
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASSOMEM: SCALABLE MEMORY QA WITH MULTI-
SIGNAL ASSOCIATIVE RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT
Accurate recall from large-scale memories remains a core challenge for memory-
augmented AI assistants performing question answering (QA), especially in
similarity-dense scenarios where existing methods mainly rely on semantic dis-
tance to the query for retrieval. Inspired by how humans link information asso-
ciatively, we propose AssoMem, a novel framework constructing an associative
memory graph that anchors dialogue utterances to automatically extracted clues.
This structure provides a rich organizational view of the conversational con-
text and facilitates importance-aware ranking. Further, AssoMem integrates
multi-dimensional retrieval signals—relevance, importance, and temporal align-
ment—using an adaptive mutual information (MI)-driven fusion strategy. Ex-
tensive experiments across three benchmarks and a newly introduced dataset,
MEETINGQA, demonstrate that AssoMem consistently outperforms state-of-the-
art baselines, verifying its superiority in context-aware memory recall.

1 INTRODUCTION

Figure 1: An example showing limitations in rele-
vance solely retrieval. Our AssoMem consistently
outperforms SOTA baselines on three datasets.

The rapid advancement of large language mod-
els (LLMs) has opened the door to personal as-
sistants that function as a “second brain”—a
digital companion capable of capturing, orga-
nizing, and retrieving information on behalf of
the user. An essential capability of such sys-
tems is the ability, with explicit user consent,
to store and recall events and facts from the
user’s life (Jiang et al., 2025). This capabil-
ity enables natural memory-recall interactions
such as “Summarize the key points from my
meeting with Sarah yesterday”. In this paper,
we focus on settings where textual memories
such as meeting notes, and conversational dia-
logues are continuously accumulated over time,
and we study the problem of answering mem-
ory recall questions over large-scale memory
repositories.

Recent research in this area predominantly
follows the Retrieval-Augmented Generation
(RAG) paradigm, organizing user memories to
enable efficient retrieval and accurate response
generation. Drawing inspiration from the effectiveness of human memory systems in recalling in-
formation from sequential streams, several approaches partition historical dialogues into long- and
short-term segments to enhance memory recall (Zhang et al., 2024; Li et al., 2025; Zhong et al.,
2024; Chhikara et al., 2025). Other methods organize memory using hierarchical filters—such as
topics or summaries—to narrow down the retrieval search space (Tan et al., 2025; Xu et al., 2025b;
Zhou et al., 2025). Graph-based approaches construct an entity-relationship knowledge graph from
personal memories and answer questions through graph algorithms (Wang et al., 2024; Chhikara
et al., 2025). Despite these advances in memory structure optimization, a critical challenge remains:
as the volume of user memory records increases, retrieval performance deteriorates as in Figure 1,
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largely because the memory pool accumulates many highly similar items, like repeated meeting top-
ics and overlapping conversation snippets, making it harder to distinguish truly relevant information.

We argue that humans do not perceive their memories as isolated entries or as a simple chronological
stream. Instead, they organize them associatively, linking pieces of information through clues such
as entities, locations, events, and topics. Likewise, pinpointing relevant memory evidence cannot
rely solely on refining relevance comparison, as explored in reranking modules (Tan et al., 2025)
or multi-granularity retrieval (Xu et al., 2025a). Among related items, people tend to remember
important clues more clearly and revisit them more often; for example, answering “What do I usually
complain about at work, can you give some tips?” requires identifying the clues that matter most to
the user as depicted in Figure 1.

Motivated by these observations, we propose AssoMem, a memory QA framework that leverages
associative structures to guide memory selection. At its core is an associative memory graph that
links each memory utterance to a set of clues, which are automatically extracted by LLMs to enable
fine-grained interpretation of a user’s memories and to connect memories sharing similar signals.
Different from existing memory graphs that are built entirely on abstractive concepts rather than raw
historical data(Wang et al., 2024; Chhikara et al., 2025; Xu et al., 2025b), this graph supports asso-
ciative connections from abstractive clues to exact memories, facilitating importance-aware ranking.
Based on this graph, AssoMem further integrates multiple retrieval signals—relevance, importance,
and temporal alignment—and employs a mutual-information (MI)–driven fusion strategy to dynam-
ically balance these dimensions according to query intent, yielding more accurate and context-aware
memory retrieval. Moreover, fine-tuning the answer generation model with a multi-task denoising
strategy is utilized to maximize the QA performance based on retrieved memory records. To the best
of our knowledge, AssoMem is the first memory QA system that mimics the structure of associative
memory to enhance QA on large-scale, similarity-dense memory collections. We summarize our
main contributions as follows:

• Unified framework for memory recall QA: We propose AssoMem, a memory QA system
that integrates relevance, importance, and temporal signals through a mutual information
(MI)-driven weight assignment strategy, enabling adaptive and context-aware memory se-
lection to improve answer quality.

• Associative memory graph At the core of AssoMem is an associative memory graph that
captures semantic relationships between utterances and the clues associated with them.
This graph facilitates efficient retrieval and importance-aware ranking of memories.

