undirected
graphs, Gp = (Np, Lp) and Gv = (Nv, Lv, ω,ϖ), respec-
tively. Here, Np and Lp denote the sets of physical nodes
and links, indicating servers and their interconnections; Nv

and Lv denote the sets of virtual nodes and links, represent-
ing services and their relationships; ω and ϖ denote the
arrival time and lifetime of VN request. We denote C(np)
as the computing resource availability for the physical node
np ∈ Np, and B(lp) as the bandwidth resource availability
of the physical link lp ∈ Lp. Besides, C(nv) and B(lv) de-
note the demands for computing resource by a virtual node
nv ∈ Nv and bandwidth resource by a virtual link lv ∈ Lv .

Mapping Process. For each instance I , embedding a
VN onto the PN can be defined as a graph mapping pro-
cess, denoted fG : Gv → Gp′, where Gp′ is a subgraph
of Gp that accommodates the VN Gv. This process com-
prises two sub-processes: node mapping and link map-
ping, where intricate hard constraints should be satisfied.
Node mapping, fN : nv → np, places each virtual node
nv onto a physical node np, while following the one-to-
one placement constraints (i.e., virtual nodes in the same
VN must be placed in different physical nodes and each
physical node only hosts one virtual node at most) and the
computing resource availability constraints must be satis-
fied: ∀nv ∈ Nv, C(nv) ≤ C(np), where np = fN (nv).
Link mapping, fL : lv → pp, routes each virtual link
through a physical path pp that connects the physical nodes
hosting the two endpoints of virtual link lv. This pro-
cess need fulfill bandwidth resource availability constraints:
∀lv ∈ Lv,∀lp ∈ pp,B(lv) ≤ B(lp), where pp = fL(lv). If
violating any of these constraints, then the VN request is
rejected. Once embedded, the VN’s occupied resources are
released until its lifetime expires.

VNE Objective. To address the randomness of the net-
work systems, same as most existing works (e.g., Zhang
et al. (2022); He et al. (2023a); Zhang et al. (2024b)), we

2

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

aim to learn an optimal mapping, fG , that maximizes the re-
source utilization of each VNE instance. This objective facil-
itates long-term resource utilization and request acceptance.
Revenue-to-Consumption (R2C) ratio serves as a widely
used metric to measure the quality of solution E = fG(I):

R2C(E)=κ · (REV(E)/CONS(E)) , (1)
where κ is a binary variable indicating the solution’s fea-
sibility; κ = 1 for a feasible solution and κ = 0 other-
wise. When the solution is feasible, REV(E) represents
the revenue from the VN, calculated as

∑
nv∈Nv

C(nv) +∑
lv∈lv

B(lv). If κ = 1, CONS(E) denotes the re-
source consumption of PN, calculated as

∑
nv∈Nv

C(nv) +∑
lv∈Lv

(|fL(lv)| × B(lv)). Here, |fL(lv)| quantifies the
length of the physical path pp routing the virtual link lv . See
Appendix B for the detailed problem formulation.

3. Methodology
In this section, we propose the CONstraint-Aware Learning
framework to handle complex constraints of VNE, named
CONAL, illustrated in Figure 2. Initially, we formulate the
VNE problem as a violation-tolerant CMDP, which ensures
the acquisition of complete solutions and precise evaluation
of solution quality and constraint violation (See the green
area in Figure 2). Additionally, we present a reachability-
guided optimization objective to ensure persistent constraint
satisfaction while avoiding the over-conservatism of policy,
which enhances both the quality and feasibility of VNE
solutions. Further to address the instability of policy opti-
mization caused by instances with no feasible solution, we
propose an adaptive reachability budget method to improve
the robustness of training. This method dynamically decides
the value of budgets rather than a fixed zero (See the pink
area in Figure 2). Furthermore, regarding the feature ex-
tractor, we propose a constraint-aware graph representation
method to finely perceive the complex constraints of VNE.
Concretely, we construct a heterogeneous graph to model the
cross-graph status between VN and PN. We also devise sev-
eral augmentations that preserve solution feasibility while
enhancing the model’s sensitivity of bandwidth-constrained
path connectivity through contrastive learning (See the or-
ange area in Figure 2). Overall, we build the policy with
the constraint-aware graph representation method and train
it with an actor-critic-based RL algorithm to achieve the
reachability-guided optimization objective, where the adap-
tive reachability budget improves the training stability. We
provide the description of both CONAL’s training and infer-
ence process in Algorithm 1 and 2, placed in Appendix E.

3.1. Violation-tolerant CMDP Formulation.
To optimize resource utilization while guaranteeing solu-
tion’s feasibility, we formulate solution construction of each
VNE instance as a CMDP (Altman, 2021). However, VNE’s
hard constraints make constructing complete solutions diffi-
cult, hampering the precise assessment of solution quality

and constraint violations. Thus, we propose a violation-
tolerant mapping method to ensure complete solution con-
struction and a measurement function to evaluate violations.
CMDP for VNE Solving. We consider each decision as
identifying a proper physical node np for each virtual node
nv until all virtual nodes of VN are placed. Like existing
works (Yan et al., 2020; Zhang et al., 2022; 2024b), due
to the large combinatorial space of link mapping process,
we incorporate link mapping into the state transitions, i.e.,
routing prepared incident links δ′(nv) of virtual node nv .
Definition 3.1 (Prepared incident links of virtual node).
Let N t

v denote the set of virtual nodes that have already
been placed, and nt

v denote the to-be-placed virtual node at
decision timestep t. We define δ(nt

v) as the set of virtual
links incident to nt

v . For each virtual link lv ∈ δ(nt
v), if the

link’s opposite endpoint n′
v is already placed, i.e., n′

v ∈ N t
v ,

then we include lv in a subset δ′(nt
v). The subset δ′(nt

v)
consists of what we term as the prepared incident links of
the virtual node nt

v. These links are considered prepared
because, upon the placement of nt

v , both endpoints of each
link in δ′(nt

v) are placed, necessitating the routing of these
links. See Appendix D.1 for an illustrative example.

We formulate this sequential decision process as a CMDP,
M = ⟨S,A,R,H,C, P, γ⟩, where S denotes the state
space. Each state s (s ∈ S) consists of the real-time em-
bedding status of VN and PN. A denotes the action space,
i.e., the set of physical nodes. P : S × A → S is a state
transition function. For an action at = nt

p to host the cur-
rent be-placed virtual node nt

v , the environment will execute
the node placing and link routing. nt

v is embeded into the
nt
p, and the available resources of nt

p are updated accord-
ingly. Then, for the prepared incident links δ′(nt

v) of virtual
nodes nt

v, we utilize the k-shortest path algorithm to find
physical paths to route them one by one. R : S × A→ R
is a reward function defined as follows. If the solution is
completely constructed, we return its R2C metric as the
reward; for the intermediate steps, we set the reward to
0. H : S → R is a violation function that measures vio-
lations of constraints. We separately consider computing
and bandwidth constraint violations in node placement and
link routing, denoted HN and HL, respectively. We de-
fine H(s) = max (HN (s) , HL (s)) and allow it negative,
which indicates keeping distance from nodes or links with
insufficient resources. C : S → R+ is a cost function cal-
culated as C(s) = max(H(s), 0). γ : S ×A× S → [0, 1)
is a discount factor that balances immediate and future re-
wards. Next, we describe the violation-tolerant mapping
method used in state transition, and explain the violation
measurement functions tailored for H and C.

Violation-tolerant Mapping and Violation Measurement.
Any violations of VNE constraints result in incomplete allo-
cation, which hinders the ability to estimate the final R2C
metric and constraint violation degree of infeasible solu-

3

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Violation

Instance Environment
with Violation-tolerance

State Transition

!!
initialization

!"

Scheduled Update

Surrogate Policy π′
Instance Violation

caused by π′Adaptive Feasibility Budget

Constraint-aware Graph RepresentationValue
Critic

Network

Violation
Critic

Network

Policy $

State

Constraint-aware Graph Representation

Heterogeneous GATs with Link Feature Encoding

Virtual Link Addition %#

Physical Link Addition %$

&%#

&%$

'#

'$

Representation	$
Action

Probability
Distribution

Reward
Value

Violation
Value

Pa
th

-b
an

dw
id

th
Co

nt
ra

st

Node Mapping Link Mapping Decision-candidate LinkAlready-mapped Link

!&
solution

!'

To-be-placed Virtual Node Candidate Physical Node

Propagation & Aggregation

Reward

Action (sampling and greedy strategy for training and testing, respectively)

Lagrangian
multiplier

Lambda
Network

Solve the instance with greedy strategy

(e.g., timestep !!)

Heterogeneous
Graph

Construction
&%

Figure 2: Overview of the proposed CONAL framework.

tions. To address this issue, we consider violation tolerance
for both the node mapping and link mapping processes. This
tolerance enables us to execute sustainable resource allo-
cation of VNE, despite encountering constraint violations.
Concretely, at the decision timestep t for placing the virtual
node nt

v, we generates the action probability distribution
π(· | st) based on state st. If there are physical nodes
with insufficient computing resources, we apply a mask vec-
tor that replaces the selection probability of these physical
nodes that have insufficient node resources with 0 to avoid
unnecessary constraint violations; but if all physical nodes
are computing resource-insufficient, we also do not modify
the action probability distribution; otherwise, we do nothing.
Then, an action at (a physical node nt

p) is selected from this
distribution. we calculate the computing resource violations
as ht

N = HN (st+1) = C(nt
v)− C(nt

p).

Subsequently, we route all prepared incident links δ′(nt
v)

of virtual node nt
v sequentially. For each virtual link

lv ∈ δ′(nt
v), we use the k-shortest path algorithm to find

a set of physical paths. If there are available paths that
do not violate constraints, we select the shortest one that
consumes the least resources. In this case, we consider
the violation as HL(lv) = maxlp∈fL(lv)(B(lv) − B(lp)).
However, if all paths violate constraints, we calculate the
extent of the constraint violation for each path. The path
with the least amount of violation is then selected to route
the virtual link, whose violation is calculated by HL(lv) =∑

lp∈fL(lv)
(B(lv) − B(lp)). After δ′(nt

v) are routed, we
define the bandwidth violations as ht

L = HL(st+1) =
maxlv∈δ′(nt

v)
HL(lv). During training, we always set the

solution feasibility flag κ to 1 to measure the final R2C
metric until the solution is complete.

3.2. Reachability-guided Optimization with Adaptive
Budget

Standard CMDPs focus on optimizing discounted cumula-
tive costs to meet long-term safety, which fails to meet the
consistent satisfaction requirements of VNE in all states (Liu
et al., 2021). To guarantee the solution feasibility of VNE,
we consider reachability analysis into CMDP to achieve
state-wise zero-violation optimization (Yu et al., 2022). This
objective significantly expands the feasible set of policies
and mitigates the conservativeness of the policy. Addition-
ally, to enhance the stability of policy optimization, we
propose a novel adaptive reachability budget method that
dynamically decides budgets, rather than always zero budget
for unsolvable instances. For policy training, we adopt the
Lagrange version of the PPO algorithm (Ray et al., 2019).

Reachability-guided Optimization Objective (REACH).
In each decision timestep t, based on state st, we
play an action at ∼ π(·|st). Then, the network sys-
tem transits into the next state according to st+1 ∼
P (st, at), and feedback a reward rt = R(at, st), a
violation ht = H(st+1) and a cost ct = C(st+1).
In each episode, we collect all sampled states and ac-
tions with a trajectory memory τ = (so, a0, s1, a1, · · ·).
Due to hard constraints of VNE, we should achieve
state-wise zero violations to ensure the solution’s feasi-
bility. An intuitive way is to maximize the expected
cumulative rewards Jr(π) = Eτ∼π[

∑
t γ

tR(st, at))],
while restricting expected cumulative costs Jc(π) =
Eτ∼π[

∑
t γ

tC(st)] below zero at each decision state, i.e.,
maxπ Eτ∼π [Jr(π)] , s.t. Eτ∼π [Jc(π)] ≤ 0. Existing safe
RL methods learn the state and cost value functions, V π

r (s)
and V π

c (s), that estimate the cumulative rewards and costs
from state s, to solve this problem as follows.

4

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

max
π

Es [V
π
r (s)] , s.t. Es [V

π
c (s)] ≤ 0, (2)

However, since the non-negativity of C, the optimization fo-
cuses on constraint satisfaction rather than reward maximiza-
tion, causing a highly conservative policy. Thus, we con-
sider the Hamilton-Jacobi (HJ) reachability analysis (Bansal
et al., 2017) into the CMDP to obtain a policy with the
best possible performance and least violations, improving
both quality and feasibility of VNE solutions. We need the
following concepts to present our optimization further.
Definition 3.2 (Feasible value function). The feasible
value function of a specific policy π measures the worst
long-term constraint violation, defined as V π

h (s) ≜
maxt∈N H (st | s0 = s). Through optimizing π, the op-
timal feasible state-value function can achieve the least vi-
olation of the constraints, which is defined as V ⋆

h (s) ≜
minπ maxt∈N H (st | s0 = s).

