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Abstract

This paper studies a class of convex Finite-sum
Coupled Compositional Optimization (cFCCO)
problems for empirical X-risk minimization
with applications including group distribution-
ally robust optimization (GDRO) and learning
with imbalanced data. To better address these
problems, we introduce an efficient single-loop
primal-dual block-coordinate stochastic algorithm
called ALEXR. The algorithm employs block-
coordinate stochastic mirror ascent with extrapola-
tion for the dual variable and stochastic proximal
gradient descent updates for the primal variable.
We establish the convergence rates of ALEXR
in both convex and strongly convex cases under
smoothness and non-smoothness conditions of
involved functions, which not only improve the
best rates in previous works on smooth cFCCO
problems but also expand the realm of cFCCO for
solving more challenging non-smooth problems
such as the dual form of GDRO. Finally, we de-
rive lower complexity bounds, demonstrating the
(near-)optimality of ALEXR within a broad class
of stochastic algorithms for cFCCO. Experimen-
tal results on GDRO and partial Area Under the
ROC Curve (pAUC) maximization demonstrate
the promising performance of our algorithm.

1. Introduction
We revisit the following regularized finite-sum coupled com-
positional optimization problem (Wang & Yang, 2022):

min
x∈X

F (x), F (x) :=
1

n

n∑
i=1

fi(gi(x)) + r(x), (1)
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where X ⊂ Rd is a convex and closed set, the inner function
gi(x) = Eζi∼Pi [gi(x; ζi)] is in expectation form, and the
objective function F (x) is convex.

In this paper, we study a special class of convex FCCO
problems, termed cFCCO, which has a specific structure:
The inner function gi : X → Rm is convex and accessible
via stochastic oracles (typically a loss function), while the
outer function fi : Rm → R is a convex and determinis-
tic simple function (transformation) that is monotonically
non-decreasing1. Besides, the regularizer r is also convex.
Although the above condition is sufficient but not necessary
for the convexity of F , fully exploiting it allows us to design
a single-loop algorithm that achieves better complexity than
previous algorithms and applies to non-smooth problems
with convergence guarantees. Moreover, we can prove its
(near-)optimality by establishing lower complexity bounds.

Notably, the special structure of cFCCO arises in various
machine learning applications, including group distribu-
tionally robust optimization (GDRO) (Sagawa et al., 2019;
Soma et al., 2022; Zhang et al., 2023), sub-population fair-
ness (Martinez et al., 2021), partial area under the ROC
curve (pAUC) maximization (Zhu et al., 2022), and bipartite
ranking (Rudin, 2009). We postpone detailed descriptions
of some of these problems to Section 5 and Appendix B.

While several algorithms have been developed to solve the
convex FCCO problem in (1) with theoretical guarantees
of global convergence (Wang & Yang, 2022; Jiang et al.,
2022), these methods are limited by critical drawbacks:
First, these algorithms only have convergence guarantees
under the strong assumption that fi and gi are both smooth
and Lipschitz continuous. Second, their convergence rates
have poor dependence on the target optimization error ϵ,
batch sizes, and, in the strongly convex case, the condi-
tion number. Third, these algorithms rely on nested inner
loops where the number of iterations in each loop depends
on problem-specific constants, increasing the difficulty of
implementation.

To address these limitations, we leverage the structure of
the problem. Using the convex conjugate of fi denoted

1w.r.t. each coordinate of its input. Note that we only need the
monotonicity of fi when gi is nonlinear.
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by f∗i , the cFCCO problem can be reformulated (1) into a
convex-concave min-max problem:

min
x∈X

max
y∈Y

{
1

n

n∑
i=1

[
gi(x)

⊤y(i) − f∗i (y(i))
]
+ r(x)

}
, (2)

where y(i) ∈ Yi ⊆ Rm+ is the i-th block of y, and
Y = Y1×. . .×Yn ⊆ Rnm+ . This reformulation is motivated
by state-of-the-art primal-dual methods for empirical risk
minimization (ERM) (Alacaoglu et al., 2022) and the gen-
eral convex-concave min-max optimization problem (Zhang
et al., 2024). However, the problem in (2) presents unique
challenges: (i) gi(x) may be neither linear nor deterministic,
unlike that assumed in Alacaoglu et al. (2022); (ii) When
n is large, updating the entire dual variable y in each iter-
ation as in Zhang et al. (2024) becomes computationally
prohibitive, motivating the block-coordinate dual update in
our approach.

Our contributions can be summarized as follows:

• We propose a primal-dual block-coordinate stochastic
algorithm named ALEXR to efficiently solve the cFCCO
problems, which only requires O(1) batch size per iteration.

• In both merely and strongly convex cases, the iteration
complexities of ALEXR improve upon the iteration com-
plexities in previous works (Wang & Yang, 2022; Jiang
et al., 2022) on cFCCO problems with smooth fi and gi
(See Table 1 for a detailed comparison). Besides, we also
provide the convergence analysis of ALEXR for cFCCO
problems with non-smooth fi and gi in convex and strongly
convex cases.

• For cFCCO problems with smooth and non-smooth fi, we
prove lower complexity bounds for an abstract first-order
update scheme, which covers our ALEXR and previous al-
gorithms as special cases. These lower bounds demonstrate
the near-optimality of our proposed algorithm.

2. Related Work
The cFCCO problem in (1) is related to several well-studied
optimization problems. In Appendix A, we discuss the
literature related to the min-max reformulation in (2).

Convex Stochastic Compositional Optimization. Sev-
eral papers have studied the convex stochastic compo-
sitional optimization (SCO) problem minx∈X F (x) :=
Eξ[fξ(Eζ [gζ(x)])], where ξ and ζ are mutually independent.
When F is merely convex and fξ is smooth, the SCGD al-
gorithm in Wang et al. (2017a) requires an O( 1

ϵ4 ) iterations
to find an xout s.t. E[F (xout) − minx F (x)] ≤ ϵ. When
F is µ-strongly convex with unique minimizer x∗, SCGD
requires O( 1

µ2ϵ1.5 ) iterations to make µ
2E ∥xout − x∗∥22 ≤ ϵ.

Further exploiting the smoothness of gζ , Wang et al. (2017b)
proposed ASC-PG, which improves the convergence rate to

O( 1
ϵ3.5 ) for merely convex SCO and O( 1

µϵ1.25 ) for strongly
convex SCO. When f is convex and monotonically non-
decreasing and g is convex, Zhang & Lan (2020) reformu-
lated the convex SCO problem as a min-max-max problem
and proposed the stochastic sequential dual (SSD) method
to obtain the optimal O( 1

ϵ2 ) rate in the merely convex case
and O( 1

µϵ ) rate in the µ-strongly convex and smooth case.
They also showed that the O( 1

ϵ2 ) rate is optimal when fi is
non-smooth, even if F is strongly convex. However, these
algorithms for SCO are inapplicable to cFCCO. In fact,
FCCO introduces challenges beyond those in SCO: both the
inner function gi and the distribution Pi in FCCO depend on
the outer index i, whereas in SCO ξ and ζ are mutually inde-
pendent and the inner function Eζ [gζ(x)] does not depend
on ξ.

Conditional stochastic optimization and FCCO. Hu et al.
(2020) studied a more general class of problems called
conditional stochastic optimization: minx∈X F (x) :=
Eξ[fξ(Eζ|ξ[gζ(x; ξ)])]. They proposed biased SGD (BSGD)
with large batch sizes. For convex and smooth F , BSGD re-
quires O( 1

ϵ2 ) iterations and a large batch size of B = O( 1ϵ )
per iteration to find an ϵ-accurate solution. For a µ-strongly
convexF , BSGD requiresO( 1

µϵ ) iterations and a large batch
size of B = O( 1ϵ ) per iteration to find an ϵ-accurate solu-
tion. For the FCCO problem with convex F , Wang & Yang
(2022) used the moving-average estimator and the restarting
trick to find an ϵ-accurate solution with onlyO(1) batch size
per iteration. In particular, restarted SOX has an iteration
complexity of O( n

µ2BSϵ ) for the µ-strongly convex problem
and O( n

BSϵ3 ) for the merely convex problem, where S is
the outer batch size and B is the inner batch size. Jiang
et al. (2022) proposed a variance-reduced algorithm MSVR
that has improved iteration complexities O( n

S
√
Bµϵ

) for the
µ-strongly convex problem and O( n

S
√
Bϵ2

) for the convex
problem. However, the theoretical guarantees of MSVR
have several limitations such as poor dependence on the
batch size B, reliance on restrictive assumptions, and subop-
timality for the µ-strongly cFCCO problem with a smooth
outer function fi (as we will demonstrate in Section 4).

Applications. FCCO serves as the algorithmic framework
for optimizing a broad range of risk functions coined as
empirical X-risk minimization (Yang, 2022). It has been
applied to many machine learning problems, including opti-
mizing listwise losses for learning to rank (Qiu et al., 2022),
optimizing partial area under the ROC curve (pAUC) for
imbalanced data classification (Zhu et al., 2022), group
DRO (Hu et al., 2023b) and optimizing global contrastive
losses for self-supervised learning (Yuan et al., 2022; Qiu
et al., 2023). The proposed algorithm ALEXR for cFCCO
is applicable to pAUC maximization and group DRO.
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Table 1. Comparison of iteration complexities to achieve ϵ-optimal solution of (1) in terms of E[F (xout) − F (x∗)] ≤ ϵ in the merely
convex case and µ

2
E ∥xout − x∗∥22 ≤ ϵ in the µ-strongly convex case, where xout is the output of each algorithm. Õ hides poly log(1/ϵ)

factors. S denotes the size of a batch S ⊂ [n] and B denotes the size of batch Bi sampled from Pi for each i ∈ S . In the “Monotonicity”
column, ↑ means the function is monotonically non-decreasing. “N/A” means not applicable or not available. The gray parts are
implications of Theorems 2 and 3.

Method
Iteration Complexity Inner Batch

Size B
Outer Batch

Size S Loops Smoothness Monotonicity Convexity†

Strongly Convex Merely Convex

BSGD
(Hu et al., 2020)

O
(

1
µϵ2

)
O
(

1
ϵ3

)
O
(
1
ϵ

)
O(1) Single fi, gi None F

O
(

1
µϵ3

)
O
(

1
ϵ4

)
O
(

1
ϵ2

)
O(1) Single gi None F

SOX-Boost
(Wang & Yang, 2022) O

(
n

µ2BSϵ

)
O
(

n
BSϵ3

)
O(1) O(1) Double fi, gi None F

SOX
(Wang & Yang, 2023) Õ

(
n
µSϵ

)
N/A⋆ O(1) O(1) Single fi, gi fi ↑ fi, gi, r

MSVR
(Jiang et al., 2022) O

(
n

µ
√
Bϵ

)
O
(

n√
Bϵ2

)
O(1) O(1) Double fi, gi None F

ALEXR
(This Work)

Õ
(
max

{
1
µSϵ ,

1
µBϵ ,

n
BSϵ

})
Theorem 1 (i)

O
(
max{ 1

Sϵ2 ,
n

BSϵ2 }
)

O(1) O(1) Single fi, gi fi ↑ fi, gi, r

Õ
(
max

{
1
µϵ ,

n
BSϵ

})
Theorem 1 (ii)

O
(
max{ 1

ϵ2 ,
n

BSϵ2 }
)

O(1) O(1) Single fi fi ↑ fi, gi, r

O
(
max{ 1

Sϵ2 ,
n

BSϵ2 }
)♯ O

(
max{ 1

Sϵ2 ,
n

BSϵ2 }
)

Theorem 3 O(1) O(1) Single gi fi ↑ fi, gi, r

O
(
max{ 1

ϵ2 ,
n

BSϵ2 }
)
♯ O

(
max{ 1

ϵ2 ,
n

BSϵ2 }
)

Theorem 2 O(1) O(1) Single None fi ↑ fi, gi, r

† The sufficient condition (convexity of fi, gi, r and monotonicity of fi) for the convexity of F can be met in the applications of interest described in Section 5 and Appendix B.
⋆ The analysis of the merely convex case in Wang & Yang (2023) is under a weaker convergence measure that cannot be converted to the objective gap.
♯ As shown in our lower complexity bound in Section 4, strong convexity does not yield a faster rate due to the compositional structure when the outer function fi is non-smooth. In Zhang

& Lan (2020), a similar result has been established for convex stochastic compositional optimization.

3. Algorithm and Convergence Analysis
Notations. For a vector y ∈ Rnm, we use y(i) ∈ Rm
to represent the i-th coordinate (block) of y, i.e., y =
(y(1), . . . , y(n))⊤. We denote the Bregman divergence as-
sociated with ψi : Rm → R for any u, v ∈ Rm as
Uψi(u, v) = ψi(u)− ψi(v)− ∂ψi(v)⊤(u− v) and define
Uψ(y1, y2) :=

∑n
i=1 Uψi(y

(i)
1 , y

(i)
2 ) for y1, y2 ∈ Rnm. For

a function gi(x) = Eζi∼Pi [g(x; ζi)], we define the stochas-
tic estimator based on the mini-batch Bi as gi(x;Bi) :=
1

|Bi|
∑
ζi∈Bi gi(x; ζi). Let X be a normed vector space with

∥ · ∥2. For each i ∈ [n], let Yi ⊂ Rm be a normed vector
space with a general norm ∥·∥ and ∥·∥∗ be its dual norm.
See Table 3 in the appendix for the full list of notations.

We make the following assumptions throughout the paper.
Assumption 1. The domain X ⊆ Rd in (1) is a convex
and closed set. Besides, the regularizatoin term r is proper,
lower-semicontinuous, and µ-convex on X , µ ≥ 0.
Assumption 2. gi is convex. Besides, there exists Cg > 0
such that ∥gi(x)− gi(x′)∥∗ ≤ Cg ∥x− x′∥2, ∀x, x′ ∈ X .
Assumption 3. fi : Rm → R is convex. Besides, there
exists Cf > 0 such that |fi(u) − fi(u′)| ≤ Cf ∥u− u′∥∗,
∀u, u′ ∈ Y∗

i . If gi is nonlinear, we assume that fi is mono-
tonically non-decreasing w.r.t. each coordinate of its input.

Assumption 3 implies that ∥y(i)∥ ≤ Cf for all y(i) ∈ Yi
and Yi ⊆ Rm+ , ∀i ∈ [n]. Thus, (1) is equivalent to the

convex-concave problem (2) with a convex and compact
Y = Y1 × . . . × Yn. Note that fi of all applications in
Section 5 and Appendix B satisfy the assumption above.

Although the smoothness of fi and gi are not neces-
sary in our work, incorporating them leads to better con-
vergence rates. We say that gi : X → Rm is Lg-
smooth if it is differentiable and there exists Lg >
0 such that ∥gi(x1)− gi(x2)−∇gi(x2)(x1 − x2)∥∗ ≤
Lg
2 ∥x1 − x2∥

2
2, ∀x1, x2 ∈ X ; Besides, we say that fi :

Rm → R is Lf -smooth if it is differentiable and there exists
Lf > 0 such that |fi(u1)−fi(u2)−⟨∇fi(u2), u1 − u2⟩ | ≤
Lf
2 ∥u1 − u2∥

2
∗, ∀u1, u2 ∈ Y∗

i .

Lastly, we assume that the variances of the zeroth-order and
first-order stochastic oracles are bounded.

Assumption 4. There exists finite σ2
0 , σ

2
1 , δ

2 such that

Eζi ∥gi(x)− gi(x; ζi)∥
2
∗ ≤ σ

2
0 ,

Eζi∥[g′i(x)]⊤ − [g′i(x; ζi)]
⊤∥2op ≤ σ2

1 ,

1

n

n∑
j=1

∥[g′j(x)]⊤y(j) −
1

n

n∑
i=1

[g′i(x)]
⊤y(i)∥22 ≤ δ2,

for any x ∈ X , g′i(x) ∈ ∂gi(x), and y ∈ Y .

Under Assumptions 2, 3, the existence of δ2 is ensured since
1
n

∑n
j=1 ∥[g′j(x)]⊤y(j) −

1
n

∑n
i=1[g

′
i(x)]

⊤y(i)∥22 ≤ C2
fC

2
g .
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Algorithm 1 ALEXR
1: Initialize: x0 ∈ X ⊆ Rd, y0 ∈ Y ⊂ Rn+
2: for t = 0, 1, . . . , T − 1 do
3: Sample a batch St ⊂ {1, . . . , n}, |St| = S
4: for each i ∈ St do
5: Sample batches B(i)t , B̃(i)t of size-B from Pi
6: Compute stochastic estimator g̃(i)t = gi(xt;B(i)t )+

θ(gi(xt;B(i)t )− gi(xt−1;B(i)t ))

7: Update the i-th block of the dual variable y(i)t+1 =

argmaxv∈Yi{vg̃
(i)
t − f∗i (v)− τUψi(v, y

(i)
t )}

8: end for
9: For each i /∈ St, y(i)t+1 = y

(i)
t

10: Compute the stochastic gradient estimator Gt =
1
S

∑
i∈St [g

′
i(xt; B̃

(i)
t )]⊤y

(i)
t+1 based on the stochastic

partial gradient g′i(xt; B̃
(i)
t ) ∈ ∂gi(xt; B̃(i)t )

11: xt+1 = argminx∈X {⟨Gt, x⟩+r(x)+
η
2 ∥x− xt∥

2
2}

12: end for

3.1. A Primal-Dual Block-Coordinate Algorithm

We propose a stochastic algorithm, ALEXR (refer to Algo-
rithm 1), to efficiently solve the cFCCO problem defined
in (1) by leveraging its reformulation in (2). Due to the
structure of (1), ALEXR begins each iteration by sampling
a mini-batch St of size S from {1, . . . , n} and, for each
i ∈ St, sampling two i.i.d. mini-batches Bit, B̃it of size B
from Pi.