• New benchmark and evaluation: To foster research in large-scale memory retrieval, we
introduce MeetingQA, a benchmark simulating real-world meeting scenarios where multi-
turn dialogues form the memory base, paired with diverse QA examples. Extensive exper-
iments and ablations on MeetingQA and other memory benchmarks show that AssoMem
outperforms existing retrieval approaches by 24.93% on average.

2 RELATED WORK

Large-scale Memory Management and Retrieval Memory has emerged as a promising solution
for enhancing LLMs (Madaan et al., 2022; Wang et al., 2023). However, as the historical mem-
ory incrementally accumulates, existing methods fail to process the large-scale memory since the
incremental information poses noises for both retrieval and generation(Yu et al., 2025; Hu et al.,
2025; Maharana et al., 2024). Recent research in this area has advanced along two key aspects:
large-scale memory management and retrieval. In terms of large-scale memory management, early
work introduced structural organization by partitioning conversational history into short- and long-
term memory (Zhang et al., 2024; Li et al., 2025; Zhong et al., 2024), enabling models to reflect
both recent interactions and persistent user preferences. More recent approaches incorporate hi-
erarchical structures—such as topics, summaries, and memory graphs—to constrain the retrieval
space and improve recall performance (Tan et al., 2025; Xu et al., 2025b; Chhikara et al., 2025;
Rezazadeh et al., 2024). In terms of retrieval, focus is on directly identifying relevant memories for
downstream tasks. Query-centered methods enhance retrieval through improved query formulation
(Jiang et al., 2023; Jang et al., 2024), while reranking-based approaches refine retrieved candidates
using trainable scoring mechanisms (Wu et al., 2024b; Du et al., 2024; Tan et al., 2025). Comple-
mentary works have also explored granularity’s impacts, demonstrating the effectiveness of hybrid
retrieval strategies (Xu et al., 2025a; Tan et al., 2025; Sarthi et al., 2024). Despite their success,
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Figure 2: Overview of the proposed AssoMem framework. A topic–utterance graph is constructed
from historical dialogues, enabling the integration of relevance, importance, and temporal signals.
These are adaptively fused to guide accurate memory retrieval for question answering.

these methodologies are predominantly grounded in relevance, aiming to retrieve the most topically
similar memories while overlooking key challenges discussed in Section 1. In contrast, AssoMem
adopts an associative memory to integrate multi-dimensional signals to address these challenges.

PageRank (PR) models a random surfer over a directed graph, where node scores reflect the sta-
tionary distribution of the walk, yielding an importance prior that complements term-matching rel-
evance in web search (Page et al., 1999; Brin & Page, 1998; Langville & Meyer, 2011). Alongside
HITS (Kleinberg, 1999), it underpinned early large-scale retrieval by propagating hyperlink endorse-
ments and proved effective under sparse or noisy lexical signals. Subsequent works improved com-
putational scalability via power-method accelerations and linear-algebraic solvers (Bahmani et al.,
2010). Personalized PageRank (PPR) biases teleportation toward user-specific needs, effectively
yielding a relevance-conditioned importance signal (Bahmani et al., 2010; Wayama & Sugiyama,
2025). In our work, AssoMem leverages PPR to enable multi-dimensional signals for later retrieval.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND SOLUTION FRAMEWORK

Problem formulation Consider a memory bank M = {(S0, d0), (S1, d1), . . . , (SN , dN )}, where
each session Si = {u0, u1, . . . , un} contains n utterances and is associated with a timestamp di. A
question q is considered a memory question if it specifically refers to the user’s past, as illustrated in
Figure 1. The memory recall problem takes a memory question q and outputs an answer based on
the memory bank M. Note that a memory question can go beyond specific memory seeking such
as “can you give some tips...”. Our method may apply to personalized conversations where the user
does not explicitly refer to the past, but we focus on memory recall questions in this paper.

Solution framework At run time, we answer memory questions in two steps as depicted in Figure 2:
memory retrieval and answer generation. Given a question q, the Retrieval step retrieves a set of
memory utterances to ground question answering, denoted by E∗; the Answer Generation step then
generates the answer to q based on the retrieved memories: â = LLM∗(q, E∗).

3.2 MEMORY RETRIEVAL

The retrieval step aims to select the best memory evidence to support QA. At the core of our retrieval
is the Associative Memory Graph that anchors each piece of memory with the underlying clues, and
connects relevant memories. We next discuss the construction of the graph and how we use it for
QA.
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3.2.1 ASSOCIATIVE MEMORY GRAPH CONSTRUCTION

Memory clues A memory clue captures potential cues that help memorization; it can be an aspect
phrase like Evening entertainment, a key entity like Lumia project, or an event like launching weekly
meetings. For each session Si in the memory bank, we employ an LLM agent to generate a repre-
sentative clue ci for the session. This clue is associated with all utterances in Si, resulting in an
initial clue set C = {c0, c1, . . . , cN}, where N is the number of sessions.

To reduce redundancy and enhance topic coherence, we merge clues with high semantic similarity.
Specifically, for any pair of clues (ci, cj), if their embedding similarity exceeds a threshold δ, they
are merged into the same clue. The associated utterances from the merged clues are grouped under
the new clue. This process yields a refined clue set C′ and updated utterance groupings.