Definition 3.3 (Feasible region). The feasible region
Sf consists of all feasible states, where at least one
policy satisfies the hard constraint, defined as Sf ≜
{s ∈ S | V ⋆

h (s) ≤ 0}. The feasible region of a specific pol-
icy π can be defined as Sf ≜ {s ∈ S | V π

h (s) ≤ 0}.

The feasible value function V π
h (s) measures the most se-

rious constraint violation of state s on the trajectory ob-
tained by π. Specifically, if V π

h (s) ≤ 0, we have ∀st, t ∈
N, h (st) ≤ 0, i.e., starting from the state s, all the states are
feasible on this trajectory and the policy π can satisfy the
hard constraints. Otherwise, V π

h (s) > 0 indicates π may
violate constraints in the future states. We call V π

h (s) ≤ 0
the reachability constraint, ensuring that the π is inside the
feasible set since the state constraint could be persistently
satisfied. For the VNE problem, we aim to maximize the
cumulative rewards while satisfying reachability constraints
to ensure persistent zero violations, formulated as,

max
π

Es

[
V π
r (s) Is∈Sf

− V π
h (s) Is/∈Sf

]
,

s.t. Es

[
V π
h (s)

]
≤ 0, ∀s ∈ Sf ,

(3)

where I is the indicator function. Compared to the prob-
lem (2), our reachability-guided optimization problem (3)
finds the largest feasible sets, bringing less conservative-
ness and better performance. To solve the problem (3), we
reformulate it in the Lagrangian version as follows:

minλ maxπ Es

[
V π
r (s) · Is∈Sf

− V π
h (s) · Is/∈Sf

+ λV π
h (s) · Is∈Sf

]
(4)

Adaptive Reachability Budget (ARB). During training,
it is hard to avoid the existence of some unsolvable VNE
instances without any feasible solution, whose all states
are infeasible, i.e., ∀s, s /∈ Sf . For example, incoming
VN requires excessive resources that surpass the resource
availability of PN. Judging the solvability of an instance
in an NP-hard problem is a time-consuming task, which

makes it difficult to distinguish between two types of states:
s ∈ Sf and s /∈ Sf . In this case, training with samples
related to these unsolvable instances, due to violating the
Karush-Kuhn-Tucker conditions, the Lagrange multiplier
may become large and even converge to infinity.

Proposition 3.4. During online training, if there exists an
instance without any feasible solution (i.e. H(s) > 0,∀s ∈
S), then the Lagrange multiplier can become infinite.

For its proof see Appendix D.2. The fluctuation of λ induces
instability in policy optimization. This instability arises
from significant shifts in the optimization focus, alternating
between maximizing rewards and satisfying constraints. To
address this challenge, we propose an adaptive reachability
budget method to improve the stability of training, which
determines an appropriate reachability budget for each VNE
instance. To avoid the impractical determination of the
solvability of each instance, we relax the zero-violation of
reachability constraints with a dynamic reachability budget
based on the instance solvability. Specifically, we employ
a surrogate policy π′ derived from the main policy π, and
synchronize its parameters at specified steps, i.e., π′ ← π.
During the training process, both the main policy π and
the surrogate policy π′ attempt to solve the same incoming
instance I . π uses the sampling decoding strategy for explo-
ration to generate the trajectory τ ∼ π, while π′ employs
the greedy decoding strategy for prioritizing constraint sat-
isfaction to produce the trajectory τ ′ ∼ π′. The max cost in
τ ′ caused by the surrogate policy π′ is considered for esti-
mating the reachability budget Dπ′

h (s) for all states s ∈ τ
sampled by policy π, formulated as follows:

∀s ∈ τ,Dπ′

h (s) = max
s′∈τ ′

C(s′). (5)

During the training process, we update the surrogate pol-
icy π′ ← π over multiple iterations. With the reachabil-
ity guidance of π′, the main policy π gradually improves
constraint-aware decision-making, enhancing the training
stability. Through this iterative learning, both policies π and
π′ achieve better constraint satisfaction while maintaining
exploring for better solutions. Finally, we obtain the refined
Lagrangian objective with adaptive reachability budget:

min
λ

max
π

Es

[
V π
r (s)− λ

(
V π
h (s)−Dπ′

h (s)
)]

. (6)

Here, considering the varying extent of violation in different
states, we introduce a neural lambda network λ = Λ(s) to
dynamically adjust Lagrangian multipliers during training,
similar to Ma et al. (2021). To optimize the policy, we
leverage the actor-critic framework with Proximal Policy
Optimization (PPO) as the training algorithm (Ray et al.,
2019), similar to works (Yu et al., 2022; Ma et al., 2021).
See Appendix D.5 for the details of this training method.
Next, we will introduce our proposed constraint-aware graph
networks used as the feature encoder of policy.

5

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

3.3. Constraint-aware Graph Representation
The VNE processing is governed by complex and multi-
faceted constraints, presenting challenges in representation
learning. These include the interaction of cross-graph status
and the assessment of bandwidth-constrained path connec-
tivity. To address this issue, we propose a constraint-aware
graph representation method with a heterogeneous model-
ing module for cross-graph status fusion, and a contrastive
learning-based module to enhance path connectivity aware-
ness. It efficiently perceives the complex constraints of
VNE, providing a higher guarantee of solution feasibility.
Heterogeneous Modeling (HM). Instead of separate fea-
ture extraction of VN Gv and PN Gp, we integrate them into
a heterogeneous graph GI by introducing several hypotheti-
cal cross-graph links. GI comprises two distinct node types:
virtual and physical nodes, and we denote their attributes
as Xn

v and Xn
p . These node attributes include computing

resource demands or availability, link counts, and the ag-
gregated bandwidth characteristics (maximum, minimum,
and average) of adjacent links. Similarly, there are two
link types: virtual and physical links, whose attributes are
link bandwidth demands or availability. We denote these
link attributes as X l

v and X l
p, respectively. Additionally, we

introduce specialized heterogeneous links to capture the cur-
rent embedding state: already-mapped links, which connect
virtual nodes to their hosting physical nodes, and imagi-
nary decision links, which connect the current yet-to-be-
decided virtual node with all potential physical nodes. Here,
potential physical node refers to one that hosts no virtual
nodes and has enough computing resources available. We
group these heterogeneous links into sets Lv,p,m for already-
mapped links and Lv,p,d for decision-candidate links. We
uniformly set these two types of links’ attributes to 1, de-
noted as X l

v,p,m and X l
v,p,d, respectively. To encode this

graph’s topological and attribute information, we enhanced
widely-used graph attention networks (GAT) (Veličković
et al., 2018) by integrating heterogeneous link fusion and
link attribute encoding in the propagation process. See
Appendix D.3 for its details. Inputting the heterogeneous
graph’s features into this network, we obtain the final node
representations Z = {Zv, Zp}, where Zv and Zp denote
physical and virtual node representations.
Path-bandwidth Contrast (PC). Bandwidth constraints of
VNE significantly impact solution feasibility, particularly
in the context of path routing complexity. At each decision
timestep, we need to carefully select a physical node nt

p for
placing the current virtual node nt

v. This selection is domi-
nated by ensuring that feasible connective paths exist to all
other physical nodes hosting the virtual node’s neighbors.
Here, the feasibility of the path is dominated by the band-
width availability of physical links to support the bandwidth
requirements of all prepared incident links δ′(nt

v). GNNs
build up on the propagation mechanism along links to in-

crease awareness of the topology information. However,
not all physical links contribute positively to this awareness;
some with insufficient bandwidths may even introduce noise
into node representations. This emphasizes the necessity to
integrate bandwidth constraint awareness within GNNs to
perceive the path feasibility.
To address this challenge, we propose a novel path-
bandwidth contrast method to enhance bandwidth constraint
awareness via contrastive learning, whose core idea is creat-
ing augmented views with feasibility-consistency augmenta-
tions and making node representations in these views close.
Definition 3.5 (Feasibility-consistency Augmentations).
Let Φ denote a set of augmentation methods and F denote
the function indicating the feasibility of solutions. Given
any VNE instance I and a solution E = fG(I), we have
F(E) = F(ϕ(E)),∀I ∈ I, ϕ ∈ Φ.
These augmentations generate multiple views of the original
heterogeneous graph, which maintain the same feasibility
semantics before and after their application. Following
this principle, we develop several augmentation methods
by modifying the topology of either VN or PN without
impacting solution feasibility. (a) Physical Link Addition
ϕA. We add a specific number ϵ · |Np| of physical links in
PN, whose bandwidth resources are equal to the difference
between the smallest requirements among all virtual links
and 1, i.e., minlv∈Lv B(lv) − 1. (b) Virtual Link Addition
ϕB . We add a specific number ϵ · |Nv| of virtual links that
require a zero bandwidth resource to enhance the complexity
and connectivity of the VN. Here, ϵ is an augment ratio that
determines the proportion of links to be added based on the
number of nodes in the network.
After applying these augmentations, we create two new
views GA

I = ϕA(GI) and GB
I = ϕB(GI), which have

same feasibility semantics of VNE instance I . Using our
heterogeneous graph network, we extract node represen-
tations under views GA

I and GB
I , denoted as ZA and ZB ,

respectively. Subsequently, we utilize contrastive learning to
enhance the proximity of node representations under the aug-
mented views GA

I and GB
I . This necessitates that the model

precisely discerns the noisy implications of those links with
less bandwidth that play no impact on solution feasibil-
ity. Through this method, we aim to enhance the model’s
sensitivity towards link bandwidth, effectively mitigate the
influence of irrelevant links in the GNN propagation process,
and bolster its overall awareness of bandwidth constraints.
In this work, we adopt the Barlow Twins method (Zbon-
tar et al., 2021) for its simplicity and effectiveness, which
circumvents negative sample selection and maintains the
original network architecture. Given the embeddings under
two augmented views, Ha and Hb, we use this contrastive
loss LCL to reduce redundancy between embedding com-
ponents by aligning their cross-correlation matrix with the
identity matrix. This unsupervised loss can be seamlessly
integrated into the training process of RL. See Appendix D.4

6

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

for the details of Barlow Twins method.

3.4. Computational Complexity Analysis
Note that CONAL solely uses its surrogate policy and path-
bandwidth contrast module for policy optimization during
training. During inference, CONAL has a computational
complexity of O

(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
. See

Appendix D.6 for detailed explanations.

4. Experiments
To evaluate the effectiveness of CONAL, we compare it
with state-of-the-art baselines in various network scenarios.

4.1. Experimental Settings
Simulation Configurations. Similar to most previous
works (Geng et al., 2023; Yan et al., 2020), we evaluate
CONAL in Virne benchmarks that simulate various network
systems (See Appenidx H for its introduction). We adopt a
widely-used Waxman topology with 100 nodes and nearly
500 links (Waxman, 1988) as the physical network, named
WX100. Computing resources of physical nodes and band-
width resources of physical links are uniformly distributed
within the range of [50, 100] units. In default settings, for
each simulation run, we create 1000 VN with varying sizes
from 2 to 10. The computing resource demands of the nodes
and the bandwidth requirements of the links within each
VN are uniformly distributed within the range of [0, 20]
and [0, 50] units, respectively. The virtual nodes in each
VN are randomly interconnected with a probability of 50%.
The lifetime of each VN follows an exponential distribution
with an average of 500 time units. The arrival of these VNs
follows a Poisson process with an average rate η, where η
denotes the average arrived VN count per unit of time. In
the subsequent experiments, we manipulate the distribution
settings of VNs and change the PN topologies to simulate
various network systems.

Implementation Settings. We describe the details of
CONAL implementations, simulation for training and test-
ing, and computer resources in Appendix F.1. Notably, in
scenarios where the PN topology remains unchanged, we
employ the pre-trained models developed under default set-
tings to investigate the adaptability and generalization across
diverse conditions in network systems.

Compared Baselines. We compare CONAL with both
heuristic and RL-based methods. The heuristic base-
lines includes node ranking-based methods (i.e., NRM-
VNE (Zhang et al., 2018), GRC-VNE (Gong et al.,
2014), NEA-VNE (Fan et al., 2023)) and meta-heuristics
(i.e., GA-VNE (Zhang et al., 2019), PSO-VNE (Jiang
& Zhang, 2021)). The learning-based baselines are PG-
CNN (Ma et al., 2023), DDPG-ATT (He et al., 2023a),
A3C-GCN (Zhang et al., 2024b), and GAL-VNE (Geng
et al., 2023). See Appendix F.2 for their descriptions.

