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Abstract

Machine-learned interatomic potentials (MLIPs) promise to significantly advance
atomistic simulations by delivering quantum-level accuracy for large molecular
systems at a fraction of the computational cost of traditional electronic structure
methods. While model hubs and categorisation efforts have emerged in recent
years, it remains difficult to consistently discover, compare, and apply these models
across diverse scenarios. The field still lacks a standardised and comprehensive
framework for evaluating MLIP performance. We introduce MLIPAudit, an open,
curated and modular benchmarking suite designed to assess the accuracy of MLIP
models across a variety of application tasks. MLIPAudit offers a diverse collection
of benchmark systems, including small organic compounds, molecular liquids,
proteins and flexible peptides, along with pre-computed results for a range of
pre-trained and published models. MLIPAudit also provides tools for users to
evaluate their models using the same standardised pipeline. A continuously updated
leaderboard tracks performance across benchmarks, enabling direct comparison
on downstream tasks. By offering a unified and transparent reference framework
for model validation and comparison, MLIPAudit aims to foster reproducibility,
transparency, and community-driven progress in the development of MLIPs for
complex molecular systems. The library is available on GitHub and on PyPI 14
under the Apache license 2.0.

1 Introduction

The accurate prediction of molecular and material properties is a cornerstone of scientific progress
across disciplines, including drug discovery, functional material design, and process chemistry [[1H3]].
Traditionally, this has been done using classical force fields, which enable efficient simulations of
large systems relying on predefined functional forms and parameters derived from experiments or first-
principles methods [4}l5]. Although computationally inexpensive, classical force fields often struggle
to capture complex chemical interactions or generalise beyond the systems for which they were
parametrised. At the other end of the spectrum, first-principles methods such as density functional
theory (DFT) offer higher accuracy but at significantly greater computational cost, typically limiting
their use to systems with fewer than a few hundred atoms [6} [7]. In recent years, machine-learned
interatomic potentials (MLIPs) have emerged as a compelling middle ground. These models aim to
retain the accuracy of first-principles methods while approaching the efficiency of classical force
fields, by learning the potential energy surface directly from high-level electronic structure data
[8H25]].
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Despite the rapid emergence of diverse MLIP architectures, which have significantly broadened the
scope of atomistic simulations, the field continues to lack a standardised and rigorous framework for
evaluating model performance in downstream applications. Many benchmarks focus on energy and
force errors, which miss aspects like stability, transferability, and robustness. Recent works propose
more holistic evaluations [11} 26434/, which we detail in the Literature Review section. However, all
these studies highlight the need for consistent and reproducible evaluation protocols that go beyond
basic error metrics, aiming to establish benchmarking practices that reflect real-world simulation
demands. Therefore, a universally adopted, comprehensive benchmarking suite that can guide both
model development and deployment remains an open challenge for the community.

To address this gap, we introduce MLIPAudit: an open, curated repository of benchmarks, reference
datasets, and model evaluations for MLIP models applied (in its first version) to the analysis of small
molecules, molecular liquids and biomolecules. MLIPAudit is designed to complement model-centric
testing by shifting the focus to systematic validation and comparison. It provides:

* A diverse set of benchmark systems, including organic small molecules, flexible peptides,
folded protein domains, molecular liquids and solvated systems.

* Pre-computed results for a range of published and pretrained MLIP models, enabling direct,
fair comparisons.

* A continuously updated leaderboard, tracking performance across different tasks.

* A suite of tools for users to submit and evaluate their models within the same benchmarking
pipeline.

By providing a shared reference point for assessing accuracy, robustness, and generalisation, MLIPAu-
dit aims to facilitate transparency, reproducibility, and community-wide progress in the development
and deployment of MLIPs for complex molecular systems.

2 Literature Review

MLIP Audit aims to expand the existing methods and tools for benchmarking MLIPs. To put this
work in context, we summarise current efforts for MLIP benchmarking here.

Static regression metrics: The first and most fundamental level of MLIP evaluation involves the
use of standard regression metrics to quantify a model’s ability to reproduce the reference quantum-
mechanical (QM) data it was trained on. The most common benchmarks in this category are the
root-mean-square-error (RMSE) and mean-absolute-error (MAE) calculated for energies and atomic
forces on a held-out validation dataset [35]]. These benchmarks are routinely reported with the release
of new MLIP models, and state-of-the-art models achieve high accuracy on these tests. Although
benchmarks for atomic energies and forces are a necessary baseline for the interpolation accuracy of
the models, they are insufficient to estimate their practical utility. This is demonstrated, for example,
by Gonzales et al. [36], who found that three models with very similar force validation error show
significant variation in performance on a structural relaxation task.

Assessment of physical and chemical behaviour: Recent MLIP benchmarks generally accompany
model releases and assess performance on physical and chemical properties using QM or experimental
data, typically tailored to specific use cases. For models trained on small organic molecules, standard
tests include dihedral scans, conformer selection, vibrational frequencies, and interaction energies
[32] 137} 138]. Biomolecular benchmarks cover backbone sampling, water properties, and folding
dynamics [32} 138} 139], while models trained on reactivity data are evaluated on their ability to
reproduce product, reactant, and transition state geometries, as well as reaction pathways via string or
NEB methods [33} 40].

Comparative studies have also emerged, evaluating multiple MLIPs across diverse benchmarks. Fu et
al. [27] propose a suite spanning organic molecules, peptides, and materials, and find that models
with low force errors may still perform poorly on simulation-based metrics like energy conservation
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and sampling. Similarly, Liu et al. [41]] report discrepancies in atom dynamics and rare events, even
for models with strong regression accuracy. These findings reflect a growing consensus that static
error metrics alone are insufficient for evaluating MLIPs, and that dynamic and simulation-based
benchmarks are increasingly essential.

Standardised benchmarks: While a great variety of benchmarks for accurate physical and chemical
properties can be collected from individual model releases and MLIP evaluation studies, a need
remains for standardised benchmarks that can be used to compare models on a level playing field and
get a holistic view of their utility regarding practical tasks.

This gap is addressed by leaderboards and standardised frameworks. MLIP Arena [26] is a leaderboard
based on a benchmark platform focused on physical awareness, stability, reactivity, and predictive
power. The framework comprises a small but well-selected suite of benchmarks that address known
problems like data leakage, transferability, and overreliance on specific errors. Matbench Discovery
[42] features a leaderboard and evaluation framework that is easily extendable to additional models
and focused exclusively on materials science. MOFSimBench [43] is a standardised benchmark
specialised on metal-organic frameworks that highlights simulation metrics and bulk properties.
MLIPX [44] provides a framework with a user-centric perspective, providing a set of reusable recipes
that allow users to compose benchmarks for their specific tasks.