Associative Memory Graph An associative memory graph G = (V, E) associates each memory
record with the underlying clues and other relevant memories. There are two types of nodes: each
clue node represents a clue in the set C′ of merged clues, and each utterance node represents an
utterance in U . Each node (clue or utterance) is represented by its text embedding, computed using
a pre-trained embedding model (e.g., BGE); There are also two types of edges: each ownership edge
connects an utterance u ∈ Si with its associated clue c

′

i, and each similarity edge connects clues or
utterances that are similar. Specifically, we create an edge for a pair of clues or a pair of utterances
whose embedding similarity exceeds a pre-decided threshold γ:

sim(vi, vj) > γ, vi, vj ∈ C′ or vi, vj ∈ U (1)

The structure can be extended with conversational metadata (e.g., people, locations) when exists and
enriched via external taxonomies such as ConceptNet (Speer et al., 2017).

3.2.2 CANDIDATE RETRIEVAL

Inspired by how associative memory works, we perform candidate retrieval in a two-step hybrid
mode. First, given a query q, we retrieve the relevant clues, and denote the Top-K clues related to
q by Cq; we consider all utterances associated with Cq as candidate memories, denoted by Ucand =
{u | clue(u) ∈ Cq}. Next, we rank all candidate utterances by a score predicting their usefulness in
answering the question, obtaining the final retrieval results: E∗ = argmax

E⊆Ucand, |E|=K

∑
u∈E Score(q, u).

With a good scoring system, denoted by Score(q, u), this hybrid retrieval strategy returns accurate
memory evidence and ensures that E∗ maximizes the utility of the retrieved memories. Designing
the scoring system plays a critical role to QA quality, which we will describe in detail next.

3.2.3 RITRANKER: RELEVANCE, IMPORTANCE, AND TEMPORAL DYNAMICS

Unlike existing memory-based methods that rely solely on similarity, our retrieval score for each
utterance u integrates three dimensions: relevance, importance, and temporal alignment. This fusion
enables retrieval of memories that not only align with the recall question but also reflect central
aspects of the user’s daily life and adhere to temporal constraints.

Relevance Existing memory-based methods have verified that semantic relevance serves as an es-
sential criteria and ensures that retrieved utterances are contextually aligned with the query. We
compute relevance using cosine similarity between semantic representations of question eq and
each memory utterance eu: s(rel)

u = sim (eq, eu), where eq and eu are semantic embedding vectors
obtained from an embedding model for the query and utterance, respectively.

Importance Different from querying specific details, users would typically ask for recommenda-
tions where relevance solely for retrieval won’t return proper memories in Figure 1. To capture the
importance of utterances within the large-scale memory records, we apply graph mining on the as-
sociative memory graph. Drawing inspiration from PageRank in web search (Page et al., 1999), we
apply Personalized PageRank (PPR) (Wayama & Sugiyama, 2025) to decide the importance of each
clue and memory utterance w.r.t a given query.

r(k+1) = dMr(k) + (1− d)t (2)

where M ∈ {0, 1}N×N is the adjacency matrix from graph connectivity, t ∈ RN×1 is the personal-
ized teleportation vector, r is the pagerank score vector and d is the damping factor. In our setting,
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the utterance cells in t are set to the similarity between query and utterance, and the clue cells are set
to 0. We initialize r0 = t. The importance score for u is s(imp)

u = ru after convergence. Notably, we
apply PPR rather than global pagerank (r0 = {1/N}) to avoid boosting the importance of memories
irrelevant to the question.

Temporal match Temporal questions are common in real world yet relevance cannot effectively
capture the temporal constraints, as illustrated in the example in Section 1. Recency decay,
commonly used in temporal memory retrieval, does not satisfy explicitly specified temporal con-
straints (Li et al., 2023). We thus conduct explicit temporal match in three steps. First, we extract
temporal tokens from the question to determine if the temporal reasoning is needed. Second, we
apply temporal embedding (i.e., TimeLlaMa (Yuan et al., 2024)) on the extracted temporal tokens.
Third, we compute similarity between the temporal embeddings of q and the utterance u. Here, the
temporal embeddings of utterances are computed based on the temporal tokens and the timestamp
associated: s(temp)

u = sim
(
e
(temp)
q , e

(temp)
u

)
Mutual Information for Score Fusion1 To balance the information from each dimension with re-
spect to the query type, we need a strategy that can perceive the importance of each signal. Mutual
Information (MI) is known for its ability of representing the informativeness of two variables, pro-
viding a solution to adaptively assign weights for different dimensions w.r.t query types. In our
scenario, we use Conditional MI (CMI) to indicate how well a signal from each dimension reflects
the likelihood that a memory utterance is useful for answering a given question.

