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Abstract

Machine-learned interatomic potentials (MLIPs) promise to significantly advance1

atomistic simulations by delivering quantum-level accuracy for large molecular2

systems at a fraction of the computational cost of traditional electronic structure3

methods. While model hubs and categorisation efforts have emerged in recent4

years, it remains difficult to consistently discover, compare, and apply these models5

across diverse scenarios. The field still lacks a standardised and comprehensive6

framework for evaluating MLIP performance. We introduce MLIPAudit, an open,7

curated and modular benchmarking suite designed to assess the accuracy of MLIP8

models across a variety of application tasks. MLIPAudit offers a diverse collection9

of benchmark systems, including small organic compounds, molecular liquids,10

proteins and flexible peptides, along with pre-computed results for a range of11

pre-trained and published models. MLIPAudit also provides tools for users to12

evaluate their models using the same standardised pipeline. A continuously updated13

leaderboard tracks performance across benchmarks, enabling direct comparison14

on downstream tasks. By offering a unified and transparent reference framework15

for model validation and comparison, MLIPAudit aims to foster reproducibility,16

transparency, and community-driven progress in the development of MLIPs for17

complex molecular systems. The library is available on GitHub and on PyPI 1418

under the Apache license 2.0.19

1 Introduction20

The accurate prediction of molecular and material properties is a cornerstone of scientific progress21

across disciplines, including drug discovery, functional material design, and process chemistry [1–3].22

Traditionally, this has been done using classical force fields, which enable efficient simulations of23

large systems relying on predefined functional forms and parameters derived from experiments or first-24

principles methods [4, 5]. Although computationally inexpensive, classical force fields often struggle25

to capture complex chemical interactions or generalise beyond the systems for which they were26

parametrised. At the other end of the spectrum, first-principles methods such as density functional27

theory (DFT) offer higher accuracy but at significantly greater computational cost, typically limiting28

their use to systems with fewer than a few hundred atoms [6, 7]. In recent years, machine-learned29

interatomic potentials (MLIPs) have emerged as a compelling middle ground. These models aim to30

retain the accuracy of first-principles methods while approaching the efficiency of classical force31

fields, by learning the potential energy surface directly from high-level electronic structure data32

[8–25].33
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Despite the rapid emergence of diverse MLIP architectures, which have significantly broadened the34

scope of atomistic simulations, the field continues to lack a standardised and rigorous framework for35

evaluating model performance in downstream applications. Many benchmarks focus on energy and36

force errors, which miss aspects like stability, transferability, and robustness. Recent works propose37

more holistic evaluations [11, 26–34], which we detail in the Literature Review section. However, all38

these studies highlight the need for consistent and reproducible evaluation protocols that go beyond39

basic error metrics, aiming to establish benchmarking practices that reflect real-world simulation40

demands. Therefore, a universally adopted, comprehensive benchmarking suite that can guide both41

model development and deployment remains an open challenge for the community.42

To address this gap, we introduce MLIPAudit: an open, curated repository of benchmarks, reference43

datasets, and model evaluations for MLIP models applied (in its first version) to the analysis of small44

molecules, molecular liquids and biomolecules. MLIPAudit is designed to complement model-centric45

testing by shifting the focus to systematic validation and comparison. It provides:46

• A diverse set of benchmark systems, including organic small molecules, flexible peptides,47

folded protein domains, molecular liquids and solvated systems.48

• Pre-computed results for a range of published and pretrained MLIP models, enabling direct,49

fair comparisons.50

• A continuously updated leaderboard, tracking performance across different tasks.51

• A suite of tools for users to submit and evaluate their models within the same benchmarking52

pipeline.53

By providing a shared reference point for assessing accuracy, robustness, and generalisation, MLIPAu-54

dit aims to facilitate transparency, reproducibility, and community-wide progress in the development55

and deployment of MLIPs for complex molecular systems.56

2 Literature Review57

MLIP Audit aims to expand the existing methods and tools for benchmarking MLIPs. To put this58

work in context, we summarise current efforts for MLIP benchmarking here.59

Static regression metrics: The first and most fundamental level of MLIP evaluation involves the60

use of standard regression metrics to quantify a model’s ability to reproduce the reference quantum-61

mechanical (QM) data it was trained on. The most common benchmarks in this category are the62

root-mean-square-error (RMSE) and mean-absolute-error (MAE) calculated for energies and atomic63

forces on a held-out validation dataset [35]. These benchmarks are routinely reported with the release64

of new MLIP models, and state-of-the-art models achieve high accuracy on these tests. Although65

benchmarks for atomic energies and forces are a necessary baseline for the interpolation accuracy of66

the models, they are insufficient to estimate their practical utility. This is demonstrated, for example,67

by Gonzales et al. [36], who found that three models with very similar force validation error show68

significant variation in performance on a structural relaxation task.69

Assessment of physical and chemical behaviour: Recent MLIP benchmarks generally accompany70

model releases and assess performance on physical and chemical properties using QM or experimental71

data, typically tailored to specific use cases. For models trained on small organic molecules, standard72

tests include dihedral scans, conformer selection, vibrational frequencies, and interaction energies73

[32, 37, 38]. Biomolecular benchmarks cover backbone sampling, water properties, and folding74

dynamics [32, 38, 39], while models trained on reactivity data are evaluated on their ability to75

reproduce product, reactant, and transition state geometries, as well as reaction pathways via string or76

NEB methods [33, 40].77

Comparative studies have also emerged, evaluating multiple MLIPs across diverse benchmarks. Fu et78

al. [27] propose a suite spanning organic molecules, peptides, and materials, and find that models79

with low force errors may still perform poorly on simulation-based metrics like energy conservation80
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and sampling. Similarly, Liu et al. [41] report discrepancies in atom dynamics and rare events, even81

for models with strong regression accuracy. These findings reflect a growing consensus that static82

error metrics alone are insufficient for evaluating MLIPs, and that dynamic and simulation-based83

benchmarks are increasingly essential.84

Standardised benchmarks: While a great variety of benchmarks for accurate physical and chemical85

properties can be collected from individual model releases and MLIP evaluation studies, a need86

remains for standardised benchmarks that can be used to compare models on a level playing field and87

get a holistic view of their utility regarding practical tasks.88

This gap is addressed by leaderboards and standardised frameworks. MLIP Arena [26] is a leaderboard89

based on a benchmark platform focused on physical awareness, stability, reactivity, and predictive90

power. The framework comprises a small but well-selected suite of benchmarks that address known91

problems like data leakage, transferability, and overreliance on specific errors. Matbench Discovery92

