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ABSTRACT

In multi-object detection using neural networks, most methods train a network
based on ground truth assignment, which makes the training too heuristic and
complicated. In this paper, we reformulate the multi-object detection task as a
problem of density estimation of bounding boxes. Instead of using a ground-
truth-assignment-based method, we train a network by estimating the probabil-
ity density of bounding boxes in an input image using a mixture model. For
this purpose, we propose a novel network for object detection called Mixture
Density Object Detector (MDOD), and the corresponding objective function for
the density-estimation-based training. Unlike the ground-truth-assignment-based
methods, our proposed method gets rid of the cumbersome processes of matching
between ground truth boxes and their predictions as well as the heuristic anchor
design. It is also free from the problem of foreground-background imbalance. We
applied MDOD to MS COCO dataset. Our proposed method not only deals with
multi-object detection problems in a new approach, but also improves detection
performances through MDOD. CODE WILL BE AVAILABLE.

1 INTRODUCTION

Multi-object detection is the task of finding multiple objects through bounding boxes with class
information. Since the breakthrough of the convolutional neural networks (CNN), multi-object de-
tection has been extensively developed in terms of computational efficiency and performance, and
is now at a level that can be used in real life and industry.

The fundamental problem in training a multi-object detection network is, “How should the network
learn a variable number of bounding boxes in different input images?”. As an answer to this question,
methods based on ground truth assignment (GTA) have been developed to train multi-object detec-
tion networks. These methods train multi-object detection networks by directly assigning a ground
truth bounding box to specific locations (usually in a grid) of the network’s output feature map with
an appropriate criterion such as intersection-over-union (IoU) or center distance. The GTA-based
methods have become the mainstream of training multi-object detection networks.

However, in order to successfully train a multi-object detection network using GTA, a thoughtful
consideration of several procedures is required. These procedures, described below, make the train-
ing of a multi-object detection network too heuristic and complicated, which make the detection
performance sensitive to the related hyper-parameters:
Matching ground truths and predictions: To assign a ground truth bounding box to specific loca-
tions of the network’s output with a specific criterion, we need to determine whether the ground truth
and each prediction match or not. Since it is the process of directly generating the target for each
prediction and the ground truths that do not matched are ignored, the learning and the performace of
a detector network are highly sensitive to the matching algorithm used (Zhang et al., 2020).
Various shape of anchor boxes: In the methods using anchor boxes, a ground truth bounding box
must be assigned to one or more anchor box(es) for training a network. When using a generic match-
ing algorithm, it is known that the detection performance is highly dependent on the shape, scale,
and the number of anchor boxes (Ren et al., 2015; Lin et al., 2017b). Therefore, anchor boxes with
various shapes and scales are needed to cope with various objects in different shapes and sizes.
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Figure 1: Comparison of ground-truth-assignment-based training (left) and density-estimation-based
training (right). Density-estimation-based method trains the detector through a probability density
function, without ground-truth-assignment.

Foreground-background imbalance: Generally, in the process of GTA, there exists a severe im-
balance between the number of assigned locations that act as foreground and unassigned locations
which correspond to backgrounds. This foreground-background imbalance problem makes training
difficult. To alleviate this problem, separate processes such as heuristic sampling (Liu et al., 2016)
or focal loss (Lin et al., 2017b) are required.

In this paper, we reformulate the multi-object detection task as a density estimation of bounding
boxes (See Fig. 1). By doing this, we can train a multi-object detection network through a prob-
ability density function instead of using GTA that requires complex and heuristic processes. Our
proposed multi-object detection network, Mixture-Density-based Object Detector (MDOD), cap-
tures the distribution of bounding boxes for an input image using a mixture model of components
consisting of continuous (Cauchy) and discrete (categorical) probability distribution. For each com-
ponent of the mixture model, the continuous Cauchy distribution is used to represent the distribution
of the bounding box coordinates (left, top, right and bottom) and the categorical distribution is used
to represent the class probability of that box. The MDOD is trained to maximize the log-likelihood
of the estimated parameters for the mixture model given the ground truth bounding boxes of input
images. The main contributions of the proposed method are threefold as the following:

1. Unlike the previous methods, we reformulate the multi-object detection task as a density esti-
mation of bounding boxes for an input image. Through this novel approach of density esimation, a
detection network can be trained without the ground truth assignment.