Since stochastic oracles gi(x; ζi) are only available for those
blocks i ∈ St, ALEXR employs a block-coordinate stochas-
tic update for the dual variable y, which occurs between
line 5 and line 9 in Algorithm 1. For a sampled block i ∈ St,
the update of y(i) is based on the extrapolated stochastic
gradient estimator g̃(i)t of the linear coupling term y(i)gi(xt)
in Step 6 with θ ∈ [0, 1], and a mirror-prox mapping w.r.t.
to some strongly convex distance-generating function ψi.
To ensure the proximal mapping in line 7 of Algorithm 1
can be efficiently computed, it is crucial to carefully select
ψi:

• For any smooth outer function fi, we can select ψi = f∗i .
For u(i)t ∈ ∂f∗i (y

(i)
t ), we can show that (see Lemma 1 in

Appendix C):

y
(i)
t+1 = ∇fi(u(i)t+1), u

(i)
t+1 =

τu
(i)
t + g̃

(i)
t

1 + τ
,∀i ∈ St (3)

If fi is a Legendre-type (proper, closed, strictly convex, and
essentially smooth) function, ALEXR has a primal-only
implementation similar to SOX (Wang & Yang, 2022) and
MSVR (Jiang et al., 2022). To be specific, we can derive
the following equivalent update of u sequence such that

y
(i)
t = ∇fi(u(i)t ).

u
(i)
t+1 =

{
1

1+τ u
(i)
t + τ

1+τ g̃
(i)
t , if i ∈ St

u
(i)
t o.w.

. (4)

• For a non-smooth outer function fi, we can choose ψi
to be the quadratic function ψi(·) = 1

2 ∥·∥
2
2. This choice

requires that the proximal mapping of f∗i can be efficiently
computed, a condition that holds for many simple func-
tions (See Chapters 4 and 6 in Beck, 2017), e.g., the non-
smooth function fi(·) = 1

α max{·, 0} in the GDRO problem
with Conditional Value at Risk (CVaR) divergence and the
pAUC maximization problem described in Section 5.

Then, ALEXR updates the primal variable x based on
a stochastic proximal gradient descent update, where
Gt is a (sub)gradient estimator of the coupling term
1
n

∑
i y

(i)
t+1gi(xt) using an independent mini-batch B̃(i)t .

3.2. Relation to Existing Algorithms

Relation to SOX (Wang & Yang, 2022). By setting θ = 0,
ψi = f∗i in ALEXR, the dual update and the gradient esti-
mator become similar to that used in SOX. In particular, the
update of u(i)t+1 in (3) becomes the moving average estimator,
i.e., u(i)t+1 = (1 − γ)u(i)t + γgi(xt;B(i)t ), where γ = 1

1+τ .
Hence, the updates of ALEXR with θ = 0, ψi = f∗i reduces
to SOX without gradient momentum, whose convergence
is analyzed in Wang & Yang (2023) for strongly convex
FCCO. However, establishing its convergence guarantee for
the merely convex problem is still an open problem.

Relation to MSVR (Jiang et al., 2022). By setting ψi =
f∗i , there is only a subtle difference between MSVR and
ALEXR, which gives ALEXR an advantage. In particu-
lar, the update of u(i)t+1 in (3) of ALEXR can be written as
u
(i)
t+1 = (1 − γ)u

(i)
t + γgi(xt;B(i)t ) + γθ(gi(xt;B(i)t ) −

gi(xt−1;B(i)t )) with γ = 1
1+τ < 1, ∀i ∈ St. This esti-

mator is similar to the one used in MSVR except that the
scaling factor before the correction term (gi(xt;B(i)t ) −
gi(xt−1;B(i)t )) in MSVR is β = n−S

S(1−γ) + 1 − γ, which
could be much larger than 1. Notably, several existing
works have reported better empirical performance using
a γ less than one (Jiang et al., 2022; Hu et al., 2023a;b),
which is consistent with our setting and theory. Another
difference between ALEXR and MSVR is that ALEXR
does not use the variance-reduction technique (Cutkosky &
Orabona, 2019) to compute the gradient estimator of the
primal variable, which demands more memory and compu-
tational costs, albeit resulting in a worse oracle complexity
compared to that of ALEXR for cFCCO.

Relation to SAPD (Zhang et al., 2024). When n = 1, the
reformulation in (2) is a convex-concave saddle point prob-
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lem, where SAPD is a representative stochastic algorithm.
Both SAPD and ALEXR use an extrapolated estimator to
update the dual variable y. The key difference is that SAPD
updates the entire y without assuming block separability of
the dual domain, whereas ALEXR leverages this property
to update only y(i) for those sampled blocks i ∈ St. This
design addresses the challenge of cFCCO: when n is large,
sampling from Pi and computing stochastic gradient estima-
tor for each i ∈ [n] is computationally expensive. Although
ALEXR can be viewed as a block-coordinate variant of
SAPD, its convergence analysis introduces several new chal-
lenges that are not present in the analysis of SAPD: (i) The
block-coordinate updates of ALEXR lead to new challenges
in convergence analysis, such as the dependence issue dis-
cussed in Section 3.3; (ii) ALEXR provides more flexibility
to choose distance-generating functions ψi other than the
quadratic one in SAPD for the dual step; (iii) ALEXR and its
convergence guarantees also apply to non-smooth problems,
whereas SAPD focuses on smooth problems.

3.3. Convergence Analysis

For the convenience of analyzing the block-coordinate up-
dates of the dual variable y, we define an auxiliary sequence:

ȳ
(i)
t+1 = argmax

v∈Yi

{
vg̃

(i)
t − f∗i (v)− τUψi(v, y

(i)
t )
}
, (5)

where g̃t = (g̃
(1)
t , . . . , g̃

(n)
t )⊤, ∀i ∈ [n]. Note that only g̃(i)t

for those blocks i ∈ St are computed in the t-th iteration
of Algorithm 1 while g̃(i)t for those i /∈ St are virtual. The
reason we introduce the sequence {ȳt}t≥0 is to decouple the
dependence between yt+1 and St. Besides, for the options
of ψi listed in Section 3.1, we have Uf∗

i
(u, v) ≥ ρUψi(u, v)

for some ρ ≥ 0 and any u, v ∈ Yi: For example, ρ = 1 for
a smooth fi and ψi = f∗i while ρ = 0 for a non-smooth fi.

We define the objective function in (2) to be L(x, y) :=
1
n

∑n
i=1[gi(x)

⊤y(i) − f∗i (y(i))] + r(x). After the t-th iter-
ation of ALEXR, for any x ∈ X , y ∈ Y we can obtain

η + µ

2
∥x− xt+1∥22 +

τ+ρ
n Uψ(y, ȳt+1) ≤ (6)

η

2
∥x− xt∥22 +

τ
nUψ(y, yt)− (L(xt+1, y)− L(x, ȳt+1))

+Rt

where Rt captures the remaining terms in (15). Notably,
the term L(xt+1, y) − L(x, ȳt+1) can be converted into
the objective gap F (xt+1)− F (x) in an ergodic sense. In
a standard convergence analysis based on potential func-
tions (Bansal & Gupta, 2019), all terms in the potential
function are expected to be non-expansive after a single
iteration. However, it is not immediately clear whether the
shaded part in (6) is non-expansive, regardless of whether

we choose Uψ(y, yt) or Uψ(y, ȳt) as part of the potential
function. It is worth noting that the issue above does not
arise in the analysis of min-max optimization algorithms
without block-coordinate updates such as that in Zhang et al.
(2024), because ȳt+1 = yt+1 if the whole y is updated.

3.3.1. SMOOTH AND STRONGLY CONVEX CASE

When the outer function fi is smooth, we show that
ALEXR can achieve the fast O(ϵ−1) rate for a strongly
convex cFCCO problem. Under this setting, the
min-max problem in (2) is strongly-convex-strongly-
concave (SCSC) and a unique saddle point (x∗, y∗) ex-
ists for the unique minimizer x∗ of the original prob-
lem in (1). We define that Gt is the σ-algebra generated
by {B0,S0, . . . ,Bt−1,St−1,Bt} and Ft is the σ-algebra
generated by {B0,S0, . . . ,Bt−1,St−1,Bt,St}. Note that
Gt ⊂ Ft and yt+1 is Ft-measurable. Since x∗, y∗ are inde-
pendent of the randomness in the algorithm, we have

E[Uψ(y∗, yt+1) | Gt] =
S

n
Uψ(y∗, ȳt+1) +

n− S
n

Uψ(y∗, yt).

Plug the equation above and x = x∗, y = y∗ into (6) can es-
tablish the contraction needed for potential-function-based
convergence analysis. This leads to the following results,
which holds for ALEXR with any strongly convex ψi, in-
cluding ψi(·) = 1

2∥ · ∥
2
2 and ψi = f∗i for a smooth fi.

Theorem 1. Suppose that Assumptions 1, 2, 3, 4 hold with
µ > 0 and Lf -smooth outer function fi.

• (i) If gi is smooth, ALEXR with η = µθ
1−θ , τ = S

n(1−θ) ,

and θ = 1 − O(ϵ) makes µ
2E ∥xT − x∗∥

2
2 ≤ ϵ in

Õ(max{ 1
µS ,

1
µB ,

n
BS }ϵ

−1) iterations;

• (ii) If gi is non-smooth, ALEXR with the same setting
of η, τ , and θ = 1−O(ϵ) leads to iteration complexity
Õ(max{ 1µ ,

n
BS }ϵ

−1).

Remark 1. On strongly convex cFCCO with smooth fi
and gi, ALEXR achieves Õ(max{ 1

µSϵ ,
1

µBϵ ,
n
BSϵ}) itera-

tion complexity, which improves upon the previously best-
known O( n

µ
√
BSϵ

) achieved by MSVR (Jiang et al., 2022).
Besides, we also provide the oracle complexity of ALEXR
when the inner function gi is non-smooth, which is absent
in previous work.

3.3.2. CONVEX CASE WITH POSSIBLY NON-SMOOTH fi

Now we shift our focus to the cFCCO problem with possibly
non-smooth outer function fi. In this case, we require ψi =
1
2∥ · ∥

2
2.

To derive a bound of the objective gap E[F (x̄T )− F (x∗)],
x̄T = 1

T

∑T−1
t=0 xt, we will plug x = x∗ and y = ỹ

(i)
T ∈

argmaxv∈Yi{v
⊤gi(x̄T )− f∗i (v)} ∈ ∂fi(gi(x̄T )) into (6).
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Unfortunately, the technique outlined in Section 3.3.1 does
not address this issue because ỹT also depends on St. We
address this issue by introducing multiple virtual sequences
to transform the shaded part in (6) into telescoping sums of
several potential functions of these virtual sequences (See
Lemma 9), a technique we extended from Nemirovski et al.
(2009); Juditsky et al. (2011); Alacaoglu et al. (2022).

When gi is non-smooth, ALEXR achieves the same conver-
gence rate for θ ∈ {0, 1}, but choosing θ = 0 saves S inner
function evaluations at xt−1.
Theorem 2. Suppose Assumptions 1, 2, 3, 4 hold and
gi is non-smooth. ALEXR with ψi = 1

2∥ · ∥
2
2, θ = 0,

η = O( 1ϵ ), and τ = O( 1
Bϵ ) can make E[F (x̄T ) −

F (x∗)] ≤ ϵ in O(max{1, Ω
0
Y

BS }ϵ
−2) iterations, where

Ω0
Y := E[Uψ(ỹT , y0)] =

∑n
i=1 E[Uψi(ỹ

(i)
T , y

(i)
0 )].

When gi is smooth, setting the parameter θ = 1 leverages
the extrapolation term and yields a better convergence rate.
Theorem 3. Suppose Assumptions 1, 2, 3, 4 hold and
gi is smooth. ALEXR with ψi = 1

2∥ · ∥
2
2, θ = 1,

η = O( 1ϵ ), and τ = O( 1
Bϵ ) can make E[F (x̄T ) −

F (x∗)] ≤ ϵ in O(max{ 1S ,
Ω0

Y
BS }ϵ

−2) iterations, where
Ω0

Y := E[Uψ(ỹT , y0)] =
∑n
i=1 E[Uψi(ỹ

(i)
T , y

(i)
0 )].

Remark 2. The radius Ω0
Y is O(n) in the worst case, but

it can be much smaller than O(n) when ỹT and y0 ex-
hibit some sparsity structure (an example is provided in
Appendix F.1).

We compare the above results with that of MSVR. For
non-smooth fi, MSVR is not applicable. Theorem 2 im-
plies that ALEXR can achieve the O(max{ 1

ϵ2 ,
n

BSϵ2 }) it-
eration complexity for the merely convex problem even
fi is non-smooth. Furthermore, Theorem 3 also indicates
that when both fi and gi are smooth, ALEXR achieves the
O(max{ 1

Sϵ2 ,
n

BSϵ2 }) iteration complexity for the merely
convex problem, improving upon the O( n√

BSϵ2
) iteration

complexity in (Jiang et al., 2022) of the double-loop algo-
rithm MSVR.

When fi is non-smooth, the strong convexity of the objec-
tive does not result in a better rate compared to the merely
convex case, as we will demonstrate in Section 4.

4. Lower Complexity Bounds
In the previous section, we introduced the ALEXR algo-
rithm and established the upper bounds of its iteration com-
plexity and oracle complexity (i.e., the number of calls
of stochastic oracles). In order to examine whether these
bounds of ALEXR are (near-)optimal for the problem in (1),
we examine the lower bounds by constructing “hard” in-
stances of 1 for the following abstract first-order update
scheme that subsumes ALEXR as well as previous algo-

rithms (Zhang et al., 2024; Wang & Yang, 2022; Jiang et al.,
2022)2.

The abstract scheme starts with the initial spaces X0 =
G0 = {0d}, Y0 = {0n}, g0 = {0m} and progresses
as follows in the t-th iteration: First, it samples a batch
St ⊂ [n] and ζit , ζ̃

i
t i.i.d. from Pi. For those i ∈ St,

g
(i)
t+1 = g

(i)
t + span{gi(x̂; ζ(i)t ) | x̂ ∈ Xt},

Y
(i)
t+1 = Y

(i)
t + span{MP(ŷi, ĝi) | ŷi ∈ Y

(i)
t , ĝi ∈ g

(i)
t+1},

where “+” refers to the Minkowski sum, g
(i)
t ,Y

(i)
t are

the i-th slices of the spaces gt,Yt, and MP(ŷi, ĝi) :=
argmaxv{vĝi − f∗i (v) − τUψi(v, ŷi)}. For those i /∈ St,
the corresponding slices remain unchanged, i.e., g(i)t+1 =

g
(i)
t ,Y

(i)
t+1 = Y

(i)
t . The spaces Gt,Xt are updated as

Gt+1 = Gt + span{G(x̂, ŷ) | x̂ ∈ Xt, ŷ ∈ Yt+1},
Xt+1 = Xt + span{QP(x̂, Ĝ) | x̂ ∈ Xt, Ĝ ∈ Gt+1},

where we define G(x̂, ŷ) := 1
S

∑
i∈St [∇gi(x̂; ζ̃

(i)
t )]⊤ŷ(i)

and QP(x̂, Ĝ) := argminx{x⊤Ĝ+ r(x) + η
2 ∥x− x̂∥

2
2}.

For the problem with smooth outer function fi, we con-
struct a hard instance of (1) by setting fi to a variant of
the Huber function and inner function gi to a linear func-
tion with some Bernoulli distributed noise. For the problem
with non-smooth outer function fi, we construct a hard in-
stance by replacing the smooth Huber function fi with a
monotonically non-decreasing hinge function. Details of
the constructions and the proof are provided in Appendix E.

The construction of the noise and the hinge function fi
for the non-smooth problem is adapted from Zhang & Lan
(2020). Our contributions are twofold: First, we design an
abstract scheme that supports block-coordinate updates and
characterize how the optimal oracle complexity depends on
the total number of blocks n; Second, we also construct a
hard instance to prove the lower bound for the strongly con-
vex cFCCO problem with a smooth outer function fi, which
highlights the near-optimality of our ALEXR in this setting
and its significant improvement over previous algorithms.

Theorem 4. For the µ-strongly cFCCO problem in (1)
with a smooth outer function fi, any algorithm within
the abstract scheme described above requires at least
Ω(max{Sµ , n}ϵ

−1) oracles calls to find an x̄ such that
µ
2E ∥x̄− x∗∥

2
2 ≤ ϵ; Besides, For the cFCCO problem in (1)

(whether merely convex or strongly convex) with a non-
smooth outer function fi, any algorithm within the abstract
scheme described above requires at least Ω(nϵ−2) oracles
calls to find an x̄ such that E[F (x̄)− F (x∗)] ≤ ϵ.

2It covers SOX (Wang & Yang, 2022) and MSVR (Jiang et al.,
2022) when ψi = f∗

i . Besides, it also covers SAPD (Zhang et al.,
2024) when S = n and ψi = 1

2
∥·∥22.
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Theorem 4 demonstrates that ALEXR is near-optimal in
both cases. Furthermore, it also shows that the upper bounds
established in Theorem 1 and Theorem 3 are tight.