[42] features a leaderboard and evaluation framework that is easily extendable to additional models93

and focused exclusively on materials science. MOFSimBench [43] is a standardised benchmark94

specialised on metal-organic frameworks that highlights simulation metrics and bulk properties.95

MLIPX [44] provides a framework with a user-centric perspective, providing a set of reusable recipes96

that allow users to compose benchmarks for their specific tasks.97

These standardised frameworks are valuable tools to evaluate and compare MLIP models. However,98

they are limited to a specific domain of application, employ a small number of benchmarks or require99

development by the MLIP user.100

3 MLIPAudit Benchmarks101

To enable a rigorous and meaningful evaluation of MLIP models, MLIPAudit includes a curated and102

modular suite of benchmarks that span a range of molecular systems and complexity levels (Figure103

1). These benchmarks are designed to capture both general-purpose and domain-specific challenges104

faced by MLIPs in industrial applications. Benchmark subsets each emphasise different aspects105

of model performance, such as elemental molecular dynamics stability, non-covalent interactions,106

conformational ranking of small organic compounds, or sampling of rotamers in biomolecules. A107

description of the rationale for each benchmark on the different categories is given in Appendix108

A, including: (i) general systems designed for molecular dynamics stability and scaling, (ii) small109

molecules relevant to materials chemistry, (iii) molecular liquids, and (iv) biomolecules.110

Figure 1: Representative molecular systems spanning increasing levels of structural and environmental
complexity, from isolated dimers and drug-like molecules, to condensed-phase molecular liquids and
folded biomolecules.

We have evaluated the performance of the three graph-based MLIPs provided in the open-source mlip111

library [25]: MACE [9], NequIP [11], and ViSNet [39]. All three models were trained on a subset112

of the SPICE2 dataset [45], which includes 1,737,896 molecular structures across 15 elements (B,113

Br, C, Cl, F, H, I, K, Li, N, Na, O, P, S, Si). From now on, MACE-SPICE2, NequIP-SPICE2 and114

Visnet-SPICE2. Training protocols and dataset curation details are available in [25]. Additionally,115

we trained a new version of each of these models (MACE-t1x, NequIP-t1x, Visnet-t1x) using 10%116
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(randomly sampled) of the original t1x dataset [46], containing a total of one million structures and117

four elements (H, C, N, O).118

To ensure fair and consistent comparison across models, we define a composite score Sm ∈ [0, 1]119

that averages soft-thresholded, normalised benchmark metric scores, rewarding models that approach120

DFT-level accuracy. Only benchmarks compatible with a model’s element set are included, ensuring121

broad applicability without penalising for unsupported systems. For full details, see Appendix B.122

For each benchmark, a set of test cases has been curated (Appendix C, Table 4). As public datasets123

increase, it becomes increasingly challenging to ensure zero overlap between the training data and the124

relevant chemistry that one needs to include to ensure the relevance and reliability of the benchmarks.125

In Appendix C-Table 5, we disclose the overlap between the MLIPAudit test cases per benchmark126

and the training set for the presented models. In most cases, the overlap is either zero or under 10 %.127

But, for the conformer selection benchmark, for which two molecules (adenosine and efivarez) from128

the Wiggle150 [47] dataset were present in the model’s training set. In the following, we will discuss129

the different scores and how the overlap may impact ranking.130

3.1 Overall ranking131

Table 1 highlights the generalisation capabilities of the top-performing models. Visnet-SPICE2 leads132

the leaderboard with the highest average score (0.676, followed closely by NequIP-SPICE2 and133

MACE-SPICE2. All three models were trained on a diverse dataset and evaluated across all 14134

benchmarks. These models consistently perform well across domains, underscoring the benefits of135

comprehensive training and robust architectures. However, it is worth noting that model performance136

is reflective of training strategy, not solely the model architecture, and it shouldn’t be considered an137

assessment of the model architecture.

Table 1: Overall MLIPAudit scores
Rank Model Name Average Score Benchmarks

1 Visnet-SPICE2 0.676 14/14
2 MACE-SPICE2 0.633 14/14
3 NequIP-SPICE2 0.620 14/14
4 MACE-t1x 0.271 10/14
5 Visnet-t1x 0.270 10/14
6 NequIP-t1x 0.268 10/14

138

Lower-ranked models, including NequIP-t1x, MACE-t1x, and Visnet-t1x variants, show notably139

lower scores and narrower benchmark coverage. However, this performance disparity is expected:140

these models were explicitly trained for reactivity-focused tasks using the t1x dataset [46], which141

lacks the diversity required to generalise to broader molecular systems. As such, their lower total142

scores (e.g., 0.268 for NequIP-t1x, 0.270 for Visnet-t1x) do not necessarily indicate inferior model143

design but rather reflect the trade-off between task-specific optimisation and overall versatility.144

3.2 Categorical ranking145

In Appendix C-Table 6, we summarise our category-based ranking analysis, which further reveals146

the specialisation and limitations of each MLIP model across different chemical domains. While147

Visnet-SPICE2 continues to lead overall, its performance across specific categories reinforces its148

strength in broad generalisation. It ranks first in both Small Molecules and Biomolecules, with high149

average scores of 0.578 and 0.727, respectively. Additionally, Visnet-SPICE2 shares the top spot150

in Molecular Liquids (with an ideal score of 1.0) alongside MACE-SPICE2, further highlighting151

its robust adaptability. NequIP-SPICE2 performs similarly to Visnet-SPICE2 in small molecule152

benchmarks. It achieves robust scores in both biomolecular (0.584) and molecular liquid (0.834)153

benchmarks, suggesting reliable generalisation across chemically diverse systems, without reaching154

Visnet-SPICE2 performance.155
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MACE-SPICE2 displays a similar pattern, achieving high performance in molecular liquid bench-156

marks (average score of 1.0) but showing reduced accuracy in the biomolecular category (0.530).157

This may reflect limits in capturing the structural and conformational complexity of biomolecules.158

The performance of the t1x-trained models (e.g., NequIP-t1x, MACE-t1x, Visnet-t1x) reflects their159

intended specialisation. These models were trained primarily for reactivity tasks and, as such,160

show reasonable results on small molecule tasks but limited performance in molecular liquids and161

biomolecular categories. This outcome aligns with expectations, as the t1x dataset did not include162

training data representative of condensed-phase systems or protein environments. In Appendix C-163