Evaluation Metrics. Following most previous research (Fis-

cher et al., 2013; Yan et al., 2020), we adopt widely used key
metrics for VNE algorithm evaluation: VN Acceptance Rate
(VN ACR); Long-Term REVenue (LT REV); Long-Term
Revenue-to-Consumption ratio (LT R2C). We also consider
AVeraGe Solving Time (AVG ST) as an additional metric
to measure the computational efficiency, due to the real-
time demands of online network systems. Additionally, for
CONAL and its variations, we employ Constraint VIOlation
(C VIO) to measure the degree of constraint satisfaction.
See Appendix F.4 for their definitions.

4.2. Results and Analysis
Overall Evaluation. The results of VNE algorithms un-
der default settings are shown in Table 1. We observe
that CONAL outperforms baselines across three key per-
formance metrics. This is due to CONAL’s ability to ef-
fectively perceive and handle the complex constraints of
VNE. Among baselines, NEA-VNE, GA-VNE, and GAL-
VNE are the best node-ranking-based heuristics, meta-
heuristics, and RL-based methods. However, GA-VNE
which relies on extensive search in the solution space has a
longer running time, while GAL-VNE exhibits lower R2C
metrics. Compared to NEA-VNE, GA-VNE and GAL-
VNE, CONAL achieves improvements of (10.04%, 11.07%,
13.99%), (10.61%, 28.72%, 17.80%) and (4.77%, 24.04%,
6.21%) in term of (VN ACR, LT R2C, and LT REV), re-
spectively. We also observe that CONAL outperforms all
RL-based baselines across key performance metrics, demon-
strating the superiority of its modeling, optimization, and
representation methods. Although CONAL’s running time is
not the lowest, it remains competitive, comparable to NEA-
VNE and A3C-GCN, and outperforms other baselines such
as GA-VNE and MCTS-VNE. These results underscore
that CONAL provides high-quality and feasible solutions to
improve resource utilization and request acceptance.

Ablation Study. We design several variations to manifest
the efficacy of each proposed component: CONALw/o HM,
w/o PC, w/o HM & PC, w/o REACH, and w/o ARB. See Appendix F.3
for their descriptions. The results are presented in Table 1.
Compared to the first three variants, CONAL achieves su-
perior results across various performance metrics. This
indicates that our constraint-aware graph representation
method enhances the constraint awareness of policy. No-
tably, CONALw/o PC shows the most significant performance
declines, even worse than CONALw/o HM & PC. This may be
due to heterogeneous graph modeling methods increasing
the link complexity of graph, which highlights the necessity
for improving bandwidth constraint sensitivity. Furthermore,
CONALw/o REACH and CONALw/o ARB also decrease perfor-
mance, which demonstrates that our optimization method
facilitates both resource utilization and constraint satisfac-
tion. This study shows that each component of CONAL
contributes to its overall performance, enhancing its ability
to handle and perceive the complex constraints of VNE.

7

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Table 1: Results in overall evaluation and ablation study. Each value consists of the mean and standard error.

VN RAC ↑ LT R2C ↑ LT REV (×107) ↑ C VIO (×103) ↓ AVG ST (×10−1 s) ↓
NRM-VNE 0.675 ± 0.011 0.461 ± 0.003 7.649 ± 0.089 - 1.285 ± 0.042
GRC-VNE 0.694 ± 0.020 0.468 ± 0.004 7.888 ± 0.081 - 2.737 ± 0.056
NEA-VNE 0.732 ± 0.017 0.558 ± 0.007 8.635 ± 0.183 - 4.471 ± 0.656
GA-VNE 0.735 ± 0.043 0.477 ± 0.007 8.355 ± 0.082 - 47.462 ± 1.117
PSO-VNE 0.723 ± 0.025 0.456 ± 0.004 7.854 ± 0.060 - 51.955 ± 3.512

MCTS-VNE 0.700 ± 0.085 0.477 ± 0.006 7.809 ± 0.394 - 15.512 ± 8.096
PG-CNN 0.682 ± 0.020 0.487 ± 0.004 7.523 ± 0.156 - 3.906 ± 0.057

DDPG-ATT 0.707 ± 0.021 0.469 ± 0.003 7.961 ± 0.091 - 2.991 ± 0.054
A3C-GCN 0.743 ± 0.019 0.540 ± 0.006 8.814 ± 0.223 - 3.585 ± 0.200
GAL-VNE 0.776 ± 0.014 0.495 ± 0.003 9.267 ± 0.162 - 6.881 ± 0.785

CONALw/o HM 0.804 ± 0.044 0.584 ± 0.004 9.597 ± 0.107 3.410 ± 0.080 3.754 ± 0.124
CONALw/o PC 0.735 ± 0.036 0.573 ± 0.002 8.407 ± 0.128 5.960 ± 0.068 4.117 ± 0.273

CONALw/o HM & PC 0.789 ± 0.058 0.585 ± 0.006 9.446 ± 0.084 4.053 ± 0.072 3.909 ± 0.104
CONALw/o REACH 0.792 ± 0.049 0.611 ± 0.007 9.607 ± 0.073 3.954 ± 0.045 4.052 ± 0.069
CONALw/o ARB 0.806 ± 0.034 0.596 ± 0.003 9.639 ± 0.065 3.656 ± 0.087 4.074 ± 0.093

CONAL 0.813 ± 0.042 0.614 ± 0.006 9.842 ± 0.091 2.773 ± 0.083 4.180 ± 0.104

Training Stability Study. (A) Training Conditions vs.
Testing Performance. We first explore the impact of training
conditions on testing performance. Results in Figure 4 show
CONAL maintains a more stable testing performance com-
pared to CONALw/o ARB. (B) Convergence Analysis. We
also compare their training convergence curves of reward
and Lagrange multiplier λ in Figure 5, where CONAL con-
verges to a higher reward and has a stably small λ. These
findings are attributed to the efficient handling of insolvable
instances by our ARB module. See Appendix G.1 for details

Generalizability Study. Practical network systems face
fluctuations in traffic patterns and resource demands due to
dynamic user service requirements. To study generalizabil-
ity, we test trained models in various network conditions.
(A) Request Frequency Sensitivity Study. We assess the sen-
sitivity of CONAL to varying arrival rates of VN requests
by adjusting the average request frequency η. Results il-
lustrated in Figure 6 highlight CONAL’s effectiveness in
handling network scenarios with fluctuating request rates,
even as competition for resources increases. (B) Dynamic
Request Distribution Study. We simulate varying network
conditions by modifying resource demands and node sizes
of VN requests in different stages. Results in Figure 7 show
that CONAL can generalize effectively in dynamic systems
with shifting requirements. See Appendix G.2 for details.

Scalability Analysis. To assess the scalability of CONAL,
we explore its performance in large-scale network systems
and its time consumption to adapt to varying network sizes.
In summary: (A) Large-scale Network Validation. We eval-
uate CONAL on a Waxman topology with 500 nodes repre-
senting a large-scale cloud cluster. The results demonstrate
that CONAL consistently outperforms all baseline models,
even in large-scale network systems. (B) Solving Time Scale
Analysis. We increase the size of physical network from
200 to 1,000 nodes to simulate network systems of varying

scales. The results show that even at larger network scales,
CONAL maintains efficient solving times while delivering
excellent performance. See Appendix G.3 for details.
Real-world Network Topology Validation. To verify the
effectiveness of CONAL in real-world network systems,
we conduct experiments on two well-known networks (Yan
et al., 2020; He et al., 2023a): GEANT and BRAIN. The
results shown in Table 3 reveal that CONAL outperforms
all baselines across both network systems on performance,
which shows the effectiveness of CONAL in practical sys-
tems and various topologies. See Appendix G.4 for details.
Extension to Latency-aware VNE. We further study the
VNE variation in edge computing with latency considera-
tion, which additionally introduces such constraint. Results
in Table 4 show that CONAL exhibits superior performance
which efficiently handles complex multi-type constraints in
this variation of VNE. See Appendix G.5 for details.

5. Conclusion
In this paper, we proposed the CONAL for VNE to en-
hance constraint management and training stability, which
is critical to the performance and reliability of network
systems. Specifically, we formulated the VNE problem
as a violation-tolerant CMDP to optimize both the qual-
ity and feasibility of solutions, which precisely evaluates
the quality and violation of the solution. Additionally, we
presented a reachability-guided optimization objective with
an adaptive feasibility budget method to ensure persistent
constraint satisfaction while alleviating the conservativeness
of policy. This approach also addresses the instability of
policy optimization caused by unsolvable instances. Further-
more, to finely perceive the complex constraints of VNE, we
proposed a constraint-aware graph representation method,
consisting of a heterogeneous modeling module and a path-
bandwidth contrast module. Finally, we conducted extensive
experiments to verify the effectiveness of CONAL.

8

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning for Combinatorial Optimization and
Networking Resource Allocation. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Adoga, H. U. and Pezaros, D. P. Towards latency-aware
vnf placement on heterogeneous hosts at the network
edge. In IEEE Global Communications Conference, pp.
6383–6388, 2023.

Altman, E. Constrained Markov decision processes. Rout-
ledge, 2021.

Bansal, S., Chen, M., Herbert, S., and Tomlin, C. J.
Hamilton-jacobi reachability: A brief overview and re-
cent advances. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pp. 2242–2253. IEEE,
2017.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bi, J., Ma, Y., Zhou, J., Song, W., Cao, Z., Wu, Y., and
Zhang, J. Learning to handle complex constraints for ve-
hicle routing problems. In Neural Information Processing
Systems, 2024.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607, 2020.

Chowdhury, N. M. M. K., Rahman, M. R., and Boutaba,
R. Virtual network embedding with coordinated node
and link mapping. In IEEE International Conference on
Computer Communications, pp. 783–791, 2009.

Dehury, C. K. and Sahoo, P. K. DYVINE: Fitness-based
dynamic virtual network embedding in cloud computing.
IEEE Journal on Selected Areas in Communications, 37
(5):1029–1045, 2019.

Fan, W., Xiao, F., Lv, M., Han, L., Wang, J., and He, X.
Node essentiality assessment and distributed collabora-
tive virtual network embedding in datacenters. IEEE
Transactions on Parallel and Distributed Systems, 34(4):
1265–1280, 2023.

Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., and
Hesselbach, X. Virtual network embedding: A survey.
IEEE Communications Surveys Tutorials, 15(4):1888–
1906, 2013.

Geng, H., Wang, R., Wu, F., and Yan, J. Gal-vne: Solving
the vne problem with global reinforcement learning and
local one-shot neural prediction. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 531–543, 2023.

Gong, L., Wen, Y., Zhu, Z., and Lee, T. Toward profit-
seeking virtual network embedding algorithm via global
resource capacity. In IEEE International Conference on
Computer Communications, pp. 1–9, 2014.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284,
2020.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
Yang, Y., and Knoll, A. A review of safe reinforce-
ment learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Haeri, S. and Trajković, L. Virtual network embedding via
Monte Carlo tree search. IEEE Transactions on Cyber-
netics, 48(2):510–521, 2017.

He, N., Yang, S., Li, F., Trajanovski, S., Zhu, L., Wang,
Y., and Fu, X. Leveraging deep reinforcement learning
with attention mechanism for virtual network function
placement and routing. IEEE Transactions on Parallel
and Distributed Systems, 34(4):1186–1201, 2023a.

He, T., Zhao, W., and Liu, C. Autocost: Evolving intrin-
sic cost for zero-violation reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 14847–14855, 2023b.

Jiang, C. and Zhang, P. VNE-HPSO Virtual Network Em-
bedding Algorithm Based on Hybrid Particle Swarm Op-
timization, pp. 129–152. Springer Singapore, Singapore,
2021.

Jin, P., Fei, X., Zhang, Q., Liu, F., and Li, B. Latency-
aware vnf chain deployment with efficient resource reuse
at network edge. In IEEE Conference on Computer Com-
munications, pp. 267–276, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Liu, Y., Halev, A., and Liu, X. Policy learning with con-
straints in model-free reinforcement learning: A survey.

9

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

In The 30th International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

Ma, H., Guan, Y., Li, S. E., Zhang, X., Zheng, S., and
Chen, J. Feasible actor-critic: Constrained reinforcement
learning for ensuring statewise safety. arXiv preprint
arXiv:2105.10682, 2021.