5. Experiments
In this section, we present two main applications of the
cFCCO problem: Group Distributionally Robust Optimiza-
tion (GDRO) and Partial AUC Maximization (pAUC) with
a restricted True Positive Rate (TPR). We then evaluate the
empirical performance of our proposed ALEXR algorithm
against previous baselines in these applications. More appli-
cations are discussed in Appendix B while additional details
and experimental results can be found in Appendix G.

5.1. Group Distributionally Robust Optimization

The Group Distributionally Robust Optimization (GDRO)
framework aims to train machine learning models that are
robust across predefined subgroups (Sagawa et al., 2019).
Suppose that there are n predefined groups and the data dis-
tribution of the i-th group is Pi. The ϕ-divergence penalized
GDRO can be formulated as

min
w

max
q∈∆n

{
n∑
i=1

(
q(i)Ri(w)−

λ

n
ϕ(nqi)

)}
+ r(w), (7)

where ∆n is the (n− 1)-dimensional probability simplex,
w is the model parameter, Ri(w) := Ez∼Pi [ℓ(w; z)] is the
risk of the i-th group, and ϕ : R+ → R∪ {+∞}, ϕ(1) = 0.

Prior work (Sagawa et al., 2019; Zhang et al., 2023) dis-
carded the ϕ-divergence penalty, i.e., λ = 0 in (7), and con-
sider the problem minwmaxi∈[n]Ri(w), which minimizes
the risk of the worst group. However, the model trained
through worst-group risk minimization may be vacuous if
the worst group is an outlier. Moreover, the sizes of groups
may follow a long-tailed distribution such that multiple rare
groups exist. To resolve these issues, we choose λ > 0 and
consider the penalized GDRO problem with CVaR diver-
gence ϕ = I[0,α−1] or χ2-divergence ϕ(t) = 1

2 (t− 1)2.

The challenges of directly solving (7) using stochastic min-
max algorithms lie in estimating the stochastic gradient of
q and controlling its variance when n is large (Zhang et al.,
2023). Alternatively, we can transform the above problem
into an equivalent problem by duality (Levy et al., 2020):

min
w,c∈R

λ

n

n∑
i=1

ϕ∗
(
Ri(w)− c

λ

)
+ c+ r(w), (8)

where ϕ∗ is monotonically non-decreasing, e.g., ϕ∗(u) =
1
α (u)+ for CVaR divergence and ϕ∗(u) = 1

4 (u+2)2+−1 for
χ2-divergence. The dual formulation in (8) is recognized
as a difficult open problem in Sagawa et al. (2019) due
to the biased stochastic estimator (refer to footnote 4 in

their paper). When Ri(w) is convex, we can solve the
problem in (8) by viewing it as a cFCCO problem with a
convex outer function fi(·) = λϕ∗(·) and an inner function
gi(x) = (Ri(w)− c)/λ that is jointly convex to x = (w, c).
In Appendix F, we compare the convergence rates and per-
iteration costs of ALEXR with previous GDRO algorithms.

First, we empirically compare our proposed ALEXR with
baseline methods on the GDRO problem in (7) with the
CVaR divergence for the binary classification task.We con-
sider the linear model w and the logistic loss ℓ(w; z).

Datasets. We perform experiments on two datasets: a tab-
ular dataset Adult (Becker & Kohavi, 1996) and an image
dataset CelebA (Liu et al., 2015). For the Adult dataset, we
construct 83 groups according to features such as race and
the task is to predict the income. For the CelebA dataset, we
constructed 160 groups based on binary attributes such as
sex and the task is to determine whether a person possesses
blonde hair. Please see Appendix G.1 for more details.

Baselines. We compare ALEXR with previous algorithms
on the FCCO problem including BSGD (Hu et al., 2020),
SOX (Wang & Yang, 2022), and MSVR (Jiang et al., 2022)3.
Besides, we also compare ALEXR with previous algorithms
for the GDRO problem, which include OOA (Sagawa et al.,
2019) and SGD with up-weighting (SGD-UW) (Buda et al.,
2018). OOA was originally proposed for the GDRO prob-
lem without a penalty term and we extend it to the CVaR-
penalized GDRO based on an efficient algorithm for pro-
jection onto the capped simplex (Lim & Wright, 2016),
where we use the implementation in Blondel (2019). To
show the benefit of GDRO, we also include SGD based on
empirical risk minimization (ERM) as a baseline, which
neglects the group information. We do not compare with
some other GDRO algorithms (Zhang et al., 2023; Soma
et al., 2022) that do not support group sampling or do not
apply to the CVaR-penalized problem. Moreover, algo-
rithms for distributionally robust optimization (DRO) (Levy
et al., 2020; Meng & Gower, 2023) are not applicable to the
GDRO problem due to the stochastic oracles of per-group
risk Ri(w). We execute all algorithms for 5 runs with dif-
ferent random seeds. For a fair comparison, each algorithm
samples 64 data points in each iteration. For SGD, these
data points are sampled from the entire training dataset,
whereas for other algorithms, we sample 8 groups and 8
data points per group. We tune the step sizes of all algo-
rithms in the range {2, 5, 10} × 10{−3,−2,−1}. For SOX
and MSVR, we also tune the momentum parameter γ in the
range {0.1, 0.5, 0.9}. For ALEXR, we choose the extrapo-
lation parameter θ ∈ {0.1, 1.0} and ψi(·) = 1

2 (·)
2. For all

algorithms, we choose the weight decay parameter 0.05 on

3MSVR was designed for FCCO problems with smooth fi. We
replace the gradient ∇fi in MSVR with a subgradient to make it
applicable to this GDRO problem with a non-smooth fi.
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Figure 1. GDRO loss curves evaluated on the validation datasets during the training process with α = 0.1 and 0.15.

Table 2. Test accuracy (%) on the worst-(αn) groups with α = 0.1 and 0.15. The best accuracy is highlighted in black.

Methods
Adult CelebA Mean

α = 0.1 α = 0.15 α = 0.1 α = 0.15

SGD 0.71±0.20 1.87±0.25 2.75±0.08 4.89±0.10 2.56
SGD-UW 23.70±1.01 26.26±1.06 73.70±0.13 74.18±0.13 49.46

OOA 51.46±2.21 54.12±2.04 66.40±6.37 73.43± 0.79 61.35
BSGD 55.81±0.70 58.58±0.61 75.30±0.27 76.16±0.12 66.46
SOX 56.34 ±1.15 58.36±0.44 75.04±0.20 76.10±0.30 66.46

MSVR 47.78±1.06 49.49±0.95 75.34±0.28 76.17±0.09 62.20
ALEXR 56.58±0.69 58.52±0.71 75.79±0.05 76.29±0.07 66.80

the Adult dataset and 0.1 on the CelebA dataset.

Results. In Table 2, we report test accuracy for all algo-
rithms on the worst-(αn) groups with α = 0.1 and 0.15.
Besides, we plot the validation loss curves for FCCO algo-
rithms sharing the same objective function (8) in Figure 1.
First, we notice that the vanilla SGD performs poorly on the
worst-(αn) groups’ data. While the up-weighting trick of-
fers some improvement for SGD, its effectiveness still falls
short of Group DRO algorithms. Among GDRO algorithms,
our proposed ALEXR exhibits faster convergence compared
to baseline methods. ALEXR also achieves superior test
accuracy compared to baseline methods in most cases.

5.2. Partial AUC Maximization with Restricted TPR

The Area Under the ROC Curve (AUC) is a more informa-
tive metric than accuracy for assessing the performance of
binary classifiers in the context of imbalanced data (Yang
& Ying, 2022). In scenarios influenced by diagnostic or
monetary considerations, the primary objective may be to
maximize the partial AUC (pAUC) with a specified lower
bound α for the true positive rate (TPR). As shown in Zhu
et al. (2022), a surrogate objective for maximizing pAUC
with restricted TPR is formulated as

min
w∈Rd

1

n+n−

∑
ai∈S↑

+[1,n+(1−α)]

∑
aj∈S−

L(w; ai, aj), (9)

Here S+,S− are the sets of positive/negative data, w refers
to the model and L(w; ai, aj) = ℓ(hw(aj)−hw(ai)) repre-
sents a continuous pairwise surrogate loss, where hw(ai) de-

notes the prediction score for data ai. Additionally, S↑+[1, k]
the bottom-k positive data based on the prediction scores. In
particular, ℓ is a convex and monotonically non-decreasing
function, ensuring the consistency of the surrogate objec-
tive (Gao & Zhou, 2015). Based on the duality (Levy et al.,
2020), the problem in (9) is equivalent to

min
w,s∈R

1

n+(1− α)
∑
ai∈S+

[ 1

n−

∑
aj∈S−

L(w; ai, aj)− s
]
+

+ s,

which is a cFCCO problem with fi = (·)+ and gi(w, s) =
1
n−

∑
aj∈S−

L(w; ai, aj)− s jointly convex to (w, s).

In our experiments, we consider linear prediction model w
and two different lower bounds α of TPR: 0.5 and 0.75.

Baselines. Apart from BSGD, SOX, and MSVR, we also
include SGD with over-sampling for the cross-entropy (CE)
loss and the SOTA algorithm (Zhu et al., 2022) as baselines.
In each iteration, each algorithm samples an equal number
of positive and negative data points (16 for each), which is
based on the convergence theory in Zhu et al. (2022).

Datasets. We perform experiments on four datasets: Cov-
type, Cardiomegaly, Lung-mass, and Higgs. The Covtype
and Higgs datasets are from the LibSVM repository (Chang
& Lin, 2011). To create imbalanced datasets, we randomly
remove 99.5% positive data from Covtype and 99.9% posi-
tive data from Higgs. For Covtype, we randomly allocate
75% of the data for training and 25% for validation. For
Higgs, we randomly select 500,000 data points for vali-

8



A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization

0 1 2 3 4 5
#Oracles 1e4

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

pA
U

C

Covtype (TPR¸0.5)

ALEXR
SOX
BSGD

MSVR
SOTA

0 1 2 3 4 5
#Oracles 1e4

0.46

0.48

0.50

0.52

0.54

0.56

pA
U

C

Covtype (TPR¸0.75)

ALEXR
SOX
BSGD

MSVR
SOTA

0 1 2 3 4 5
#Oracles 1e4

0.40

0.42

0.44

0.46

0.48

pA
U

C

Higgs (TPR¸0.5)

ALEXR
SOX
BSGD

MSVR
SOTA

0 1 2 3 4 5
#Oracles 1e4

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

pA
U

C

Higgs (TPR¸0.75)

ALEXR
SOX
BSGD

MSVR
SOTA

0.0 0.5 1.0 1.5 2.0 2.5
#Oracles 1e4

0.59

0.60

0.61

0.62

0.63

0.64

pA
U

C

Cardiomegaly (TPR¸0.5)

ALEXR
SOX
BSGD

MSVR
SOTA

0.0 0.5 1.0 1.5 2.0 2.5
#Oracles 1e4

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52
pA

U
C

Cardiomegaly (TPR¸0.75)

ALEXR
SOX
BSGD

MSVR
SOTA

0.0 0.5 1.0 1.5 2.0 2.5
#Oracles 1e4

0.33

0.34

0.35

0.36

0.37

0.38

pA
U

C

Lung-mass (TPR¸0.5)

ALEXR
SOX
BSGD

MSVR
SOTA

0.0 0.5 1.0 1.5 2.0 2.5
#Oracles 1e4

0.16

0.17

0.18

0.19

0.20

0.21

0.22

pA
U

C

Lung-mass (TPR¸0.75)

ALEXR
SOX
BSGD

MSVR
SOTA

Figure 2. Partial AUC evaluated on the validation datasets during the training process under TPR≥ 0.5 and TPR≥ 0.75.

dation and the rest as training data. Cardiomegaly and
Lung-mass are two imbalanced datasets that share the same
collection of Chest X-ray images and different label annota-
tions from the MedMNIST repository (Yang et al., 2023),
where we use the default splits. We vectorize each 28×28
image in Cardiomegaly/Lung-mass datasets as a data point.
Statistics of datasets are listed in Table 5 of the appendix.

Results. In Figure 2, we compare the pAUC curves dur-
ing training. First, the results suggest that optimizing the
surrogate loss in (9) outperforms optimizing the CE loss
for maximizing pAUC with a restricted TPR. Moreover,
ALEXR demonstrates overall superior performance when
compared to other baselines including the SOTA algorithm
specifically designed for pAUC maximization.

6. Conclusion and Discussion
In this paper, we study a class of convex FCCO problems,
called cFCCO, via its min-max reformulation (2). We pro-
pose a single-loop primal-dual block-coordinate stochastic
algorithm called ALEXR, which achieves improved iter-
ation complexities compared to previous works on both
merely and strongly convex cFCCO problems with smooth
fi and gi. We also establish the iteration complexities of
ALEXR when either fi or gi is non-smooth. Furthermore,
we present lower complexity bounds to show that the con-
vergence rate of ALEXR is near-optimal among first-order
stochastic methods for cFCCO problems. Finally, we note
that it remains an open problem to prove similar complexi-
ties as in this work for cFCCO with concave outer functions
fi such as the logarithmic function, which has broad appli-
cations in machine learning.
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Table 3. Notations we use throughout the paper.
Basic

d Number of the model parameters
n Number of summands in cFCCO (1)
R+ Set of non-negative real numbers Below (2)
(x)+ max{x, 0}
[n] Set {1, 2, . . . , n}
y(i) The i-th block of size m in the vector y ∈ Rnm
a ∨ b max(a, b) for a, b ∈ R
a ∧ b min(a, b) for a, b ∈ R
a ≍ b There exists c, C > 0 such that cb ≤ a ≤ Cb for a, b > 0
IE = 1 if the event E is true and = 0 otherwise Appendix E

Standard
f∗ The convex conjugate of a function f
µ The strong convexity constant Assumption 1
ψi Strictly convex and differentiable ψi : Rm → R
X Convex and closed domain of the model x (1)
Y The decomposable domain of the dual variable y, Y = Y1 × . . .× Yn, Yi ⊆ Rm+ (2)
Yi A normed vector space in Rm+ with norm ∥·∥ (2)
y(i) The i-th size-m block of a vector y ∈ Rnm
Y∗
i Dual space of Yi with norm ∥·∥∗

Uψi(u, v) Bregman divergence ψi(u)− ψi(v)− ⟨∇ψi(v), u− v⟩ for u, v ∈ Rm associated with ψi
Uψ(y1, y2) Defined as

∑n
i=1 Uψi(y

(i)
1 , y

(i)
2 ) for y1, y2 ∈ Rnm

Dψi,Yi The diameter [maxv∈Yi ψi(v)−minv∈Yi ψi(v)]
1/2 of a set Yi w.r.t. ψi

DY Defined as [
∑n
i=1D

2
ψi,Yi ]

1/2

DX Dψi,X with ψi = 1
2
∥·∥22

∥Ti∥op Operator norm supx∈X

{
∥Tix∥∗
∥x∥2

}
for a linear operator Ti : X → Y∗

i

∥T ∗
i ∥op Operator norm supx∈X

{
∥Tix∥∗
∥x∥2

}
of the adjoint operator T ∗

i : Yi → X
span(S) Linear span of a set S of vectors
∆n The (n− 1)-dimensional probability simplex ∆n ⊂ Rn+
Cg Lipschitz constant of inner function gi Assumption 2
Cf Lipschitz constant of outer function fi Assumption 3

σ2
0 , σ

2
1 Variance upper bounds of zero-th and first order oracles of gi Assumption 4

δ2 Variance upper bound of compositional stochastic gradient Assumption 4
Algorithm

St Batch St ⊂ [n] of size S sampled in the t-th iteration Algorithm 1

B(i)
t , B̃(i)

t

Two i.i.d. batches of size-B sampled from Pi in the t-th iteration. Batches {B(i)
t }i∈St are

actually sampled in Algorithm 1; Batches {B(i)
t }i/∈St are virtual and only for analysis

gi(x;B(i)) Stochastic estimator 1
B

∑
ζi∈B(i) g(x; ζi) based on the mini-batch B(i) sampled from Pi for gi(x) in (1)

η, τ, θ Hyperparameters of ALEXR Algorithm 1
g̃
(i)
t Extrapolated stochastic estimator for the inner function value Line 6 in Algorithm 1

Analysis
F (x) Objective function of cFCCO (1)
L(x, y) Objective function of the min-max reformulation (2)
x∗ A minimizer of F (x) in (1)

(x∗, y∗) Unique saddle point of L(x, y) in (2) when fi is smooth and r is strongly convex
ȳt Dual auxiliary sequence defined for the convenience of convergence analysis (5)
x̄T Time-average primal iterate 1

T

∑T−1
t=0 xt+1

ỹT ỹ
(i)
T ∈ argmaxv∈Yi{v

⊤gi(x̄T )− f∗
i (v)} ∈ ∂fi(gi(x̄T ))

ẏt Virtual sequence defined in the proofs of Lemma 6 and Lemma 10 Below (20) and (34)
Γt Defined as 1

n

∑n
i=1(gi(xt)− gi(xt−1))

⊤(y(i) − y
(i)
t ) Lemma 6

Υxt Defined as 1
2
E ∥x∗ − xt∥22 Section D.1.2

Υyt Defined as 1
S
EUψ(y∗, yt) Section D.1.2

ŷt Virtual sequence constructed in Lemma 9 Below (6)
ˆ̂yt, y̆t Virtual sequences constructed in Lemma 10 Below (33)
¯̄yT Time-average dual auxiliary iterate 1

T

∑T−1
t=0 ȳt+1 Below (39)
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A. Other Related Work
The min-max reformulation of cFCCO in (2) is closely related to the following prior work.