These standardised frameworks are valuable tools to evaluate and compare MLIP models. However,
they are limited to a specific domain of application, employ a small number of benchmarks or require
development by the MLIP user.

3 MLIPAudit Benchmarks

To enable a rigorous and meaningful evaluation of MLIP models, MLIPAudit includes a curated and
modular suite of benchmarks that span a range of molecular systems and complexity levels (Figure
[I). These benchmarks are designed to capture both general-purpose and domain-specific challenges
faced by MLIPs in industrial applications. Benchmark subsets each emphasise different aspects
of model performance, such as elemental molecular dynamics stability, non-covalent interactions,
conformational ranking of small organic compounds, or sampling of rotamers in biomolecules. A
description of the rationale for each benchmark on the different categories is given in Appendix
[Al including: (i) general systems designed for molecular dynamics stability and scaling, (ii) small
molecules relevant to materials chemistry, (iii) molecular liquids, and (iv) biomolecules.

Figure 1: Representative molecular systems spanning increasing levels of structural and environmental
complexity, from isolated dimers and drug-like molecules, to condensed-phase molecular liquids and
folded biomolecules.

We have evaluated the performance of the three graph-based MLIPs provided in the open-source mlip
library [25]: MACE [9]], NequlIP [11]], and ViSNet [39]. All three models were trained on a subset
of the SPICE2 dataset [45], which includes 1,737,896 molecular structures across 15 elements (B,
Br, C,Cl, F, H, I, K, Li, N, Na, O, P, S, Si). From now on, MACE-SPICE2, NequIP-SPICE2 and
Visnet-SPICE2. Training protocols and dataset curation details are available in [25]. Additionally,
we trained a new version of each of these models (MACE-t1x, NequlP-tlx, Visnet-t1x) using 10%
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(randomly sampled) of the original t1x dataset [46], containing a total of one million structures and
four elements (H, C, N, O).

To ensure fair and consistent comparison across models, we define a composite score S, € [0, 1]
that averages soft-thresholded, normalised benchmark metric scores, rewarding models that approach
DFT-level accuracy. Only benchmarks compatible with a model’s element set are included, ensuring
broad applicability without penalising for unsupported systems. For full details, see Appendix [B]

For each benchmark, a set of test cases has been curated (Appendix [C] Table[d). As public datasets
increase, it becomes increasingly challenging to ensure zero overlap between the training data and the
relevant chemistry that one needs to include to ensure the relevance and reliability of the benchmarks.
In Appendix [C} Table[5] we disclose the overlap between the MLIPAudit test cases per benchmark
and the training set for the presented models. In most cases, the overlap is either zero or under 10 %.
But, for the conformer selection benchmark, for which two molecules (adenosine and efivarez) from
the Wiggle150 [47/] dataset were present in the model’s training set. In the following, we will discuss
the different scores and how the overlap may impact ranking.

3.1 Overall ranking

Table [T] highlights the generalisation capabilities of the top-performing models. Visnet-SPICE2 leads
the leaderboard with the highest average score (0.676, followed closely by NequIP-SPICE2 and
MACE-SPICE2. All three models were trained on a diverse dataset and evaluated across all 14
benchmarks. These models consistently perform well across domains, underscoring the benefits of
comprehensive training and robust architectures. However, it is worth noting that model performance
is reflective of training strategy, not solely the model architecture, and it shouldn’t be considered an
assessment of the model architecture.

Table 1: Overall MLIPAudit scores

Rank Model Name Average Score | Benchmarks
1 Visnet-SPICE2 0.676 14/14
2 MACE-SPICE2 0.633 14/14
3 NequIP-SPICE2 0.620 14/14
4 MACE-t1x 0.271 10/14
5 Visnet-t1x 0.270 10/14
6 NequIP-t1x 0.268 10/14

Lower-ranked models, including NequlP-t1x, MACE-tlx, and Visnet-t1x variants, show notably
lower scores and narrower benchmark coverage. However, this performance disparity is expected:
these models were explicitly trained for reactivity-focused tasks using the t1x dataset [46], which
lacks the diversity required to generalise to broader molecular systems. As such, their lower total
scores (e.g., 0.268 for NequlP-t1x, 0.270 for Visnet-t1x) do not necessarily indicate inferior model
design but rather reflect the trade-off between task-specific optimisation and overall versatility.

3.2 Categorical ranking

In Appendix [C} Table [] we summarise our category-based ranking analysis, which further reveals
the specialisation and limitations of each MLIP model across different chemical domains. While
Visnet-SPICE2 continues to lead overall, its performance across specific categories reinforces its
strength in broad generalisation. It ranks first in both Small Molecules and Biomolecules, with high
average scores of 0.578 and 0.727, respectively. Additionally, Visnet-SPICE2 shares the top spot
in Molecular Liquids (with an ideal score of 1.0) alongside MACE-SPICE2, further highlighting
its robust adaptability. NequIP-SPICE2 performs similarly to Visnet-SPICE2 in small molecule
benchmarks. It achieves robust scores in both biomolecular (0.584) and molecular liquid (0.834)
benchmarks, suggesting reliable generalisation across chemically diverse systems, without reaching
Visnet-SPICE?2 performance.
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MACE-SPICE2 displays a similar pattern, achieving high performance in molecular liquid bench-
marks (average score of 1.0) but showing reduced accuracy in the biomolecular category (0.530).
This may reflect limits in capturing the structural and conformational complexity of biomolecules.

The performance of the t1x-trained models (e.g., NequIP-t1x, MACE-t1x, Visnet-t1x) reflects their
intended specialisation. These models were trained primarily for reactivity tasks and, as such,
show reasonable results on small molecule tasks but limited performance in molecular liquids and
biomolecular categories. This outcome aligns with expectations, as the t1x dataset did not include
training data representative of condensed-phase systems or protein environments. In Appendix [C}
Table[8] we have included two Visnet (Visnet-SPICE2-t1x, Visnet-SPICE2-t1x-L) versions trained
with SPICE2 and t1x from the OMOL dataset [40]] and one MACE version (MACE-SPICE2-t1x) in
the Small-molecule category only. These models outperform their other variants with Visnet-SPICE2-
t1x-L leading the category.