Initially, the raw score s̃(d)u of each memory u for dimension d is converted into three bins:
low, medium, high. By doing so, we collect the score-label pairs (s̃(d)(b)u , yλm), where b ∈
(low,medium, high) denotes the score bin, λ ∈ Λ = {0, 1} represents the memory usefulness la-
bel. The probabilities p(s̃(d)(b)u , yλm), p(s̃(d)(b)u , q), p(yλm, q) can be calculated based on the collected
pairs. For each query type q, we compute the conditional mutual information:

CMId(q) = I(s̃(d)(b)u ;λ | q) =
∑

s̃
(d)(b)
u

∑
λ

p(s̃(d)(b)u , yλm) log
p(s̃

(d)(b)
u , yλm | q)

p(s̃
(d)(b)
u | q)p(yλm | q)

(3)

where λ is the usefulness label. The weight for each dimension is then: w(d)(q) =
exp(CMId(q)/T )∑
d′ exp(CMId′ (q)/T ) . The final score for each memory item u is:

Score(q, u) = w(rel)(q) s̃(rel)
u + w(imp)(q) s̃(imp)

u + w(temp)(q) s̃(temp)
u (4)

This adaptive fusion mechanism dynamically adjusts the contribution of each dimension based on
its relative impact on the current query. A temperature parameter T modulates the sharpness of both
the score and weight distributions, enabling smoother or more selective fusion as needed.

3.3 MODEL FINE-TUNING

Recent advances have highlighted a persistent gap between retrieval-based recall and generative
performance in large language models (LLMs) (Yang et al., 2024; Ouyang et al., 2024). This dis-
crepancy is often attributed to the presence of irrelevant or noisy content among the top-K retrieved
candidates. To address this challenge and fully leverage retrieved contextual evidence, we adopt
a novel fine-tuning approach using augmented datasets informed by targeted negative and positive
sampling: LLM∗ = FineTune(LLM,DQA+Mem).

Denoising QA Dataset DQA+Mem denotes our QA dataset comprising queries, reference answers,
and memory context. Specifically, two sampling strategies are adopted for denoising fine-tuning:
(1) mixed positive and negative memory contexts to encourage evidence discrimination, and (2)
negative-only contexts to improve robustness by preventing over-reliance on supporting evidence.

Multi-task Fine-tuning. Answering a question involves recognizing its type to better utilize the
memory context and generate answers. We jointly train two tasks—question type prediction and an-
swer generation—to capture this process. The model receives an instruction, question, and sampled
memories as input, and outputs both the predicted question type and the generated answer. This
setup promotes effective memory utilization conditioned on question intent.

1we provide comparisons for different fusion strategies in appendix B.5.
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AssoMem stands out by a novel associative memory structure and a multi-dimensional scoring sys-
tem, jointly enhancing retrieval quality and generation robustness across diverse scenarios.

4 EXPERIMENTAL SETTINGS

4.1 DATASET

To evaluate AssoMem, the dataset must provide question-answer (QA) pairs and large-scale mem-
ory annotated with usefulness labels to assess both retrieval and generation quality. We adopt Long-
MemEval (Wu et al., 2024a), which meets these criteria and includes six question types covering
common real-world scenarios. We use the original small (s) and medium (m) subsets, and addition-
ally construct a large (l) variant to assess robustness under increasing memory size.

To further test generalizability and promote research in memory recall, we introduce MEETINGQA,
a synthetic dataset simulating real-world meetings with multi-speaker dialogues on specific topics.
It provides QA pairs and historical meeting transcripts as memory, with annotated usefulness labels.

All datasets follow a consistent structure: a QA pair, a base memory consisting of historical conver-
sations where usefulness labels are available. More dataset details are in Appendix A.

4.2 BASELINES & EVALUATION METRICS

To assess the effectiveness of AssoMem on conversational memory recall QA, we compare it against
a suite of representative baselines covering various retrieval granularities. At the utterance level, we
include flat utterance retrieval and Long/Short-Term Memory (LST Memory) (Zhang et al., 2024).
At the session level, we consider flat session retrieval. Under the multi-granularity paradigm, we
compare against session retrieval first then utterance retrieval (session-utterance), session summary
and utterance retrieval (session summary mem), topic grouping (Tan et al., 2025), and MemGAS
(Xu et al., 2025a). More details about baselines are in Appendix C.

We adopt standard evaluation tasks: Memory Recall and Answer Generation. For memory re-
call, we report Recall@k and nDCG@k; for retrieval generation, we use LLM-as-a-Judge accuracy
(Acc@6, Acc@10), BERTScore, and Faithfulness (Zhang et al., 2024; Lattimer et al., 2023). All
retrieval metrics are computed at the utterance level.

4.3 IMPLEMENTATION

For base models, we select a range of models from different sizes: LlaMA-3.3-3B-Instruct, LlaMA-
3.3-70B-Instruct(Grattafiori et al., 2024), Qwen2.5-32B(Qwen et al., 2025), gpt-oss-120B(Agarwal
et al., 2025). Notably, for large size models such 70B and 120B, we do not fine-tune while for other
models we follow section 3.3 to perform fine-tuning via trl(von Werra et al., 2020) and transform-
ers(Wolf et al., 2020) libraries to reduce the noises of generation. For retrievers, we select three
state-of-the-art embedding models2: DragonPlus, DragonPlusRoberta(Lin et al., 2023), BGE(Chen
et al., 2023). For temporal dynamics, we use TimeLlaMA (Yuan et al., 2024) as the embedding
model. For graph construction and usage, we use networkx (Hagberg et al., 2008).