Convex-Concave Saddle Point (SP) Problem. The saddle point (SP) problem minx∈X maxy∈Y L(x, y) that is µx-convex
in x and µy-concave in y (µx, µy ≥ 0) has been thoroughly studied. We refer to the SP problem with µx, µy > 0 as a strongly-
convex-strongly-concave (SCSC) problem while those with µx, µy = 0 as a convex-concave (CC) problem. A saddle point
(x∗, y∗), if it exists, satisfies the condition L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀(x, y) ∈ X × Y . Besides, the SP problem is
closely related to the more general monotone variational inequalities (VI), which involve finding a point z∗ = (x∗, y∗) such
that ⟨Φ(z∗), z − z∗⟩ ≥ 0, Φ(z) = (∂xL(x, y),−∂yL(x, y)), ∀z ∈ X×Y . To assess the optimality of any point (xout, yout) ∈
X × Y , we can employ the concept of the duality gap, defined as Gap(xout, yout) := maxx,y{L(xout, y)− L(x, yout)}, and
for SCSC problems, we can also useD(xout, yout) :=

µx
2 ∥xout − x∗∥22+

µy
2 ∥yout − y∗∥22. The convergence rate is quantified

by measuring the number of iterations required to find an ϵ-approximate saddle point or an ϵ-approximate solution to the VI,
satisfying one of the following conditions: (i) Gap(xout, yout) ≤ ϵ; (ii) D(xout, yout) ≤ ϵ; (iii) ⟨Φ(zout), zout − z⟩ ≤ ϵ.

Accessing exact oracles such as ∇xL and ∇yL may not be feasible in many real-world scenarios. Instead, the available
resources provide only unbiased stochastic estimators, denoted as ∇̃xL and ∇̃yL, with variances bounded by σ2. This
limitation has prompted the development of numerous algorithms tailored for addressing the stochastic saddle point problem
(SPP) and the more general stochastic variational inequalities (SVIs). For instance, the stochastic mirror descent (SMD)
method (Nemirovski et al., 2009) achieves the optimal convergence rate of O( 1

ϵ2 ) for non-Lipschitz SVIs. For Lipschitz
monotone SVIs, the stochastic mirror-prox (SMP) method (Juditsky et al., 2011) attains the optimal rate of O( 1ϵ +

σ2

ϵ2 ). For
SCSC and non-smooth SP problems, Yan et al. (2020) establish the Õ( 1ϵ +

1
µxϵ
∨ 1
µyϵ

) rate with probability 1− p. Hsieh

et al. (2019) propose a single-call stochastic extragradient (SSEG) method that achieves a rate of O( 1ϵ +
σ2

µxϵ
∨ σ2

µyϵ
) for

Lipschitz and strongly monotone SVIs. More recently, several works have devised stochastic algorithms for both the SSP
and SVI problems, achieving (near-)optimal deterministic and stochastic convergence rates simultaneously. Zhang et al.
(2024) introduce the SAPD algorithm, which reaches a convergence rate of Õ( 1

µx
∨ 1
µy

+ 1√
µxµy

+ σ2

µxϵ
∨ σ2

µyϵ
) for the SCSC

problem and O( 1ϵ +
σ2

ϵ2 ) for the CC problem. These algorithms cannot be directly applied to the min-max reformulation of
cFCCO in (2) because the dual variable y could be very high-dimensional, making it computationally infeasible to update
the entire y. This challenge motivates the block-coordinate stochastic update in our algorithm ALEXR.

Coordinate Methods for the Block-Separable Deterministic SP Problem. A special class of bilinearly-coupled SP
problem is in the form minxmaxy L(x, y) :=

1
n

∑n
i=1[y

(i)a⊤i x− ϕi(y(i))] + r(x), where L(x, y) is block-separable w.r.t.
the dual variable y. One illustrative example is the primal-dual reformulation of the (regularized) empirical risk minimization
(ERM) problem, denoted as minx F (x), where F (x) is defined as F (x) := 1

n

∑n
i=1 ℓ(a

⊤
i x) + r(x). This reformulation

applies to data-label pairs (ai, bi)
n
i=1 in the context of a linear model. Particularly in scenarios with a significantly large

value of n, the computational overhead of computing ∇yL(x, y) and updating y can become prohibitively expensive. In
such cases, randomized coordinate methods offer a viable solution by reducing the per-iteration oracle cost from O(n) to
O(1). The SPDC method (Zhang & Xiao, 2015) leads to Õ(n +

√
n

µxµy
) convergence rate to make E[D(x̄, ȳ)] ≤ ϵ for

the SCSC problem and Õ
(
n+

√
n
ϵ

)
rate to make E[F (x̄)− F (x∗)] ≤ ϵ for the CC problem. Recently, Alacaoglu et al.

(2022) extended the Pure-CD originally proposed in Alacaoglu et al. (2020) to incorporate importance sampling and exploit
the potential sparsity in A. For the CC problem with dense A, Pure-CD not only achieves an improved rate of O(n+

√
n
ϵ )

to guarantee E[F (x̄) − F (x∗)] ≤ ϵ but also attains a rate of Õ(nϵ ) to ensure E[Gap(x̄, ȳ)] ≤ ϵ. It is worth noting that
E[Gap(x̄, ȳ)] ≤ ϵ serves as a sufficient but not necessary condition for E[F (x̄)− F (x∗)] ≤ ϵ.

In addition to addressing the bilinearly-coupled block-separable saddle point (SP) problem, Hamedani et al. (2023)
have extended their focus to the more general Convex-Concave (CC) problem, defined as L(x, y) = Φ(x, y) − ϕ(y) +∑m
i=1 hi(x

(i)). Their work establishes a convergence rate of O
(
m
ϵ

)
for a randomized block-coordinate primal-dual method,

ensuring that E[Gap(x̄, ȳ)] ≤ ϵ. Furthermore, Jalilzadeh et al. (2019) have delved into scenarios where L(x, y) exhibits
block-separability to both x and y. In this context, L(x, y) is defined asL(x, y) = Φ(x, y)−

∑n
i=1 ϕi(y

(i))+
∑m
j=1 hj(x

(j)).
They introduce a doubly-randomized block-coordinate method to address such problems. It is worth emphasizing that all
the works mentioned in this section (Zhang & Xiao, 2015; Alacaoglu et al., 2020; 2022; Jalilzadeh et al., 2019) rely on the
assumption of having access to the exact ∇xΦ(x, y) and ∇yΦ(x, y). In contrast, our work addresses the more challenging
problem where only stochastic oracles are available.
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B. Others Applications of cFCCO
In Section 5, we introduce two applications of cFCCO: Group Distributionally Robust Optimization (GDRO) and Partial
AUC (pAUC) Maximization with a Restricted TPR. Here we provide more applications of cFCCO in machine learning.

Robust Logistic Regression. Consider a collection of data-label pairs, denoted as (ai, bi)
n
i=1. We can formulate the

robust logistic regression problem as minx∈X
1
n

∑n
i=1 log(1 + exp biE[A(ai)⊤x | ai]) + r(x). In this formulation, A(ai)

represents the perturbed data generated from an underlying distribution Pi. This is a special case of (1), where the functions
fi(·) are convex and monotonically non-decreasing given by fi(·) = log(1 + exp(bi·)), and gi(x) = EA(ai)∼Pi [A(ai)⊤x].

Bellman Residual Minimization. The task of approximating the value function, denoted as V π(s), for each state s under
policy π using a linear mapping can be expressed as minx∈X

∑S
s=1(ϕ

⊤
s x−

∑
s′ Pπs,s′ [rs,s′ +γ ·ϕ⊤s′x])2. In this formulation,

ϕs and ϕs′ are feature vectors representing states s and s′, respectively. Additionally, rs,s′ represents the random reward
obtained during the transition from state s to s′, γ < 1 is the discount factor, π denotes the policy, and Pπs,s′ represents the
probability of transitioning from state s to s′ under policy π. This problem can be formulated as (1), where the functions
fs(·) are convex and given by fs(·) = 1

S (·)
2, and the affine function gs(x) = ϕ⊤s x−

∑
s′ Pπs,s′ [rs,s′ + γ · ϕ⊤s′x].

Bipartite Ranking. Imbalanced data classification is usually tackled in the context of the bipartite ranking problem. There
is often a desire to penalize those positive examples with lower scores. One approach is the p-norm push, introduced

by Rudin (2009). It formulates the problem as minx∈X
1
n+

∑
ai∈D+

(
1
n−

∑
aj∈D−

ℓ(sx(aj)− sx(ai))
)p

+ r(x), p ≥ 1.
Here, D+ and D− represent positive and negative data sets. The function sx(a) denotes the ranking score of data
point a, which is determined by a linear model parameterized by x. The loss function ℓ is non-negative, convex, and
monotonically non-decreasing, for instance, ℓ(·) = exp(·). The p-norm push method is in a special case of (1), where the
functions fi(·) are convex and monotonically non-decreasing and given by fi(·) = (·)p, and the convex function gi(x) =
1
n+

∑
aj∈D+

ℓ(sx(aj)− sx(ai)). One popular approach for retrieval problems is maximizing the precision or recall at top
k positions (prec/rec@k). Yang (2022) has formulated the problem as minx∈X

1
n+

∑
ai∈D+

ℓ1(
∑
aj∈D+∪D−

ℓ2(sx(aj)−
sx(ai)− k)) + r(x), where ℓ1, ℓ2 are monotonically non-decreasing convex surrogate losses of the zero-one loss. Hence,
maximizing precision or recall at top k positions with a convex model sx(a) is covered by (1).

Multi-Task GDRO. GDRO can be extended to the multi-task setting. Consider a scenario with n tasks and m
groups. We represent the data distribution for the i-th task and the j-th group as Pi,j . Additionally, let ℓ(x; z) be
the loss function associated with parameter x on data point z. The Multi-Task GDRO, with a regularization term r,
is formulated as minx∈X

1
n

∑n
i=1 maxj∈[m] E[ℓ(x; zij)] + r(x). In this formulation, the functions fi(·) are defined as

fi(gi) = maxj∈[m](gij), and gij(x) = E[ℓ(x; zij)], where gi(x) = [gi1(x), . . . , gim(x)]. Alternatively, we may consider
the smooth fi(gi) = log

∑
j∈[m] exp(gij). This problem is particularly relevant for the scenario featuring a substantial

number n of tasks, such as identity prediction in human faces, with a limited number m of groups (e.g., lightning conditions).

C. Basic Lemmas

Lemma 1. Suppose that y(i)0 = f ′i(u
(i)
0 ) ∈ ∂fi(u

(i)
0 ) for some u(i)0 ∈ R and u(i)t+1 =

{
τ

1+τ u
(i)
t + 1

1+τ g̃
(i)
t , i ∈ St

u
(i)
t , i /∈ St.

Algorithm 1 with ψi = f∗i satisfies that y(i)t = f ′i(u
(i)
t ) ∈ ∂fi(u(i)t ) for all i ∈ {1, . . . , n} and t ≥ 0.

Proof. We prove it by induction. The base case follows from the premise. Assume that y(i)t = f ′i(u
(i)
t ) ∈ ∂fi(u(i)t ).

• Case I (i /∈ St): Note that y(i)t+1 = y
(i)
t and u(i)t+1 = u

(i)
t . Thus, y(i)t+1 = f ′i(u

(i)
t+1) ∈ ∂fi(u

(i)
t+1).

• Case II (i ∈ St): This part resembles Lemma 2 in Zhang & Lan (2020). Based on the update rule and the premise
y
(i)
t ∈ ∂fi(u

(i)
t ), we have

y
(i)
t+1 = argmax

y(i)

{
y(i)g̃

(i)
t − f∗i (y(i))− τ

(
f∗i (y

(i))− (f∗i )
′(y

(i)
t ) · y(i)

)}
= argmax

y(i)

{(
1

1 + τ
g̃
(i)
t +

τ

1 + τ
u
(i)
t

)
· y(i) − f∗i (y(i))

}
∈ ∂fi

(
1

1 + τ
g̃
(i)
t +

τ

1 + τ
u
(i)
t

)
= ∂fi(u

(i)
t+1).
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The following lemma is well-known and similar ideas have been used in Nemirovski et al. (2009); Juditsky et al. (2011).

Lemma 2. Consider a martingale difference sequence ∆t adapted to Ft. Define a sequence {π̂t}t:

π̂0 = 0, π̂t+1 = argmin
v
{⟨−∆t, v⟩+ αUψ(v, π̂t)},

where we also assume that ψ is µψ-strongly convex w.r.t. ∥·∥ (µψ > 0). For any v (that possibly depends on ∆t) we have

E [⟨∆t, v⟩] ≤ E [αUψ(v, π̂t)− αUψ(v, π̂t+1)] +
1

2αµψ
E ∥∆t∥2∗ .

Proof. Use the three-point inequality:

⟨−∆t, π̂t+1 − v⟩ ≤ αUψ(v, π̂t)− αUψ(v, π̂t+1)− αUψ(π̂t+1, π̂t).

Add ⟨−∆t, π̂t − π̂t+1⟩ to both sides and use Young’s inequality.

⟨−∆t, π̂t − v⟩ ≤ αUψ(v, π̂t)− αUψ(v, π̂t+1)− αUψ(π̂t+1, π̂t) + ⟨∆t, π̂t+1 − π̂t⟩

≤ αUψ(v, π̂t)− αUψ(v, π̂t+1)− αUψ(π̂t+1, π̂t) +
αµψ
2
∥π̂t+1 − π̂t∥2 +

1

2αµψ
∥∆t∥2∗ .

If ψ is µψ-strongly convex, we have −Uψ(π̂t+1, π̂t) ≤ −µψ2 ∥π̂t+1 − π̂t∥2. Lastly, Et[∆t, π̂t] = 0.

The following lemma combines Lemma 4 in Juditsky et al. (2011) and Lemma 7 in Zhang & Lan (2020).

Lemma 3. Let Π ⊂ Rm be a non-empty closed and convex set and function u(π) be µ-strongly convex on Π w.r.t. ∥·∥.
Let π̂ be generated via a prox-mapping with the argument g + δ, π̂ ← argminπ∈Π{⟨π, g + δ − u′(π)⟩+ u(π)} for some
π ∈ Π, where δ denotes a noise term with E[δ] = 0 and E[∥δ∥2∗] ≤ σ2

0 . Then, for π̄ generated via a prox-mapping with the
argument g, π̄ ← argminπ∈Π{⟨π, g − u′(π)⟩+ u(π)}, we have

∥π̂ − π̄∥ ≤ ∥δ∥∗ /µ, (10)

|E ⟨π̂, δ⟩ | ≤ σ2
0/µ. (11)

For completeness, we present the proof of the lemma above. We do not claim any novelty here.

Proof. By the optimality condition of prox-mapping, we have

⟨u′(π̂)− u′(π) + g + δ, π̂ − π⟩ ≤ 0, ∀π ∈ Π, (12)
⟨u′(π̄)− u′(π) + g, π̄ − π⟩ ≤ 0, ∀π ∈ Π. (13)

Choose π = π̄ in (12) and π = π̂ in (13). By combining (12) and (13), we have

∥δ∥∗ ∥π̂ − π̄∥ ≥ ⟨δ, π̂ − π̄⟩ ≥ ⟨u
′(π̂)− u′(π̄), π̂ − π̄⟩ .

Since u is µ-strongly convex, we have ⟨u′(π̂)− u′(π̄), π̂ − π̄⟩ ≥ µ ∥π̂ − π̄∥2. Thus, ∥π̂ − π̄∥ ≤ ∥δ∥∗ /µ.

Moreover, the triangle inequality leads to |E ⟨π̂, δ⟩ | ≤ |E ⟨π̂ − π̄, δ⟩ | + |E ⟨π̄, δ⟩ |. Note that E ⟨π̄, δ⟩ = 0. Moreover,
Cauchy-Schwartz inequality and (10) leads to

|E ⟨π̂, δ⟩ | ≤ |E ⟨π̂ − π̄, δ⟩ | ≤ E[∥π̂ − π̄∥ ∥δ∥∗] ≤ E ∥δ∥2∗ /µ ≤ σ
2
0/µ.

Next, we present a basic inequality about the mirror proximal update. Similar results have been widely used in the literature,
e.g., Lemma 3.8 in Lan (2020) and Lemma 7.1 in Hamedani & Aybat (2021).

15



A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization

Lemma 4. Suppose that the function ϕ : X → R is on a convex closed domain X and ϕ is µ-convex (µ ≥ 0) with
respect to a prox-function Uψ(x, y) := ψ(x)− ψ(y)− ⟨ψ′(y), x− y⟩ for any x, y ∈ X with a generating function ψ, i.e.,
ϕ(x) ≥ ϕ(y) + ⟨ϕ′(y), x− y⟩+ µUψ(x, y), ∀x, y ∈ X . For x̂ = argminx∈X {ϕ(x) + ηUψ(x, x)}, we have

ϕ(x̂)− ϕ(x) ≤ ηUψ(x, x)− (η + µ)Uψ(x, x̂)− ηUψ(x̂, x), ∀x ∈ X . (14)

Proof. By the definition of the prox-function Uψ(x, y), we have

Uψ(x, x)− Uψ(x, x̂)− Uψ(x̂, x)
= ψ(x)− ψ(x)− ⟨ψ′(x), x− x⟩ − ψ(x) + ψ(x̂) + ⟨ψ′(x̂), x− x̂⟩ − ψ(x̂) + ψ(x) + ⟨ψ′(x), x̂− x⟩
= ⟨ψ′(x̂)− ψ′(x), x− x̂⟩ .