Ma, S., Yao, H., Mai, T., Yang, J., He, W., Xue, K., and
Guizani, M. Graph convolutional network aided virtual
network embedding for internet of thing. IEEE Transac-
tions on Network Science and Engineering, 10(1):265–
274, 2023.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev,
E. Reinforcement learning for combinatorial optimiza-
tion: A survey. Computers & Operations Research, 134:
105400, 2021.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pan, Y., Chen, Y., and Lin, F. Adjustable robust reinforce-
ment learning for online 3d bin packing. In Advances in
Neural Information Processing Systems, volume 36, pp.
51926–51954, 2023.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7(1):2, 2019.

Rost, M. and Schmid, S. On the hardness and inapprox-
imability of virtual network embeddings. IEEE/ACM
Transactions on Networking, 28(2):791–803, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shahriar, N., Chowdhury, S. R., Ahmed, R., Khan, A., Fathi,
S., Boutaba, R., Mitra, J., and Liu, L. Virtual network
survivability through joint spare capacity allocation and
embedding. IEEE Journal on Selected Areas in Commu-
nications, 36(3):502–518, 2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wang, T., Fan, Q., Li, X., Zhang, X., Xiong, Q., Fu, S., and
Gao, M. DRL-SFCP: Adaptive service function chains
placement with deep reinforcement learning. In IEEE
International Conference on Communications, pp. 1–6,
2021.

Wang, T., Shen, L., Fan, Q., Xu, T., Liu, T., and Xiong, H.
Joint admission control and resource allocation of virtual
network embedding via hierarchical deep reinforcement
learning. IEEE Transactions on Services Computing, pp.
1–14, 2023.

Wang, T., Fan, Q., Wang, C., Yang, L., Ding, L., Yuan, N. J.,
and Xiong, H. Flagvne: A flexible and generalizable
reinforcement learning framework for network resource
allocation. In International Joint Conference on Artificial
Intelligence, 2024.

Waxman, B. Routing of multipoint connections. IEEE
Journal on Selected Areas in Communications, 6(9):1617–
1622, 1988.

Yan, Z., Ge, J., Wu, Y., Li, L., and Li, T. Automatic virtual
network embedding: A deep reinforcement learning ap-
proach with graph convolutional networks. IEEE Journal
on Selected Areas in Communications, 38(6):1040–1057,
2020.

Yang, L., Ji, J., Dai, J., Zhang, L., Zhou, B., Li, P., Yang, Y.,
and Pan, G. Constrained update projection approach to
safe policy optimization. Advances in Neural Information
Processing Systems, 35:9111–9124, 2022.

Yao, H., Ma, S., Wang, J., Zhang, P., Jiang, C., and Guo,
S. A continuous-decision virtual network embedding
scheme relying on reinforcement learning. IEEE Trans-
actions on Network and Service Management, 17(2):864–
875, 2020.

Ye, H., Wang, J., Cao, Z., Liang, H., and Li, Y. Deepaco:
Neural-enhanced ant systems for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems,
36, 2023.

Yi, B., Wang, X., Li, K., Huang, M., et al. A comprehensive
survey of network function virtualization. Computer
Networks, 133:212–262, 2018.

Yu, D., Ma, H., Li, S., and Chen, J. Reachability constrained
reinforcement learning. In International Conference on
Machine Learning, pp. 25636–25655. PMLR, 2022.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. In International conference on machine learn-
ing, pp. 12310–12320. PMLR, 2021.

Zhang, C., Cao, Z., Song, W., Wu, Y., and Zhang, J. Deep
reinforcement learning guided improvement heuristic for
job shop scheduling. In International Conference on
Learning Representations, 2024a.

Zhang, D. W., Rainone, C., Peschl, M., and Bondesan, R.
Robust scheduling with gflownets. In International Con-
ference on Learning Representations, 2023.

10

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Zhang, P., Yao, H., and Liu, Y. Virtual network embed-
ding based on computing, network, and storage resource
constraints. IEEE Internet of Things Journal, 5(5):3298–
3304, 2018.

Zhang, P., Yao, H., Li, M., and Liu, Y. Virtual network
embedding based on modified genetic algorithm. Peer-to-
Peer Networking and Applications, 12(2):481–492, 2019.

Zhang, P., Su, Y., Wang, J., Jiang, C., Hsu, C.-H., and Shen,
S. Reinforcement learning assisted bandwidth aware
virtual network resource allocation. IEEE Transactions
on Network and Service Management, 19(4):4111–4123,
2022.

Zhang, X., Cui, L., Tso, F. P., Li, Z., and Jia, W. Dapper:
Deploying service function chains in the programmable
data plane via deep reinforcement learning. IEEE Trans-
actions on Services Computing, pp. 1–14, 2024b.

Zhao, H., She, Q., Zhu, C., Yang, Y., and Xu, K. Online 3d
bin packing with constrained deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 741–749, 2021.

Zhao, W., He, T., and Liu, C. Model-free safe control for
zero-violation reinforcement learning. In Proceedings of
the 5th Conference on Robot Learning, volume 164, pp.
784–793. PMLR, 2022.

Zhao, W., He, T., Chen, R., Wei, T., and Liu, C. State-wise
safe reinforcement learning: A survey. In International
Joint Conference on Artificial Intelligence, 2023.

Zhuang, W., Ye, Q., Lyu, F., Cheng, N., and Ren, J.
SDN/NFV-empowered future IoV with enhanced com-
munication, computing, and caching. Proceedings of the
IEEE, 108(2):274–291, 2020.

11

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Appendix

A Related Work 13

B Problem Formulation 13

B.1 Optimization Objectives . 14

B.2 Constraint Conditions . 14

C Preliminary Study 15

D Model Details 15

D.1 Illustrative Explanation of Prepared Incident Links . 15

D.2 Proof of Lagrange Multiplier Convergence . 15

D.3 Heterogeneous Graph Network . 16

D.4 Barlow Twins Loss Function . 16

D.5 Lagrangian-based PPO Training Method. 17

D.6 Detailed Analysis of Computational Complexity . 17

E Descriptions of Training and Inference Process 18

E.1 Training Process of CONAL . 18

E.2 Inference Process of CONAL . 19

F Experimental Details 19

F.1 Implementation Details . 19

F.2 Baseline Descriptions . 20

F.3 Variations Descriptions . 20

F.4 Metric Definitions . 21

G Addtional Evaluation 22

G.1 Training Stability Study . 22

G.2 Generalizability Study . 23

G.3 Scalability Analysis . 25

G.4 Real-world Network Topology Validation . 25

G.5 Extension to Latency-aware VNE . 26

G.6 Hyperparameter Impact Study . 27

H Used Benchmark and Assets 28

12

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

A. Related Work
In this section, we discuss related work on VNE algorithms, RL for COPs, and safe RL methods.

VNE Algorithms. To solve this challenging and significant problem, many approaches have been designed for VNE, which
can be classified as exact, heuristics, and learning-based methods. Initially, exact algorithms formulate the VNE problem
as integer linear programming (Shahriar et al., 2018) or mixed integer linear programming (Chowdhury et al., 2009), and
then solve them with exact solvers. However, this is impractical due to extensive computations and time consumption.
Thus, numerous heuristic algorithms have been proposed to offer solutions within an acceptable time, such as node ranking
strategies (Zhang et al., 2018; Gong et al., 2014; Fan et al., 2023), meta-heuristics (Dehury & Sahoo, 2019; Zhang et al.,
2019; Jiang & Zhang, 2021), etc. However, they heavily rely on manual heuristic design and merely for specific scenarios.
Recently, reinforcement learning has emerged as a promising solution for VNE and many RL-based VNE algorithms have
been proposed (Haeri & Trajković, 2017; Wang et al., 2021; Zhang et al., 2022; He et al., 2023a; Zhang et al., 2024b; Geng
et al., 2023; Wang et al., 2024). In general, they model the solution construction process of each VNE instance as an MDP,
but do not consider the fine-grained constraint violations. Then, they leverage existing network networks (e.g., convolutional
neural network, GNN, etc.) to extract features from PN and VN, separately. Finally, they optimize the model with different
RL methods (e.g., asynchronous advantage actor-critic, PPO, etc.). Although they use the action masking mechanism to
select physical nodes with adequate computing resources and avoid unnecessary failures, they can not address potential
violations of path-level bandwidth constraints during state transitions, which still lead to numerous failure samples during
exploration. Consequently, they struggle to handle such complex constraints of VNE thereby compromising performance,
since they lack constraint awareness in MDP modeling, representation learning, and policy optimization.

RL for COPs. The application of RL to solve COPs has emerged as a hot topic in decision-making, which aims to learn
efficient solving strategies from data (Bengio et al., 2021). Many efforts have been directed toward classic COPs such as
routing (Ye et al., 2023; Bi et al., 2024), scheduling (Zhang et al., 2023; 2024a), bin packing (Pan et al., 2023; Zhao et al.,
2021), etc. These approaches can be broadly categorized into two types based on their solving processes: construction
and improvement. While improvement methods start with an initial solution and use an RL policy to iteratively refine it,
construction methods build a solution incrementally from scratch (Mazyavkina et al., 2021). Construction methods typically
employ RL to guide the sequential selection to form a complete solution. Given the real-time requirements of practical
network systems, most existing RL-based VNE algorithms are designed as construction methods to provide solutions within
an acceptable time (Zhang et al., 2022; He et al., 2023a; Zhang et al., 2024b). In contrast to these classic COPs, VNE
presents unique complexities in representation learning due to its multifaceted and hard constraints, such as the interaction of
cross-graph status and the assessment of bandwidth-constrained path connectivity. Furthermore, the existence of unsolvable
instances in the training process can compromise robustness, potentially causing ineffective policies.

Safe RL Methods. Safe RL aims to maximize the expected rewards while ensuring safety constraints are not violated (Gu
et al., 2022). Early efforts in safe RL focus on keeping cumulative constraint violations below a fixed cost budget (Achiam
et al., 2017; Ray et al., 2019; Yang et al., 2022). To address the stricter constraint requirements of practical applications,
recent works have proposed achieving state-wise safety, which ensures the satisfaction of instantaneous constraints at
each decision timestep (Zhao et al., 2023; 2022; He et al., 2023b; Yu et al., 2022). One promising approach involves
incorporating reachability analysis into the CMDP framework (Yu et al., 2022). This method employs a reachability function
to assess the state feasibility, which significantly expands the feasible set of policy, and mitigates the conservativeness of the
policy. However, modeling VNE as a reachability-guided CMDP presents challenges. Concretely, In the process of solution
construction, if any constraints are violated, the process will be early terminated and lead to incomplete solutions. This
hinders precise measurement of both the quality of solutions and the degree of constraint violations. Additionally, these
methods typically assume a non-empty feasible set. But for VNE, where it is hard to avoid facing unsolvable instances
without any feasible solution, these approaches often confront the challenges of unstable policy optimization, since the
constraints of these instances are impossibly satisfied.

B. Problem Formulation
In this section, we provide the mathematical programming formulation of the VNE problem.

13

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

B.1. Optimization Objectives

The main goal of VNE is to make full use of the physical network resources to improve the revenue of ISPs while satisfying
the service requests of users as much as possible. To address the stochastic nature of online networking, we and existing
studies (Wang et al., 2021; He et al., 2023a; Zhang et al., 2024b), aim to minimize the embedding cost of each arriving VN
request onto the physical network. This way enhances resource utilization and improves the VN request acceptance rate. To
evaluate the quality of solution E = fG(I), we employ the widely used indicator, Revenue-to-Consumption ratio (R2C),
defined as follows:

R2C (E) = (κ · REV (E)) /CONS (E) . (7)

Here, κ is a binary variable representing the feasibility of a solution: κ = 1 if the solution E for the instance I is accepted,
and κ = 0 otherwise. REV(E) denotes the revenue generated by the VN request Gv and CONS(E) denotes the embedding
consumption, which are computed as follows:

REV(E) =
∑

nv∈Nv

C(nv) +
∑

lv∈Lv

B(lv), (8)

CONS(E) =
∑

nv∈Nv

C(nv) +
∑

lv∈Lv

|fL(lv)|B(lv), (9)

where |fL(lv)| denotes the hop count of the physical path pp = fL(lv) routing the virtual link lv .

B.2. Constraint Conditions

The process of embedding a VN request Gv onto the physical network is represented by a mapping function fG : Gv → Gp.
In this process, we need to decide two types of boolean variables: (1) xm

i = 1 if virtual node nm
v is placed in physical node

ni
p, and 0 otherwise; (2) ym,w

i,j = 1 if virtual link lvm,w = (nm
v , nw

v) traverses physical link lpi,j = (ni
p, n

j
p), and 0 otherwise.