Table 8, we have included two Visnet (Visnet-SPICE2-t1x, Visnet-SPICE2-t1x-L) versions trained164

with SPICE2 and t1x from the OMOL dataset [40] and one MACE version (MACE-SPICE2-t1x) in165

the Small-molecule category only. These models outperform their other variants with Visnet-SPICE2-166

t1x-L leading the category.167

3.3 Single benchmark highlighted results168

3.3.1 Reactivity benchmarks169

The generalist models (Visnet-SPICE2, NequIP-SPICE2, MACE-SPICE2) perform notably worse in170

the reactivity task Table 2. It’s worth noting that all models, including the generalists, completed all171

test cases (100/100 for the nudge elastic band (NEB) benchmark, ∼12000/12000 for the transition-172

state-theory (TST) benchmark, indicating that performance differences stem from modelling accuracy173

rather than lack of elements in the training set. These results suggest that, in the context of reactivity174

benchmarks, domain-specific training still offers a measurable edge, especially when accurate175

prediction of reaction energies or barriers is the primary objective. NeuquIP-t1x leads the NEB176

benchmark while the new version of Visnet-SPICE2-t1x-L leads the TST benchmark, achieving DFT177

accuracy for the prediction of activation energies (Figure 2). Suggesting that the different DFT theory178

levels between the original t1x [46] and the OMOL [40] version might play a role too. However, the179

relatively modest top scores (e.g., 0.623 for NEB) also indicate room for further improvement, even180

among specialised models.181

Table 2: Reactivity Benchmarks Ranking
Rank Benchmark Model Name Score Test Cases

1 Small Molecule Reactivity Neb NequIP-t1x 0.623 100/100
2 Small Molecule Reactivity Neb Visnet-SPICE2-t1x-L 0.565 100/100
3 Small Molecule Reactivity Neb MACE-SPICE2-t1x 0.462 100/100
4 Small Molecule Reactivity Neb MACE-t1x 0.460 100/100
5 Small Molecule Reactivity Neb Visnet-SPICE2-t1x 0.450 100/100
6 Small Molecule Reactivity Neb Visnet-t1x 0.410 100/100
7 Small Molecule Reactivity Neb NequIP-SPICE2 0.140 100/100
8 Small Molecule Reactivity Neb Visnet-SPICE2 0.100 100/100
9 Small Molecule Reactivity Neb MACE-SPICE2 0.090 100/100
1 Small Molecule Reactivity Tst Visnet-SPICE2-t1x-L 0.737 11961/11961
2 Small Molecule Reactivity Tst MACE-SPICE2-t1x 0.574 11961/11961
3 Small Molecule Reactivity Tst Visnet-SPICE2-t1x 0.416 11961/11961
4 Small Molecule Reactivity Tst NequIP-t1x 0.402 11961/11961
5 Small Molecule Reactivity Tst MACE-t1x 0.381 11961/11961
6 Small Molecule Reactivity Tst Visnet-t1x 0.361 11961/11961
7 Small Molecule Reactivity Tst MACE-SPICE2 0.248 11961/11961
8 Small Molecule Reactivity Tst Visnet-SPICE2 0.246 11961/11961
9 Small Molecule Reactivity Tst NequIP-SPICE2 0.237 11961/11961

As shown in Figure 2, all t1x-trained models outperform general-purpose MLIPs, while generalist182

models (e.g., Visnet-SPICE2, MACE-SPICE2) show much larger errors, especially for activation183

energies. These results reinforce the value of domain-specific training, though even top models leave184

room for improvement.185
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Figure 2: Reactivity benchmark performance. (a–b) Reaction energy profiles for two Grambow
reactions (IDs 008805 and 000433) [48] MLIP predictions to DFT references. (c) MAEs for activation
energies (EA) and reaction enthalpies across the benchmark.

3.3.2 Molecular liquids benchmark: water radial distribution function186

Having a closer look at the single benchmarks, the water radial distribution function (RDF) benchmark187

provides a compelling illustration of the strengths of MLIPs over traditional force fields. As shown in188

Appendix C, Figure 6, all three MLIP models, MACE-SPICE2, Visnet-SPICE2, and NequIP-SPICE2,189

reproduce the experimental RDF profile with high fidelity across the full radial range, accurately190

reproducing both the first solvation shell peak and subsequent oscillations. In contrast, TIP3P and191

TIP4P [49], two of the most widely used classical water models, show notable deviations, particularly192

in the overstructured and exaggerated height of the first peak, a known artefact in rigid water models193

[50].194

This alignment between MLIP predictions and experimental data strongly supports the notion that195

learned potentials, trained on accurate quantum data, can capture the subtle balance of hydrogen196

bonding and thermal fluctuations that define liquid water structure, without the need for hand-tuned197

parameterisation. This not only reflects the higher representational capacity of MLIPs but also198

demonstrates their ability to generalise to bulk-phase properties, a capability that classical force fields199

struggle to match without introducing complex polarizable terms or many-body corrections.200

3.3.3 Small molecules benchmarks: dihedral scans201

The dihedral scan benchmark highlights another area where MLIP models show outstanding agree-202

ment with quantum reference data. As shown in Figure 3, the energy profiles predicted by all MLIP203

models align nearly perfectly with DFT-calculated torsional energy curves across a representative204

scan. This agreement is not only qualitative—preserving the positions and heights of barriers, but205

also quantitatively precise, with RMSE values all well below the 1.0 kcal/mol DFT-level convergence206

threshold. This strong performance is further reflected in the ranking table (Appendix C, Table 8),207

where Visnet-SPICE2 and Visnet-SPICE2-t1x-L lead the benchmark scoring ∼1.0, followed closely208

by NequIP-SPICE2 and MACE-SPICE2, MACE-SPICE2-t1x. Notably, all models completed the209

full set of 500 fragments, demonstrating not only accuracy but robustness and generalisability across210

a diverse chemical space.211

The error bars shown on the right panel of Figure 3 underscore how consistent the models are,212

with MAE values under 0.12 kcal/mol for all methods—well within chemical accuracy. MLIPs213

outperform classical parameters like GAFF2 [51]. These results validate the capability of current214
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Figure 3: Dihedral scan benchmark. (a) Dihedral energy profiles for fragment 015 compared to DFT
reference values. (b) MAE and RMSE for each model. DFT-level error threshold (red dashed line).