2. We estimate the density of bounding boxes using a mixture model consisting of continuous (for
the location) and discrete (for the class) probability distribution. To this end, we propose a new
network architecture, Mixture Density Object Detector (MDOD) and the objective function for it.

3. We measured the performance of our proposed method on MS COCO. We show that the proposed
method is superior to GTA-based methods and can improve the detection performance of a state-
the-art GTA-based detector, EfficientDet (Tan et al., 2020), by applying MDOD.

2 RELATED WORKS

In most modern multi-object detection methods, a ground truth bounding box must be assigned to
the network’s output based on center locations or anchor boxes. This process is called ground-truth-
assignment (GTA). Faster R-CNN (Ren et al., 2015) attempts to represent the space in which a box
can exist on an image as much as possible by using a large number of anchor boxes having various
scales and aspect ratios. A ground truth bounding box is assigned to an anchor box if the IoU between
this anchor box and the ground truth bounding box is above a threshold. In later studies, the use of
anchor boxes became a standard. (Liu et al., 2016; Fu et al., 2017; Redmon et al., 2016). However,
a large number of anchors worsens the so-called foreground-background imbalance problem, since
the unassigned background anchor boxes outnumber the assigned foreground ones, which makes
training difficult. Also, a careful design of the anchor is required as the scale and aspect ratio of
the anchor affect detection performance much. To alleviate the foreground-background imbalance
problem, Hard negative mining (Liu et al., 2016) and OHEM (Shrivastava et al., 2016) sample
the negative RoIs (Region of Interests) with a high loss. Focal Loss (Lin et al., 2017b) tackles
this problem by concentrating on the loss of hard examples. However, it has the hyperparameters
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that should be heuristically searched. To design an anchor box, most of methods inherit the shape
heuristically found in previous studies. YOLOv2 (Redmon & Farhadi, 2017) and YOLOv3 (Redmon
& Farhadi, 2018) find the optimal anchor boxes through K-means clustering.

Recently, studies not using anchors have been conducted. Tian et al. (2019) learn ground truth bound-
ing boxes based on the center location instead of anchor boxes. Law & Deng (2018); Duan et al.
(2019); Zhou et al. (2019) use the keypoint-based method used in pose estimation. They learn the
keypoints of the bounding boxes in the form of heatmaps. However, these methods still perform
GTA and use focal loss to alleviate the foreground-background imbalance problem.

On other hand, there are also studies dealing with matching criteria in GTA. Zhang et al. (2020)
argue that what is important is how to assign the ground truth bounding boxes, not the anchor box
shapes, and propose an adaptive method that automatically divides positive and negative samples.
FreeAnchor (Zhang et al., 2019) points out that the IoU-based hand-crafted assignment is a prob-
lem. It learns the matching between a ground truth bounding box and an anchor through maximum
likelihood estimation, so the GTA is not determined by the IoU criterion. However, this only learns
matching weights and it still needs to construct the hand-crafted bag of anchors based on IoU.

In the previous studies, the concept of distribution (e.g. Gaussian) in multi-object detection is mainly
used to express the uncertainty of bounding box coordinates. For each predicted RoI (roik), He et al.
(2019) model a ground truth bounding box coordinate (bicoord) as a Dirac delta function to estimate
p(bicoord|roik, image). Choi et al. (2019) estimate the density of a specific bounding box coordinate
for a specific anchor (anchork) as a Gaussian distribution, i.e. p(bicoord|anchork, image) ∼ N .

In this paper, we perform multi-object detection by learning the distribution of bounding boxes (b)
for an image using a mixture model, i.e. we estimate p(b|image). Unlike the previous methods
mentioned above, the GTA and the heuristics caused by GTA are not required to train our MDOD.