Here, m and w are identifiers for virtual nodes, while i and j are identifiers for physical nodes. A VN request is successfully
embedded if a feasible mapping solution is found, satisfying the following constraints:∑

ni
p∈np

xm
i = 1,∀nm

v ∈ nv, (10)

∑
nm
v ∈Nv

xm
i ≤ 1,∀ni

p ∈ Np, (11)

xm
i C(nm

v) ≤ C(ni
p),∀nm

v ∈ Nv, n
i
p ∈ Np, (12)∑

ni
p∈Ω(nk

p)

ym,w
i,k −

∑
nj
p∈Ω(nk

p)

ym,w
k,j = xm

k − xw
k ,∀lvm,w ∈ Lv, n

k
v ∈ Np, (13)

ym,w
i,j + ym,w

j,w ≤ 1,∀lvm,w ∈ Lv, l
p
i,j ∈ Lp, (14)∑

lvm,w∈Lv

(ym,w
i,j + ym,w

j,i)B(lvm,w) ≤ B((l
p
i,j)),∀(l

p
i,j) ∈ Lp. (15)

Here, Ω(nk
p) denotes the neighbors of nk

p . Constraint (10) ensures that every virtual node is mapped to one and only one
physical node. Conversely, constraint (11)limits each physical node to hosting at most one virtual node, thus enforcing
a unique mapping relationship due to isolation requirements. Constraint (12) verifies that virtual nodes are allocated to
physical nodes with adequate resources. Following the principle of flow conservation, constraint 13 guarantees that each
virtual link (nm

v , nw
v) is routed along a physical path from ni

p (the physical node where nm
v is placed) to nj

p (the physical
node where nw

v is placed). Constraint (14) eliminates the possibility of routing loops, thereby ensuring that virtual links are
routed acyclically. Lastly, constraint 15 ensures that the bandwidth usage on each physical link remains within its available
capacity. Overall, constraints (10,11,12) enforce the one-to-one placement and computing resource availability required in
the node mapping process. And constraints (13,14,15) ensure the path connectivity and bandwidth resource availability
asked in the link mapping process.

14

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

C. Preliminary Study
We have conducted a preliminary study to highlight the motivation to handle failure samples and unsolvable instances. In
this study, we trained a representative baseline model, A3C-GCN (Zhang et al., 2024b), which shares a solution construction
paradigm similar to our approach and uses a penalty mechanism to handle all failure samples. The training was conducted
with various arrival rates for VN requests because it is evident that increasing the arrival rate of VN requests leads to a
higher frequency of unsolvable instances. After training, we tested the models using a fixed arrival rate λ = 0.14 (the same
as in Section 4.1: Experimental Settings) with a seed of 0 as the benchmark.

λ for Training VN RAC ↑ LT R2C ↑ LT REV (×107) ↑
0.14 0.734 0.537 8.707
0.18 0.721 0.455 8.699
0.22 0.679 0.488 7.578
0.26 0.666 0.482 7.397

Table 2: The testing performance of baseline A3C-GCN trained under various λ values.

The results are shown in Figure 2. We observe that as the arrival rate of VN requests increases, the A3C-GCN model trained
under higher arrival rates exhibits worse performance. Due to the increased proportion of unsolvable instances, the caused
failure samples interfere more strongly with the center of policy optimization, making it difficult to learn a high-quality
solution strategy. This indicates that this method struggles to effectively handle unsolvable instances during training, which
negatively impacts the optimization robustness and overall performance.

D. Model Details
In this section, we present the key concepts, theoretical foundations, explanation of CONAL’s components, and descriptions
of both the training and inference processes for CONAL.

D.1. Illustrative Explanation of Prepared Incident Links

40 10 50

2010

PN Infrastructure

30

20

40

VN Request

Completed Node Mapping

Completed Link Mapping

10 20

30

1010

20

10 30

3040
!!" !!#!!$

!!% !!&

!!$

!!"

!!#

#!!# Placed Virtual Node

#!!# To-be-placed Virtual Node

Current Node Mapping

Prepared Incident Links

Routed Virtual Link

Current Link Mapping

Figure 3: An illustrative example of prepared incident links.

To make reader clearly understand the prepared incident links,
we provide a brief illustrative example of this concept in Fig-
ure 3. Considering the third decision timestep, after mapping
virtual nodes n1

v and n2
v onto physical nodes n1

p and n2
p, we aim

to find a physical node to host the to-be-placed virtual node n3
v .

When attempting to place n3
v onto n3

p, we need to consider the
routing of virtual links (n1

v, n3
v) and (n2

v, n3
v) whose endpoints

are now both placed. In this example, (n1
v , n3

v) and (n2
v , n3

v) are
called prepared incident links. For current decision timestep, we
need to route all of them with connective physical paths while
ensuring resource constraints are met.

D.2. Proof of Lagrange Multiplier Convergence

Proposition D.1. During online training, if there exists an instance without any feasible solution (i.e. H(s) > 0,∀s ∈ S),
then the Lagrange multiplier can become infinite.

Proof. According to the optimality condition of Karush-Kuhn-Tucker (KKT), any optimal solution to the constrained
optimization problem (4) must satisfy three conditions: the feasibility condition, the non-negativity condition, and the
complementary slack condition, expressed as follows:

H(s) ≤ 0,

λ ≥ 0,

λ ·H(s) = 0.

(16)

15

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Given that H(s) > 0,∀s ∈ S, the primal feasibility condition is violated; there are no feasible solutions that satisfy
H(s) ≤ 0. The complementary slackness condition requires that for each s ∈ S, either λ = 0 or H(s) = 0. Since
H(s) > 0, we must have λ = 0 to satisfy this condition. However, setting λ = 0 does not penalize the constraint violation,
and the primal feasibility condition remains unsatisfied. This leads to a contradiction: there is no finite λ ≥ 0 that satisfies
all the KKT conditions when H(s) > 0,∀s ∈ S. The optimization problem is infeasible because the constraints cannot be
met. In practical online training, the Lagrange multiplier λ is adjusted iteratively to enforce the constraints by increasing λ
whenever the constraints are violated. Since H(s) > 0 always holds, the Lagrange multiplier λ will continually increase in
an attempt to penalize constraint violations. As a result, λ can become arbitrarily large, theoretically approaching infinity.

D.3. Heterogeneous Graph Network

To encode the topological and attribute information of GI , we enhance widely-used graph attention networks
(GAT) (Veličković et al., 2018) by integrating heterogeneous link fusion and link attribute encoding in the propa-
gation process. We begin by using the MLPs to generate the representations of virtual and physical nodes, i.e.,
H0

v = MLP(Xn
v), H

0
p = MLP(Xn

p). Then, we leverage K layers of GNNs to assimilate the topological and band-
width information. At each κ-th layer, a link feature-aware GAT extracts all node latent representations independently across
different link types:

H̄κ
v = GAT(Hκ−1

v , Lv, X
l
v), H̄p = GAT(Hκ−1

p , Lp, X
l
p), (17)

Zκ
v,m, Zκ

p,m = GAT
([
Zκ−1
v ;Zκ−1

p

]
, Lv,p,m, X l

v,p,m

)
, (18)

Zκ
v,d, Z

κ
p,d = GAT

([
Zκ−1
v ;Zκ−1

p

]
, Lv,p,d, X

l
v,p,d

)
. (19)

Here, ; denotes the combination operator. Particularly, when calculating the attention weight between node i and j using
their representation hi and hj , we also apply the MLP to their link attribute xl

i,j , i.e., hi,j = MLP(xl
i,j), and incorporate it

into this process to perceive bandwidth resources:

ai,j =
exp(MLP(zi + zj + zi,j))∑

k∈N (i) exp(MLP(zi + zk + zi,k))
, (20)

where N (i) indicates the neighbor set of node i.

Then, to aggregate the diverse information presented through different link perspectives, we apply the sum pooling method
to produce the node representations for each GNN layer:

Zκ
v = Z̄κ

v + Zκ
v,m + Zκ

p , Zκ
p = Z̄κ

p + Zκ
p,m + Zκ

p,d. (21)

Finally, leveraging the final layer representations, HK
v and HK

p , alongside residual connections to bolster initial feature
representation, we obtain the final representations of all nodes Z = {Zv, Zp}:

Zv = ZK
v + Z0

v , Zp = ZK
p + Z0

p . (22)

D.4. Barlow Twins Loss Function

In this work, we utilize the contrastive learning method to bring the representations under augmented views close to enhance
the awareness of bandwidth-constrained path connectivity. One of the main directions of contrastive learning is to utilize
both positive and negative sample distinctions (Oord et al., 2018; Chen et al., 2020). However, in our application, generating
and selecting negative samples that are markedly different in terms of feasibility semantics is significantly challenging. This
difficulty can adversely affect the learning quality and the generalizability of the models. Therefore, considering multiple
views of the graph with the same feasibility semantics, we focus on eschewing negative samples altogether while preventing
feature collapse, an emerging direction of contrastive learning (Grill et al., 2020; Zbontar et al., 2021). Specifically, we adopt
the Barlow Twins method (Zbontar et al., 2021) for its simplicity and effectiveness, which circumvents negative sample
selection and maintains the original network architecture. Given the node embeddings under two augmented views, Ha and
Hb, we reduce redundancy between embedding components by aligning their cross-correlation matrix with the identity
matrix/ Specifically, we engage the subsequent optimization with following unsupervised learning loss objective function:

LCL =
∑
i

(1− Cii)
2
+ w

∑
i

∑
i ̸=j

C2
ij , (23)

16

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

where the first one is the invariance term and the second one is the redundancy reduction term. w is tradeoff weight. Cij is
the cross-correlation matrix computed between the output node representations of the two identical networks along the batch

dimension: Cij =
∑

b ZA
b,iZ

B
b,j√∑

b(ZA
b,i)

2
√∑

b(ZB
b,j)

2
. Here, b indexes node samples. i, j index the node representation dimension,

respectively. Subsequently, we will equip our final optimization objective with this unsupervised learning loss function.

D.5. Lagrangian-based PPO Training Method.

To optimize the policy for VNE solving, we adopt the Lagrangian-based actor-critic framework with PPO (Ray et al., 2019)
objective as our training algorithm, which incorporates constraint guarantees within the RL training process (Schulman et al.,
2017). In practical implementation, we derive the node representations Zv and Zp from the state s, with our constraint-
aware graph representation method. These representations serve as inputs to a policy network, which generates an action
distribution, π(s) = MLP(Zp) ∈ R|Np|, used for the action selection. Additionally, we employ three additional networks:
the value critic network V π

r , the reachability critic network V π
h , and the Lambda network Λπ . They have similar architectures,

∀V ∈ {V π
r , V π

h ,Λπ}, V (s) = MLP
(∑

z∈Zp
z
)
∈ R1. They estimate cumulative rewards, constraint violations, and the

Lagrangian multiplier λ, respectively. We optimize V π
r and V π

h with mean squared error (MSE) losses, denoted as Lr and
Lh, comparing predicted values against actual results for cumulative rewards and violations, respectively. The Lambda
network (Ma et al., 2021) is updated to optimize the balance between performance and safety, according to:

LLAM = Λπ(s) · (V π
h (s)−Dπ′

h (s)). (24)

The objective function for the policy network within the PPO framework is expressed as:

LPPO(π) = E[min(r(π)At,CLIP(r(π), 1− ϵ, 1 + ϵ)At)], (25)

where At represents the advantage function at time step t, and r(π) = π(st,at)

πold(st,at)
calculates the ratio of the probabilities for

the selected action between the current and previous policies. The CLIP function limits policy updates to enhance stability.

Finally, integrating the unsupervised contrastive learning objective LCL in the path-bandwidth contrast method, our compre-
hensive loss function in the training process is formulated as follows:

L = wPPO · LPPO + wr · Lr + wh · Lh + wLAM · LLAM + wCL · LCL, (26)

where all w(·) denote the weights of loss objectives.