MLIPs to accurately model intramolecular potential energy surfaces, a critical requirement for reliable215

conformational sampling, molecular docking, or pharmacophore prediction.216

Taken together, this benchmark provides a clear example of how MLIPs can match DFT accuracy at a217

fraction of the computational cost, making them practical for high-throughput screening or molecular218

simulations involving flexible, drug-like molecules.219

3.3.4 Small molecules benchmarks: conformer ranking220

Figure 4 presents model performance on the conformer benchmark, showing MAE values by molecule221

for three general-purpose MLIPs: NequIP-SPICE2, Visnet-SPICE2, and MACE-SPICE2. All models222

were trained on datasets that included adenosine (ADO) and efavirenz (EFA), while benzylpenicillin223

(BPN) was excluded from training and thus acts as a stronger generalisation test.

Figure 4: Conformer selection benchmark across three pharmaceutically relevant molecules: adeno-
sine (ADO), benzylpenicillin (BPN), and efavirenz (EFA). MAE is computed with respect to DFT
reference conformer energies. DFT threshold (red dashed line at 0.5 kcal/mol). Insets depict repre-
sentative 3D conformers for each molecule.

224

Despite having seen ADO and EFA during training, none of the models reach the DFT-level MAE225

threshold of 0.5 kcal/mol, pointing to persistent difficulty in accurately ranking conformers. ADO is226

best predicted, while EFA shows higher errors due to its flexibility. BPN, which was unseen during227

training, is the most challenging, though MACE-SPICE2 shows slightly better generalisation. All228

models outperform GAFF2 [51], especially on EFA. Still, as seen in Appendix C, Figure 7, predicted229
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vs. DFT energy plots show strong agreement and near-perfect Spearman correlations across all230

molecules.231

This consistency suggests that while the models may struggle to reproduce exact conformer energy232

magnitudes (as seen in the MAE analysis), they are highly effective at preserving the correct energetic233

ordering. In practical applications like conformer selection or ranking, such ordinal accuracy can234

be more important than precise energetic reproduction, particularly when used in combination with235

scoring functions or downstream screening.236

Interestingly, the performance gap between in-training-set molecules (ADO, EFA) and the out-of-237

distribution case (BPN) is far less pronounced here than in absolute MAE terms—highlighting that238

model generalisation, at least in terms of correlation, is relatively robust. These findings reinforce239

the importance of using multiple complementary metrics (e.g., MAE and rank correlation) when240

evaluating MLIP performance for conformational energetics.241

3.3.5 Biomolecules benchmarks242

The biomolecules benchmark (Appendix C, Table 6) provides a fitting conclusion to our compre-243

hensive assessment, highlighting the capacity of MLIP models to operate effectively in complex,244

biologically relevant regimes. All top models successfully completed the protein folding stability245

benchmark (6/6 test cases, see Appendix C), all models achieve similar scores ∼0.525, but there246

is room for improvement. This level of agreement underscores the growing maturity of MLIPs247

for macromolecular tasks. The Protein Sampling benchmark across different MLIP models shows248

that models trained on the SPICE2 dataset (e.g., Visnet-SPICE2, NequIP-SPICE2, MACE-SPICE2)249

significantly outperform their t1x-trained counterparts, with Visnet-SPICE2 achieving the highest250

score (0.928) and full coverage (12/12 systems). Taken together, the results from this and all previous251

benchmarks reinforce a central conclusion: while task-specific training offers advantages in spe-252

cialised domains, the leading generalist models demonstrate strong, transferable performance across253

molecular scales and properties, setting the stage for robust deployment in real-world chemistry and254

biology applications.255

3.4 Conclusions and future outlook256

The MLIPAudit suite provides a comprehensive and diverse evaluation framework for MLIPs,257

spanning small-molecule geometrical and conformational energetics, reactivity, molecular liquids,258

and biomolecular stability and sampling. Our results show that while specialised models trained on259

the t1x dataset excel in targeted tasks such as reaction barrier prediction, general-purpose architectures260

like Visnet-SPICE2, NequIP-SPICE2, and MACE-SPICE2 exhibit strong and transferable accuracy261

across a wide range of benchmarks, often surpassing classical force fields and closely matching262

DFT reference data in others. Notably, the Visnet model trained on SPICE2 and t1x from the263

OpenMolecules (OMOL) dataset leads the small-molecule benchmarks, highlighting the promise264

of hybrid training strategies and possibly reflecting the importance of the underlying level of theory265

used in data generation.266

Despite this progress, performance gaps persist, especially in condensed-phase systems and energeti-267

cally subtle regimes, indicating that further improvements are needed. Looking ahead, we plan to268

expand the MLIPAudit suite with new test cases targeting larger, more complex systems, as well as269

emerging tasks such as vibrational frequencies and binding free energies. We also aim to include270

newly released open-source models to keep the benchmark current and representative. By continually271

broadening the scope and complexity of MLIPAudit, we hope to accelerate the development of MLIPs272

that are not only accurate but also general, scalable, and ready for real-world deployment across the273

chemical sciences.274
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A Benchmarks overview479

Each benchmark in MLIP-Audit includes a brief introduction that outlines its purpose, helping480

users understand the relevance of the task and how it reflects molecular challenges. A link to the481

documentation is provided for users who want a deeper explanation of the benchmark’s design,482

scientific context, datasets and implementation details. A description of each benchmark’s dataset can483

be found in Appendix C-Table 4. This is followed by key performance metrics for the best-performing484

model, along with a summary of results across all analysed MLIP models. Depending on the nature485

of the benchmark, additional visualisations may be included, such as radial distribution functions for486

molecular liquids or torsion energy profiles for small molecules, which users can explore interactively487

or download for further analysis (Figure 5).488

In the following subsections, we describe the composition, rationale, and evaluation criteria for each489

benchmark category: (i) general systems designed for molecular dynamics stability and scaling, (ii)490

small molecules relevant to pharmaceutical and materials chemistry, and (iii) biomolecules, which491

pose unique challenges due to their size, flexibility, and hierarchical structure.492

A.1 General benchmarks493

The general benchmarks implemented in MLIP Audit are system-agnostic and focus on fundamental494

molecular dynamics (MD) stability and performance metrics that are applicable across molecular495

systems. Two benchmarks are included in this category:496
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Figure 5: MLIPAudit interface