3.3 Single benchmark highlighted results
3.3.1 Reactivity benchmarks

The generalist models (Visnet-SPICE2, NequIP-SPICE2, MACE-SPICE2) perform notably worse in
the reactivity task Table[2] It’s worth noting that all models, including the generalists, completed all
test cases (100/100 for the nudge elastic band (NEB) benchmark, ~12000/12000 for the transition-
state-theory (TST) benchmark, indicating that performance differences stem from modelling accuracy
rather than lack of elements in the training set. These results suggest that, in the context of reactivity
benchmarks, domain-specific training still offers a measurable edge, especially when accurate
prediction of reaction energies or barriers is the primary objective. NeuqulP-tlx leads the NEB
benchmark while the new version of Visnet-SPICE2-t1x-L leads the TST benchmark, achieving DFT
accuracy for the prediction of activation energies (Figure 2. Suggesting that the different DFT theory
levels between the original t1x [46] and the OMOL [40] version might play a role too. However, the
relatively modest top scores (e.g., 0.623 for NEB) also indicate room for further improvement, even
among specialised models.

Table 2: Reactivity Benchmarks Ranking

Rank Benchmark Model Name Score | Test Cases
1 Small Molecule Reactivity Neb NequlP-t1x 0.623 100/100
2 Small Molecule Reactivity Neb | Visnet-SPICE2-t1x-L | 0.565 100/100
3 Small Molecule Reactivity Neb | MACE-SPICE2-t1x | 0.462 100/100
4 Small Molecule Reactivity Neb MACE-t1x 0.460 100/100
5 Small Molecule Reactivity Neb Visnet-SPICE2-t1x 0.450 100/100
6 Small Molecule Reactivity Neb Visnet-t1x 0.410 100/100
7 Small Molecule Reactivity Neb NequlP-SPICE2 0.140 100/100
8 Small Molecule Reactivity Neb Visnet-SPICE2 0.100 100/100
9 Small Molecule Reactivity Neb MACE-SPICE2 0.090 100/100
1 Small Molecule Reactivity Tst | Visnet-SPICE2-t1x-L | 0.737 | 11961/11961
2 Small Molecule Reactivity Tst MACE-SPICE2-t1x | 0.574 | 11961/11961
3 Small Molecule Reactivity Tst Visnet-SPICE2-t1x 0.416 | 11961/11961
4 Small Molecule Reactivity Tst NequlP-t1x 0.402 | 11961/11961
5 Small Molecule Reactivity Tst MACE-tlx 0.381 | 11961/11961
6 Small Molecule Reactivity Tst Visnet-t1x 0.361 | 11961/11961
7 Small Molecule Reactivity Tst MACE-SPICE2 0.248 | 11961/11961
8 Small Molecule Reactivity Tst Visnet-SPICE2 0.246 | 11961/11961
9 Small Molecule Reactivity Tst NequlP-SPICE2 0.237 | 11961/11961

As shown in Figure[2] all t1x-trained models outperform general-purpose MLIPs, while generalist
models (e.g., Visnet-SPICE2, MACE-SPICE2) show much larger errors, especially for activation
energies. These results reinforce the value of domain-specific training, though even top models leave
room for improvement.



186

187
188
189
190
191
192
193
194

195
196
197
198
199
200

201

202

204
205
206
207

209
210
211

212
213
214

Grambow 008805 Reactivity MAE Comparison

-~ DFT Threshold (EA: 3 kcal/mol)
DFT Threshold (DH: 2 kcal/mol)

304 mmm Activation Energy (EA)

Enthalpy of Reaction (DH)

26.2

Relative En:
N
S

T T T
Reactants Transition State Products
Reaction Stage

Grambow 000433

3
[kcal/mol]
-
]
S

100 = e

60
40
204

Relative Energy

o T T T
Reactants Transition State Products
Reaction Stage

== Reference (DFT) - MACE-t1x MACE-SPICE2-t1x &
—— NequlPSPICE2  —— NequiP-t1x Visnet-SPICE2-t1x ¢

Visnet-SPICE2 Visnet-t1x Visnet-SPICE2-t1x-L Model
—— MACE-SPICE2

Figure 2: Reactivity benchmark performance. (a—b) Reaction energy profiles for two Grambow
reactions (IDs 008805 and 000433) [48]] MLIP predictions to DFT references. (c) MAEs for activation
energies (EA) and reaction enthalpies across the benchmark.

3.3.2 Molecular liquids benchmark: water radial distribution function

Having a closer look at the single benchmarks, the water radial distribution function (RDF) benchmark
provides a compelling illustration of the strengths of MLIPs over traditional force fields. As shown in
Appendix[C] Figure[6] all three MLIP models, MACE-SPICE2, Visnet-SPICE2, and NequIP-SPICE2,
reproduce the experimental RDF profile with high fidelity across the full radial range, accurately
reproducing both the first solvation shell peak and subsequent oscillations. In contrast, TIP3P and
TIP4P [49]], two of the most widely used classical water models, show notable deviations, particularly
in the overstructured and exaggerated height of the first peak, a known artefact in rigid water models
[50].

This alignment between MLIP predictions and experimental data strongly supports the notion that
learned potentials, trained on accurate quantum data, can capture the subtle balance of hydrogen
bonding and thermal fluctuations that define liquid water structure, without the need for hand-tuned
parameterisation. This not only reflects the higher representational capacity of MLIPs but also
demonstrates their ability to generalise to bulk-phase properties, a capability that classical force fields
struggle to match without introducing complex polarizable terms or many-body corrections.

3.3.3 Small molecules benchmarks: dihedral scans

The dihedral scan benchmark highlights another area where MLIP models show outstanding agree-
ment with quantum reference data. As shown in Figure 3] the energy profiles predicted by all MLIP
models align nearly perfectly with DFT-calculated torsional energy curves across a representative
scan. This agreement is not only qualitative—preserving the positions and heights of barriers, but
also quantitatively precise, with RMSE values all well below the 1.0 kcal/mol DFT-level convergence
threshold. This strong performance is further reflected in the ranking table (Appendix [C} Table[8),
where Visnet-SPICE2 and Visnet-SPICE2-t1x-L lead the benchmark scoring ~1.0, followed closely
by NequlIP-SPICE2 and MACE-SPICE2, MACE-SPICE2-t1x. Notably, all models completed the
full set of 500 fragments, demonstrating not only accuracy but robustness and generalisability across
a diverse chemical space.