3 PROBLEM FORMULATION: MIXTURE MODEL FOR OBJECT DETECTION

The bounding box b can be represented as a vector consisting of four coordinates (position) bp for
the location (left-top and right-bottom corners) and an one-hot vector bc for the object class. In the
problem of multi-object detection, the conditional distribution of b for an image may be multi-modal,
depending on the number of objects in an image. Therefore, our object detection network must be
able to capture the multi-modal distribution. We propose a new model MDOD that can estimate
the multi-modal distribution by extending the mixture density network (Bishop, 1994) for object
detection. MDOD models the conditional distribution of b for an image using a mixture model
whose components consist of continous and discrete probability distribution, which repspectively
represents the distribution of bounding box coordinates and the class probability. In this paper, we
use the Cauchy distribution as a continuous distribution and the categorical distribution as a discrete
distribution. The probability density function (pdf) of this mixture model is defined as follows:

p(b|image) =

K∑
k=1

πkF(bp;µk, γk)P(bc; pk). (1)

Here, F denotes the pdf of Cauchy1, and P denotes the probability mass function (pmf) of cate-
gorical distribution. The parameters µk, γk, and πk are the location, scale, and, mixing coefficient
of the k-th component. The C-dimensional vector pk is the probability for C classes. The Cauchy
distribution represents the four-coordinates of the bounding box bp = {bl, bt, br, bb}. To prevent the
model from being overly complicated, we assume that each dimension of the bounding box coordi-
nates is independent from the others. Thus, the pdf of Cauchy for the bounding box coordinates can
be factorized as follows:

F(bp|image) =
∏
d∈D

F(bd;µk,d, γk,d), D = {l, t, r, b}. (2)

The objective of the MDOD is to accurately estimate the parameters of the mixture model by maxi-
mizing the log-likelihood of the ground truth bounding box b, as follows:

θ = arg max
θ

Eb∼pdata(b|image) log p(b|image; θ). (3)

1F(x;µ, γ) = 1
π

γ
(x−µ)2+γ2 , where µ is the location parameter and γ is the scaling parameter.
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Figure 2: The architecture of MDOD. The parameters of the mixture model (µ, γ, p, and π) are
predicted by MDOD. The network produces its intermediate output (o1 - o4) from each feature-map
of the feature-pyramid.

Here, pdata(b|image) is the empirical distribution of b for a given an input image and θ is the
parameter vector that includes mixture parameters (µk, γk, πk) and the class probability pk.

4 MIXTURE DENSITY OBJECT DETECTOR (MDOD)

4.1 ARCHITECTURE

Fig. 2 shows the architecture of MDOD. The network outputs o1, o2, o3, and o4 from the input
feature-map. The parameter maps of our mixture model, µ-map, γ-map, p-map, and π-map are
obtained from o1, o2, o3, and o4, respectively. The mixture component is represented at each position
on the spatial axis of the paramter-maps.

The µ-map is calculated from o1 ∈ Rhm×wm×4. First, each element of o1 is scaled by a factor of
s = 1

25 ×2l depending on what level l ∈ {1, · · · , 5} of feature map in the feature pyramid is used as
follows: o′1 = s×o1. Then, as the decoder block in Fig. 2 depicts, the first two channels (dx′, dy′) of
o′1 which correspond to the deviation from the center-offset are inputted to the center-limit operation.
It restricts the output not to deviate too much from the center-offset which is a fixed map with two
channels (x̄, ȳ) that encodes spatial coordinates of each pixel on an input image. By adding the
center-offset to the output of center-limit operation, the positions of the mixture components are
spatially aligned to match the output of the network. The center-limit operation illustrated in Fig. 3
is implemented by applying tanh and multiplying the limit factor slim. In this paper, we set slim
equal to the spacing between adjacent center-offsets (see Fig. 3). The overall computation of a center
coordinate in x-direction is as follows: x = x̄ + slim × tanh(dx′). The same applies also to the y-
direction. The last two channels of o′1 acts as the width and height. The lrtb-transformation converts
coordinates represented by the center, width, and height (xywh) to the left-top and right-bottom
corners (ltrb).