• Stability: assesses the dynamical stability of an MLIP during an MD simulation for a497

diverse set of large biomolecular systems. For each system, the benchmark performs an MD498

simulation using the MLIP model in the NVT ensemble at 300 K for 100,000 steps (100 ps),499

leveraging the jax-md engine, as integrated via the mlip library[25]. The test monitors the500

system for signs of instability by detecting abrupt temperature spikes (“explosions”) and501

hydrogen atom drift. These indicators help determine whether the MLIP maintains stable502

and physically consistent dynamics over extended simulation times.503

• Inference Scaling: evaluates how the computational cost of an MLIP scales with the system504

size. By running single, long MD episodes on a series of molecular systems of increasing505

size, we systematically assess the relationship between molecular complexity and inference506

performance. This benchmark is not used for scoring, but it aims at helping the user to pick507

the best model in terms of time-to-solution for the application task.508

A.2 Small Molecules509

MLIPAudit small-molecule benchmarks focus on the ability of MLIPs to reproduce the properties510

and dynamics of small organic molecules, including their conformational sampling and interactions511

with other molecules. In order of task complexity:512

• Bond Length: evaluates the ability of MLIPs to accurately model the equilibrium bond513

lengths of small organic molecules during MD simulations. This is an important test to514

understand whether the MLIP respects basic chemistry throughout simulations. Accurate515

prediction of bond length is crucial for capturing the structural and electronic properties516

of any chemically relevant compounds. For each molecule in the dataset, the benchmark517
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performs an MD simulation with the same configuration described in the stability benchmark.518

Throughout the trajectory, the positions of the bond atoms are tracked, and their deviation519

from a reference bond length of the QM optimised starting structure is calculated. The520

average deviation over the trajectory provides a direct measure of the MLIP’s ability to521

maintain bond lengths under thermal fluctuations, enabling quantitative comparison to522

reference data or other models.523

• Ring Planarity: evaluates the ability of MLIPs to preserve the planarity of aromatic524

and conjugated rings in small organic molecules during molecular dynamics simulations.525

Aromatic rings (e.g., benzene) are inherently planar due to delocalised π electrons. Ring526

planarity enforcement is crucial in molecular dynamics simulations because it preserves527

the correct geometry, electronic structure, and interactions of aromatic and conjugated528

systems. Without proper planarity (e.g., via improper torsions), simulations can produce529

chemically unrealistic distortions that compromise accuracy in energy, flexibility, and530

binding predictions. This is especially important in molecules like benzene, tyrosine side531

chains, nucleobases, and drug scaffolds, where planarity governs stacking, hydrogen bonding,532

and overall stability. For each molecule in the dataset, the benchmark performs an MD533

simulation with the same configuration described in the stability benchmark. Throughout534

the trajectory, the positions of the ring atoms are tracked, and their deviation from a perfect535

plane is quantified using the root mean square deviation (RMSD) from planarity. The ideal536

plane of the ring is computed using a principal component analysis of the ring’s atoms.537

The average deviation over the trajectory provides a direct measure of the MLIP’s ability538

to maintain ring planarity under thermal fluctuations, enabling quantitative comparison to539

reference data or other models.540

• Dihedral Scan: evaluates the MLIP’s ability to reproduce torsional energy profiles of541

rotatable bonds in small molecules, aiming to approach the quantum-mechanical QM542

reference quality. Dihedral scans are essential for mapping how a molecule’s energy changes543

as bonds rotate, revealing preferred conformations and energy barriers. Beyond force field544

development, they are also used in studying reaction mechanisms, analysing conformational545

dynamics in drug discovery, validating quantum chemistry methods, and guiding the design546

of flexible or constrained molecules. For each molecule, the benchmark leverages the mlip547

library for model inference, comparing the predicted energies along a dihedral scan to QM548

reference energy profiles. The reference profile is shifted so that its global minimum is zero,549

and the MLIP profile is aligned to the same conformer. Performance is quantified using550

the following metrics: MAE and RMSE. The Pearson correlation coefficient between the551

MLIP-predicted and reference datapoints and the mean barrier height error.552

• Non-covalent Interactions: tests if the MLIP can reproduce interaction energies of molec-553

ular complexes driven by non-covalent interactions. Non-covalent interactions are of the554

highest importance for the structure and function of every biological molecule. This bench-555

mark assesses a broad range of interaction types: London dispersion, hydrogen bonds, ionic556

hydrogen bonds, repulsive contacts and sigma hole interactions. Assessing the accuracy of557

non-covalent interactions is crucial for evaluating how well computational models capture558

key forces like hydrogen bonding, π-π stacking, and van der Waals interactions that govern559

molecular recognition, binding, and assembly. This is essential not only for force field560

development, but also for validating quantum methods, guiding molecular design, modelling561

biomolecular interfaces, and studying condensed-phase behaviour such as solvation and562

aggregation. The benchmark runs energy inference on all structures of the distance scans563

of bi-molecular complexes in the dataset. The key metric is the RMSE of the interaction564

energy, which is the minimum of the energy well in the distance scan, relative to the energy565

of the dissociated complex, compared to the reference data. For repulsive contacts, the566

maximum of the energy profile is used instead. Some of the molecular complexes in the567

benchmark dataset contain exotic elements (see dataset section). In case the MLIP has never568

seen an element of a molecular complex, this complex will be skipped in the benchmark.569
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• Geometrical Minimisation: assesses the MLIP’s capability to preserve the ground-state570

geometry of organic small molecules during energy minimisation, ensuring that initial X-ray571

or DFT-optimised structures remain accurate and physically consistent. Each system is572

minimised over 1,000 steps using the FIRE (Fast Inertial Relaxation Engine) algorithm573

(default parameters). After minimisation, structural fidelity is assessed by computing the574

RMSD of all heavy atoms relative to the initial geometry, using the RMSD implementation575

provided by mdtraj [52].576

• Conformer Selection: evaluates the MLIP’s ability to identify the most stable conformers577

within an ensemble of flexible organic molecules and accurately predict their relative energy578

differences. It focuses on capturing subtle intramolecular interactions and strain effects that579

influence conformational energies. These metrics assess both numerical accuracy and the580