D.6. Detailed Analysis of Computational Complexity

CONAL exhibits a computational complexity of O
(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
, which the complexities other

baseline methods based on RL and GNNs are O
(
|Nv| ·K ·

(
|Lp|d+ |Np|d2

))
. Here, Nv and Lv denote the number of

virtual nodes and links, Np and Lp denote the number of physical nodes and links, K denotes the number of GNN layers,
and d denotes the embedding dimension. Concretely, When constructing a solution for one VNE instance, CONAL performs
inference Nv times with the GNN policy, similar to most RL and GNN-based methods. The difference in complexity between
CONAL and RL/GNN-based baselines mainly arises from the different neural network structures used, such as GAT and
GCN. One GAT and one GCN layer have the same complexity, both O

(
|L|d+ |N |d2

)
, where |N | and |L| denote the number

of nodes and links [a]. In CONAL, we enhance the GAT with the heterogeneous modeling for the interactions of cross-graph
status. Each heterogeneous GAT layer consists of three types of GAT layers for VN, PN, and cross-graph interactions (the
number of links between virtual and physical nodes is always Np). The complexities for these layers are O

(
|Lv|d+ |Nv|d2

)
,

O
(
|Lp|d+ |Np|d2

)
, and O

(
|Np|d+ |Np +Nv|d2

)
, respectively. Each heterogeneous GAT layer consists of three types

of GAT layers for VN, PN, and cross graph (the number of links between virtual and physical node always is Np),
whose complexity is O

(
|Lv|d+ |Nv|d2

)
, O

(
|Lp|d+ |Np|d2

)
, and O

(
|Np|d+ |Np +Nv|d2

)
. Considering that |Nv| is

significantly smaller than |Lv| and typically Lp > Np in practical network systems, the overall complexity of CONAL
is O

(
|Nv| ·K ·

(
|Lp|d+ |Np +Nv|d2

))
. In comparison, other RL and GNN-based methods separately encode VN and

PN with GAT or GCNs, without considering GNN layers for cross-graph interactions, leading to their complexities being
O
(
|Nv| ·K ·

(
|Lp|d+ |Np|d2

))
. Overall, while CONAL slightly increases the complexity compared to existing RL and

GNN-based methods due to its heterogeneous modeling approach, it achieves significant performance improvements.

17

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

E. Descriptions of Training and Inference Process
In this section, we summarize the training and inference process of CONAL in Algorithm 1 and Algorithm 2, respectively.

E.1. Training Process of CONAL

Algorithm 1 Training process of CONAL.

1: Input: A set of VNE instances I
2: Output: A learned policy π
3: Initialize the policy network π, value critic network V π

r , feasibility critic network V π
h , and lambda network Λπ with

random weights
4: Initialize the surrogate policy network π′ same as the policy network π
5: # Stage 1: Experience Collection
6: for each VNE instance I ∈ I do
7: Compute adaptive reachability budget Dπ′

h (s) for the following sampled state s using π′

8: Initialize state s0 from the heterogeneous graph GI and its augmented views GA
I and GB

I

9: for timestep t = 0 to T do
10: Generate the action probability distribute and select action at ∼ π(·|st)
11: Execute action at, observe reward rt and next state st+1

12: Compute constraint violation ht = H(st+1) and cost ct = C(st+1)
13: Store transition (st, at, rt, st+1, ht, ct, D

π′

h (st)) in trajectory memory τ
14: end for
15: end for
16: # Stage 2: Policy Optimization
17: for each update step do
18: Sample a batch of transitions from the trajectory memory τ
19: Calculate the PPO objective LPPO for policy π with Eq. 25
20: Calculate the value critic loss Lr and reachability critic loss Lh

21: Calculate the loss of Lambda network with Eq. 24
22: Calculate the contrastive loss LCL with the Barlow Twins method, i.e., Eq. 23
23: Obtain the final loss with Eq. 25 and update π, V π

r , V π
h , and Λπ

24: if update the surrogate policy then
25: Synchronize the parameters of π′ with π, i.e., π′ ← π
26: end if
27: end for
28: return: The learned policy π

The training process of CONAL begins by randomly initializing the neural networks: the policy network π, value critic
network V π

r , feasibility critic network V π
h , and lambda network Λπ. The training involves two key stages: experience

collection and policy optimization. Through these stages, we iteratively update the neural networks and ultimately learn the
policy. This training process is outlined in Algorithm 1.

During the experience collection stage, for each incoming instance I ∈ I, we utilize the surrogate policy π′ to preemptively
solve this instance I . The maximum constraint violation caused by π′ is regarded as adaptive reachability budgets Dπ′

h (s)
for the following states s sampled by main policy π. At each decision timestep t, we build a heterogeneous graph GI

based on the current situation of instance I . We also construct two augmented views, GA
I and GB

I , with the proposed
feasibility-consistency augmentations, which will be used in the calculation of contrastive loss. The state st is then extracted
from GI , GA

I and GB
I . Based on the state st, the policy π extracts information with the heterogeneous graph network

and selects an action at. Then, the environment executes this action, transits into the next state st, and returns the reward
rt, violations ht and costs ct. These items collectively form a transition (st, at, rt, st+1, ht, ct, D

π′

h (st) and stored in a
trajectory memory τ .

In the subsequent policy optimization stage, we iteratively sample batches of transitions from the trajectory memory τ to
update neural networks. Then, we calculate various losses, including the PPO loss LPPO, value critic loss Lr, reachability
critic loss Lh, and Lambda network loss LLAM. Additionally, we integrate our proposed unsupervised contrastive loss LCL

18

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

in path-bandwidth contrast during training. Overall, we calculate the weighted sum of these losses as the final loss L and
update neural networks. If necessary, we synchronize surrogate policy π′ with the main policy π.

E.2. Inference Process of CONAL

Algorithm 2 Inference process of CONAL.

1: Input: An arrived VNE instance I; The learned policy π
2: Output: The solution status

Initialize state s0 from the heterogeneous graph GI

3: for timestep t = 0 to T do
4: Generate the action probability distribute and select action at ∼ π(·|st)
5: Execute action at: Map the to-be-decided virtual node nt

v onto the selected physical node at
6: Transit to next state st+1: Route all prepared incident links nt

v

7: Compute constraint violation ht = H(st+1) and cost ct = C(st+1)
8: if any constraints are violated, i.e., ct > 0 then
9: return FALSE

10: end if
11: end for
12: return TRUE

Note that the surrogate policy and the path-bandwidth contrast module are not utilized in this process. During the inference
process, we use the learned policy π to solve newly arrived VNE instances, which is outlined in Algorithm 2.

At each decision timestep t in the inference process, we attempt to place the virtual node nt
v , and route its prepared incident

links δ′(nt
v), until the solution is successfully completed or any constraints are violated. Concretely, we extract the state

features st from the heterogeneous graph, and input them into the policy network to produce an action probability distribution
π(at | st). The action at, representing the selected physical node, is chosen using a greedy strategy that picks the action with
the highest probability. Then, we execute the selected action, i.e., mapping the virtual node nt

v onto the physical node at.
Once the action is executed, the network system transitions to the next state st+1, where all prepared incident links δ′(nt

v)
are routed. Subsequently, the system computes the corresponding constraint violations ht and costs ct for the current state.
If any constraints are violated during the process, the inference is terminated early, and the instance is rejected. Otherwise,
the process continues until a complete and feasible solution is found.

F. Experimental Details
In this section, we provide the details of implementations and hyperparameter settings, the descriptions of compared
baselines and CONAL’s variations, and the definition of metrics.

F.1. Implementation Details

CONAL Implementation. We implement the GNNs in CONAL with PyG and other neural networks of CONAL with
PyTorch. Each neural network has a hidden dimension of 128 and GAT modules are composed of 3 layers. We set the both
reward and cost discounted factor λ of CMDP to 0.99. We set the augment ratio ϵ in the path-bandwidth contrast method
to 1. We use a batch size of 128 and the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. We use the
sampling strategy and greedy strategy for the action section in the training and testing processes, respectively. For the
k-shortest path algorithm used in link routing, we set the maximum path length k to 5. The loss weights are set as follows:
wPPO = 1.0, wLAM = 0.1, wCL = 0.001, wr = 0.5 and wh = 0.5.

Simulation for Training and Testing. For RL-based methods and CONAL, we train policies for each average arrival rate η,
where running seeds are randomly set in every simulation. During testing, we evaluate the performance of all algorithms by
repeating the tests with 10 different seeds (i.e., 0, 1111, 2222, · · · , 9999) for each η to ensure statistical significance.

Computer Resources. All experiments were conducted on a Linux server equipped with one NVIDIA A100 Tensor Core
GPU, 24 AMD EPYC 7V13 CPUs, and 128GB of memory.

19

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

F.2. Baseline Descriptions

We introduce the compared baselines, which cover the most perspectives of VNE solving strategies:

• NRM-VNE (Zhang et al., 2018) is a node ranking-based heuristic method. It first uses a Node Resource Management
(NRM) metric to rank both virtual and physical nodes and employs a greedy matching approach for node mapping.
Then, for link mapping, this method utilizes the k-shortest path algorithm, similar to our approach.

• GRC-VNE (Gong et al., 2014) is a node ranking-based heuristic method. It sorts nodes with a Global Resource Control
(GRC) strategy based on random walk and maps them accordingly. Then, it conducts the link mapping using k-shortest
path algorithm.

• NEA-VNE (Fan et al., 2023) is a node ranking-based heuristic that employs a Node Essentiality Assessment (NEA)
metric to rank nodes and follows a similar mapping as NRM-VNE and GRC-VNE.

• GA-VNE (Zhang et al., 2019) is a meta-heuristic method based on genetic algorithms. It models each node mapping
solution as a chromosome and iteratively explores the solution space by simulating the process of natural selection and
genetic evolution.

• PSO-VNE (Jiang & Zhang, 2021) is a meta-heuristic method that employs particle swarm optimization. It explores the
VNE solution space by simulating the behavior of particles.

• MCTS-VNE (Haeri & Trajković, 2017) is a model-based RL method. It utilizes the Monte Carlo Tree Search (MCTS)
algorithm to explore possible solutions with upper confidence bound strategies.

• PG-CNN (Zhang et al., 2022) is a model-free RL method. It models the solution construction of each VNE instance as
MDP. Then, it develops a policy network with Convolutional Neural Network (CNN) and trains it using the Policy
Gradient (PG) algorithm. To avoid unnecessary failure during action selection, a mask vector is applied to ensure that
only physical nodes with sufficient computing resources are selected. Specifically, during training, only samples related
to feasible solutions are used for optimization.

• DDPG-ATT (He et al., 2023a) is a model-free RL method that builds an ATTention-based (ATT) policy network and
uses the Deep Deterministic Policy Gradient (DDPG) algorithm for training.

• A3C-GCN (Zhang et al., 2024b) is a model-free RL method. It constructs a policy network with a Graph Convolutional
Network (GCN) and a Multi-Layer Perceptron (MLP). The Asynchronous Advantage Actor-Critic (A3C) algorithm is
used for training. It also adopts the masking mechanism in action probability distribution for only selecting physical
nodes with enough computing resources/ Particularly, during training, if encountering failure samples, customized
negative rewards are returned. It also uses the probability distribution action masking mechanism. Similar to A3C-GCN,
it introduces the penalty into reward shaping.

• GAL-VNE (Geng et al., 2023) is a model-free RL method that formulates VNE into both Global learning across
requests And Local prediction within requests (GAL). It first uses supervised learning to develop a GNN policy to
solve VNE in one shot. Then, in online perspective, they use RL to finetune this policy to improve overall performance.

Regarding the baseline implementation, we use the official code of GAL-VNE and reproduce DDPG-ATT following the
original paper. For the other baselines, we derive their implementations from the Virne1 library. Furthermore, for their
hyperparameter settings, we follow the original papers for heuristic baselines. For RL-based baselines, we set the same
hidden size of their neural networks as us and other hyperparameters according to their original papers. In the link mapping
process, all baselines use the same k-shortest path algorithm as ours.

F.3. Variations Descriptions

To verify the individual performance contributions of each CONAL’s components, we design the following variations as
additional baselines:

1https://github.com/GeminiLight/virne

20

https://github.com/GeminiLight/virne

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

• CONALw/o HM discards the proposed heterogeneous modeling (HM) module. Instead, it independently extracts the
features of VN and PN using GAT. The global representation of VN is obtained using the sum pooling method. Then,
we produce the final node representation of PN by adding this global representation, which is enhanced with the
path-bandwidth contrast module and used to produce the final action probability distribution.

• CONALw/o PC removes the proposed path-bandwidth contrast (PC) module.

• CONALw/o HM & PC omits both the HM and PC modules, utilizing independent feature extractions of VN and PN and
an addition-based fusion method, same as CONALw/o HM.

• CONALw/o REACH replaces our reachability-guided optimization objective (i.e., Eq. 3) with the traditional cumulative
cost optimization objective (i.e., Eq. 2), which restricts expected cumulative costs below zero. It extend the proposed
adaptive reachability budget, i.e., Eq. 5, to calculate adaptive cost budget, defined as follows:

∀s ∈ τ,Dπ′

c (s) =
∑
s′∈τ ′

C(s′). (27)

• CONALw/o ARB removes the proposed adaptive reachability budget (ARB) and uses zero as a fixed reachability budget.