The γ-map is obtained by applying the softplus (Dugas et al., 2001) activation to o2 and then mul-
tiplying the level-scale. The p-map is obtained by applying the softmax function along the channel
axis to o3 ∈ Rhm×wm×(C+1), and the π-map is obtained by applying the softmax to the entire five

spatial maps of o4 ∈ Rhm×wm×1 such that
∑5
l=1

∑hl
m

h=1

∑wl
m

w=1 π
l
(h,w) = 1. Here, C denotes the

number of object classes and the last channel of o3 is for the background class.

Our network consists of a convolution layer of 3×3 kernel and three convolution layers of 1×1
kernel. Swish (Ramachandran et al., 2017) is used for the activation function of these layers ex-
cept the output layer. We use 5-level Feature Pyramid Network (FPN) as a feature extractor (Lin
et al., 2017a). Our MDOD estimates only one mixture model from all levels of feature-maps. Thus,
the number of components K is the summation of the number of components (hm × wm) of each
parameter-map corresponding to the feature-map. Here, each feature-map (o1 − o4) and the corre-
sponding parameter-map (µ, γ, p, π) at the same layer have the same dimension.

4



Under review as a conference paper at ICLR 2021

slim

center-offset
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Figure 4: The pdfs of Gaussian and Cauchy distribu-
tion. Because of the limited precision of the floating
point, for Gaussian, p(x) = 0 for |x| > 7.202, i.e.
underflow in log-likelihood calculation.

4.2 TRAINING

Cauchy vs. Gaussian: Gaussian distibution is one of the representative continous probability dis-
tribution. But, the likelihood of Gaussian distribution decreases exponentially as the distance from µ
increases. Therefore, even if the predicted coordinate is slightly far away from the ground truth, un-
derflow may arise due to the limited floating point precision in the actual implementation. It causes
the problem that the likelihood becomes zero and the loss can not be backpropagated. On the other
hand, as can be seen in Fig. 4, the Cauchy distribution has a heavier (quadratically decreasing) tail
compared to the Gaussian distribution. Thus, there is much little chance of the underflow problem.
RoI sampling: To take the probability of the negative predictions into account, the class prob-
abilities considering the background are commonly used as the confidence score of the predicted
bounding box. But, the set of ground truth bounding boxes {bgt} generally does not include the
background class. To obtain the bounding boxes of both foreground and background classes, we
sample bounding box candidates from the estimated mixture model ignoring the class probability,
i.e. a mixture of Cauchy (MoC). If the IoU between a sampled candidate and a ground truth is above
a threshold, we label it as the class of the ground truth with the highest IoU, otherwise, we label
it as the background. Through this process, we create the RoI set {broi}. Since {broi} is sampled
from the MoC that is trained to represent the distribution of ground truth bounding box coordinates,
the foreground-background imbalance problem does not occur if the MoC estimates the distribu-
tion of bounding boxes well. Also, the background bounding boxes in the {broi} can be regarded
as hard-negative samples that are acquired stochastically, not heuristically. In the matching of GTA,
since ground truths are directly assigned to the network’s output, the structure of output should be
considered, e.g. anchor design or heatmap. But, in RoI sampling, we need only apply the commonly
used criterion (IoU>0.5) of the background for RoI labeling.
Loss function: For training MDOD to represent the background probability using {broi}, we define
the loss function of MDOD into two terms. The first term is the negative log-likelihood of the MoC:

LMoC = − 1

Ngt

Ngt∑
i=1

log

(
K∑
k=1

πkF(bigt,p;µk, γk)

)
. (4)

Here, (πk, µk, γk) depends on the image that contains the i-th ground truth bounding box bigt. Note
that Eq.(4) learns only the distribution of the coordinates of the ground truth bounding box {bgt,p} =