MLIP’s ability to preserve relative conformer energetics, which is crucial for downstream581

applications such as conformational sampling and compound ranking.582

• Tautomers: assesses the ability of MLIP to accurately predict the relative energies and583

stabilities of tautomeric forms of small molecules in vacuum. Tautomers are structural584

isomers that interconvert via proton transfer and/or double bond rearrangement, and ac-585

curately estimating the energy gap between them is an important measure of chemical586

accuracy in the MLIP framework. Tautomer ranking assesses a model’s ability to predict the587

relative stability of different tautomeric forms of a molecule, which is critical for accurately588

modelling protonation states, reactivity, and binding affinities. It is especially important in589

drug discovery, quantum method benchmarking, and cheminformatics, where tautomers590

can dramatically affect molecular properties and biological activity. For each molecule, the591

benchmark compares MLIP-predicted energies against QM reference data. Performance592

is quantified by comparing the absolute deviation of the energy difference between the593

tautomeric forms from the DFT data.594

• Reactivity: assesses the MLIP’s capability to model chemical reactivity. The reactivity-tst595

benchmark tests the ability to predict the energy of transition states relative to the reaction’s596

reactants and products and thereby the activation energy and enthalpy of a reaction. This597

benchmark calculates the energy of reactants, products and transition states of a large dataset598

of reactions. From the difference between these states, the activation energy and enthalpy of599

formation can be calculated. The performance is quantified using the MAE and RMSE in600

activation energy and enthalpy of formation. The reactivity-neb benchmark evaluates the601

capability to converge a set of nudged elastic band calculations with a known transition state.602

The performance is quantified by the percentage of converged calculations.603

A.3 Molecular Liquids604

The MLIP Audit molecular liquids benchmark focuses on assessing long-range interactions by605

computing the radial distribution function for different molecular liquids.606

• Radial Distribution Function: assesses the ability of MLIP to accurately reproduce607

the radial distribution function (RDF) of liquids. The RDF characterises the local and608

intermediate-range structure of a liquid by describing how particle density varies as a609

function of distance from a reference particle. Accurate modelling of the RDF is essential610

for capturing both short-range ordering and long-range interactions, which are critical for611

understanding the microscopic structure and emergent properties of liquid systems. The612

benchmark performs an MD simulation using the MLIP model in the NVT ensemble at613

300 K for 500,000 steps, leveraging the jax-md engine from the mlip library. The starting614

configuration is already equilibrated. For every specific atom pair (e.g., oxygen-oxygen in615

water), the radial distribution function (RDF or g(r)) is calculated from the simulation, as:616

g(r) =
1

4Πr2ρN
⟨

N∑
i=1

N∑
j ̸=i

δ(r − rij)⟩ (1)
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where: r is the distance from a reference particle,ρ is the average number density, N is the617

number of particles, rij is the distance between particles and δ is the Dirac delta function.618

Angle brackets denote an ensemble average. For each test case, the benchmark computes619

rpeak = argmax
r

g(r) and compares it with the experimental value for the first solvation620

shell.621

A.4 Biomolecules622

MLIP Audit biomolecule benchmarks focus on assessing the properties and dynamics of proteins,623

including their folding behaviour, structural stability, and conformational sampling.624

• Protein folding: evaluates the ability of an MLIP to preserve the structural integrity of625

experimentally determined protein conformations during MD simulations. It assesses the626

retention of secondary structure elements and overall compactness across a set of known627

protein structures. This module analyses the folding trajectories of proteins in MLIP628

simulations. For each molecule in the dataset, the benchmark performs an MD simulation629

with the same configuration described in the stability benchmark. We track how Root Mean630

Square Deviation (RMSD), TM Score [53], Dictionary of Secondary Structure in Proteins631

(DSSP) [54] and Radius of Gyration change over time.632

• Sampling Outlier Detection: Assesses the structural quality of sampled conformations633

by computing backbone Ramachandran angles (ϕ/ψ) and side-chain rotamer angles (χ),634

and identifying outliers through comparison with reference rotamer libraries [55]. For635

each molecule in the dataset, the benchmark performs an MD simulation with the same636

configuration described in the stability benchmark. The outlier detection identifies residues637

whose dihedral angles fall outside expected ranges, relying on the fast KDtree [56] scipy638

[57] implementation. The analysis provides a global percentage of outliers for backbone639

and rotamers per structure, as well as a more detailed analysis per residue type.640

B Benchmarks scoring641

To enable consistent and fair comparison across models, we define a composite score that aggregates642

performance over all compatible benchmarks. Each benchmark b ∈ B may report one or more metrics643

x
(i)
m,b, where i = 1, . . . , Nb indexes the Nb metrics evaluated for the model m. For each metric, we644

compute a normalised score using a soft thresholding function based on a DFT-derived reference645

tolerance t(i)b (see 3):646

s
(i)
m,b =

1, if x(i)m,b ≤ t
(i)
b

exp

(
−α · x

(i)
m,b−t

(i)
b

t
(i)
b

)
, otherwise

where α is a tunable parameter controlling the steepness of the penalty (e.g., α = 3). The per-647

benchmark score is then computed as the average over all its metric scores:648

sm,b =
1

Nb

Nb∑
i=1

s
(i)
m,b

Let Bm ⊆ B denote the subset of benchmarks for which the model m has valid data (i.e., benchmarks649

compatible with its element set). The final model score is the mean over all benchmarks on which the650

model could be evaluated:651

Sm =
1

|Bm|
∑
b∈Bm

sm,b
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This scoring framework ensures that models are rewarded for meeting or exceeding DFT-level652

accuracy, but are not penalised for benchmarks they cannot run due to missing chemical elements.653

Benchmarks with multiple metrics contribute proportionally, and the result is a single interpretable654

score Sm ∈ [0, 1] that balances physical fidelity, chemical coverage, and overall model robustness.655

Table 3: Acceptable error ranges for Classical Force Fields (FF), DFT, and MLIPs across benchmarks.
Benchmark Metric Classical FF DFT
Small molecule minimisation RMSD (Å) 0.2–0.5 ≤0.01–0.075
Non-covalent interactions Absolute deviation from reference

interaction energy (kcal/mol)
1.0–2.0 ≤0.2–1.0

RMSE per interaction group
(kcal/mol)

1.0–2.0 ≤1.0

Dihedral scan Mean barrier error (kcal/mol) ≤ 2.0 ≤0.5–1.0
Conformer selection MAE (kcal/mol) 2.0–5.0 ≤0.5

RMSE (kcal/mol) 3.0–6.0 ≤1.5
Tautomers Absolute deviation (∆G) 2.0–5.0 ≤0.05
Ring planarity Deviation from plane (Å) 0.05–0.20 ≤0.01–0.05
Bond length distribution Avg. fluctuation (Å) 0.03–0.08 ≤0.005–0.05
Reactivity-TST Activation Energy (kcal/mol) – ≤2.0–3.0