By the strong convexity of ϕ with respect to ψ, we have ϕ(x) − ϕ(x̂) ≥ ⟨ϕ′(x̂), x− x̂⟩ + µUψ(x, x̂). The optimality
condition of the prox-mapping implies that ⟨ϕ′(x̂) + η(ψ′(x̂)− ψ′(x)), x− x̂⟩ ≥ 0 for any x ∈ X . Thus, we obtain
⟨ϕ′(x̂), x− x̂⟩ ≥ −η ⟨ψ′(x̂)− ψ′(x), x− x̂⟩ such that

ϕ(x)− ϕ(x̂) ≥ ⟨ϕ′(x̂), x− x̂⟩+ µUψ(x, x̂)

≥ η ⟨ψ′(x)− ψ′(x̂), x− x̂⟩+ µUψ(x, x̂) ≥ −ηUψ(x, x) + (η + µ)Uψ(x, x̂) + Uψ(x̂, x).

D. Convergence Analysis
The following lemma is the complete version of (6), which is the starting point for the convergence analysis of ALEXR.
Recall that in all cases we have Uf∗

i
(u, v) ≥ ρUψi(u, v) for some ρ ≥ 0 and any u, v ∈ Yi.

Lemma 5. Under Assumption 1, the following holds for any x ∈ X , y ∈ Y after the t-th iteration of Algorithm 1.

L(xt+1, y)− L(x, ȳt+1) (15)

≤ τ

n
Uψ(y, yt)−

τ + ρ

n
Uψ(y, ȳt+1)−

τ

n
Uψ(ȳt+1, yt) +

1

n

n∑
i=1

(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1) +
η

2
∥x− xt∥22

− η + µ

2
∥x− xt+1∥22 −

η

2
∥xt+1 − xt∥22 +

1

n

n∑
i=1

(gi(xt+1)− gi(x))⊤ȳ(i)t+1 − ⟨Gt, xt+1 − x⟩ .

Remark 3. Note that Algorithm 1 only samples B(i)t for those i ∈ St and computes the extrapolated stochastic estimator g̃(i)t
for those i ∈ St in the t-th iteration. For those i /∈ St, the stochastic estimators {g̃(i)t }i/∈St and the batches {B(i)t }i/∈St are
virtual and introduced solely for the convenience of analysis. They are not required in the actual execution of Algorithm 1.

Proof. According to Lemma 4, the primal update rule implies that

−⟨Gt, x− xt+1⟩+ r(xt+1)− r(x) ≤
η

2
∥x− xt∥22 −

η + µ

2
∥x− xt+1∥22 −

η

2
∥xt+1 − xt∥22 . (16)

Similarly, for all i ∈ [n] the dual update rule implies that

(y(i) − ȳ(i)t+1)
⊤g̃

(i)
t + f∗i (ȳ

(i)
t+1)− f∗i (y(i)) ≤ τUψi(y(i), y

(i)
t )− (τ + ρ)Uψi(y

(i), ȳ
(i)
t+1)− τUψi(ȳ

(i)
t+1, y

(i)
t ).

Average this equation over i = 1, . . . , n.

1

n

n∑
i=1

(
(y(i) − ȳ(i)t+1)

⊤g̃
(i)
t + f∗i (ȳ

(i)
t+1)− f∗i (y(i))

)
≤ τ

n
Uψ(y, yt)−

τ + ρ

n
Uψ(y, ȳt+1)−

τ

n
Uψ(ȳt+1, yt). (17)
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By the definition of L(x, y) in (2), we have

L(xt+1, y)− L(x, ȳt+1)

=
1

n

n∑
i=1

gi(xt+1)
⊤y(i) − 1

n

n∑
i=1

f∗i (y
(i)) + r(xt+1)−

1

n

n∑
i=1

gi(x)
⊤ȳ

(i)
t+1 +

1

n

n∑
i=1

f∗i (ȳ
(i)
t+1)− r(x)

=
1

n

n∑
i=1

(
gi(xt+1)

⊤(y(i) − ȳ(i)t+1) + f∗i (ȳ
(i)
t+1)− f∗i (y(i)) + (gi(xt+1)− gi(x))⊤ȳ(i)t+1

)
+ r(xt+1)− r(x).

Combine the equation above with (16) and (17).

L(xt+1, y)− L(x, ȳt+1)

≤ τ

n
Uψ(y, yt)−

τ + ρ

n
Uψ(y, ȳt+1)−

τ

n
Uψ(ȳt+1, yt) +

1

n

n∑
i=1

(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1) +
η

2
∥x− xt∥22

− η + µ

2
∥x− xt+1∥22 −

η

2
∥xt+1 − xt∥22 +

1

n

n∑
i=1

(gi(xt+1)− gi(x))⊤ȳ(i)t+1 − ⟨Gt, xt+1 − x⟩ . (18)

D.1. Convergence Analysis of the Smooth and Strongly Convex Case (Section 3.3.1)

First, we present several lemmas that upper-bound different terms in (15) with (x, y) = (x∗, y∗), where (x∗, y∗) is the
unique saddle point of the strongly-convex-strongly-concave objective L(x, y) of (2) when (1) is strongly convex and fi is
smooth. We present our result with a general µψ-strongly convex distance-generating function ψi. For example, we have
µψ = 1

Lf
for Lf -smooth fi and ψi = f∗i ; Besides, we have µψ = 1 for non-smooth fi and ψi = 1

2 ∥·∥
2
2.

D.1.1. SUPPORTING LEMMAS

Lemma 6. Under Assumptions 2 and 4, the following inequality holds for Algorithm 1 with θ < 1 and any λ2, λ3 > 0.

1

n

n∑
i=1

E(gi(xt+1)− g̃(i)t )⊤(y
(i)
∗ − ȳ(i)t+1) (19)

≤ Γt+1 − θΓt +
C2
g ∥xt+1 − xt∥22

2λ2
+
θC2

g ∥xt − xt−1∥22
2λ3

+
(λ2 + λ3θ)Uψ(ȳt+1, yt)

µψn
+

2(1 + 2θ)σ2
0

Bµψ(ρ+ τ)
,

where Γt :=
1
n

∑n
i=1(gi(xt)− gi(xt−1))

⊤(y
(i)
∗ − y(i)t ).

Proof. The 1
n

∑n
i=1 E(gi(xt+1)− g̃(i)t )⊤(y

(i)
∗ − ȳ(i)t+1) term can be decomposed as

♢ =
1

n

n∑
i=1

(gi(xt+1)− g̃(i)t )⊤(y
(i)
∗ − ȳ(i)t+1) (20)

=
1 + θ

n

n∑
i=1

(gi(xt)− gi(xt;B(i)t ))⊤(y
(i)
∗ − ȳ(i)t+1)︸ ︷︷ ︸

I

+
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤(y(i)∗ − ȳ(i)t+1)︸ ︷︷ ︸
II

+
θ

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i)∗ − ȳ(i)t+1)︸ ︷︷ ︸
III

+
θ

n

n∑
i=1

(gi(xt−1;B(i)t )− gi(xt−1))
⊤(y

(i)
∗ − ȳ(i)t+1)︸ ︷︷ ︸

IV

.

Taking conditional expectations of terms I and IV leads to E[(gi(xt)− gi(xt;B(i)t ))⊤y
(i)
∗ | Ft−1] = 0 and E[(gi(xt−1)−

gi(xt−1;B(i)t ))⊤y
(i)
∗ | Ft−1] = 0. ∀i ∈ [n], define ẏ(i)t+1 := argmaxv∈Yi{v

⊤ḡ
(i)
t − f∗i (v) − τUψi(v, y

(i)
t )} and ḡ(i)t :=

17
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gi(xt) + θ(gi(xt)− gi(xt−1)). Note that ẏ(i)t+1 is independent of B(i)t such that E[(gi(xt;B(i)t )− gi(xt))⊤ẏ(i)t+1 | Ft−1] = 0.

E
[
(gi(xt;B(i)t )− gi(xt))⊤ȳ(i)t+1

]
= E

[
(gi(xt;B(i)t )− gi(xt))⊤(ȳ(i)t+1 − ẏ

(i)
t+1)

]
Lemma 3
≤ 1

µψ(ρ+ τ)
E∥gi(xt)− gi(xt;B(i)t )∥∗∥(1 + θ)(gi(xt)− gi(xt;B(i)t ))− θ(gi(xt−1)− gi(xt−1;B(i)t ))∥∗

=
(1 + θ)E∥gi(xt)− gi(xt;B(i)t )∥2∗

µψ(ρ+ τ)
+
θE∥gi(xt)− gi(xt;B(i)t )∥∗∥gi(xt−1)− gi(xt−1;B(i)t )∥∗

µψ(ρ+ τ)

≤ (1 + 1.5θ)

µψ(ρ+ τ)
E∥gi(xt)− gi(xt;B(i)t )∥2∗ +

0.5θ

µψ(ρ+ τ)
∥gi(xt−1)− gi(xt−1;B(i)t )∥2∗ ≤

(1 + 2θ)σ2
0

Bµψ(ρ+ τ)
,

E
[
(gi(xt−1;B(i)t )− gi(xt−1))

⊤ȳ
(i)
t+1

]
= E

[
(gi(xt−1;B(i)t )− gi(xt−1))

⊤(ȳ
(i)
t+1 − ẏ

(i)
t+1)

]
≤ (1 + 2θ)σ2

0

Bµψ(ρ+ τ)
.

Define Γt :=
1
n

∑n
i=1(gi(xt)− gi(xt−1))

⊤(y
(i)
∗ − y(i)t ). II + III in (20) can be rewritten as

II + III =
1

n

n∑
i=1

gi(xt+1)
⊤(y

(i)
∗ − ȳ(i)t+1)−

1

n

n∑
i=1

gi(xt)
⊤(y

(i)
∗ − ȳ(i)t+1) +

θ

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i)∗ − ȳ(i)t+1)

= Γt+1 − θΓt +
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤(y(i)t+1 − ȳ
(i)
t+1) +

θ

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i)t − ȳ
(i)
t+1)

≤ Γt+1 − θΓt +
1

n

n∑
i=1

∥gi(xt+1)− gi(xt)∥∗∥y(i)t+1 − ȳ
(i)
t+1∥+

θ

n

n∑
i=1

∥gi(xt−1)− gi(xt)∥∗∥y(i)t − ȳ
(i)
t+1∥

≤ Γt+1 − θΓt +
C2
g ∥xt+1 − xt∥22

2λ2
+
θC2

g ∥xt − xt−1∥22
2λ3

+
(λ2 + λ3θ)Uψ(ȳt+1, yt)

µψn
.

Lemma 7. When gi is Lg-smooth and Assumptions 1, 2, 3, 4 hold, the following holds for Algorithm 1.

1

n
E

n∑
i=1

(gi(xt+1)− gi(x∗))⊤ȳ(i)t+1 − E ⟨Gt, xt+1 − x∗⟩ ≤
C2
fσ

2
1

B + δ2

S

η + µ
+
LgCf
2
∥xt+1 − xt∥22 . (21)

Proof. We define ∆t :=
1
S

∑
i∈St [∇gi(xt; B̃

(i)
t )]⊤y

(i)
t+1 − 1

n

∑n
i=1[∇gi(xt)]⊤ȳ

(i)
t+1.

1

n

n∑
i=1

(gi(xt+1)− gi(x∗))⊤ȳ(i)t+1 − ⟨Gt, xt+1 − x∗⟩

=
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 +
1

n

n∑
i=1

(gi(xt)− gi(x∗))⊤ȳ(i)t+1 + (
1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1 +∆t)
⊤(x∗ − xt+1)

♢
≤ 1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 + (
1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1)
⊤(xt − x∗) + (

1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1 +∆t)
⊤(x∗ − xt+1)

=
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 + (
1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1)
⊤(xt − xt+1) + ⟨∆t, x∗ − xt+1⟩ , (22)

where ♢ is due to the convexity of gi and Yi ⊆ Rm+ . The first two terms in (22) can be bounded by the Lipschitz continuity
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of fi and ∇gi.

1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 + (
1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1)
⊤(xt − xt+1)

=
1

n

n∑
i=1

(gi(xt+1)− gi(xt)−∇gi(xt)(xt+1 − xt))⊤ȳ(i)t+1

≤ 1

n

n∑
i=1

∥∥∥ȳ(i)t+1

∥∥∥ ∥gi(xt+1)− gi(xt)−∇gi(xt)(xt+1 − xt)∥∗ ≤
Cf
n

n∑
i=1

∥gi(xt+1)− gi(xt)−∇gi(xt)(xt+1 − xt)∥∗ .

Due to the Lg-smoothness of gi, we have

∥gi(xt+1)− gi(xt)−∇gi(xt)(xt+1 − xt)∥∗ ≤
Lg
2
∥xt+1 − xt∥22 .

Thus, the first two terms in (22) can be upper bounded by

1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 + (
1

n

n∑
i=1

[∇gi(xt)]⊤ȳ(i)t+1)
⊤(xt − xt+1) ≤

LgCf
2
∥xt+1 − xt∥22 . (23)

Besides, we have E[⟨∆t, x∗⟩ | Ft−1] = 0. By the Lipschitz continuity of fi and the definition of the operator norm,
we have ∥([∇gi(xt)]⊤ − [∇gi(xt; B̃(i)

t )]⊤)ȳ
(i)
t+1∥2 ≤ ∥[∇gi(xt)]⊤ − [∇gi(xt; B̃(i)

t )]⊤∥op∥ȳ(i)t+1∥ ≤ Cf∥[∇gi(xt)]⊤ −
[∇gi(xt; B̃(i)

t )]⊤∥op. According to Lemma 3 and Assumption 4, we can derive that

−E[⟨xt+1,∆t⟩] ≤
E ∥∆t∥22
µ+ η

≤ 1

µ+ η
(
δ2

S
+ E∥ 1

S

∑
i∈St

([∇gi(xt)]⊤ − [∇gi(xt; B̃(i)
t )]⊤)ȳ

(i)
t+1∥22) ≤

C2
fσ

2
1

B + δ2

S

µ+ η
. (24)

Then, combining (22), (23) and (24) leads to

1

n
E

n∑
i=1

(gi(xt+1)− gi(x∗))⊤ȳ(i)t+1 − E ⟨Gt, xt+1 − x⟩ ≤
C2
fσ

2
1

B + δ2

S

µ+ η
+
LgCf
2
∥xt+1 − xt∥22 .

Lemma 8. When gi is non-smooth and Assumptions 1, 2, 3, 4 hold, the following holds for Algorithm 1.

1

n
E

n∑
i=1

(gi(xt+1)− gi(x∗))⊤ȳ(i)t+1 − E ⟨Gt, xt+1 − x⟩ ≤
C2
fσ

2
1

B + δ2

S + 4C2
fC

2
g

µ+ η
+
η + µ

4
∥xt+1 − xt∥22 . (25)

Proof. Note that (22) and (24) still hold. Since gi is non-smooth, we need to bound the left-hand side of (23) in a different
way. Based on the definition of the operator norm and the Lipschitz continuity of gi, we have ∥g′i(xt)(xt − xt+1)∥∗ ≤
∥g′i(xt)∥op ∥xt − xt+1∥2 ≤ Cg ∥xt − xt+1∥2 such that

1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 +
1

n

n∑
i=1

([g′i(xt)]
⊤ȳ

(i)
t+1)

⊤(xt − xt+1)

=
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤ȳ(i)t+1 +
1

n

n∑
i=1

(g′i(xt)(xt − xt+1))
⊤ȳ

(i)
t+1

≤ 1

n

n∑
i=1

∥ȳ(i)t+1∥(∥gi(xt+1)− gi(xt)∥∗ + ∥g
′
i(xt)(xt − xt+1)∥∗)

≤ 2CfCg ∥xt+1 − xt∥2 ≤
4C2

fC
2
g

η + µ
+
η + µ

4
∥xt+1 − xt∥22 , (26)
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where g′i(xt) ∈ ∂gi(xt). Merge (22), (24), and (26).

1

n
E

n∑
i=1

(gi(xt+1)− gi(x∗))⊤ȳ(i)t+1 − E ⟨Gt, xt+1 − x⟩ ≤
C2
fσ

2
1

B + δ2

S + 4C2
fC

2
g

µ+ η
+ 0.25(η + µ) ∥xt+1 − xt∥22 .

D.1.2. PROOF OF THEOREM 1

Proof. If gi is smooth, we combine (15), (19), and (21).