{b1gt,p, · · · , b
Ngt

gt,p}, excluding class probability using the MoC parameters (π, µ, γ). The second loss
term is a complete form of our mixture model including class probability and is calculated as:

LMM = − 1

Nroi

Nroi∑
j=1

log

(
K∑
k=1

πkF(bjroi,p;µk, γk)P(bjroi,c; pk)

)
. (5)

LMM is used to learn the class probability of the estimated mixture model. Note that LMM is cal-
culated using {broi} = {b1roi, · · · , b

Nroi
roi } sampled from the estimated MoC. Also, it is trained such

that the MoC is not relearned by itself. To this end, the error is not propagated to other parameters
of mixture models except class probabilities pk. The final loss function is defined as:

L = LMoC + αLMM (6)
Here, α controls the balance between the two terms. In our experiments, we set α = 2.
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Figure 5: The ratio of foreground samples in the
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Cauchy distribution at each training epoch.
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Figure 6: The ratios of underflowed components
for Cauchy and Gaussian distributions at each
training epoch.

4.3 INFERENCE

In the inference phase, we choose µ’s of mixture components as coordinates of the predicted bound-
ing boxes. We assume that these µ’s have a high possibility to be close to the local maxima of the
estimated mixture model by MDOD. In the aspect of mixture-model-based clustering, we consider
the µ’s as representative values for the corresponding clusters. Before performing the non-maximum
suppression (NMS), we can filter out the mixture components with relatively low p(c) or π values.
Since the scale of π depends on the input image, we filter mixture components through normalized-π
(π′), which is obtained by normalizing π-vector with its maximum element, i.e. π′ = π/max(π).

5 EXPERIMENTS

5.1 ANALYSIS FOR MDOD

To analyze the MDOD architecture, we use the MS COCO (Lin et al., 2014) ‘train2017’ and
‘val2017’ for training and evaluation. Input images are resized to 320×320, and ResNet50 (He
et al., 2016) with FPN is used. Training details are described in the appendix (Section A.1).

Foreground-background balance: Since we perform sampling from the estimated MoC, the sam-
pled set {broi} contains both foreground and background samples. In order to check the balance
of foreground and background in {broi}, we measure the foreground ratio (#foreground / #total) of
{broi}. In Fig. 5, the foreground ratio is initially low but increases as training progresses and con-
verges to a certain value. This shows that the foreground-background imbalance problem is solved
naturally as the training progresses (#foreground : #background = 1.7 : 1 at the final epoch) .
Underflow ratio of Gaussian and Cauchy: In practice, the likelihood of Gaussian and Cauchy
distribution can be zero due to underflow caused by the limited floating-point precision. In order to
show this problem during training, we measure the ratio of components where underflow occurs due
to a large distance from a ground truth bounding box coordinate. As can be seen in Fig. 4, in the
Cauchy distribution, underflow rarely occurs, whereas in Gaussian, underflow occurs at a high ratio
throughout the training process (about 0.9 ratio). The resultant APs of MDOD using Gaussian and
Cauchy distribution are 32.7 and 33.8, respectively.

Table 1: The size of {broi} (Nroi)
and detection performances (APs).

Nroi AP AP50

10 33.4 53.1
100 33.7 53.4

Ngt × 1 33.8 53.3
Ngt × 3 33.8 53.4
Ngt × 5 33.9 53.3

Table 2: The effectiveness of the network components of
MDOD.