5 EXPERIMENTAL RESULTS

In this section, we will present the thorough experimental results and concrete analysis with a focus
to answer these research question, supplementary results can be seen in Appendix B:

• RQ 1. Does AssoMem exhibit performance advantages over state-of-the-art solutions?
• RQ 2. How does RITRANKER contribute to performance of AssoMem?
• RQ 3. How robust is AssoMem against the memory size and question types?

We will answer RQ 1. in Section 5.1, RQ 2. in Section 5.2 and RQ 3. in Section 5.3 and 5.4.

5.1 COMPARATIVE STUDY

Retrieval Results. As presented in Table 13, on LongMemEval m dataset, the Session-utterance
retrieval raises R@10 to 78.97% and nDCG@10 to 76.50% over the utterance-level flat retrieval at

2All the retrieval results are using DPR as retriever, retriever comparisons and analysis is in Appendix B.4.
3We adopt 6 as a reference point based on the retrieval–generation transition analysis in Appendix B.3.
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Table 1: Retrieval and QA performance on LongMemEval medium m (the top table), large l (the
middle table), MeetingQA (the bottom table).

Method R@1 R@3 R@6 R@10 nDCG@3 nDCG@6 nDCG@10 Acc@6

Utterance-level: retrieve top-k utterances as context
Utterance-flat 46.45 54.90 64.25 70.18 56.24 66.14 68.04 48.66
LST Memory 52.91 58.03 65.91 70.69 59.82 67.34 68.68 50.96

Session-level: retrieve top-k sessions as context
Session-flat 56.91 64.81 70.86 78.93 67.19 71.68 76.37 51.93

Hybrid: first retrieve sessions/topics/summaries/clues, then retrieve utterances as context
Session summary mem. 50.19 59.93 62.95 72.84 61.68 64.25 68.79 49.35
MemGAS 45.75 51.06 66.93 77.02 53.59 66.97 69.46 51.23
Session-utterance 55.37 64.66 70.17 78.97 66.04 71.31 76.50 55.85
Topic grouping 55.98 65.91 76.47 79.14 66.12 77.03 78.86 59.95
AssoMem 59.73 72.96 80.87 84.96 75.36 81.30 82.93 64.01

Method R@1 R@3 R@6 R@10 nDCG@3 nDCG@6 nDCG@10 Acc@6

Utterance-level: retrieve top-k utterances as context
Utterance-flat 37.61 41.66 49.91 54.56 42.83 49.94 53.68 41.36
LST Memory 36.19 41.93 51.49 56.16 43.06 51.66 55.93 42.32

Session-level: retrieve top-k sessions as context
Session-flat 40.82 50.20 55.99 59.34 51.19 56.93 58.87 40.82

Hybrid: first retrieve sessions/topics/summaries/clues, then retrieve utterances as context
Session summary mem. 39.92 43.26 51.18 55.29 44.51 51.93 54.81 41.89
MemGAS 37.64 44.92 54.12 57.27 46.82 54.67 56.61 43.33
Session-utterance 40.93 49.87 55.83 59.62 51.92 56.17 58.93 45.38
Topic grouping 40.13 50.78 58.54 62.29 52.27 59.46 61.92 48.36
AssoMem 43.56 59.60 64.93 69.33 62.61 65.87 66.31 52.59

Method R@1 R@3 R@6 R@10 nDCG@3 nDCG@6 nDCG@10 Acc@6

Utterance-level: retrieve top-k utterances as context
Utterance-flat 23.89 40.27 48.81 55.29 41.91 53.83 56.19 45.91
LST Memory 23.93 42.77 53.62 58.83 43.96 55.78 59.17 48.36

Session-level: retrieve top-k sessions as context
Session-flat 28.62 47.36 56.72 60.19 48.91 59.31 62.97 51.79

Hybrid: first retrieve sessions/topics/summaries/clues, then retrieve utterances as context
Session summary mem. 26.56 45.25 52.66 54.17 47.83 53.19 55.93 47.87
Session-utterance 33.78 52.19 67.63 77.91 55.31 69.48 80.19 49.17
MemGAS 32.94 52.59 69.34 80.67 55.86 71.66 82.93 61.26
Topic grouping 39.66 61.69 78.98 89.15 63.15 74.23 83.78 63.56
AssoMem 41.63 64.72 85.17 92.96 66.06 86.93 94.17 69.41

70.18% and 68.04%. Topic grouping further improves R@10 to 79.14% and nDCG@10 to 78.86%.
Similar patterns detected on LongMemEval l and MeetingQA datasets. This suggests a general find-
ing that hybrid retrieval clearly outperforms single-granularity retrieval. Our proposed AssoMem, on
the other hand, makes an improvement of 5.82% over the SOTA, topic grouping. Further, AssoMem
also makes improvements of 7.04% and 3.81% against the best baselines on LongMemEval l and
MeetingQA, respectively. This suggests that AssoMem does offer advantages compared with SOTA.
Why do prior memory methods fail at scale? As memory size grows, more similar memory records
accumulate where similarity alone cannot discriminate among many near-duplicate or thematically
close candidates, so recall collapses and downstream generation suffers. Why does AssoMem help?
By ranking with importance and temporal priors in addition to relevance, AssoMem takes the ques-
tion types into considerations and performs retrieval from a multi-dimensional anchor. As can be
seen in Figure 3(a), we clearly witness the improvements made in preference and temporal reasoning
type questions which suggests the success of our scoring system.