The error bars shown on the right panel of Figure [3] underscore how consistent the models are,
with MAE values under 0.12 kcal/mol for all methods—well within chemical accuracy. MLIPs
outperform classical parameters like GAFF2 [51]. These results validate the capability of current
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Figure 3: Dihedral scan benchmark. (a) Dihedral energy profiles for fragment 015 compared to DFT
reference values. (b) MAE and RMSE for each model. DFT-level error threshold (red dashed line).

MLIPs to accurately model intramolecular potential energy surfaces, a critical requirement for reliable
conformational sampling, molecular docking, or pharmacophore prediction.

Taken together, this benchmark provides a clear example of how MLIPs can match DFT accuracy at a
fraction of the computational cost, making them practical for high-throughput screening or molecular
simulations involving flexible, drug-like molecules.

3.3.4 Small molecules benchmarks: conformer ranking

Figure[d]presents model performance on the conformer benchmark, showing MAE values by molecule
for three general-purpose MLIPs: NequIP-SPICE2, Visnet-SPICE2, and MACE-SPICE2. All models
were trained on datasets that included adenosine (ADO) and efavirenz (EFA), while benzylpenicillin
(BPN) was excluded from training and thus acts as a stronger generalisation test.

Conformer Benchmark: MAE by Molecule
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Figure 4: Conformer selection benchmark across three pharmaceutically relevant molecules: adeno-
sine (ADO), benzylpenicillin (BPN), and efavirenz (EFA). MAE is computed with respect to DFT
reference conformer energies. DFT threshold (red dashed line at 0.5 kcal/mol). Insets depict repre-
sentative 3D conformers for each molecule.

Despite having seen ADO and EFA during training, none of the models reach the DFT-level MAE
threshold of 0.5 kcal/mol, pointing to persistent difficulty in accurately ranking conformers. ADO is
best predicted, while EFA shows higher errors due to its flexibility. BPN, which was unseen during
training, is the most challenging, though MACE-SPICE?2 shows slightly better generalisation. All
models outperform GAFF2 [51]], especially on EFA. Still, as seen in Appendix [C| Figure[7] predicted
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vs. DFT energy plots show strong agreement and near-perfect Spearman correlations across all
molecules.

This consistency suggests that while the models may struggle to reproduce exact conformer energy
magnitudes (as seen in the MAE analysis), they are highly effective at preserving the correct energetic
ordering. In practical applications like conformer selection or ranking, such ordinal accuracy can
be more important than precise energetic reproduction, particularly when used in combination with
scoring functions or downstream screening.

Interestingly, the performance gap between in-training-set molecules (ADO, EFA) and the out-of-
distribution case (BPN) is far less pronounced here than in absolute MAE terms—highlighting that
model generalisation, at least in terms of correlation, is relatively robust. These findings reinforce
the importance of using multiple complementary metrics (e.g., MAE and rank correlation) when
evaluating MLIP performance for conformational energetics.

3.3.5 Biomolecules benchmarks

The biomolecules benchmark (Appendix [C] Table [6) provides a fitting conclusion to our compre-
hensive assessment, highlighting the capacity of MLIP models to operate effectively in complex,
biologically relevant regimes. All top models successfully completed the protein folding stability
benchmark (6/6 test cases, see Appendix @) all models achieve similar scores ~0.525, but there
is room for improvement. This level of agreement underscores the growing maturity of MLIPs
for macromolecular tasks. The Protein Sampling benchmark across different MLIP models shows
that models trained on the SPICE2 dataset (e.g., Visnet-SPICE2, NequIlP-SPICE2, MACE-SPICE2)
significantly outperform their t1x-trained counterparts, with Visnet-SPICE2 achieving the highest
score (0.928) and full coverage (12/12 systems). Taken together, the results from this and all previous
benchmarks reinforce a central conclusion: while task-specific training offers advantages in spe-
cialised domains, the leading generalist models demonstrate strong, transferable performance across
molecular scales and properties, setting the stage for robust deployment in real-world chemistry and
biology applications.

3.4 Conclusions and future outlook

The MLIPAudit suite provides a comprehensive and diverse evaluation framework for MLIPs,
spanning small-molecule geometrical and conformational energetics, reactivity, molecular liquids,
and biomolecular stability and sampling. Our results show that while specialised models trained on
the t1x dataset excel in targeted tasks such as reaction barrier prediction, general-purpose architectures
like Visnet-SPICE2, NequIP-SPICE2, and MACE-SPICE2 exhibit strong and transferable accuracy
across a wide range of benchmarks, often surpassing classical force fields and closely matching
DFT reference data in others. Notably, the Visnet model trained on SPICE2 and t1x from the
OpenMolecules (OMOL) dataset leads the small-molecule benchmarks, highlighting the promise
of hybrid training strategies and possibly reflecting the importance of the underlying level of theory
used in data generation.

Despite this progress, performance gaps persist, especially in condensed-phase systems and energeti-
cally subtle regimes, indicating that further improvements are needed. Looking ahead, we plan to
expand the MLIPAudit suite with new test cases targeting larger, more complex systems, as well as
emerging tasks such as vibrational frequencies and binding free energies. We also aim to include
newly released open-source models to keep the benchmark current and representative. By continually
broadening the scope and complexity of MLIPAudit, we hope to accelerate the development of MLIPs
that are not only accurate but also general, scalable, and ready for real-world deployment across the
chemical sciences.
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A Benchmarks overview

Each benchmark in MLIP-Audit includes a brief introduction that outlines its purpose, helping
users understand the relevance of the task and how it reflects molecular challenges. A link to the
documentation is provided for users who want a deeper explanation of the benchmark’s design,
scientific context, datasets and implementation details. A description of each benchmark’s dataset can
be found in Appendix|C} Table[d This is followed by key performance metrics for the best-performing
model, along with a summary of results across all analysed MLIP models. Depending on the nature
of the benchmark, additional visualisations may be included, such as radial distribution functions for
molecular liquids or torsion energy profiles for small molecules, which users can explore interactively
or download for further analysis (Figure [3)).

In the following subsections, we describe the composition, rationale, and evaluation criteria for each
benchmark category: (i) general systems designed for molecular dynamics stability and scaling, (ii)
small molecules relevant to pharmaceutical and materials chemistry, and (iii) biomolecules, which
pose unique challenges due to their size, flexibility, and hierarchical structure.