MDOD

ltrb X X X
center-limit X X X
level-scale X X

AP 33.8 32.9 32.3 32.8
AP50 53.4 52.9 51.6 52.5
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Table 3: Comparison of Baseline and EfficientDet with MDOD on MS COCO ‘test-dev’ dataset.

method feature extractor input size AP AP50 AP75 APS APM APL

Baseline ResNet50-FPN 320x320 30.1 45.9 32.4 6.4 34.7 50.8
Baseline ResNet50-FPN 512x512 35.0 53.2 38.1 15.0 40.2 50.7
MDOD ResNet50-FPN 320x320 33.9 53.8 35.5 14.7 35.1 49.6
MDOD ResNet50-FPN 512x512 37.9 59.1 40.2 19.8 40.7 50.5

Baseline ResNet101-FPN 320x320 31.1 46.8 33.6 6.7 36.1 52.3
Baseline ResNet101-FPN 512x512 36.6 54.5 39.8 15.6 42.0 53.2
MDOD ResNet101-FPN 320x320 35.0 54.8 36.8 14.4 36.5 15.8
MDOD ResNet101-FPN 512x512 40.0 60.7 42.6 20.7 43.1 53.8

EfficientDet Efficient-D0 512x512 33.8 52.2 35.8 12.0 38.3 51.2
EfficientDet Efficient-D1 640x640 39.6 58.6 42.3 17.9 44.3 56.0

MDOD Efficient-D0 512x512 35.2 56.5 36.8 16.9 37.3 48.7
MDOD Efficient-D1 640x640 40.5 62.0 42.8 21.5 42.8 55.3

Table 4: Inference time (ms) comparison of Baseline and MDOD. ‘net-time’, ‘pp-time’ and ‘total-
time’ mean network inference, post processing and total inference time, respectively.

method feature extractor input size net-time pp-time total-time FPS

Baseline ResNet50-FPN 320x320 17 4 21 47.6
Baseline ResNet50-FPN 512x512 22 6 28 37.5
MDOD ResNet50-FPN 320x320 16 2 18 55.6
MDOD ResNet50-FPN 512x512 21 2 23 43.5

The number of RoIs: Table 1 shows the performance changes according toNroi, the size of {broi}.
We either set Nroi proportional to Ngt, or fixed it independent of Ngt, the number of the ground
truth bounding boxes. As a result of the experiment, the performance is not sensitive to the Nroi. In
this paper, Nroi is set to three-times Ngt.
Ablation study: MDOD has components that play a specific role in the intermidate feature-map. In
this experiment, we change the following components in the MDOD architecture one by one to see
the effect: ltrb-transformation (ltrb), center-limit and level-scale operation. Table 2 shows the re-
sults. MDOD that uses all the components shows the best performance. Removing center-limit and
level-scale operation results in a slight decrease in performance. The center-limit and level-scale
operation seems to have a positive effect on detection results. If ltrb-transformation is not used,
bounding box is learned in xywh coordinate. In our method, learning through the ltrb coordinate
shows around 1.0 better APs than learning through xywh.

5.2 EVALUATION RESULT COMPARISON

We compared MDOD with other object detection methods. MS COCO ‘train2017’ dataset is used as
the training-set and ‘test-dev2017’ is used for evaluation. The frame-per-second (FPS) for MDOD
is measured using a single nvidia Geforce 1080Ti including the post processing with batch size 1
without using tensorRT. Likewise, the FPSs for the other compared methods are also measured by
the GPU with Nvidia Pascal architecture.

Comparison with GTA-based baseline: We set up a GTA-based simple baseline to compare the
GTA-based methods and MDOD. In order to compare the two methods as fairly as possible, we
use the completely same batch size, augmentation strategy, and network architecture excluding the
output layer to the baseline and MDOD. The baseline network is trained by smooth l1 and the cross
entropy with hard negative mining. And, the baseline uses nine shapes of anchor boxes per each cell
of output. As can be seen in the Table 3, MDOD outperforms the baseline. Also, in Table 4, MDOD
shows a faster inference speed than the baseline. The reasons are as follows: The predictions of
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Figure 7: Comparison of speed and AP on MS COCO ‘test-dev’ dataset. Horizontal axis is the
detection speed (FPS). Vertical axis of the top is AP50 and the bottom is AP . The red and blue
circles denote 320x320 and 512x512 input sizes, respectively.