Generation Results Retrieval quality translates directly to generation: Acc@6 climbs from 48.66
for flat retrieval to 55.85% for multi-granularity and to 64.01% for AssoMem, with BERTScore
moving from 51.71% to 60.06% and then to 67.56%. This again validates that AssoMem is making
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Table 2: Generation results of different LLMs using AssoMem recall@10 retrieval as context.
Accuracy BertScore Faithfulness

Model Plain Fine-tuned Plain Fine-tuned Plain Fine-tuned

LlaMA3.2-3B-Instruct 26.91 33.43 31.19 36.93 33.27 43.06
Qwen2.5-32B-Instruct 64.72 73.88 67.91 77.49 55.16 75.73
LlaMA-3.3-70B-Instruct 65.83 - 71.86 - 56.96 -
Gpt-Oss-120B 76.49 - 81.76 - 68.73 -

improvements against SOTA. Moreover, as previous studies have verified that there exists a gap be-
tween the recall and generation performance Yang et al. (2024); Ouyang et al. (2024) which means
the top-k retrieved content may also deliver noises into the context for downstream question answer-
ing (We present analysis in Appendix B.3 to support this claim). The results presented in Table 1 also
validate this where the recall@6 result of AssoMem is 80.87% while the answering accuracy@6 is
64.01 on m dataset, a similar pattern is also observed on l dataset. Thus, the base model’s ability to
fully utilize the retrieved memory can be a key to improve the downstream generation performance.
Following the fine-tuning strategy in Section 3.3, the generation accuracy@10 gains improvements
of 6.52% and 9.16% for LlaMA3.2-3B and Qwen2.5-32B models, respectively as in Table 2. This
verifies that our fine-tuning strategy helps the model better utilize the retrieved memory context,
contributing to the AssoMem performance.

5.2 ABLATION STUDY

Ablation on retrieval dimensions As can be seen in Figure 3 (b), the performance on temporal rea-
soning type questions drops when excluding temporal dimension information and the performance
on single-user-preference type questions drops when excluding importance dimension information.
These observations validate the challenge mentioned in Section 1 that different type of questions
require information from different dimensions for retrieval, illustrating that RITRanker contributes
to AssoMem’s performance by well integrating signals from multiple dimensions.

Table 3: Ablation on components and dimensions. w/o
denotes without the component compared to AssoMem.

w/o R@6 R@10 Acc@6 Acc@10

Temporal 73.39 78.37 57.88 61.19
Importance 75.81 79.62 59.55 61.97
Clue nodes 79.75 84.80 63.06 72.51
Weight Assignment 76.79 81.80 60.38 58.89
AssoMem 80.87 84.96 64.01 69.17

Ablation on components In AssoMem,
the associative memory graph serves as
the base for obtaining multi-dimensional
information while the MI-guided weight
assignment strategy serves as their con-
nections. Thus, we further tested how
each component impacts the perfor-
mance. Specifically, we conduct exper-
iments under these two settings: 1. re-
move the clue nodes within the graph;
2. remove the weight assignment strat-
egy and instead, using a fixed weighted sum for comparisons. As can be observed in Table 3, the
retrieval performance drops 1.12% without clue nodes which we attribute to the fact that the clue
level retrieval would be suboptimal when the importance information is missing. Moreover, using
a fixed weight assignment witnesses a 4.08% performance drop compared to full AssoMem which
further validates the necessity of each component within AssoMem.

5.3 ROBUSTNESS STUDY

Results on different question types. As in Figure 3 (a), we can clearly observe that the perfor-
mance of AssoMem , beyond end-to-end performance in Table 1, consistently outperforms all base-
lines across six question types. Notably, AssoMem presents the largest margins on preference and
temporal type questions compared with other baselines which we attribute to the fact that similarity-
only retrieval over-emphasizes surface relevance and tends to return most similar memories, which
is adequate for pure recall but brittle for preference, temporal, and cross-session questions.

Results on memory size As presented in Table 1, AssoMem makes improvements of 6.39%, 7.04%
for the R@6, R@10 against the best baseline - topic grouping, respectively. Following the retrieval
performance improvements, the generation accuracy performance is also improved by 4.06%. To-
gether with the advantages made on LongMemEval m, the results suggest that our AssoMem present
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(a) Comparison between baselines and AssoMem (b) Ablation on retrieval dimensions

Figure 3: The radar figure showing performance on different question types.

a strong robustness as the memory size increases since from m to l, the dialogue sessions increase
from 500 to 2,500 rounds per data point. These results and observations on increased memory size
and the diverse question types witness the strong robustness of AssoMem.