E[L(xt+1, y∗)− L(x∗, ȳt+1)] ≤
τ + ρ

(
1− S

n

)
S

E[Uψ(y∗, yt)]−
τ + ρ

S
E[Uψ(y∗, yt+1)] +

η

2
E ∥x∗ − xt∥22

− η + µ

2
E ∥x∗ − xt+1∥22 −

(
τ

n
− λ2 + λ3θ

µψn

)
E [Uψ(ȳt+1, yt)]−

(
η

2
−
C2
g

2λ2
− LgCf

2

)
E ∥xt+1 − xt∥22

+
θC2

g

2λ3
E ∥xt − xt−1∥22 + E[Γt+1 − θΓt] +

2(1 + 2θ)σ2
0

Bµψ(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ
. (27)

Define Υxt := 1
2E ∥x∗ − xt∥

2
2 and Υyt = 1

SEUψ(y∗, yt). Note that L(xt+1, y∗)− L(x∗, ȳt+1) ≥ 0. Multiply both sides of
(27) by θ−t and do telescoping sum from t = 0 to T − 1. Add ηθ−TΥxT to both sides.

ηθ−TΥxT ≤
T−1∑
t=0

θ−t((ηΥxt + (τ + ρ(1− S

n
))Υyt − θEΓt)− ((η + µ)Υxt+1 + (τ + ρ)Υyt+1 − EΓt+1))

+ ηθ−TΥxT +

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

 T−1∑
t=0

θ−t −
T−1∑
t=0

θ−t
(
τ

n
− (λ2 + λ3θ)

µψn

)
E[Uψ(ȳt+1, yt)]

−
T−1∑
t=0

θ−t

(
η

2
− LgCf

2
−
C2
g

2λ2
−
C2
g

2λ3

)
E ∥xt+1 − xt∥22 .

Let η = µθ
1−θ such that θ = η

η+µ and τ = ρS
n(1−θ) − ρ (where τ > 0 if θ > 1− S

n ) such that θ =
τ+ρ(1−S

n )
τ+ρ . Then,

T−1∑
t=0

θ−t((ηΥxt + (τ + ρ(1− S

n
))Υyt − θEΓt)− ((η + µ)Υxt+1 + (τ + ρ)Υyt+1 − EΓt+1))

= ηΥx0 + (τ + ρ(1− S

n
))Υy0 − θEΓ0 − θ−T+1 ((η + µ)ΥxT + (τ + ρ)ΥyT − EΓT ) .

By setting x−1 = x0, we have Γ0 = 0. Besides, we have −ΓT ≤ 1
n

∑n
i=1 ∥gi(xT )− gi(xT−1)∥∗ ∥y

(i)
∗ − y

(i)
t ∥ ≤

Cg
n ∥xT − xT−1∥2 ∥y∗ − yT ∥. Thus,

ηθ−TΥxT ≤ ηΥx0 + (τ + ρ(1− S

n
))Υy0 − θ−T+1((η + µ)ΥxT + (τ + ρ)ΥyT −

η

θ
ΥxT −

Cg
n
∥xT − xT−1∥2 ∥y∗ − yT ∥)

−
T−1∑
t=1

θ−t+1 (((η + µ)Υxt+1 + (τ + ρ)Υyt+1 − EΓt+1)− (
η

θ
Υxt + (τ + ρ(1− S

n
))/θΥyt − EΓt))︸ ︷︷ ︸

♡

+

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

 T−1∑
t=0

θ−t −
T−1∑
t=0

θ−t
(
τ

n
− (λ2 + λ3θ)

µψn

)
︸ ︷︷ ︸

♡

E[Uψ(ȳt+1, yt)]

−
T−1∑
t=0

θ−t

(
η

2
− LgCf

2
−
C2
g

2λ2
−
C2
g

2λ3

)
︸ ︷︷ ︸

♡

E ∥xt+1 − xt∥22 . (28)
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Note that η + µ − η
θ = 0 ⇔ θ = η

η+µ such that (η + µ)ΥxT −
η
θΥ

x
T ≥ 0 and Cg

n ∥xT − xT−1∥2 ∥y − yT ∥ ≤
C2
g

2λ2
∥xT − xT−1∥22 + λ2

2µψn2Uψ(y∗, yT ). To make the ♡ terms in (28) be non-negative, we choose λ2 ≍
Cg
√
Sρµψ√
nµ ,

λ3 ≍
Cg
√
Sρµψ√
nµ while ensuring that

1/τ ≤ O
(√

nµµψ

Cg
√
Sρ

)
, 1/η ≤ O

(√
Sρµψ

Cg
√
nµ
∧ 1

LgCf

)
. (29)

Since τ = ρS
n(1−θ) − ρ⇔ θ =

τ+ρ(1−S
n )

τ+ρ , we have τ + ρ
(
1− S

n

)
= θ(τ + ρ) and (τ + ρ)(1− θ) = ρS

n .

µΥxT ≤ µθTΥx0 +

(
τ + ρ

(
1− S

n

))
(1− θ)

θ
θTΥy0 +

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ


= µθTΥx0 + (τ + ρ)(1− θ)θTΥy0 +

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ


= µθTΥx0 +

ρS

n
θTΥy0 +

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

 .

We select θ = 1−O
(
S
n ∧

µ
LgCf

∧
√

µρµψS
C2
gn
∧ µψBρSϵ

σ2
0n

∧ Bµϵ
C2
fσ

2
1
∧ Sµϵ

δ2

)
to make (29) hold and

2(1 + 2θ)σ2
0

µψB(ρ+ τ)
+

C2
fσ

2
1

B + δ2

S

η + µ
≤ 2(1 + 2θ)(1− θ)σ2

0n

µψBρS
+

(1− θ)
(
C2
fσ

2
1

B + δ2

S

)
µ

≤ ϵ.

Since 1
Lf

= µψρ when fi is Lf -smooth, the number of iterations needed by Algorithm 1 to make µΥxT ≤ ϵ is

T = Õ

(
n

S
+
LgCf
µ

+
Cg
√
nLf√
Sµ

+
nLfσ

2
0

BSϵ
+
C2
fσ

2
1

µBϵ
+

δ2

µSϵ

)
,

where Õ(·) hides the polylog(1/ϵ) factor. In the case that gi is non-smooth, we utilize (25) instead of (21). Correspondingly,

we need to replace the blue term LgCf
2 in (27) by 0.25(η + µ). Additionally, there is a

4C2
fC

2
g

η+µ term on the right-hand side of
(27). Following similar steps, we can get the iteration complexity to make µΥxT ≤ ϵ is

T = Õ

(
n

S
+
Cg
√
nLf√
Sµ

+
nLfσ

2
0

BSϵ
+
C2
fσ

2
1

µBϵ
+

δ2

µSϵ
+
C2
fC

2
g

µϵ

)
.

D.2. Convergence Analysis of the Convex Case with Possibly Non-smooth fi (Section 3.3.2)

As discussed in Section 3.1, we can choose ψi = 1
2∥ · ∥

2
2 for the cFCCO problem with non-smooth fi. We present our result

with a general µψ-strongly convex and Lψ-smooth distance-generating function ψi, which subsumes the quadratic one. The
following lemma extends Lemma A.2 in Alacaoglu et al. (2022) to mini-batch sampling and a general smooth and strongly
convex distance-generating function ψi.
Lemma 9. The following holds for Algorithm 1 with Lψ-smooth and µψ-strongly convex ψi and any λ1 > 0 satisfies that

E
[ τ
n
(Uψ(y, yt)− Uψ(y, ȳt+1))−

τ

n
Uψ(ȳt+1, yt)

]
(30)

≤ E
[
τ

S
(Uψ(y, yt)− Uψ(y, yt+1)) +

τλ1
S

(Uψ(y, ŷt)− Uψ(y, ŷt+1))

]
− τ

n

(
1−

L2
ψ

λ1µ2
ψS

)
E [Uψ(ȳt+1, yt)] ,

where ŷ(i)t+1 = argminv{−v⊤∆
(i)
t + nλ1

S Uψi(v, ŷ
(i)
t )} and ∆

(i)
t := −n

S∇ψi(y
(i)
t+1) +∇ψi(ȳ

(i)
t+1) +

n−S
S ∇ψi(y

(i)
t ).
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Proof. First, we can make the following decomposition.
τ

n
Uψ(y, yt)−

τ

n
Uψ(y, ȳt+1)−

τ

n
Uψ(ȳt+1, yt) (31)

=
τ

S
Uψ(y, yt)−

τ

S
Uψ(y, yt+1)−

τ

n
Uψ(ȳt+1, yt) +

τ

S
Uψ(y, yt+1)−

τ

n
Uψ(y, ȳt+1) +

(S − n)τ
nS

Uψ(y, yt).

We rewrite the last three terms above as follows.
τ

S
Uψ(y, yt+1)−

τ

n
Uψ(y, ȳt+1) +

(S − n)τ
nS

Uψ(y, yt)

=
τ

S

n∑
i=1

(ψi(y
(i))− ψi(y(i)t+1)− (y(i) − y(i)t+1)

⊤∇ψi(y(i)t+1))−
τ

n

n∑
i=1

(ψi(y
(i))− ψi(ȳ(i)t+1)− (y(i) − ȳ(i)t+1)

⊤∇ψi(ȳ(i)t+1))

+
(S − n)τ
nS

n∑
i=1

(ψi(y
(i))− ψi(y(i)t )− (y(i) − y(i)t )⊤∇ψi(y(i)t ))

=
τ

n

n∑
i=1

(
ψi(ȳ

(i)
t+1)−

n

S
ψi(y

(i)
t+1) +

n− S
S

ψi(y
(i)
t )

)
+
τ

n

n∑
i=1

(−n
S
∇ψi(y(i)t+1) +∇ψi(ȳ

(i)
t+1) +

n− S
S
∇ψi(y(i)t ))⊤y(i)︸ ︷︷ ︸

♯

+
τ

S

n∑
i=1

〈
∇ψi(y(i)t+1), y

(i)
t+1

〉
− τ

n

n∑
i=1

〈
∇ψi(ȳ(i)t+1), ȳ

(i)
t+1

〉
+

(S − n)τ
nS

n∑
i=1

〈
∇ψi(y(i)t ), y

(i)
t

〉
.

Note that both ȳ(i)t+1 and y(i)t are independent of St such that

E[ψi(y(i)t+1) | Gt] =
S

n
ψi(ȳ

(i)
t+1) +

n− S
n

ψi(y
(i)
t ),

E
[〈
∇ψi(y(i)t+1), y

(i)
t+1

〉
| Gt
]
=
S

n

〈
∇ψi(ȳ(i)t+1), ȳ

(i)
t+1

〉
+
n− S
n

〈
∇ψi(y(i)t ), y

(i)
t

〉
,

E
[
∇ψi(y(i)t+1) | Gt

]
=
S

n
∇ψi(ȳ(i)t+1) +

n− S
n
∇ψi(y(i)t ).

Apply Lemma 2 to ♯ with ∆
(i)
t := −n

S∇ψi(y
(i)
t+1) + ∇ψi(ȳ(i)t+1) + n−S

S ∇ψi(y
(i)
t ), ŷ(i)t+1 = argminv{−v⊤∆

(i)
t +

αUψi(v, ŷ
(i)
t )} (α to be determined) such that

E
[〈

∆
(i)
t , y(i)

〉]
≤ E

[
αUψi(y

(i), ŷ
(i)
t )− αUψi(y(i), ŷ

(i)
t+1)

]
+

1

2µψα
E
[∥∥∥∆(i)

t

∥∥∥2
∗

]
.

Sum both sides from 1 to n and divide n on both sides

E[♯] ≤ E
[ατ
n

(Uψ(y, ŷt)− Uψ(y, ŷt+1))
]
+

τ

2nµψα
E

[
n∑
i=1

∥∥∥∆(i)
t

∥∥∥2
∗

]
.

Note that E[(∇ψi(y(i)t+1)−∇ψi(y
(i)
t )) | Gt] = S

n (∇ψi(ȳ
(i)
t+1)−∇ψi(y

(i)
t )) such that

E
[
∥∆(i)

t ∥2∗
]
= E

∥∥∥(∇ψi(ȳ(i)t+1)−∇ψi(y
(i)
t ))− n

S
(∇ψi(y(i)t+1)−∇ψi(y

(i)
t )
∥∥∥2
∗
≤ n2

S2
E
∥∥∥∇ψi(y(i)t+1)−∇ψi(y

(i)
t )
∥∥∥2
∗
.

Thus, we have

E[♯] ≤ E
[ατ
n

(Uψ(y, ŷt)− Uψ(y, ŷt+1))
]
+

τn

2µψαS2

n∑
i=1

E
∥∥∥∇ψi(y(i)t+1)−∇ψi(y

(i)
t )
∥∥∥2
∗
. (32)

The last term above can be upper bounded as

τn

2µψαS2

n∑
i=1

E
∥∥∥∇ψi(y(i)t+1)−∇ψi(y

(i)
t )
∥∥∥2
∗
≤

τnL2
ψ

2µψαS2

n∑
i=1

E
∥∥∥y(i)t+1 − y

(i)
t

∥∥∥2 .
Choose α = nλ1

S for some λ1 > 0. According to (31) and (32) and E[∥yt+1 − yt∥2 | Gt] = S
n ∥ȳt+1 − yt∥2 ≤

2S
nµψ

Uψ(ȳt+1, yt), we can finish the proof.
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D.2.1. A SUPPORTING LEMMA

Lemma 10. Under Assumptions 2 and 4, the following holds for Algorithm 1 with θ = 1 and any λ2, λ3, λ4, λ5 > 0, y ∈ Y .

1

n

n∑
i=1

E(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1) (33)

= E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt)− Uψ(y, ˆ̂yt+1)] +
λ5
n
E[Uψ(y, y̆t)− Uψ(y, y̆t+1)]

+
(λ3 + λ4)E[Uψ(ȳt+1, yt)]

µψn
+
C2
gE ∥xt+1 − xt∥2

2λ3
+
C2
gE ∥xt − xt−1∥2

2λ4
+

9σ2
0

τµψB
+

σ2
0

λ2µψB
+

σ2
0

2λ5µψB
.

where Γt := 1
n

∑n
i=1(gi(xt) − gi(xt−1))

⊤(y(i) − y
(i)
t ), {ˆ̂yt}t≥0, {y̆t}t≥0 are virtual sequences constructed as

ˆ̂y
(i)
t+1 = argminv∈Yi{v

⊤(gi(xt;B(i)t )− gi(xt))+λ2Uψi(v, ˆ̂y
(i)
t )}, y̆(i)t+1 = argminv∈Yi{v

⊤(gi(xt−1;B(i)t )− gi(xt−1))+

λ2Uψi(v, y̆
(i)
t )} for each i ∈ [n].

Proof. The term 1
n

∑n
i=1(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1) can be decomposed as

1

n

n∑
i=1

(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1) (34)

=
1 + θ

n

n∑
i=1

(gi(xt)− gi(xt;B(i)t ))⊤(y(i) − ȳ(i)t+1)︸ ︷︷ ︸
I

+
1

n

n∑
i=1

gi(xt+1)
⊤(y(i) − ȳ(i)t+1)−

1

n

n∑
i=1

gi(xt)
⊤(y(i) − ȳ(i)t+1)︸ ︷︷ ︸

II

+
θ

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i) − ȳ(i)t+1)︸ ︷︷ ︸
III

+
θ

n

n∑
i=1

(gi(xt−1;B(i)t )− gi(xt−1))
⊤(y(i) − ȳ(i)t+1)︸ ︷︷ ︸

IV

.

Note that our ALEXR (Algorithm 1) only samples B(i)t for those i ∈ St in the t-th iteration. For those i /∈ St, the
batches {B(i)t }i/∈St are virtual and introduced solely for the convenience of analysis, which are not required in the actual
execution of Algorithm 1. For each i ∈ [n], define ẏ(i)t+1 := argmaxv∈Yi{v

⊤ḡ
(i)
t − f∗i (v) − τUψi(v, y

(i)
t )} and ḡ(i)t :=

gi(xt) + θ(gi(xt)− gi(xt−1)). We decompose the I term in (34) as

I =
1 + θ

n

n∑
i=1

(gi(xt)− gi(xt;B(i)t ))⊤(y(i) − ȳ(i)t+1)

=
1 + θ

n

n∑
i=1

{
(gi(xt)− gi(xt;B(i)t ))⊤(ẏ

(i)
t+1 − ȳ

(i)
t+1) + (gi(xt)− gi(xt;B(i)t ))⊤y(i) − (gi(xt)− gi(xt;B(i)t ))⊤ẏ

(i)
t+1

}
.

Since f∗i + τUψi(y
(i), y

(i)
t ) is τµψ-strongly convex, Lemma 3 implies that

1

n
E

n∑
i=1

(gi(xt)− gi(xt;B(i)t ))⊤(ẏ
(i)
t+1 − ȳ

(i)
t+1) ≤

1

n

n∑
i=1

E∥gi(xt)− gi(xt;B(i)t )∥∗ ∥ẏt+1 − ȳt+1∥

≤ 1

nτµψ

n∑
i=1

E
[
∥gi(xt)− gi(xt;B(i)t )∥∗((1 + θ)∥gi(xt)− gi(xt;B(i)t )∥∗ + θ∥gi(xt−1)− gi(xt−1;B(i)t )∥∗)

]
≤ 1

nτµψ

n∑
i=1

E
[
(1 + 1.5θ)∥gi(xt)− gi(xt;B(i)t )∥2∗ + 0.5θ∥gi(xt−1)− gi(xt−1;B(i)t )∥2∗

]
≤ (1 + 2θ)σ2

0

τBµψ
.