MDOD is only 1 for each cell in the output. Thus, the number of filters of output layer becomes
smaller than that of the baseline (MDOD: 90, Baseline: 765). In addition, MDOD predicts fewer
boxes than the Baselines (MDOD: 2134, Baseline: 19206). The number of predictions can affect the
speed of the post-processing using NMS.
Comparison with EfficientDet: We compared the detection performance of MDOD with that of
EfficientDet (Tan et al., 2020), a state-of-the-art GTA-based method. For the sake of fairness, the
feature extractor used in EfficientDet is also applied to MDOD. In Table 3, this version of MDOD
taking the structural superiority of EfficientDet’s feature extractor shows better APs than the original
EfficientDet in all the cases using the same feature extractor and input size. Especially, MDOD with
Efficient-D1 achieved the highest AP (40.5) in this table. What is remarkable about these results is
that this improvement is not caused by structural changes, heuristic or complex processing, but by a
novel approach of learning distribution of bounding boxes in multi-object detection networks.
Comparison with other methods: We compared MDOD with other methods using the similar fea-
ture extractor to focus on the methodology of multi-object detection. Fig. 7 shows the APs and FPSs
of these object detectors. MDOD shows better performance than others in both terms of detection
performance and speed. The contribution of MDOD in terms of computation and speed is not promi-
nent. But, since MDOD has the advantages mentioned in the comparison with baseline and does not
use modified convolution modules that require more computation, MDOD shows faster inference
speed than other methods when using the same input size. The corresponding table for this figure is
attached in the appendix (Section A.3, Table 5).

6 CONCLUSION

In this paper, we treat the multi-object detection task as a density estimation of bounding boxes for an
input image. Through this density-esimation-based approach, the detection network can be trained
without heuristic and complex GTA processing. We proposed a new multi-object detector, MDOD,
and the objective function to train it. MDOD captures the distribution of bounding boxes using the
mixture model whose components consist of Cauchy and categorical distribution. Through thor-
ough analysis, we verified that MDOD does not incur foreground-background imbalance problem
and each component of MDOD contributes to the performance enhancement. Our MDOD shows
improved detection performance compared to GTA-based methods. Notably, this performance is
achieved not by structural changes or by heuristic and complex processings, but by a new approach
of training multi-object detection networks. We believe that MDOD laid an initial step towards a new
direction to multi-object detection which has a large room for improvements that can be achieved
by further research and development.
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A APPENDIX

A.1 TRAINING DETAILS OF MDOD

For training our network, we use the stochastic gradient descent optimization method with a mo-
mentum factor of 0.9. The learning rate is decayed at epoch 120 and 150 with a decay rate 0.1, and
the network is trained up to 160 epochs. Here, the batch size is 32. Gradient clipping (Pascanu et al.,
2013) is applied with a cutoff threshold of 7.0. We perform the generally used data augmentation
process: the expansion, cropping and the horizotal flip described in (Liu et al., 2016). These are the
same processes used in EfficientDet.

A.2 CONSIDERATIONS FOR FAIR COMPARISON WITH BASELINES

We came up with our own baseline detector model because the variables of each detector such
as batch size, augmentation methods, network architecture and so on are so much different from
detector to detector. We found it very hard to conduct fair and proper comparisons between various
detectors due to these variables. Therefore, we designed our own baseline GTA-based model with
our own controlled variables so that we could perform fair experiments for comparison. We use the
completely same batch size, augmentation strategy, and network architecture excluding the output
layer to the baseline and MDOD. And then, we tuned our baseline model by trying different hyper-
parameters (positive-negative ratio, loss weight between regression and classification, weight-decay
and learning rate) and tried to find the best that show the best results for the baseline model (30.1
AP when using ResNet50 and 320x320 size input image).