A.1 General benchmarks

The general benchmarks implemented in MLIP Audit are system-agnostic and focus on fundamental
molecular dynamics (MD) stability and performance metrics that are applicable across molecular
systems. Two benchmarks are included in this category:
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Figure 5: MLIPAudit interface

* Stability: assesses the dynamical stability of an MLIP during an MD simulation for a
diverse set of large biomolecular systems. For each system, the benchmark performs an MD
simulation using the MLIP model in the NVT ensemble at 300 K for 100,000 steps (100 ps),
leveraging the jax-md engine, as integrated via the mlip library[23]]. The test monitors the
system for signs of instability by detecting abrupt temperature spikes (“explosions”) and
hydrogen atom drift. These indicators help determine whether the MLIP maintains stable
and physically consistent dynamics over extended simulation times.

* Inference Scaling: evaluates how the computational cost of an MLIP scales with the system
size. By running single, long MD episodes on a series of molecular systems of increasing
size, we systematically assess the relationship between molecular complexity and inference
performance. This benchmark is not used for scoring, but it aims at helping the user to pick
the best model in terms of time-to-solution for the application task.

A.2 Small Molecules

MLIPAudit small-molecule benchmarks focus on the ability of MLIPs to reproduce the properties
and dynamics of small organic molecules, including their conformational sampling and interactions
with other molecules. In order of task complexity:

* Bond Length: evaluates the ability of MLIPs to accurately model the equilibrium bond
lengths of small organic molecules during MD simulations. This is an important test to
understand whether the MLIP respects basic chemistry throughout simulations. Accurate
prediction of bond length is crucial for capturing the structural and electronic properties
of any chemically relevant compounds. For each molecule in the dataset, the benchmark
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performs an MD simulation with the same configuration described in the stability benchmark.
Throughout the trajectory, the positions of the bond atoms are tracked, and their deviation
from a reference bond length of the QM optimised starting structure is calculated. The
average deviation over the trajectory provides a direct measure of the MLIP’s ability to
maintain bond lengths under thermal fluctuations, enabling quantitative comparison to
reference data or other models.

Ring Planarity: evaluates the ability of MLIPs to preserve the planarity of aromatic
and conjugated rings in small organic molecules during molecular dynamics simulations.
Aromatic rings (e.g., benzene) are inherently planar due to delocalised 7 electrons. Ring
planarity enforcement is crucial in molecular dynamics simulations because it preserves
the correct geometry, electronic structure, and interactions of aromatic and conjugated
systems. Without proper planarity (e.g., via improper torsions), simulations can produce
chemically unrealistic distortions that compromise accuracy in energy, flexibility, and
binding predictions. This is especially important in molecules like benzene, tyrosine side
chains, nucleobases, and drug scaffolds, where planarity governs stacking, hydrogen bonding,
and overall stability. For each molecule in the dataset, the benchmark performs an MD
simulation with the same configuration described in the stability benchmark. Throughout
the trajectory, the positions of the ring atoms are tracked, and their deviation from a perfect
plane is quantified using the root mean square deviation (RMSD) from planarity. The ideal
plane of the ring is computed using a principal component analysis of the ring’s atoms.
The average deviation over the trajectory provides a direct measure of the MLIP’s ability
to maintain ring planarity under thermal fluctuations, enabling quantitative comparison to
reference data or other models.

Dihedral Scan: evaluates the MLIP’s ability to reproduce torsional energy profiles of
rotatable bonds in small molecules, aiming to approach the quantum-mechanical QM
reference quality. Dihedral scans are essential for mapping how a molecule’s energy changes
as bonds rotate, revealing preferred conformations and energy barriers. Beyond force field
development, they are also used in studying reaction mechanisms, analysing conformational
dynamics in drug discovery, validating quantum chemistry methods, and guiding the design
of flexible or constrained molecules. For each molecule, the benchmark leverages the mlip
library for model inference, comparing the predicted energies along a dihedral scan to QM
reference energy profiles. The reference profile is shifted so that its global minimum is zero,
and the MLIP profile is aligned to the same conformer. Performance is quantified using
the following metrics: MAE and RMSE. The Pearson correlation coefficient between the
MLIP-predicted and reference datapoints and the mean barrier height error.

Non-covalent Interactions: tests if the MLIP can reproduce interaction energies of molec-
ular complexes driven by non-covalent interactions. Non-covalent interactions are of the
highest importance for the structure and function of every biological molecule. This bench-
mark assesses a broad range of interaction types: London dispersion, hydrogen bonds, ionic
hydrogen bonds, repulsive contacts and sigma hole interactions. Assessing the accuracy of
non-covalent interactions is crucial for evaluating how well computational models capture
key forces like hydrogen bonding, m-7 stacking, and van der Waals interactions that govern
molecular recognition, binding, and assembly. This is essential not only for force field
development, but also for validating quantum methods, guiding molecular design, modelling
biomolecular interfaces, and studying condensed-phase behaviour such as solvation and
aggregation. The benchmark runs energy inference on all structures of the distance scans
of bi-molecular complexes in the dataset. The key metric is the RMSE of the interaction
energy, which is the minimum of the energy well in the distance scan, relative to the energy
of the dissociated complex, compared to the reference data. For repulsive contacts, the
maximum of the energy profile is used instead. Some of the molecular complexes in the
benchmark dataset contain exotic elements (see dataset section). In case the MLIP has never
seen an element of a molecular complex, this complex will be skipped in the benchmark.
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* Geometrical Minimisation: assesses the MLIP’s capability to preserve the ground-state
geometry of organic small molecules during energy minimisation, ensuring that initial X-ray
or DFT-optimised structures remain accurate and physically consistent. Each system is
minimised over 1,000 steps using the FIRE (Fast Inertial Relaxation Engine) algorithm
(default parameters). After minimisation, structural fidelity is assessed by computing the
RMSD of all heavy atoms relative to the initial geometry, using the RMSD implementation
provided by mdtraj [52].

* Conformer Selection: evaluates the MLIP’s ability to identify the most stable conformers
within an ensemble of flexible organic molecules and accurately predict their relative energy
differences. It focuses on capturing subtle intramolecular interactions and strain effects that
influence conformational energies. These metrics assess both numerical accuracy and the
MLIP’s ability to preserve relative conformer energetics, which is crucial for downstream
applications such as conformational sampling and compound ranking.