Apply Lemma 2 to the term 1
n

∑n
i=1(gi(xt) − gi(xt;B

(i)
t ))⊤y(i). For any λ2 > 0 and the auxiliary sequence {ˆ̂yt}t≥0

constructed as ˆ̂y(i)t+1 = argminv∈Yi{v
⊤(gi(xt;B(i)t )− gi(xt)) + λ2Uψi(v, ˆ̂y

(i)
t )} for each i ∈ [n], we have

1

n

n∑
i=1

(gi(xt)− gi(xt;B(i)t ))⊤y(i) ≤ λ2
n
E[Uψ(y, ˆ̂yt)− Uψ(y, ˆ̂yt+1)] +

1

2λ2µψn
E∥g(xt)− g(xt;B(i)t )∥2∗.
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Lastly, E[(gi(xt)− gi(xt;B(i)t ))⊤ẏ
(i)
t+1 | Ft−1] = 0. Choose θ = 1. Then, the I term in (34) can be bounded as

E[I] ≤ 2λ2
n

E[Uψ(y, ˆ̂yt)− Uψ(y, ˆ̂yt+1)] +
σ2
0

λ2µψB
+

6σ2
0

τµψB
. (35)

Define Γt :=
1
n

∑n
i=1(gi(xt)− gi(xt−1))

⊤(y(i) − y(i)t ). For any λ3, λ4 > 0, II + III can be rewritten as

II + III =
1

n

n∑
i=1

gi(xt+1)
⊤(y(i) − ȳ(i)t+1)−

1

n

n∑
i=1

gi(xt)
⊤(y(i) − ȳ(i)t+1) +

1

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i) − ȳ(i)t+1)

= Γt+1 − Γt +
1

n

n∑
i=1

(gi(xt+1)− gi(xt))⊤(y(i)t+1 − ȳ
(i)
t+1) +

1

n

n∑
i=1

(gi(xt−1)− gi(xt))⊤(y(i)t − ȳ
(i)
t+1)

≤ Γt+1 − Γt +
C2
g ∥xt+1 − xt∥22

2λ3
+
λ3 ∥yt+1 − ȳt+1∥2

2n
+
C2
g ∥xt − xt−1∥22

2λ4
+
λ4 ∥yt − ȳt+1∥2

2n

Note that y(i)t+1 = ȳ
(i)
t+1 if i ∈ St and y(i)t+1 = y

(i)
t otherwise. Then, ∥yt+1 − ȳt+1∥2 ≤ ∥yt − ȳt+1∥2 such that

II + III ≤ Γt+1 − Γt +
C2
g ∥xt+1 − xt∥22

2λ3
+
C2
g ∥xt − xt−1∥22

2λ4
+

(λ3 + λ4)Uψ(ȳt+1, yt)

µψn
. (36)

We decompose the IV term in (34) as

IV =
1

n

n∑
i=1

(gi(xt−1;B(i)t )− gi(xt−1))
⊤(y(i) − ȳ(i)t+1)

=
1

n

n∑
i=1

{
(gi(xt−1;B(i)t )− gi(xt−1))

⊤(ẏ
(i)
t+1 − ȳ

(i)
t+1)

+(gi(xt−1;B(i)t )− gi(xt−1))
⊤y(i) − (gi(xt−1;B(i)t )− gi(xt−1))

⊤ẏ
(i)
t+1

}
.

By the Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

E
[
(gi(xt−1;B(i)t )− gi(xt−1))

⊤(ẏ
(i)
t+1 − ȳ

(i)
t+1)

]
≤ 1

n

n∑
i=1

E
[
∥gi(xt−1;B(i)t )− gi(xt−1)∥∗∥ẏ(i)t+1 − ȳ

(i)
t+1∥

]
.

Since f∗i (y
(i)) + τUψi(y

(i), y
(i)
t ) is τµψ-strongly convex to y(i), Lemma 3 implies that

∥ẏ(i)t+1 − ȳ
(i)
t+1∥ ≤

(1 + θ)∥gi(xt)− gi(xt;B(i)t )∥∗ + θ∥gi(xt−1)− gi(xt−1;B(i)t )∥∗
τµψ

.

Similar to (35), the following holds for any λ5 > 0 and the auxiliary sequence {y̆t}t≥0 that is constructed as y̆(i)t+1 =

argminv∈Yi{v
⊤(gi(xt−1;B(i)t )− gi(xt−1)) + λ2Uψi(v, y̆

(i)
t )} for each i ∈ [n].

1

n

n∑
i=1

E
[
(gi(xt−1;B(i)t )− gi(xt−1))

⊤y(i)
]
≤ λ5

n
E[Uψ(y, y̆t)− Uψ(y, y̆t+1)] +

σ2
0

2λ5µψB
.

Consider that 1
n

∑n
i=1 E[(gi(xt−1;B(i)t )− gi(xt−1))

⊤ẏ
(i)
t+1] = 0.

E[IV] ≤ λ5
n
E[Uψ(y, ŷt)− Uψ(y, ŷt+1)] +

σ2
0

2λ5µψB
+

3σ2
0

τµψB
. (37)

Combine (35), (36), and (37).

1

n

n∑
i=1

E(gi(xt+1)− g̃(i)t )⊤(y(i) − ȳ(i)t+1)

≤ E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt)− Uψ(y, ˆ̂yt+1)] +
λ5
n
E[Uψ(y, y̆t)− Uψ(y, y̆t+1)]

+
(λ3 + λ4)E[Uψ(ȳt+1, yt)]

µψn
+
C2
gE ∥xt+1 − xt∥2

2λ3
+
C2
gE ∥xt − xt−1∥2

2λ4
+

9σ2
0

τµψB
+

σ2
0

λ2µψB
+

σ2
0

2λ5µψB
.
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D.2.2. PROOF OF THEOREM 3

Proof. If gi is smooth, we combine (15), (21), (30), (33). Set x = x∗ and x0 = x−1.

E[L(xt+1, yt+1)− L(x∗, ȳt+1)]

≤ τ

S
E[Uψ(y, yt)− Uψ(y, yt+1)] +

τλ1
S

E[Uψ(y, ŷt)− Uψ(y, ŷt+1)] +
η

2
E ∥x∗ − xt∥22 −

η

2
E ∥x∗ − xt+1∥22

+ E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt)− Uψ(y, ˆ̂yt+1)] +
λ5
n
E[Uψ(y, y̆t)− Uψ(y, y̆t+1)]

−

(
τ

n
−

τL2
ψ

nλ1µ2
ψS
− λ3 + λ4

µψn

)
E[Uψ(ȳt+1, yt)]−

(
η

2
−
C2
g

2λ3
− LgCf

2

)
E ∥xt+1 − xt∥22 +

C2
g

2λ4
E ∥xt − xt−1∥22

+
9σ2

0

τµψB
+

σ2
0

λ2µψB
+

σ2
0

2λ5µψB
+
C2
fσ

2
1

ηB
+
δ2

ηS
. (38)

Do telescoping sum from t = 0 to T − 1 for the equation above.

T−1∑
t=0

E[L(xt+1, y)− L(x∗, ȳt+1)]

≤
ηE ∥x∗ − x0∥22

2
+
τ

S
E[Uψ(y, y0)] +

τλ1
S

E[Uψ(y, ŷ0)] +
2λ2
n

E[Uψ(y, ˆ̂y0)] +
λ5
n
E[Uψ(y, y̆0)]

−

(
τ

n
−

τL2
ψ

nλ1µ2
ψS
− λ3 + λ4

µψn

)
T−1∑
t=0

E[Uψ(ȳt+1, yt)]−

(
η

2
− LgCf

2
−
C2
g

2λ3
−
C2
g

2λ4

)
T−1∑
t=0

E ∥xt+1 − xt∥2

+ E[ΓT ]−
τ

S
E[Uψ(y, yT )] +

(
C2
fσ

2
1

Bη
+
δ2

Sη

)
T +

9σ2
0T

τµψB
+

σ2
0T

λ2µψB
+

σ2
0T

2λ5µψB
.

Note that Γ0 = 0, ΓT ≤ 1
n

∑n
i=1 ∥gi(xT )− gi(xT−1)∥∗

∥∥∥y(i) − y(i)T ∥∥∥ ≤ C2
g

2λ3
∥xT − xT−1∥22 +

λ3

2nµψ
Uψ(y, yT ). Choose

λ1 ≍
L2
ψ

Sµ2
ψ

, λ2 ≍ nτ
S , λ3 ≍ Cg

√
S√
n

, λ4 ≍ Cg
√
S√
n

, λ5 ≍ nτ
S , and let 1/τ = O

(√
nµψ

Cg
√
S

)
and 1/η = O

( √
S

Cg
√
n

)
. Since L(x, y)

is convex in x and linear in y, we have

Emax
y

[L(x̄T , y)− L(x∗, ¯̄yT )] ≤ Emax
y

1

T

T−1∑
t=0

[L(xt+1, y)− L(x∗, ȳt+1)], (39)

where x̄T = 1
T

∑T−1
t=0 xt+1, ¯̄yT = 1

T

∑T−1
t=0 ȳt+1. Now work on the LHS.

L(x̄T , y)− L(x∗, ¯̄yT ) =
1

n

n∑
i=1

(
y(i)gi(x̄T )− f∗i (y(i))

)
+ r(x̄T )−

1

n

n∑
i=1

(
¯̄y
(i)
T gi(x∗)− f∗i (¯̄y

(i)
T )
)
− r(x∗)

Choose y(i) = ỹ
(i)
T ∈ argmaxv{vgi(x̄T ) − f∗i (v)} ⇔ gi(x̄T ) ∈ ∂f∗i (ỹ

(i)
T ) ⇔ ỹ

(i)
T ∈ ∂fi(gi(x̄T )) such

that ỹ(i)T gi(x̄T ) − f∗i (ỹ
(i)
T ) = fi(gi(x̄T )). By Fenchel-Young, −¯̄y(i)T gi(x∗) + f∗i (¯̄y

(i)
T ) ≥ −fi(gi(x∗)). Thus,

E[F (x̄T ) − F (x∗)] ≤ Emaxy[L(x̄T , y) − L(x∗, ¯̄yT )]. Thus, we can make E[F (x̄T ) − F (x∗)] ≤ ϵ after T =

O
(
LgCfD

2
X

ϵ +
√
nCgD

2
X√

Sϵ
+

Cg(1+L
2
ψ/(Sµ

2
ψ))D

2
Y

µψ
√
nSϵ

+
D2

X δ
2

Sϵ2 +
D2

XC
2
fσ

2
1

Bϵ2 +
σ2
0(1+L

2
ψ/(Sµ

2
ψ))D

2
Y)

µψBSϵ2

)
iterations by setting θ = 1,

τ = O
(√

SCg
µψ

√
n
∨ σ2

0

µψBϵ

)
, η = O

(
LgCf ∨

√
nCg√
S
∨ δ2

Sϵ ∨
C2
fσ

2
1

Bϵ

)
.
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D.2.3. PROOF OF THEOREM 2

Proof. If gi is non-smooth, we can use ALEXR with θ = 0, where g̃(i)t = gi(xt;B(i)t ). Then, for any λ > 0 we have

1

n

n∑
i=1

E
〈
gi (xt+1)− g̃t, y(i) − ȳ(i)t+1

〉
=

1

n

n∑
i=1

E
〈
gi (xt+1)− gi(xt;B(i)t ), y(i) − ȳ(i)t+1

〉
=

1

n

n∑
i=1

E
[〈
gi (xt+1)− gi (xt) , y(i) − ȳ(i)t+1

〉]
+

1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i) − ȳ(i)t+1

〉]
≤ 1

n

n∑
i=1

E
[
∥gi (xt+1)− gi(xt)∥∗

∥∥∥y(i) − ȳ(i)t+1

∥∥∥]+ 1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i) − ȳ(i)t+1

〉]
≤
C2
gE ∥xt+1 − xt∥22

2λ4
+ 2λ4

1

n

n∑
i=1

E[∥y(i)∥2 + ∥ȳ(i)t+1∥2] +
1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i) − ȳ(i)t+1

〉]

≤
C2
gE
[
∥xt+1 − xt∥22

]
2λ4

+ 4λ4C
2
f +

1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i) − ȳ(i)t+1

〉]
.

The last term above can be decomposed as

1

n

n∑
i=1

E
[〈
gi (xt)− gi

(
xt;B(i)t

)
, y(i) − ȳ(i)t+1

〉]
=

1

n

n∑
i=1

Et
[〈
gi (xt)− gi

(
xt;B(i)t

)
, y(i) − y(i)t

〉]
+

1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y

(i)
t − ȳ

(i)
t+1

〉]
. (40)

Note that E
[〈
gi (xt)− gi(xt;B(i)t ), y

(i)
t

〉
| Ft−1

]
= 0. Besides, Lemma (9) implies that for some λ2 > 0 and sequence

{ỹt}t

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i)

〉]
≤ E

[
λ2Uψi(y

(i), ỹ
(i)
t )− λ2Uψi(y(i), ỹ

(i)
t+1)

]
+

1

2λ2µψ
E
∥∥∥gi (xt)− gi(xt;B(i)t )

∥∥∥2
∗
.

such that

1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y(i)

〉]
≤ λ2

n
E [Uψ (y, ỹt)− Uψ (y, ỹt+1)] +

σ2
0

2λ2Bµψ
.

For any λ3 > 0, the second term in (40) can be bounded as

1

n

n∑
i=1

E
[〈
gi (xt)− gi(xt;B(i)t ), y

(i)
t − ȳ

(i)
t+1

〉]
≤ λ3

2n

n∑
i=1

E
[∥∥∥gi (xt)− gi(xt;B(i)t )

∥∥∥2
∗

]
+

E
[
∥yt − ȳt+1∥2

]
2λ3n

≤ λ3σ
2
0

2B
+

E [Uψ (ȳt+1, yt)]

λ3µψn
.

Thus, we have

E

[
1

n

n∑
i=1

〈
gi (xt+1)− g̃t, y(i) − ȳ(i)t+1

〉]
≤
C2
gE
[
∥xt+1 − xt∥22

]
2λ4

+ 4λ4C
2
f +

λ2
n
E [Uψ (y, ỹt)− Uψ (y, ỹt+1)]

+
σ2
0

2Bλ2µψ
+
λ3σ

2
0

2B
+

E [Uψ (ȳt+1, yt)]

2λ3µψn
.

The other parts are the same as as the proof of Theorem 3.
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E. Proof of Theorem 4
We consider a special instance of problem (1) that is separable over the coordinates i and Pi = P.

min
x∈[−D,D]n

F (x), F (x) =
1

n

(
n∑
i=1

f(gi(x)) +
α

2
∥x∥2

)
, (41)

gi(x) = Eζ∼P[gi(x; ζ)], gi(x; ζ) = x(i) + ζ,

where the additive noise ζ follows

ζ =

{
−ν w.p. 1− p,
ν(1− p)/p w.p. p.

, where p :=
ν2

σ2
∈ (0, 1).

We construct the hard problems for (i) smooth fi; and (ii) non-smooth fi separately.

(i) Smooth fi: First, we can consider the special instance that fi is the identity mapping and δ = 0 (e.g., all fi’s are
identical), σ0 = 0. Then, the cFCCO problem in (1) becomes the standard strongly convex minimization problem. Then, we
can apply the information-theoretic lower bounds (Agarwal et al., 2009; Nguyen et al., 2019): Any algorithm in the abstract
scheme requires at least Ω( 1

µϵ ) iterations to find an x̄ such that µ2E ∥x̄− x∗∥
2
2 ≤ ϵ.

¡1 ¡º 1

u

f(¡º)
0

0:5

1:0

f(
u
)

(a) Visualization of f in (42)

º¡ 1 º º+1

y(i)

0.0

0.1

0.2

0.3

0.4

f
¤
(y
(i
) )

(b) Convex conjugate f∗ in (43) of f . Note that f∗(y(i)) =
+∞ in grey areas.

Next, we construct another “hard” instance to derive the second half of the lower bound in this case. Consider the following
strongly convex FCCO problem

min
x∈X

F (x) =
1

n

n∑
i=1

f(gi(x)) + r(x),

f(u) =


(ν − 1)u+ 1

2 (ν − 1)2 + ν − 1− ν2

2 , u ∈ (−∞,−1)
1
2 (u+ ν)2 − ν2

2 , u ∈ [−1, 1]
(1 + ν)u+ 1

2 (1 + ν)2 − 1− ν − ν2

2 , u ∈ (1,∞)

, r(x) =
1

4n
∥x∥22 (42)

where X = [−1, 1]n, the outer function f : R → R is smooth and Lipschitz continuous for ν < 1. As stated in
Assumption 3, we do not require f to be monotonically non-decreasing when gi is affine. Choose α = 1

2 in (41). We define
that Fi(x(i)) := f(gi(x)) +

1
4 [x

(i)]2 such that F (x) = 1
n

∑n
i=1 Fi(x

(i)). Thus, the problem minx F (x) is equivalent to
the problems minx(i) Fi(x

(i)) on all coordinates i ∈ [n]. Since the problem is separable over the coordinates, we have
x
(i)
∗ = argminx∈[−1,1] Fi(x

(i)) for x∗ = argminx∈X F (x). Thus, we have x(i)∗ = − 2ν
3 and Fi(x

(i)
∗ ) = −ν

2

3 . By the
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convex conjugate, for any y(i) ∈ R we have

f∗(y(i)) = max

{
sup
u<−1

{
uy(i) −

(
(ν − 1)u+

1

2
(ν − 1)2 + ν − 1− ν2

2

)}
, sup
−1≤u≤1

{
uy(i) − 1

2
(u+ ν)2 +

ν2

2

}
,

sup
u>1

{
uy(i) −

(
(1 + ν)u+

1

2
(1 + ν)2 − 1− ν − ν2

2

)}}
=

{
+∞, y(i) ∈ (−∞, ν − 1) ∪ (ν + 1,∞)
1
2 (y

(i) − ν)2, y(i) ∈ [ν − 1, ν + 1].
(43)

Since Pi = P in the “hard” problem (41), the abstract scheme only needs to sample shared ζt, ζ̃t ∼ P for all coordinates
i ∈ St in the t-th iteration. For an i ∈ [n], suppose that g(i)τ = {0} or {−ν}, Y(i)

τ = {0}, X(i)
τ = {0} for all τ ≤ t. Then,

• If i /∈ St, the abstract scheme leads to

g
(i)
t+1 = {0} or {−ν}, Y

(i)
t+1 = {0}, X

(i)
t+1 = {0}.