A.3 COMPARISON WITH OTHER METHODS

Table 5 shows comparison of speed and accuracy with 2-stage methods and 1-stage methods.
2-stage method: Cascade (Cai & Vasconcelos, 2018) and Libra (Pang et al., 2019)
1-stage method: RetinaNet (Lin et al., 2017b), FCOS (Tian et al., 2019), ATSS (Zhang et al., 2020),
FreeAnchor (Zhang et al., 2019), SAPD (Zhu et al., 2019), RefineDet (Zhang et al., 2018), M2Det
(Zhao et al., 2019), PASSD (Jang et al., 2019), HSD (Cao et al., 2019) , EFGRNet (Jing Nie, 2019)
and NETNet (Li et al., 2020). CornerNet (Law & Deng, 2018), ExtremeNet (Zhou et al., 2019),
and CenterNet (Duan et al., 2019). Keypoint-based methods are compared using Hourglass (Newell
et al., 2016) as feature extractor due to those characteristics.
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Table 5: Comparison of various results with MDOD on MS COCO ‘test-dev’ dataset. ‘◦’ and ‘?’
denote soft-nms (Bodla et al., 2017) and flip test (Law & Deng, 2018), respectively. The ‘short-x’
means to use an image that shorter side is resized as x while maintaining the aspect ratio, and the
‘ori.’ means using the original size input image in test.

Method Feature extractor Input size AP AP50 AP75 APS APM APL FPS

Cascade R-CNN ResNet-101 FPN+ short-800 42.8 62.1 46.3 23.7 45.5 55.2 7.1
Libra R-CNN ResNet-101 FPN short-800 41.1 62.1 44.7 23.4 43.7 52.5 9.5

RetinaNet ResNet-101 FPN short-800 39.1 59.1 42.3 21.8 42.7 50.2 9.6
FCOS ResNet-101 FPN short-800 41.5 60.7 45.0 24.4 44.8 51.6 9.3
ATSS ResNet-101 FPN short-800 43.6 62.1 47.4 26.1 47.0 53.6 -

FreeAnchor ResNet-101 FPN short-800 43.1 62.2 46.4 24.5 46.1 54.8 9.1
SAPD ResNet-101 short-800 43.5 63.6 46.5 24.9 46.8 54.6 11.2

RefineDet320 ResNet-101 TCB 320x320 32.0 51.4 34.2 10.5 34.7 50.4 -
RefineDet512 ResNet-101 TCB 512x512 36.4 57.5 39.5 16.6 39.9 51.4 -

M2Det320 ResNet-101 MLFPN 320x320 34.3 53.5 36.5 14.8 38.8 47.9 21.7
M2Det512 ResNet-101 MLFPN 512x512 38.8 59.4 41.7 20.5 43.9 53.4 15.8

PASSD320◦ ResNet-101 FPN 320x320 32.7 52.1 35.3 10.8 36.5 50.2 34.5
PASSD512◦ ResNet-101 FPN 512x512 37.8 59.1 41.4 19.3 42.6 51.0 22.2

HSD ResNet-101 512x512 40.2 59.4 44.0 20.0 44.4 50.2 20.8
EFGRNet ResNet-101 512×512 39.0 58.8 42.3 17.8 43.6 54.5 21.7
NETNet ResNet-101 512×512 38.5 58.6 41.3 19.0 42.3 53.9 27.0

CornerNet◦? Hourglass-104 511x511 (ori.) 40.6 56.4 43.2 19.1 42.8 54.3 4.1
ExtremeNet◦? Hourglass-104 511x511 (ori.) 40.2 55.5 43.2 20.4 43.2 53.1 3.1
CenterNet◦? Hourglass-104 511x511 (ori.) 44.9 62.4 48.1 25.6 47.4 57.4 2.9
MDOD320 ResNet-50 FPN 320x320 33.9 53.8 35.5 14.7 35.1 49.6 55.6
MDOD512 ResNet-50 FPN 512x512 37.9 59.1 40.2 19.8 40.7 50.5 43.5
MDOD320 ResNet-101 FPN 320x320 35.0 54.8 36.8 14.4 36.5 15.8 37.0
MDOD512 ResNet-101 FPN 512x512 40.0 60.7 42.6 20.7 43.1 53.8 29.4
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