F.4. Metric Definitions

We provide detailed definitions of key evaluation metrics that are widely used to evaluate the effectiveness of VNE algorithms
comprehensively (Fischer et al., 2013; Yan et al., 2020):

• VN Acceptance Rate (VN ACR) measures the proportion of VN requests that are successfully accepted by the system.
It evaluates the ability of network provider to satisfy user service requests, defined as

VN ACR =

∑T
t=0 |Ĩ(t)|∑T
0 |I(t)|

, (28)

where I(t) and Ĩ(t) denote the set of totally arrived and accepted VNE instances at the unit of time slot t. The
operation |I| means the number of VN requests in the set I.

• Long-term Revenue (LT REV) evaluates the total revenue generated over a specified period, serving as an indicator of
the financial gains derived from the VN requests processed by the system. It reflects the economic impact of decisions
on network operations.

LT REV =

T∑
t=0

∑
I∈Ĩ(t)

REV(E)×ϖ, where E = fG(I). (29)

Here, ϖ the lifetime of the tackled VN Gv , where I = {Gv, Gp}.

• Long-term Revenue-to-Consumption Ratio (LT R2C) quantifies the economic efficiency of the system by comparing
the revenue generated to the resources consumed. It offers insights into the operational cost-effectiveness of the VNE
solutions implemented.

LT R2C =

∑T
t=0

∑
I∈Ĩ(t) REV(E)×ϖ∑T

t=0

∑
I∈Ĩ(t) CONS(E)×ϖ

, where E = fG(I). (30)

• Average Solving Time (AVG ST) measures the computational efficiency of VNE algorithm in online inference. We
define it as the average wall-clock time required to solve a single instance during one simulation, and use second (s) as
the time unit.

• Constraint Violation (C VIO) assesses the constraint satisfaction ability of the VNE algorithm, which is used to
compare the constraint awareness of CONAL and its variations. It is defined as cumulative constraint violations over
all VNE instances in one simulation:

C VIO =

T∑
t=0

∑
I∈(I(t)−Ĩ(t))

∑
s∼τ

C(s), (31)

21

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

0.14 0.18 0.22 0.26
 for Training

0.65

0.70

0.75

0.80

0.85
V

N
_R

A
C

(a) VN_RAC vs.

CONAL CONAL wo ARB A3C-GCN

0.14 0.18 0.22 0.26
 for Training

0.45

0.50

0.55

0.60

0.65

LT
_R

2C

(b) LT_R2C vs.

0.14 0.18 0.22 0.26
 for Training

7

8

9

10

LT
_R

EV
 (×

10
7)

(c) LT_REV vs.

Figure 4: Results on testing performance (η = 0.14) of algorithms trained under different average arrival rate η.

0 100 200 300
Update Steps

0.4

0.5

0.6

Av
er

ag
e

R
ew

ar
d

(a) Learning curves

CONAL
CONAL w/o ARB

0 100 200 300
Update Steps

0

10

20

30

40

La
gr

an
ge

 m
ul

tip
lie

r

(b) Lagrange multiplier convergence

CONAL
CONAL w/o ARB

Figure 5: Training convergence curves of reward and Lagrange multiplier (η = 0.26 for training).

where τ is the trajectory produced by the policy π with greedy selection and C(s) is the caused violations in state s.∑
s∼τ C(s) means the sum of violations in the trajectory τ .

G. Addtional Evaluation
In this section, we present additional experiments to evaluate the training stability, generalizability, scalability, and
practicability of CONAL, as well as investigate the impact of two key hyperparameters.

G.1. Training Stability Study

To study the training stability of CONAL, we first provide an analysis of how different training conditions impact testing
performance. Then, we dive into the convergence comparison between CONAL and CONALw/o ARB.

Training Conditions vs. Testing Performance Analysis. Similar to our preliminary study in Appendix C, we further
explore the impact of training conditions on CONAL performance. We train CONAL, CONALw/o ARB and A3C-GCN under
different arrival rates λ of VN requests from 0.14 to 0.26, as higher arrival rates increase the frequency of unsolvable
instances. After training, we evaluate the models using a fixed arrival rate of λ = 0.14 with a random seed of 0 as the
benchmark. The results are shown in Figures 4(b)(c)(d). We observe that as the arrival rate λ of training conditions increases,
CONAL maintains a more stable testing performance while CONALw/o ARB and A3C-GCN shows an noticeable decline.
Specifically, when trained under λ = 0.26, which includes more unsolvable instances, two metrics (VN RAC and LT REV)
of CONALw/o ARB even perform worse than A3C-GCN, which incorporates a penalty in the reward function. This may be
because, while CONALw/o ARB can perceive fine-grained constraints and aims to achieve zero violation, without the ARB
module and the penalty in the reward function, it struggles to handle the increased number of failure samples caused by
unsolvable instances effectively. This analysis shows that CONAL with the proposed ARB module is more stable in learning
a high-quality policy by efficiently handling unsolvable instances and perceiving complex constraints.

Training Convergence Analysis. To investigate the training convergence of CONAL and CONALw/o ARB, particularly
training with a high proportion of unsolvable instances, we conduct experiments with an arrival rate η = 0.26 for VN
requests on WX100, which corresponds to a scenario with more unsolvable instances. During training, we monitor both
reward and Lagrange Multiplier over 300 training steps. (a) Learning Curve Comparison. We first compare the learning

22

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

0.08 0.12 0.16 0.20
Average Arrival Rate

0.5

0.6

0.7

0.8

0.9

1.0

V
N

_A
C

R

(a) VN Acceptance Rate

NRM-VNE
GRC-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0.08 0.12 0.16 0.20
Average Arrival Rate

0.45

0.50

0.55

0.60

0.65

LT
_R

2C

(b) Long-term R2C Ratio

0.08 0.12 0.16 0.20
Average Arrival Rate

0.50

0.75

1.00

1.25

1.50

LT
_R

EV

1e8

(c) Long-term Revenue

Figure 6: Results in the sensitivity study on varying average arrival rate η.

0 2500 5000 7500 10000
Simulation Time

0.5

0.6

0.7

0.8

0.9

1.0

V
N

_A
C

R

(a) VN Acceptance Rate

NRM-VNE
GRC-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0 2500 5000 7500 10000
Simulation Time

0.5

0.6

0.7

0.8

0.9

LT
_R

2C

(b) Long-Term R2C Ratio

0 2500 5000 7500 10000
Simulation Time

0.00

0.25

0.50

0.75

1.00

1.25

LT
_R

EV

1e8

(c) Long-Term Revenue

Figure 7: Results in the dynamic request distribution testing. The gray vertical lines roughly partition the request processing stages into
four groups with different distributions.

curves of CONAL and CONALw/o ARB, depicted in Figure 5(a). We observe that compared to CONALw/o ARB fluctuates
during the training process, CONAL exhibits greater stability and converges to better performance This stability and superior
performance are attributed to our adaptive reachability budget method, which effectively addresses unsolvable instances
during training, thus enhancing overall training stability and mitigating negative impact on performance. (b) Convergence
Analysis of Lagrange Multiplier. As shown in Figure 5(b), the results reveal a clear distinction in the convergence behavior
of λ. Without ARB, λ diverges rapidly to extreme values. This divergence reflects instability in the optimization process
and leads to unreliable policy updates. In contrast, CONAL with ARB effectively stabilizes λ throughout training, close to a
small value. By dynamically adjusting the feasibility budget, ARB mitigates the impact of unsolvable instances, ensuring
stable training even under challenging conditions. These findings demonstrate the crucial role of ARB module in preventing
numerical instability and enabling robust policy learning in scenarios with high unsolvability.

G.2. Generalizability Study

To evaluate the robustness and adaptability of CONAL’s trained policy across various network conditions, we conduct a
series of experiments to test its generalizability in different dynamic and fluctuating environments, i.e., under varying request
frequencies and changing resource demands.

Request Frequency Sensitivity Study. We analyze the sensitivity of CONAL and other VNE algorithms to varying arrival

23

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

0.5

0.6

0.7

0.8

0.9

V
N

_A
C

R

(a) VN Acceptance Rate

GRC-VNE
NRM-VNE

NEA-VNE
GA-VNE

PSO-VNE
MCTS-VNE

PG-CNN
DDPG-ATT

A3C-GCN
GAL-VNE

CONAL

0.50

0.55

0.60

0.65

LT
_R

2C

(b) Long-term R2C Ratio

N
R

M
-V

N
E

G
R

C
-V

N
E

N
EA

-V
N

E

G
A

-V
N

E

PS
O

-V
N

E

M
C

TS
-V

N
E

PG
-C

N
N

D
D

PG
-A

TT

A
3C

-G
C

N

G
A

L-
V

N
E

C
O

N
A

L

1

2

3

4

LT
_R

EV

(c) Long-term Revenue

N
R

M
-V

N
E

G
R

C
-V

N
E

N
EA

-V
N

E

G
A

-V
N

E

PS
O

-V
N

E

M
C

TS
-V

N
E

PG
-C

N
N

D
D

PG
-A

TT

A
3C

-G
C

N

G
A

L-
V

N
E

C
O

N
A

L

10 1

100

101

102

R
_T

IM
E

(d) Average Solving Time (s)
Figure 8: Results in scalability validation.

rates of VN requests by adjusting the value of η. This manipulation simulates different network system scenarios with
varying traffic throughputs. Specifically, we conduct experiments with η values ranging from 0.08 to 0.20, in increments of
0.02. The results are illustrated in Figure 6. As request frequency η increases, we observe all algorithms exhibit a clear
downward trend in VN ACR. This is mainly because the increase in request frequency intensifies resource competition
among VN requests at the same moment, resulting in more rejections of VNs. In particular, CONAL consistently outperforms
the compared baseline algorithms across all tested values of η. This indicates that CONAL is more effective and adaptable
to changes in request frequency, maintaining superior performance. Overall, this analysis highlights the effectiveness of
CONAL in handling complex network environments with fluctuating traffic throughput.

Dynamic Request Distribution Testing. In practical scenarios, the node size and resource requirements distributions of
VN requests may vary due to different service demands. To simulate such situations, similar to previous work (Geng et al.,
2023), we equally divided 1000 VN requests into four sub-groups. In comparison to the default simulation settings, we
modified one parameter related to the distribution of VN resource demand or VN node size for each sub-group: For the first
group, the node and link resource distributions of VN are changed to [0, 30] and [0, 75], respectively; For the second group,
the node and link resource distributions of VN are adjusted to [0, 40] and [0, 100], respectively; For the third group, the VN
node size distribution is changed to [2, 15]; For the fourth group, the VN node size distribution is altered to [2, 20]. We
evaluate the CONAL and other RL-based methods trained in the default settings. The results are illustrated in Figure 7. We
observe that CONAL exhibits superior performance across all metrics, indicating its strong adaptability to dynamic request
distributions. Regarding the VN ACR, all algorithms experience a rapid decrease in the early stages of the simulation due to
the quick consumption of resources. Subsequently, their VN ACR becomes relatively stable. It is worth noting that in the
fourth stage, most algorithms show a clear downward trend in VN ACR. This is because embedding larger VNs with more
complex topologies and greater resource demands becomes increasingly challenging. This testing shows that CONAL is
highly adaptable across varying VN request distributions, which underscores CONAL’s generalization in dynamic systems.

24

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

G.3. Scalability Analysis

In this section, we assess the scalability of CONAL by exploring its performance in large-scale network environments and
its time consumption to adapt to varying network sizes.

Large-scale Network Validation. Similar to previous work (Wang et al., 2023), we generate a random Waxman topol-
ogy (Waxman, 1988) with 500 nodes and nearly 13,000 links, named WX500. This mimics the modern large-scale cloud
cluster, which is more challenging due to the increased complexity of the topology. Additionally, we increase the VNE size
distribution to a uniform range from 2 to 20 nodes, and set the arrival rate of VN requests η to 0.5. All other simulation
and hyperparameter settings remain consistent with those outlined in Section 4.1. To adapt the pretrained CONAL model
for WX100 to this larger scenario, we fine-tune it on WX500 via transfer learning. The pretraining on WX100 takes
approximately 7.274 hours, and the fine-tuning stage on WX500 consumes an additional 4.326 hours. By leveraging transfer
learning, we accelerate the training efficiency of CONAL, facilitating the rapid acquisition of a CONAL model suitable for
large-scale scenarios. The results are illustrated in Figure 8. We observe that CONAL consistently outperforms the baselines
in terms of both VN ACR and LT REV. CONAL also demonstrates superior performance in the LT R2C, which is only
marginally lower than NEA-VNE. Regarding the AVG ST, NEA-VNE, MCTS-VNE, and PSO-VNE exhibit significantly
higher time consumption, whereas CONAL maintains a competitive running efficiency similar to PG-CNN, A3C-GCN, and
DDPG-ATT. Despite the increased complexity of the WX500 topology, CONAL maintains a balance between performance
and computational efficiency. This analysis shows the scalability and efficiency of CONAL in large-scale network scenarios.