* Tautomers: assesses the ability of MLIP to accurately predict the relative energies and
stabilities of tautomeric forms of small molecules in vacuum. Tautomers are structural
isomers that interconvert via proton transfer and/or double bond rearrangement, and ac-
curately estimating the energy gap between them is an important measure of chemical
accuracy in the MLIP framework. Tautomer ranking assesses a model’s ability to predict the
relative stability of different tautomeric forms of a molecule, which is critical for accurately
modelling protonation states, reactivity, and binding affinities. It is especially important in
drug discovery, quantum method benchmarking, and cheminformatics, where tautomers
can dramatically affect molecular properties and biological activity. For each molecule, the
benchmark compares MLIP-predicted energies against QM reference data. Performance
is quantified by comparing the absolute deviation of the energy difference between the
tautomeric forms from the DFT data.

» Reactivity: assesses the MLIP’s capability to model chemical reactivity. The reactivity-tst
benchmark tests the ability to predict the energy of transition states relative to the reaction’s
reactants and products and thereby the activation energy and enthalpy of a reaction. This
benchmark calculates the energy of reactants, products and transition states of a large dataset
of reactions. From the difference between these states, the activation energy and enthalpy of
formation can be calculated. The performance is quantified using the MAE and RMSE in
activation energy and enthalpy of formation. The reactivity-neb benchmark evaluates the
capability to converge a set of nudged elastic band calculations with a known transition state.
The performance is quantified by the percentage of converged calculations.

A.3 Molecular Liquids

The MLIP Audit molecular liquids benchmark focuses on assessing long-range interactions by
computing the radial distribution function for different molecular liquids.

* Radial Distribution Function: assesses the ability of MLIP to accurately reproduce
the radial distribution function (RDF) of liquids. The RDF characterises the local and
intermediate-range structure of a liquid by describing how particle density varies as a
function of distance from a reference particle. Accurate modelling of the RDF is essential
for capturing both short-range ordering and long-range interactions, which are critical for
understanding the microscopic structure and emergent properties of liquid systems. The
benchmark performs an MD simulation using the MLIP model in the NVT ensemble at
300 K for 500,000 steps, leveraging the jax-md engine from the mlip library. The starting
configuration is already equilibrated. For every specific atom pair (e.g., oxygen-oxygen in
water), the radial distribution function (RDF or g(r)) is calculated from the simulation, as:

1 N N
g(r) = W<ZZ5(T—W)> ey

i=1 j#i
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where: r is the distance from a reference particle,p is the average number density, V is the

number of particles, 7;; is the distance between particles and ¢ is the Dirac delta function.

Angle brackets denote an ensemble average. For each test case, the benchmark computes

Tpeak = argmax g(r) and compares it with the experimental value for the first solvation
s

shell.

A.4 Biomolecules

MLIP Audit biomolecule benchmarks focus on assessing the properties and dynamics of proteins,
including their folding behaviour, structural stability, and conformational sampling.

* Protein folding: evaluates the ability of an MLIP to preserve the structural integrity of
experimentally determined protein conformations during MD simulations. It assesses the
retention of secondary structure elements and overall compactness across a set of known
protein structures. This module analyses the folding trajectories of proteins in MLIP
simulations. For each molecule in the dataset, the benchmark performs an MD simulation
with the same configuration described in the stability benchmark. We track how Root Mean
Square Deviation (RMSD), TM Score [53]], Dictionary of Secondary Structure in Proteins
(DSSP) [54] and Radius of Gyration change over time.

* Sampling Outlier Detection: Assesses the structural quality of sampled conformations
by computing backbone Ramachandran angles (¢/v) and side-chain rotamer angles (),
and identifying outliers through comparison with reference rotamer libraries [55)]. For
each molecule in the dataset, the benchmark performs an MD simulation with the same
configuration described in the stability benchmark. The outlier detection identifies residues
whose dihedral angles fall outside expected ranges, relying on the fast KDtree [56] scipy
[57] implementation. The analysis provides a global percentage of outliers for backbone
and rotamers per structure, as well as a more detailed analysis per residue type.

B Benchmarks scoring

To enable consistent and fair comparison across models, we define a composite score that aggregates
performance over all compatible benchmarks. Each benchmark b € B may report one or more metrics
qu?b’ where 1 = 1, ..., N, indexes the N, metrics evaluated for the model m. For each metric, we

compute a normalised score using a soft thresholding function based on a DFT-derived reference
tolerance £\") (see :

1, if 20, < ¢

sO, = RONRO) -
m exp | —a- 7"”’;(“ |, otherwise
b
where « is a tunable parameter controlling the steepness of the penalty (e.g., « = 3). The per-
benchmark score is then computed as the average over all its metric scores:

1 &
Sm,b = Fb , 55:1)’17
=1
Let B,, C B denote the subset of benchmarks for which the model m has valid data (i.e., benchmarks
compatible with its element set). The final model score is the mean over all benchmarks on which the
model could be evaluated:

1
Sm = W Z Sm,b
m beB,,
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This scoring framework ensures that models are rewarded for meeting or exceeding DFT-level
accuracy, but are not penalised for benchmarks they cannot run due to missing chemical elements.
Benchmarks with multiple metrics contribute proportionally, and the result is a single interpretable
score Sy, € [0, 1] that balances physical fidelity, chemical coverage, and overall model robustness.

Table 3: Acceptable error ranges for Classical Force Fields (FF), DFT, and MLIPs across benchmarks.

Benchmark Metric Classical FF DFT
Small molecule minimisation | RMSD (A) 0.2-0.5 <0.01-0.075
Non-covalent interactions Absolute deviation from reference | 1.0-2.0 <0.2-1.0
interaction energy (kcal/mol)
RMSE per interaction group | 1.0-2.0 <1.0
(kcal/mol)
Dihedral scan Mean barrier error (kcal/mol) <20 <0.5-1.0
Conformer selection MAE (kcal/mol) 2.0-5.0 <0.5
RMSE (kcal/mol) 3.0-6.0 <1.5
Tautomers Absolute deviation (AG) 2.0-5.0 <0.05
Ring planarity Deviation from plane (A) 0.05-0.20 <0.01-0.05
Bond length distribution Avg. fluctuation (A) 0.03-0.08 <0.005-0.05
Reactivity-TST Activation Energy (kcal/mol) - <2.0-3.0
Enthalpy (kcal/mol) - <20
Reactivity-NEB Final force convergence (eV/A) - <0.05
Radial Distribution Function | RMSE (A) 0.10-0.30 <0.1
Protein Sampling outliers Ramachandran ratio 0.05-0.15 <0.005-0.1
Rotamers ratio 0.10-0.25 <0.02-0.03
Protein Folding Stability min(RMSD) (A) <3.0 <20
max(TM-Score) 0.25-0.80 <0.5
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Table 4: Datasets used for the different benchmarks in MLIPAudit.