Enthalpy (kcal/mol) - ≤ 2.0

Reactivity-NEB Final force convergence (eV/Å) - ≤0.05
Radial Distribution Function RMSE (Å) 0.10–0.30 ≤0.1
Protein Sampling outliers Ramachandran ratio 0.05–0.15 ≤0.005–0.1

Rotamers ratio 0.10–0.25 ≤0.02–0.03
Protein Folding Stability min(RMSD) (Å) ≤3.0 ≤ 2.0

max(TM-Score) 0.25–0.80 ≤0.5
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C Supporting Figures and Tables656

Table 4: Datasets used for the different benchmarks in MLIPAudit.
Benchmark Dataset name Link/Citation Content description
Stability test In-house dataset released with MLIPAudit PDBids: 1UAO, 1AB7, 1P79, 1BIP,

1A5E, 1A7M, 2BQV, 1J7H, 5KGZ,
1VSQ, 1JRS.

Inference scaling In-house dataset released with MLIPAudit PDBids: 1AY3, 1UAO, 1AB7, 1P79,
1BIP, 1A5E, 1A7M, 2BQV, 1J7H,
5KGZ, 1VSQ, 1JRS.

Small molecule minimisation OpenFF [58] 100 molecules for the neutral dataset
and 10 for the charged dataset. The
subsets are constructed so that the
chemical diversity, as represented by
Morgan fingerprints, is maximised.

Non-covalent interactions NCI-ATLAS subsets:
D442x10, HB375x10,
HB300SPXx10,
IHB100x10, R739x5,
SH250x10

http://www.nciatlas.org/ QM optimised geometries of dis-
tance scans of bi-molecular com-
plexes, where the two molecules in-
teract via non-covalent interactions
with associated energies.

Dihedral scan In-house recomputed
TorsionNet 500 dataset
at ωB97M-D3(BJ)
DFT-level.

[59] 500 structures of drug-like
molecules and their energy profiles
around selected rotatable bonds at
wB97M-D3(BJ) DFT-level.

Conformer selection Wiggle 150 [47] 50 conformers each of three
molecules: Adenosine, Benzylpeni-
cillin, and Efavirenz.

Tautomers In-house recomputed
Tautobase dataset at
ωB97M-D3(BJ) DFT-
level.

[60] 2,792 tautomer pairs sourced from
the Tautobase dataset. After gen-
eration of the structures and min-
imisation at xtb level, the QM en-
ergies were computed in-house us-
ing ωB97M-D3(BJ)/def2-TZVPPD
level of theory.

Ring planarity QM9 subset [61] One representative molecule each,
containing substructures for ben-
zene, furan, imidazole, purine, pyri-
dine and pyrrole.

Bond length QM9 subset [61] One representative molecule each,
containing the bond types C-C, C=C,
C#C, C-N, C-O, C=O and C-F.

Reactivity Grambow dataset [48] Reactants, products and transition
states of 11960 reactions.

Radial Distribution Function different sources [62–65] Water, CCl4, Acetonitrile,
Methanol.

Protein Folding In-house dataset released with MLIPAudit PDBids: 1CQ0, 1UAO, 2JOF,
1BA6, 1E0L.

Protein Sampling In-house dataset released with MLIPAudit ala-leu-glu-lys, gln-arg-asp-ala, glu-
gly-ser-arg, gly-thr-trp-gly, gly-tyr-
ala-val, met-ser-asn-gly, met-val-his-
asn, pro-met-ile-gln, pro-met-phe-
ala, ser-ala-cys-pro, trp-phe-gly-ala,
val-glu-lys-ala.
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Table 5: MLIPAudit test-cases overlap with models training dataset
Benchmark Category Benchmark Overlap [%]
Small-Molecule Minimisation 0
Small-Molecule Bond Length distribution 0
Small-Molecule Ring Planarity 0
Small-Molecule Conformer selection 66.7
Small-Molecule Dihedral scan 1.4
Small-Molecule Tautomers 8.4
Small-Molecule Non-covalent interactions –
Small-Molecule Reactivity –
Molecular liquids RDF 0
Biomolecules Folding stability 0
Biomolecules Sampling 0

Table 6: Category-based rankings (aggregated scores by benchmark category)
Rank Category Model Name Score Benchmarks

1 General MACE-SPICE2 0.900 1/1
2 General NequIP-SPICE2 0.900 1/1
3 General Visnet-SPICE2 0.810 1/1
5 General Visnet-t1x 0.160 1/1
6 General MACE-t1x 0.040 1/1
7 General NequIP-t1x 0.040 1/1
1 Small-molecules Visnet-SPICE2 0.578 9/9
2 Small-molecules NequIP-SPICE2 0.550 9/9
3 Small-molecules MACE-SPICE2 0.545 9/9
4 Small-molecules NequIP-t1x 0.379 6/9
5 Small-molecules MACE-t1x 0.351 6/9
6 Small-molecules Visnet-t1x 0.306 6/9
1 Molecular-liquids MACE-SPICE2 1.000 2/2
2 Molecular-liquids Visnet-SPICE2 1.000 2/2
3 Molecular-liquids NequIP-SPICE2 0.834 2/2
4 Molecular-liquids Visnet-t1x 0.000 1/2
5 Molecular-liquids MACE-t1x 0.000 1/2
6 Molecular-liquids NequIP-t1x 0.000 1/2
1 Biomolecules Visnet-SPICE2 0.727 2/2
2 Biomolecules NequIP-SPICE2 0.584 2/2
3 Biomolecules MACE-SPICE2 0.530 2/2
4 Biomolecules Visnet-t1x 0.353 2/2
5 Biomolecules MACE-t1x 0.284 2/2
6 Biomolecules NequIP-t1x 0.183 2/2