200 400 600 800 1000
Size of Physical Network

0

50

100

150

200

250

300

Av
er

ag
e

So
lv

in
g

Ti
m

e
(s

)
NRM-VNE
GRC-VNE
NEA-VNE
GA-VNE
PSO-VNE
MCTS-VNE
PG-CNN
DDPG-ATT
A3C-GCN
GAL-VNE
CONAL

Figure 9: Solving Time Scale with Network Size.

Solving Time Scale Analysis. We investigate solving
time across different physical network sizes to evaluate
CONAL’s time scalability. Specifically, we increase the
size of physical networks from 200 to 1,000 nodes with a
step of 200 to simulate networks of varying scales. Due
to enough link connectivity of large-scale network sys-
tems, we set the maximum path length k to 4. Figure 9
shows that as the size increases, NRM-VNE, GRC-VNE
and GAL-VNE show the most sightly increased average
solving time. In contrast, PSO-VNE and GA-VNE expe-
rience rapid growth in solving time due to their reliance
on extensive search. CONAL exhibits a similar trend with
A3C-GCN and DDPG-ATT, since they are all based on
constructive solution paradigms. As the size of the physi-
cal network increases, the solution time of these algorithms
does not explode, still competitive with MCTS and NEA-
VNE. Overall, the solving time of CONAL remains efficient even at larger network scales while offering great performance,
making it a viable solution for real-time decision-making in large-scale environments.

G.4. Real-world Network Topology Validation

To verify the effectiveness of our proposed algorithm in real-world network systems, we conducted experiments on realistic
network topologies. Similar to previous works (He et al., 2023a; Wang et al., 2023), we employed two widely-used
topologies from SDNlib2:

• GEANT is the academic research network that interconnects Europe’s national research and education networks,
comprising 40 nodes, 64 edges, and a density of 0.0821.

• BRAIN is the largest real-world network topology in SDNlib, consisting of 161 nodes and 166 edges with a density of
0.0129. It is the high-speed data network for scientific and cultural institutions in Berlin.

Due to the limited resource supply in these topologies, we adjust the average arrival rate η of VN requests to 0.0005
in GEANT and 0.001 in BRAIN. We keep other network system simulation parameters as same as those discussed in
Section 4.1. As shown in Table 3, CONAL outperforms all baselines across both network systems in terms of performance
metrics. Notably, in the sparser BRAIN topology, RL-based VNE algorithms (e.g., A3C-GCN and GAL-VNE) performed

2https://sndlib.put.poznan.pl

25

https://sndlib.put.poznan.pl

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

Table 3: Results in real-world system validation.

GEANT BRAIN
VN ACR ↑ LT R2C ↑ LT REV ↑ VN ACR ↑ LT R2C ↑ LT REV ↑

NRM-VNE (Fan et al., 2023) 0.568 0.626 4.169 0.627 0.696 5.189
GRC-VNE (Gong et al., 2014) 0.396 0.574 2.276 0.644 0.652 5.725
NEA-VNE (Fan et al., 2023) 0.739 0.628 7.525 0.656 0.682 5.907
GA-VNE (Zhang et al., 2019) 0.585 0.592 4.362 0.450 0.550 2.512

PSO-VNE (Jiang & Zhang, 2021) 0.525 0.504 3.729 0.415 0.475 2.164

MCTS-VNE (Haeri & Trajković, 2017) 0.573 0.524 4.443 0.494 0.566 2.733
PG-CNN (Zhang et al., 2022) 0.639 0.576 5.712 0.538 0.651 3.804
DDPG-ATT (He et al., 2023a) 0.625 0.533 5.449 0.572 0.657 4.326

A3C-GCN (Zhang et al., 2024b) 0.747 0.692 8.135 0.577 0.715 4.473
GAL-VNE (Geng et al., 2023) 0.804 0.613 9.915 0.591 0.729 4.922

CONAL 0.916 0.761 11.946 0.683 0.835 6.339
∗ Values in the LT REV column are scaled by 107.

Table 4: Experimental results on the variation of latency-aware VNE.

VN RAC ↑ LT R2C ↑ LT REV (×107) ↑
NRM-VNE (Fan et al., 2023) 0.655 ± 0.017 0.469 ± 0.005 7.168 ± 0.091

GRC-VNE (Gong et al., 2014) 0.454 ± 0.028 0.509 ± 0.008 5.281 ± 0.281
NEA-VNE (Fan et al., 2023) 0.714 ± 0.014 0.574 ± 0.006 8.186 ± 0.120
GA-VNE (Zhang et al., 2019) 0.717 ± 0.022 0.528 ± 0.004 7.712 ± 0.073

PSO-VNE (Jiang & Zhang, 2021) 0.709 ± 0.020 0.465 ± 0.003 7.457 ± 0.141

MCTS-VNE (Haeri & Trajković, 2017) 0.676 ± 0.017 0.489 ± 0.005 6.882 ± 0.102
PG-CNN (Zhang et al., 2022) 0.659 ± 0.019 0.500 ± 0.004 7.026 ± 0.146
DDPG-ATT (He et al., 2023a) 0.672 ± 0.024 0.477 ± 0.005 7.541 ± 0.096

A3C-GCN (Zhang et al., 2024b) 0.724 ± 0.020 0.552 ± 0.007 8.222 ± 0.125
GAL-VNE (Geng et al., 2023) 0.692 ± 0.028 0.567 ± 0.013 7.403 ± 0.345

CONAL 0.781 ± 0.027 0.604 ± 0.009 9.458 ± 0.161

worse compared to node ranking-based methods (e.g., GRC-GCN and NEA-VNE). The increased challenge of satisfying
routing constraints in sparser topologies likely accounts for this performance discrepancy. These RL-based methods with
less constraint awareness, result in a low solution feasibility guarantee and tend to exhibit lower performance. Meanwhile,
CONAL still achieves the best performance, showing its effectiveness in these real-world network topologies.

G.5. Extension to Latency-aware VNE

In edge computing, latency is an additional quality of service (QoS) requirement, leading to a variant of VNE, known as
latency-aware VNE. This variant incorporates latency constraints in addition to traditional VNE requirements. Specifically,
a constraint is introduced for link mapping, where the total latency of the physical links in a path pp = fL(lv) routing virtual
link lv must not exceed the latency requirement of lv . If any virtual link fails to meet its latency requirement, the VN request
is rejected. Similar to previous studies (Jin et al., 2020; Adoga & Pezaros, 2023), we randomly assign coordinates to each
physical node in the WX100 topology used in the main experiments, where each node represents a network edge. The
latency for each physical link is then calculated based on the distance between paired physical nodes, and is normalized to a
range of [0, 100] ms. For each VN request, the latency requirements of its virtual links are uniformly distributed within the
range of [100, 500] ms. All other experimental settings remain consistent with those in the main experiments. To optimize
these multi-type constraints, CONAL employs separate Lagrange multipliers for both resource and latency constraints,
which are simultaneously managed by the neural lambda network Λ.

Table 4 presents the experimental results in latency-aware VNE. We observe that CONAL significantly outperforms all
baseline methods, achieving the highest VN RAC (0.781), LT R2C (0.604), and LT REV (9.458). Notably, the performance

26

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

0 10 20 30
0.70

0.75

0.80

0.85

V
N

_A
C

R

(a) VN Acceptance Rate

0 10 20 30
0.55

0.60

0.65

LT
_R

2C

(b) Long-term Revenue

0 10 20 30
8.0

8.5

9.0

9.5

10.0

10.5

LT
_R

EV

(c) Long-term R2C Ratio

Figure 10: The impact of update interval µ of surrogate policy proposed in the ARB method.

0.0 0.5 1.0 1.5 2.0
0.70

0.75

0.80

0.85

V
N

_A
C

R

(a) VN Acceptance Rate

0.0 0.5 1.0 1.5 2.0
0.55

0.60

0.65

LT
_R

2C

(b) Long-term Revenue

0.0 0.5 1.0 1.5 2.0
8.0

8.5

9.0

9.5

10.0

10.5

LT
_R

EV

(c) Long-term R2C Ratio

Figure 11: The impact of augument ratio ϵ used in the path-bandwidth contrast module.

of GAL-VNE drops dramatically compared to the main experiment, even performing worse than the heuristic NEA-VNE.
This is primarily because GAL-VNE relies on a one-shot solving paradigm and cannot effectively manage procedural
delay constraints. In contrast, CONAL consistently maintains superior performance, thanks to its constraint-aware graph
representation and adaptive optimization techniques, which balance both resource and latency constraints. These results
highlight CONAL’s robust handling of complex edge computing scenarios for latency-aware VNE, making it an extensible
solution for variations in diverse networking paradigms.

G.6. Hyperparameter Impact Study

In this section, we explore the impact of two proposed key hyperparameters on the performance of CONAL, including the
update interval µ of surrogate policy proposed in the ARB method and the augment ratio (ϵ) used in the path-bandwidth
contrast module.

The impact of update interval of surrogate policy. This parameter µ controls the update interval of surrogate policy
π′ during training. We vary µ within the range [1, 5, 10, 20, 30] to explore its impact on key performance metrics, as
shown in Figure 10. We observe that increasing µ initially leads to an improvement in all metrics. This suggests that
extremely frequent updates of the surrogate policy make the budget values change rapidly, potentially leading to instability
and divergence in the learning process. As µ increases beyond nearly 10, the improvements across these metrics tend to be
stable and show minimal variation. This implies that while a moderate update interval enhances the model’s performance,
too-slow updates do not offer a significant further improvement on performance and may even increase computational
overhead for training.

The impact of the augment ratio. This parameter determines the proportion of links to be added based on the number of
nodes in the network. We change the augment ratio ϵ within the range [0, 0.5, 1.0, 1.5, 2.0] and the results are illustrated in
Figure 11. As the augment ratio initially increases from 0 to 1.0, we observe improvements across performance metrics.
However, when the augment ratio is increased beyond 1.0, these improvements become marginal or even negative. This
indicates that excessive enhancement of the graph structure can increase learning difficulty. The increasing disparity between
the enhanced and original graph topologies may also negatively impact performance. This study reveals that a reasonable
augment ratio ϵ benefits the model by improving its sensitivity to bandwidth constraints. However, excessively high ϵ values
provide only slight improvements or can even degrade performance. Generally, setting ϵ = 1.0 or a value close to it provides
a balanced trade-off between performance enhancement and model robustness.

27

Towards Constraint-aware Learning for Resource Allocation in NFV Networks

H. Used Benchmark and Assets
In this work, we list the used assets along with their version and license as follows:

• Virne is a widely-adopted VNE benchmarking library, offering many heuristic and machine learning-based methods
for VNE. The source code can be accessed at https://github.com/GeminiLight/virne. It is licensed under Apache 2.0. In
this work, we derived baseline implementations from Virne and developed our method using this library.

• SNDlib is a well-known library for telecommunication network design, which offers a collection of realistic network
system topologies. This library is open-source and available at https://sndlib.put.poznan.pl, although the specific
licensing terms are not clearly stated. In our real-world network validation (see Appendix G.4), we utilize network
topologies such as GEANT and BRAIN, which are from SNDlib.

28

https://github.com/GeminiLight/virne
https://sndlib.put.poznan.pl

	Introduction
	Problem Definition
	Methodology
	Violation-tolerant CMDP Formulation.
	Reachability-guided Optimization with Adaptive Budget
	Constraint-aware Graph Representation
	Computational Complexity Analysis

	Experiments
	Experimental Settings
	Results and Analysis

	Conclusion
	Related Work
	Problem Formulation
	Optimization Objectives
	Constraint Conditions

	Preliminary Study
	Model Details
	Illustrative Explanation of Prepared Incident Links
	Proof of Lagrange Multiplier Convergence
	Heterogeneous Graph Network
	Barlow Twins Loss Function
	Lagrangian-based PPO Training Method.
	Detailed Analysis of Computational Complexity

	Descriptions of Training and Inference Process
	Training Process of CONAL
	Inference Process of CONAL

	Experimental Details
	Implementation Details
	Baseline Descriptions
	Variations Descriptions
	Metric Definitions

	Addtional Evaluation
	Training Stability Study
	Generalizability Study
	Scalability Analysis
	Real-world Network Topology Validation
	Extension to Latency-aware VNE
	Hyperparameter Impact Study

	Used Benchmark and Assets