Benchmark

Dataset name

Link/Citation

Content description

Stability test

In-house dataset

released with MLIPAudit

PDBids: 1UAO, 1AB7, 1P79, 1BIP,
1ASE, 1A7M, 2BQV, 1J7H, 5KGZ,
1VSQ, 1JRS.

Inference scaling

In-house dataset

released with MLIPAudit

PDBids: 1AY3, 1UAO, 1AB7, 1P79,
1BIP, 1ASE, 1A7M, 2BQV, 1J7H,
S5KGZ, 1VSQ, 1JRS.

Small molecule minimisation

OpenFF

(581

100 molecules for the neutral dataset
and 10 for the charged dataset. The
subsets are constructed so that the
chemical diversity, as represented by
Morgan fingerprints, is maximised.

Non-covalent interactions

NCI-ATLAS subsets:
D442x10, HB375x10,

http://www.nciatlas.org/

QM optimised geometries of dis-
tance scans of bi-molecular com-

HB300SPXx10, plexes, where the two molecules in-
IHB100x10, R739x5, teract via non-covalent interactions
SH250x10 with associated energies.

Dihedral scan In-house recomputed | [S9] 500  structures of  drug-like
TorsionNet 500 dataset molecules and their energy profiles
at wB97M-D3(BJ) around selected rotatable bonds at
DFT-level. wB97M-D3(BJ) DFT-level.

Conformer selection Wiggle 150 1471 50 conformers each of three
molecules: Adenosine, Benzylpeni-
cillin, and Efavirenz.

Tautomers In-house recomputed | [60] 2,792 tautomer pairs sourced from
Tautobase dataset at the Tautobase dataset. After gen-
wB97M-D3(BJ) DFT- eration of the structures and min-
level. imisation at xtb level, the QM en-

ergies were computed in-house us-
ing wB97M-D3(BJ)/def2-TZVPPD
level of theory.

Ring planarity QMO subset [61] One representative molecule each,
containing substructures for ben-
zene, furan, imidazole, purine, pyri-
dine and pyrrole.

Bond length QM9 subset 6] One representative molecule each,
containing the bond types C-C, C=C,
C#C, C-N, C-0O, C=0 and C-F.

Reactivity Grambow dataset [48] Reactants, products and transition
states of 11960 reactions.

Radial Distribution Function different sources [162-65]] Water, CCl4, Acetonitrile,
Methanol.

Protein Folding In-house dataset released with MLIPAudit | PDBids: 1CQO0, 1UAO, 2JOF,
1BA6, 1EOL.

Protein Sampling

In-house dataset

released with MLIPAudit

ala-leu-glu-lys, gln-arg-asp-ala, glu-
gly-ser-arg, gly-thr-trp-gly, gly-tyr-
ala-val, met-ser-asn-gly, met-val-his-
asn, pro-met-ile-gln, pro-met-phe-
ala, ser-ala-cys-pro, trp-phe-gly-ala,
val-glu-lys-ala.
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Table 5: MLIPAudit test-cases overlap with models training dataset

Benchmark Category | Benchmark Overlap [%]
Small-Molecule Minimisation 0
Small-Molecule Bond Length distribution 0
Small-Molecule Ring Planarity 0
Small-Molecule Conformer selection 66.7
Small-Molecule Dihedral scan 1.4
Small-Molecule Tautomers 8.4
Small-Molecule Non-covalent interactions -
Small-Molecule Reactivity -
Molecular liquids RDF 0
Biomolecules Folding stability 0
Biomolecules Sampling 0

Table 6: Category-based rankings (aggregated scores by benchmark category)

Rank Category Model Name | Score | Benchmarks
1 General MACE-SPICE2 | 0.900 1/1
2 General NequlIP-SPICE2 | 0.900 1/1
3 General Visnet-SPICE2 | 0.810 1/1
5 General Visnet-t1x 0.160 11
6 General MACE-t1x 0.040 1/1
7 General NequlP-tl1x 0.040 171
1 Small-molecules | Visnet-SPICE2 | 0.578 9/9
2 Small-molecules | NequlP-SPICE2 | 0.550 9/9
3 Small-molecules | MACE-SPICE2 | 0.545 9/9
4 Small-molecules NequlP-tl1x 0.379 6/9
5 Small-molecules MACE-t1x 0.351 6/9
6 Small-molecules Visnet-t1x 0.306 6/9
1 Molecular-liquids | MACE-SPICE2 | 1.000 2/2
2 Molecular-liquids | Visnet-SPICE2 | 1.000 2/2
3 Molecular-liquids | NequIP-SPICE2 | 0.834 2/2
4 Molecular-liquids Visnet-t1x 0.000 172
5 Molecular-liquids MACE-tlx 0.000 172
6 Molecular-liquids NequlP-tl1x 0.000 172
1 Biomolecules Visnet-SPICE2 | 0.727 2/2
2 Biomolecules NequlIP-SPICE2 | 0.584 2/2
3 Biomolecules MACE-SPICE2 | 0.530 2/2
4 Biomolecules Visnet-t1x 0.353 2/2
5 Biomolecules MACE-t1x 0.284 2/2
6 Biomolecules NequlP-tl1x 0.183 2/2
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Table 7: Single benchmarks rankings