• If i ∈ St and ζt = −ν, the abstract scheme proceeds as

g
(i)
t+1 = g

(i)
t + span

{
x̂(i) + ζt | x̂(i) ∈ X

(i)
t

}
,

Y
(i)
t+1 = Y

(i)
t + span

{
argmax

y(i)∈[ν−1,ν+1]

{
y(i)(ĝ(i) + ν)− 1

2
(y(i))2 − τUψi(y(i), ŷ(i))

}
| ĝ(i) ∈ g

(i)
t+1, ŷ

(i) ∈ Y
(i)
t

}
,

X
(i)
t+1 = X

(i)
t + span

{
argmin
x(i)∈[−1,1]

{
1

S
ŷ(i)x(i) +

1

n
(x(i))2 +

η

2
(x(i) − x̂(i))2

}
| ŷ(i) ∈ Y

(i)
t+1, x̂

(i) ∈ X
(i)
t

}
.

In this case, we can derive that g(i)t+1 = {−ν} such that y(i)(ĝ(i) + ν) = 0 for ĝ(i) ∈ g
(i)
t+1, ∀i ∈ St. Since 1

2 (y
(i))2 +

τUψi(y
(i), ŷ(i)) is strongly convex to y(i) and non-negative, we have Y(i)

t+1 = {0} for i ∈ St. Then, X(i)
t+1 = {0} for i ∈ St.

To sum up, given the event
⋂t
τ=1{g

(i)
τ = {0} or {−ν}, Y(i)

τ = {0}, X(i)
τ = {0}}, we can make sure that {g(i)t+1 =

{0} or {−ν} ∧Y
(i)
t+1 = {0} ∧ X

(i)
t+1 = {0}} when one of the following mutually exclusive events happens:

• Event I: i /∈ St;

• Event II: i ∈ St and ζt = −ν.

Note that the random variable ζt is independent of St. Thus, the probability of the event E(i)
t+1 := {g(i)t+1 = ∅ or {−ν} ∧

Y
(i)
t+1 = {0} ∧ X

(i)
t+1 = {0}} conditioned on

⋂t
τ=1E

(i)
τ can be bounded as

P

[
E

(i)
t+1 |

t⋂
τ=1

E(i)
τ

]
= P

[{
g
(i)
t+1 = {0} or {−ν} ∧Y

(i)
t+1 = {0} ∧ X

(i)
t+1 = {0}

}
|

t⋂
τ=1

E(i)
τ

]
≥ P [{i /∈ St}] + P [{{i ∈ St} ∧ {ζt = −ν}}]

= P [{i /∈ St}] + P [{i ∈ St}]P [{ζt = −ν}] =
(
1− S

n

)
+
S

n
(1− p) = 1− Sp

n
.

Since St and ζt in different iterations t are mutually independent, we have

P
[
E

(i)
T

]
≥ P

[
T−1⋂
t=0

E
(i)
t+1

]
=

T−1∏
t=0

P

[
E

(i)
t+1 |

t⋂
t=1

E
(i)
t

]
=

(
1− Sp

n

)T
> 3/4− TSp

n
.

Thus, letting T < n
4Sp can make P[E(i)

T ] > 1
2 . Choose ν = 3

√
2ϵ, and σ = σ0 such that p = ν2

σ2 = 18ϵ
σ2
0

. For any i ∈ [n] and

any output x̃(i)T ∈ X
(i)
T , we have

E[(x̃(i)T − x
(i)
∗ )2] = E[I

E
(i)
T

(x̃
(i)
T − x

(i)
∗ )2 + I

E
(i)
T

(x̃
(i)
T − x

(i)
∗ )2] ≥ E[I

E
(i)
T

(x̃
(i)
T − x

(i)
∗ )2]

= E[I
E

(i)
T

(x
(i)
∗ )2] = P[E(i)

T ](x
(i)
∗ )2 >

2ν2

9
= 4ϵ.
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Since the derivations above hold for arbitrary i ∈ [S] and the r(x) in (42) is 1
2n -strongly convex (µ = 1

2n ), we have

µ

2
E∥x̃(i)T − x∗∥

2
2 =

1

4n
E∥x̃(i)T − x∗∥

2
2 =

1

4n

n∑
i=1

E[(x̃(i)T − x
(i)
∗ )2] > ϵ.

Thus, to find an output x̃T such that µ2E ∥x̃T − x∗∥
2
2 ≤ ϵ, the abstract scheme requires at least T ≥ n

4Sp =
nσ2

0

72Sϵ iterations.

(ii) Non-smooth fi: We borrow the construction fi(·) = βmax{·,−ν} from Zhang & Lan (2020). We define that
Fi(x

(i)) := f(gi(x)) +
α
2 [x

(i)]2 = βmax{x(i),−ν} + α
2 [x

(i)]2 such that F (x) = 1
n

∑n
i=1 Fi(x

(i)). Let the domain
X be [−2ν, 2ν]n. Since the problem is separable over the coordinates, we have x(i)∗ = argminx∈[−2ν,2ν] Fi(x

(i)) =

argminx∈[−2ν,2ν]

{
βmax{x(i),−ν}+ α

2 (x
(i))2

}
for x∗ = argminx∈X F (x). We have

x
(i)
∗ =

{
−β/α if α > β/ν

−ν if α ∈ β
ν [0, 1]

, Fi(x
(i)
∗ ) ≤

{
−β2/(2α) if α > β/ν

−βν/2 if α ∈ β
ν [0, 1].

Since Fi(0) = 0, we can derive that Fi(0)− Fi(x(i)∗ ) ≥ 1
2 min{βν, β2/α}. By the convex conjugate, we have

f(ĝ(i)) = max
y(i)∈[0,β]

{y(i)ĝ(i) − ν(β − y(i))}.

Due to similar reason as in the smooth fi case, the probability of the event E(i)
T := {g(i)T = {0} or {−ν} ∧ Y

(i)
T =

{0} ∧ X
(i)
T = {0}} can be lower bounded as

P[E(i)
T ] ≥ P

[
T−1⋂
t=0

E
(i)
t+1

]
=

T−1∏
t=0

P

[
E

(i)
t+1 |

t⋂
t=1

E
(i)
t

]
=

(
1− Sp

n

)T
> 3/4− TSp

n
.

Thus, letting T < n
4Sp can make P[E(i)

T ] > 1
2 . Choose β = Cf , ν = 4ϵ

Cf
, and σ = σ0 such that p := ν2

σ2 = 16ϵ2

C2
fσ

2
0

. For any

i ∈ [n] and any output x̃(i)T ∈ X
(i)
T , we have

E[Fi(x̃(i)T )− Fi(x(i)∗ )] = E
[
I
E

(i)
T

(
Fi(x̃

(i)
T )− Fi(x(i)∗ )

)
+ I

E
(i)
T

(
Fi(x̃

(i)
T )− Fi(x(i)∗ )

)]
≥ E

[
I
E

(i)
T

(
Fi(x̃

(i)
T )− Fi(x(i)∗ )

)]
= E

[
I
E

(i)
T

(
Fi(0)− Fi(x(i)∗ )

)]
= P[E(i)

T ]
(
Fi(0)− Fi(x(i)∗ )

)
> min{βν, β2/α}/4 = ϵ.

Since the derivations above hold for arbitrary i ∈ [S], we can derive that

E[F (x̃T )− F (x∗)] =
1

n

n∑
i=1

E[Fi(x̄(i))− Fi(x(i)∗ )] > ϵ.

Thus, to find a x̃T such that E[F (x̄)− F (x∗)] ≤ ϵ, the abstract scheme requires at least T ≥ n
4Sp =

nC2
fσ

2
0

64Sϵ2 iterations.

F. Application to GDRO with ϕ-divergence
We discuss two examples of the GDRO problem with ϕ-divergence: CVaR divergence with a hyper-parameter α ∈ (0, 1)
and χ2-divergence with a hyper-parameter λ > 0. We compare ALEXR to the following baselines:

• SMD (Nemirovski et al., 2009; Zhang et al., 2023): It can be applied to the GDRO problem in (7) with CVaR divergence,
where the dual mirror step with the entropy distance-generating function can be efficiently solved by projection onto the
permutahedron (Lim & Wright, 2016). Moreover, SMD can also be applied to the worst-group DRO problem (Sagawa
et al., 2019) (i.e., λ = 0 in (7) or α = 1

n in CVaR). The iteration complexity of SMD is T = O( lognϵ2 ). Besides, it requires
O(n log n) computational cost for performing the dual projection and O(n) oracles in each iteration. Note that SMD cannot
be applied to the GDRO problem in (7) with χ2-divergence due to the non-linear penalty term.

• OOA (Sagawa et al., 2019): This algorithm can be viewed as a variant of the SMD algorithm with the dual gradient
estimator [0, . . . , nℓ(wt; z

(it)
t ), . . . , 0]⊤ for some it ∈ [n] such that it only requires O(1) oracles per iteration. But the dual
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Table 4. Comparison of iteration complexities, dual projection cost, and per-iteration #oracles for achieving ϵ-optimal solution of the
GDRO problem in (7) in terms of E[F (wout) − F (w∗)] ≤ ϵ in the merely convex case and µ

2
E ∥wout − w∗∥22 ≤ ϵ in the µ-strongly

convex case, where xout is the output of each algorithm. We hide other constant quantities except for n, variances σ2
0 , σ

2
1 , δ

2, and batch
sizes B,S. Besides, Õ hides poly log(1/ϵ) factors.

ϕ-Divergence Algorithm Per-Iter #Oracles Dual Proj. Iteration Complexity

CVaR

SMD O(n) O(n log n) O
(

logn
ϵ2

)
OOA O(1) O(n log n) O

(
n2 logn
ϵ2

)
ALEXR O(1) O(1) O

( √
n

α2
√
Sϵ

+ 1
α2ϵ2 + δ2

Sϵ2 +
σ2
1

α2Bϵ2 +
σ2
0Ω

0
Y

BSϵ2

)
†

χ2 ALEXR O(1) O(1)
Merely Convex r Strongly Convex r

O
( √

n

λ
√
Sϵ

+ 1
λ2ϵ2 + δ2

Sϵ2 +
σ2
1

Bϵ2 +
σ2
0Ω

0
Y

BSϵ2

)
Õ
( √

n
λ
√
Sµ

+ 1
µλ2ϵ +

nσ2
0

BSϵ +
σ2
1

µBϵ +
δ2

µSϵ

)
† The worst-case estimate of Ω0

Y is n
2α2 , but it could be much smaller than n

2α2 in practice, as explained in Remark F.1.

projection cost in each iteration is still O(n log n). The iteration complexity of SMD is T = O(n
2 logn
ϵ2 ), which is also

independent of α. OOA is not applicable to the GDRO problem in (7) with χ2-divergence either.

It comes to our attention that the NOL algorithm (Zhang et al., 2023) designed for the worst-group DRO problem, i.e., λ = 0
in (7), can achieve T = O(n logn

ϵ2 ) iteration complexity in high probability with per-iteration O(1) oracles. However, this
result cannot be extended to the GDRO problem with CVaR or χ2-divergence, since their proof technique relies on powerful
tools for multi-armed bandits. Besides, Soma et al. (2022) also consider the GDRO problem with CVaR divergence but their
convergence analysis suffers from dependency issues, as pointed out in Zhang et al. (2023). Recently, Hu et al. (2023c)
studied non-smooth weakly convex FCCO problems and proposed an algorithm SONX, which can be applied to solving
GDRO with CVaR divergence. However, their algorithm does not leverage the convexity of the inner function and hence
suffers from a worse complexity of O( n

S
√
Bϵ6

).

F.1. GDRO with CVaR divergence

GDRO with CVaR divergence can be formulated as (1) with fi(·) = α−1(·)+, α ∈ (0, 1) and gi(w, c) = Ri(w) − c
such that Cf = 1

α and Cg = CR + 1, where CR is the Lipschitz constant of Ri. The dual update (7) of ALEXR with

ψi(·) = 1
2 (·)

2 has the closed-form expression y(i)t+1 =

{
Proj[0,α−1][y

(i)
t + (1/τ)g̃

(i)
t ], i ∈ St

y
(i)
t , i /∈ St

.

The worst-case estimate of the Ω0
Y term in Theorem 3 is Ω0

Y ≤
nC2

f

2 = n
2α2 when ψi = 1

2 (·)
2. However, it could be much

smaller than n
2α2 in practice since ỹ(i) = 0 for those coordinates i that satisfy Ri(w̄) ≤ c̄, i.e., the ALEXR algorithm

can benefit from the “sparsity” of ỹ(i) ∈ ∂fi(gi(w̄, c̄)), where (w̄, c̄) is the output of the algorithm. In particular, when
(w̄, c̄) is close to the optimal solution, then roughly about αn number of groups such that [Ri(w̄)− c̄]+ > 0. As a result,

Ω0
Y = E[

∑n
i=1 Uψi(ỹ

(i), 0)] ≈ nαC2
f

2 = n
2α .

F.2. GDRO with χ2- divergence

GDRO with χ2- divergence can be formulated as (1) with fi(·) = λ
(
1
4 (·+ 2)2+ − 1

)
and gi(w, c) = (Ri(w)− c)/λ such

that Cf = max{BR−c,BR+c}
2 and Cg = CR+1

λ , where BR := maxw |Ri(w)| and a valid choice of c, c is c = −λ, c = BR
(See Appendix A.3 in Levy et al. 2020). In this case, the proximal mapping of f∗i (y

(i)) = λ
2 (y

(i)/λ−1)2 with ψi(·) = 1
2 (·)

2

can also be efficiently solved. We can also consider the GDRO problem with a convex regularization term r(x). We can
choose either ψi = f∗i or ψi(·) = 1

2 (·)
2.

F.3. Comparison with Baselines

In Table 4, we compare our ALEXR to the baseline algorithms OOA and SMD. It is notable that although SMD has a better
iteration complexity for CVaR divergence, it requires O(n) oracles at each iteration. In contrast, ALEXR and OOA only
require O(1) oracles in each iteration. In the worst case, we have Ω0

Y = O(n/α2) for CVaR-penalized GDRO, then ALEXR
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has a better complexity than OOA when 1
α = o(

√
n log n). In practice, we have Ω0

Y = O(n/α) for CVaR-penalized GDRO,
then ALEXR has a better complexity than OOA when 1

α = o(n log n). In addition, OOA cannot enjoy the parallel speedup
with respect to the inner batch size B due to its scaled dual gradient estimator. Moreover, we also provide the iteration
complexity of ALEXR on this the GDRO problem with χ2-divergence, with or without a strongly convex regularizer.

G. More Details of Experiments
All algorithms are implemented using the PyTorch framework. Experiments are conducted on a workstation with the 12th
Gen Intel(R) Core(TM) i7-12700K CPU with 20 logical cores.

G.1. Group Distributionally Robust Optimization

G.1.1. DATA PREPROCESSING

Adult dataset: We construct 83 groups for the Adult dataset according to income (“>50K”, “≤50K”), race (“white”,
“black”, “other”), sex (“female”, “male”), age (“≤30”, “30-45”, “>45”), relationship (“single”, “not single”), and education
(“higher”, “others”), where we discard those groups with less than 50 data points. Following Platt (1999), we transform both
continuous and categorical features into binary features, resulting in a 122-dimensional feature vector for each data.

CelebA dataset: We construct 160 groups for this dataset according to 4 binary attributes (“blond hair”, “male”, “mouth
slightly open”, “smiling”) and 10 types of additive Gaussian noises (means -0.08:0.02:0.1 and variance 0.08) to the images.
Each image of the CelebA dataset is resized to 224×224×3, normalized, and center-cropped. Then, we extract 512-dim
feature vectors for those preprocessed images from the last convolutional layer of a ResNet18 pre-trained on ImageNet.

G.1.2. ADDITIONAL RESULTS

The first two columns of Figure 3 show the existence of rare groups in the datasets. The last two columns of Figure 3
demonstrate that the actual value of Ω0

Y is indeed much smaller than its worst-case estimate n
2α2 , which verifies the claims

in the remark below Theorem 3 and Section F.1.
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Figure 3. Group populations and the computed values of Ω0
Y .

G.2. Partial AUC Maximization with Restricted TPR

Table 5. Statistics of datasets used in the partial AUC maximization experiments. Here n+ and n− refer to the numbers of positive and
negative data in the train and validation splits.

Datasets Train Validation

n+ n− n+ n−

Covtype 889 178,587 252 59,573
Higgs 4,676 4,172,030 582 499,418

Cardiomegaly 1,950 76,518 240 10,979
Lung-mass 3,988 74,480 625 10,594
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