5.4 ERROR ANALYSIS

As shown in Table 4, AssoMem achieves the highest retrieval fidelity, with a Correct rate of
64.01%—exceeding Topic Grouping by 4.06% and LST Memory by 13.05%—and the lowest Re-
trieval Error at 19.13%, reducing errors by 4.30% and 14.96% respectively. It also yields the lowest
Wrong-grounding rate (2.86% vs. 3.82% and 5.13%), indicating more accurate and intent-aligned

Error bucket LST Mem. Topic AssoMem

Correct 50.96 59.95 64.01
RE: Incorrect retrieval 34.09 23.43 19.13
GE: Wrong grounding 5.13 3.82 2.86
GE: Misuse of positives 2.22 4.37 5.71
GE: LLM-Judge error 7.60 8.43 8.29

Table 4: Error analysis. RE denotes retrieval error, GE de-
notes generation error. Wrong grounding means negatives
are used for generation, misuse of positives means the posi-
tives are misused by LLM.

context. However, better retrieval
does not fully translate into genera-
tion quality: total generation errors
remain comparable at 16.86% for As-
soMem, 16.62% for Topic Group-
ing. Overall, AssoMem’s advantage
lies in reducing retrieval-side failures
and confusing negatives; the remain-
ing gap is generation-side, suggest-
ing the need for stronger evidence uti-
lization which necessitates our fine-
tuning strategy. These observations
again validate the effectiveness and
robustness of proposed AssoMem.

6 CONCLUSION & FUTURE WORK

In this work, we addressed the critical challenge of accurate, scalable memory recall in conversa-
tional AI by tackling the limitations of relevance-only retrieval in large-scale memory scenarios. We
proposed AssoMem, a novel framework that enhances retrieval quality and generation robustness
across diverse query types. At its core, AssoMem constructs memories as an associative graph and
employs the RITRanker system to align relevance, importance, and temporal retrieval signals. To
support future research, we introduce MEETINGQA, a synthetic multi-speaker dataset simulating
real-world meeting scenarios, with annotated QA pairs and memory usefulness labels. Extensive
experiments across all datasets demonstrate the effectiveness and robustness of AssoMem.

Building upon the success of AssoMem, future research will focus on the following extensions:
1. Extending the framework to manage memory settings that involve the accumulation of hetero-
geneous and evolving histories sourced from multiple modalities; 2. Expanding the associative
memory clues by incorporating richer semantic concepts such as events, locations, and external
knowledge bases; 3. Developing personalized memory compression techniques to facilitate efficient
on-device deployment of the associative memory system.
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A APPENDIX. DATASETS DETAILS

Table 5: Corpus statistics for LongMemEval and MeetingQA.

Averages Haystack Totals

Dataset #Sessions Evid./Q Q tokens A tokens Utts./sess. Session tokens Mem Tokens (m)

LongMemEval s 50.2 1.9 17.3 9.9 9.83 2053 0.10
LongMemEval m 501.9 1.9 17.3 9.9 9.76 2016 1.01
LongMemEval l 2503.4 1.9 17.3 9.9 9.76 2016 5.13
MeetingQA 50 1 10.17 2.18 72.32 1848.62 0.09

“Evid./Q” = average number of answer evidences per question; “Utts./sess.” = average utterances per session; m
stands for million.

As detailed in Table 5, we evaluate all the baselines and proposed AssoMem across four datasets.
Among them, the LongMemEval s and LongMemEval m are open benchmarks. We enlarge this
benchmark into a larger scale by incorporating more dialog sessions into the memory and form the
LongMemEval l which consists of 2,500 dialog sessions. Notably, the added dialog sessions are
identical, ensuring the dataset quality.

Further, we mimic the real-world meeting scenario where different speakers will speak during a
meeting, yielding a meeting session with different turns, and construct a new dataset named Meet-
ingQA. The purpose of this dataset is for evaluating memory recall question answering in multi-turn
dialog scenario. The MeetingQA dataset is a collection of 50 meetings, each containing approxi-
mately 70–80 messages, with a variety of speaker configurations (ranging from 2 to 6 speakers per
memo). The dataset was generated by a linguistic engineer using LLMs and is designed to support
benchmarking and development of meeting recall systems. It includes 390 QA pairs, where each
answer is mapped to at least one specific message within a corresponding meeting. The dataset
structure provides detailed fields such as message IDs, session IDs, speaker identifiers (typically
generic unless manually annotated), and transcript messages.

In tandem, the data we used in the experiments follows this structure: {question: ..., answer: ...,
question date: ..., sessions: { { session id: 1, utterance: ..., date: ...}, { session id: 2, utterance: ...,
date: ...}, ...} }. We organize the dialog memories and retrieve utterances to answer the question.
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Table 6: Question types and required retrieval dimensions
Question R P T
Where did I have dinner yesterday? ✓ ✓
What do I usually say at work? ✓
Most visited coffee shop last month? ✓ ✓
How long have been since I start my job? ✓ ✓

Table 7: Retrieval and QA performance on LongMemEval small s.