Rank Benchmark Model Name Score | Test Cases
1 General Stability NequlP-SPICE2 0.900 10/9
2 General Stability MACE-SPICE2 0.900 10/9
3 General Stability Visnet-SPICE2 0.810 9/9
4 General Stability MACE-SPICE2-t1x | 0.300 10/9
5 General Stability Visnet-t1x 0.160 4/9
6 General Stability MACE-tlx 0.040 4/9
7 General Stability NequlP-tl1x 0.040 4/9
1 Molecular Liquids Solvents Rdf MACE-SPICE2 1.000 3/3
2 Molecular Liquids Solvents Rdf Visnet-SPICE2 1.000 3/3
3 Molecular Liquids Solvents Rdf NequlIP-SPICE2 0.669 3/3
1 Molecular Liquids Water Rdf MACE-SPICE2 1.000 171
2 Molecular Liquids Water Rdf NequlIP-SPICE2 1.000 171
3 Molecular Liquids Water Rdf Visnet-SPICE2 1.000 171
1 Protein Folding MACE-t1x 0.525 3/5
2 Protein Folding Visnet-t1x 0.525 3/5
3 Protein Folding Visnet-SPICE2 0.525 5/5
4 Protein Folding MACE-SPICE2 0.525 5/5
5 Protein Folding NequlIP-SPICE2 0.525 5/5
1 Protein Sampling Visnet-SPICE2 0.928 12/12
2 Protein Sampling NequlIP-SPICE2 0.643 9/12
3 Protein Sampling MACE-SPICE2 0.535 12/12
4 Protein Sampling NequlP-tl1x 0.366 9/12
5 Protein Sampling Visnet-t1x 0.181 7/12
6 Protein Sampling MACE-t1x 0.043 7712
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Figure 6: Water radial distribution function for MACE-SPICE2, NequIP-SPICE2 and Visnet-SPICE2,
compared with the experimental observable and two water classical forcefields TIP3P and TIP4P [49]
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Figure 7: Predicted vs. DFT conformer energies for adenosine (ADO, blue), benzylpenicillin (BPN,
orange), and efavirenz (EFA, green).
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Table 8: Small-Molecules single benchmarks rankings

Rank Benchmark Model Name Score | Test Cases
1 Small Molecule Bond Lenght MACE-SPICE2 0.000 8/8
2 Small Molecule Bond Lenght MACE-tlx 0.000 8/8
3 Small Molecule Bond Lenght NequlP-t1x 0.000 8/8
4 Small Molecule Bond Lenght NequlIP-SPICE2 0.000 8/8
5 Small Molecule Bond Lenght Visnet-SPICE2 0.000 8/8
6 Small Molecule Bond Lenght Visnet-SPICE2-t1x-L | 0.000 8/8
7 Small Molecule Bond Lenght Visnet-SPICE2-tIx | 0.000 8/8
8 Small Molecule Bond Lenght MACE-SPICE2-t1x | 0.000 8/8
9 Small Molecule Bond Lenght Visnet-t1x 0.000 8/8
1 Small Molecule Conformer Selection Visnet-SPICE2-t1x-L | 0.748 3/3
2 Small Molecule Conformer Selection MACE-SPICE2-t1x | 0.672 3/3
3 Small Molecule Conformer Selection MACE-SPICE2 0.471 3/3
4 Small Molecule Conformer Selection Visnet-SPICE2 0.416 3/3
5 Small Molecule Conformer Selection NequlP-SPICE2 0.390 3/3
6 Small Molecule Conformer Selection Visnet-SPICE2-t1x 0.025 3/3
1 Small Molecule Dihedral Scan Visnet-SPICE2 0.998 500/500
2 Small Molecule Dihedral Scan Visnet-SPICE2-t1x-L | 0.998 500/500
3 Small Molecule Dihedral Scan NequlP-SPICE2 0.994 500/500
4 Small Molecule Dihedral Scan MACE-SPICE2 0.987 500/500
5 Small Molecule Dihedral Scan MACE-SPICE2-t1x | 0.945 500/500
6 Small Molecule Dihedral Scan Visnet-SPICE2-t1x 0.796 500/500
1 Small Molecule Noncovalent Interaction MACE-SPICE2 0.525 | 1807/1807
2 Small Molecule Noncovalent Interaction | Visnet-SPICE2-t1x-L | 0.519 | 1807/1807
3 Small Molecule Noncovalent Interaction NequlIP-SPICE2 0.515 | 1807/1807
4 Small Molecule Noncovalent Interaction Visnet-SPICE2 0.514 | 1807/1807
5 Small Molecule Noncovalent Interaction | MACE-SPICE2-t1x | 0.459 | 1807/1807
6 Small Molecule Noncovalent Interaction Visnet-SPICE2-t1x 0.380 | 1807/1807
7 Small Molecule Noncovalent Interaction NequlP-tl1x 0.309 | 689/1807
8 Small Molecule Noncovalent Interaction MACE-t1x 0.303 689/1807
9 Small Molecule Noncovalent Interaction Visnet-t1x 0.152 | 689/1807
1 Small Molecule Ring Planarity MACE-SPICE2 1.000 6/6
2 Small Molecule Ring Planarity Visnet-SPICE2-t1x 1.000 6/6
3 Small Molecule Ring Planarity MACE-SPICE2-t1x | 1.000 6/6
4 Small Molecule Ring Planarity Visnet-SPICE2 1.000 6/6
5 Small Molecule Ring Planarity NequlP-SPICE2 1.000 6/6
6 Small Molecule Ring Planarity Visnet-SPICE2-t1x-L | 1.000 6/6
7 Small Molecule Ring Planarity MACE-tlx 0.961 6/6
8 Small Molecule Ring Planarity NequlP-tl1x 0.938 6/6
9 Small Molecule Ring Planarity Visnet-t1x 0.912 6/6
1 Small Molecule Rmsd Visnet-SPICE2 1.000 220/220
2 Small Molecule Rmsd Visnet-SPICE2-t1x-L | 0.996 220/220
3 Small Molecule Rmsd MACE-SPICE2 0.942 220/220
4 Small Molecule Rmsd NequlIP-SPICE2 0.760 220/220
5 Small Molecule Rmsd MACE-SPICE2-t1x | 0.464 220/220
6 Small Molecule Rmsd Visnet-SPICE2-t1x 0.015 220/220
7 Small Molecule Rmsd MACE-t1x 0.000 220/220
8 Small Molecule Rmsd Visnet-t1x 0.000 220/220
9 Small Molecule Rmsd NequlP-tl1x 0.000 220/220
1 Small Molecule Tautomers Visnet-SPICE2 0.927 | 1400/1400
2 Small Molecule Tautomers NequlIP-SPICE2 0.914 | 1400/1400
3 Small Molecule Tautomers Visnet-SPICE2-t1x-L | 0.911 | 1400/1400
4 Small Molecule Tautomers MACE-SPICE2 0.644 | 1400/1400
5 Small Molecule Tautomers MACE-SPICE2-t1x | 0.537 | 1400/1400
6 Small Molecule Tautomers Visnet-SPICE2-t1x 0.357 | 1400/1400
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