20



Table 7: Single benchmarks rankings
Rank Benchmark Model Name Score Test Cases

1 General Stability NequIP-SPICE2 0.900 10/9
2 General Stability MACE-SPICE2 0.900 10/9
3 General Stability Visnet-SPICE2 0.810 9/9
4 General Stability MACE-SPICE2-t1x 0.300 10/9
5 General Stability Visnet-t1x 0.160 4/9
6 General Stability MACE-t1x 0.040 4/9
7 General Stability NequIP-t1x 0.040 4/9
1 Molecular Liquids Solvents Rdf MACE-SPICE2 1.000 3/3
2 Molecular Liquids Solvents Rdf Visnet-SPICE2 1.000 3/3
3 Molecular Liquids Solvents Rdf NequIP-SPICE2 0.669 3/3
1 Molecular Liquids Water Rdf MACE-SPICE2 1.000 1/1
2 Molecular Liquids Water Rdf NequIP-SPICE2 1.000 1/1
3 Molecular Liquids Water Rdf Visnet-SPICE2 1.000 1/1
1 Protein Folding MACE-t1x 0.525 3/5
2 Protein Folding Visnet-t1x 0.525 3/5
3 Protein Folding Visnet-SPICE2 0.525 5/5
4 Protein Folding MACE-SPICE2 0.525 5/5
5 Protein Folding NequIP-SPICE2 0.525 5/5
1 Protein Sampling Visnet-SPICE2 0.928 12/12
2 Protein Sampling NequIP-SPICE2 0.643 9/12
3 Protein Sampling MACE-SPICE2 0.535 12/12
4 Protein Sampling NequIP-t1x 0.366 9/12
5 Protein Sampling Visnet-t1x 0.181 7/12
6 Protein Sampling MACE-t1x 0.043 7/12

Figure 6: Water radial distribution function for MACE-SPICE2, NequIP-SPICE2 and Visnet-SPICE2,
compared with the experimental observable and two water classical forcefields TIP3P and TIP4P [49]

Figure 7: Predicted vs. DFT conformer energies for adenosine (ADO, blue), benzylpenicillin (BPN,
orange), and efavirenz (EFA, green).
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Table 8: Small-Molecules single benchmarks rankings
Rank Benchmark Model Name Score Test Cases

1 Small Molecule Bond Lenght MACE-SPICE2 0.000 8/8
2 Small Molecule Bond Lenght MACE-t1x 0.000 8/8
3 Small Molecule Bond Lenght NequIP-t1x 0.000 8/8
4 Small Molecule Bond Lenght NequIP-SPICE2 0.000 8/8
5 Small Molecule Bond Lenght Visnet-SPICE2 0.000 8/8
6 Small Molecule Bond Lenght Visnet-SPICE2-t1x-L 0.000 8/8
7 Small Molecule Bond Lenght Visnet-SPICE2-t1x 0.000 8/8
8 Small Molecule Bond Lenght MACE-SPICE2-t1x 0.000 8/8
9 Small Molecule Bond Lenght Visnet-t1x 0.000 8/8
1 Small Molecule Conformer Selection Visnet-SPICE2-t1x-L 0.748 3/3
2 Small Molecule Conformer Selection MACE-SPICE2-t1x 0.672 3/3
3 Small Molecule Conformer Selection MACE-SPICE2 0.471 3/3
4 Small Molecule Conformer Selection Visnet-SPICE2 0.416 3/3
5 Small Molecule Conformer Selection NequIP-SPICE2 0.390 3/3
6 Small Molecule Conformer Selection Visnet-SPICE2-t1x 0.025 3/3
1 Small Molecule Dihedral Scan Visnet-SPICE2 0.998 500/500
2 Small Molecule Dihedral Scan Visnet-SPICE2-t1x-L 0.998 500/500
3 Small Molecule Dihedral Scan NequIP-SPICE2 0.994 500/500
4 Small Molecule Dihedral Scan MACE-SPICE2 0.987 500/500
5 Small Molecule Dihedral Scan MACE-SPICE2-t1x 0.945 500/500
6 Small Molecule Dihedral Scan Visnet-SPICE2-t1x 0.796 500/500
1 Small Molecule Noncovalent Interaction MACE-SPICE2 0.525 1807/1807
2 Small Molecule Noncovalent Interaction Visnet-SPICE2-t1x-L 0.519 1807/1807
3 Small Molecule Noncovalent Interaction NequIP-SPICE2 0.515 1807/1807
4 Small Molecule Noncovalent Interaction Visnet-SPICE2 0.514 1807/1807
5 Small Molecule Noncovalent Interaction MACE-SPICE2-t1x 0.459 1807/1807
6 Small Molecule Noncovalent Interaction Visnet-SPICE2-t1x 0.380 1807/1807
7 Small Molecule Noncovalent Interaction NequIP-t1x 0.309 689/1807
8 Small Molecule Noncovalent Interaction MACE-t1x 0.303 689/1807
9 Small Molecule Noncovalent Interaction Visnet-t1x 0.152 689/1807
1 Small Molecule Ring Planarity MACE-SPICE2 1.000 6/6
2 Small Molecule Ring Planarity Visnet-SPICE2-t1x 1.000 6/6
3 Small Molecule Ring Planarity MACE-SPICE2-t1x 1.000 6/6
4 Small Molecule Ring Planarity Visnet-SPICE2 1.000 6/6
5 Small Molecule Ring Planarity NequIP-SPICE2 1.000 6/6
6 Small Molecule Ring Planarity Visnet-SPICE2-t1x-L 1.000 6/6
7 Small Molecule Ring Planarity MACE-t1x 0.961 6/6
8 Small Molecule Ring Planarity NequIP-t1x 0.938 6/6
9 Small Molecule Ring Planarity Visnet-t1x 0.912 6/6
1 Small Molecule Rmsd Visnet-SPICE2 1.000 220/220
2 Small Molecule Rmsd Visnet-SPICE2-t1x-L 0.996 220/220
3 Small Molecule Rmsd MACE-SPICE2 0.942 220/220
4 Small Molecule Rmsd NequIP-SPICE2 0.760 220/220
5 Small Molecule Rmsd MACE-SPICE2-t1x 0.464 220/220
6 Small Molecule Rmsd Visnet-SPICE2-t1x 0.015 220/220
7 Small Molecule Rmsd MACE-t1x 0.000 220/220
8 Small Molecule Rmsd Visnet-t1x 0.000 220/220
9 Small Molecule Rmsd NequIP-t1x 0.000 220/220
1 Small Molecule Tautomers Visnet-SPICE2 0.927 1400/1400
2 Small Molecule Tautomers NequIP-SPICE2 0.914 1400/1400
3 Small Molecule Tautomers Visnet-SPICE2-t1x-L 0.911 1400/1400
4 Small Molecule Tautomers MACE-SPICE2 0.644 1400/1400
5 Small Molecule Tautomers MACE-SPICE2-t1x 0.537 1400/1400
6 Small Molecule Tautomers Visnet-SPICE2-t1x 0.357 1400/1400
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