Method R@1 R@3 R@6 R@10 nDCG@6 nDCG@10 Acc@6 BERTScore

Utterance-level: retrieve top-k utterances and return utterances as context
Utterance-level 52.43 65.55 79.63 93.19 75.37 83.23 59.13 68.61
LST Memory 49.20 63.93 82.98 93.50 79.77 83.66 62.17 74.39
Embedding cat 50.13 60.90 76.25 86.17 71.93 80.21 55.96 58.06

Session-level: retrieve top-k sessions and return sessions as context†

Session-level 57.04 66.19 81.63 94.96 78.15 85.72 53.67 56.17

Hybrid: first retrieve topic/session, then utterances within; return utterances as context
Multi-granularity 59.92 76.73 83.89 94.08 82.59 85.61 63.74 73.61
Session summary mem. 58.21 77.06 79.96 85.17 77.18 79.48 60.37 70.73
Topic grouping mem. 61.84 81.73 90.07 96.31 88.63 91.47 68.11 78.91
AssoMem 62.73 81.96 93.87 96.96 90.31 91.93 72.13 80.65

B APPENDIX. SUPPLEMENTARY RESULTS

B.1 RESULTS ON LONGMEMEVAL S

Table 7 corroborates the main-text trends under the small-s setting. Pure utterance retrieval remains
weakest, while session-only retrieval improves recall but limits QA due to context dilution. Hybrid
pipelines are consistently stronger: multi-granularity reaches 78.97 R@10 and 76.50 nDCG@10
with 55.85 Acc@6, and topic grouping further lifts retrieval to 79.14 R@10 and 78.86 nDCG@10
with 59.95 Acc@6. AssoMem attains the best results across all metrics—84.96 R@10 and 82.93
nDCG@10—translating into 64.01 Acc@6 and 67.56 BERTScore, which improves over the ut-
terance baseline by 14.78 R@10, 14.89 nDCG@10, 15.35 Acc@6, and 15.85 BERTScore; it also
surpasses topic grouping by 5.82 R@10 and 4.06 Acc@6. The persistence of these gains at smaller s
indicates that popularity- and temporal-aware re-ranking continues to suppress stale or idiosyncratic
items and surfaces recent, widely supported evidence, yielding both higher retrieval concentration
and better downstream generation. The results presented in Table 7 consistently validate our findings
as in the main text.

B.2 WHY PPR?

To better understand how importance impact on the performance, we further provide the result com-
parisons between personalized pagerank and pagerank. As presented in Figure 4 (a), we witnessed
that the ppr consistently outperforms the pr in single-session-preference type question which can
be attributed to the fact that answering preference question requires both the relevance for locating
the event and the importance for knowing the most important memories for the located event. In
this sense, ppr provides better importance due to the fact that ppr considers relevance in both the
algorithm initialization and teleportation.

B.3 PERFORMANCE GAP BETWEEN RETRIEVAL AND GENERATION

Across top-k, retrieval monotonically improves for all methods, with AssoMem leading at every
k and saturating near 0.85 by k=10, ahead of Topic Grouping and Multi-granularity that level off
around 0.80 and 0.79. QA accuracy, however, plateaus much earlier: AssoMem rises quickly to
about 0.66 by k=6 and then gains marginally; Topic Grouping continues to climb and ends highest
near 0.80, while Multi-granularity trails and tops out near 0.60. The widening retrieval–accuracy
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(a) PPR vs. PR on different graph structure (b) Recall vs. Generation of representative baselines
and AssoMem

Figure 4: Supplementary results

Granularity Retriever LongMemEval s LongMemEval m LongMemEval l MeetingQA

Utterance
DP 72.54 58.31 44.62 42.94

BGE 78.89 64.18 48.73 48.27
DPR 79.63 64.25 49.91 48.81

Session
DP 77.26 64.81 50.33 50.79

DPR 81.63 70.86 55.99 56.72
BGE 83.79 72.17 56.43 55.92

Table 8: Recall@6 performance of three retrievers: DragonPlus, DragonPlus-Roberta abd BGE
(Large) across 4 datasets in two granularity levels.

gap beyond when k is 6 indicates diminishing returns from adding more context and highlights a
utilization bottleneck: even with superior retrieval, the LLM cannot fully exploit larger evidence
sets due to redundancy, distraction, or context-window limits. Practically, this suggests a sweet spot
around k=6 and the need for post-retrieval evidence organization (summarization, attribution, or
re-weighting) to convert AssoMem’s retrieval gains into further accuracy improvements.

B.4 RETRIEVER COMPARISONS

Retrievers play a pivotal role in the modern memory systems, providing semantic relevance informa-
tion for locating useful memory records. As presented in Table B.4, we can witness that in general,
DragonPlus shows sub-optimal performance compared with other two retrievers across 4 datasets
in two granularities. Furthermore, DragonPlusRoberta consistently outperforms other two retrievers
by 7.09%/0.74%, 5.94%/0.07%, 5.29%/1.18% and 5.87%/0.54% across 4 datasets in utterance-level
retrieval, respectively. This indicates a comparable performance between DPR and BGE (Large).
Moreover, in session level retrieval, BGE (Large) on the opposite, consistently outperforms other
two retrievers by 6.53%/2.16%, 7.36%/1.31% and 6.1%/0.44 across three LongMemEval datasets,
respectively. We attribute this to the fact that the larger context window of BGE (large) helps boost
the retrieval performance in session level since the context is longer. However, in session-level
retrieval on MeetingQA, the performance of BGE (large) is suboptimal compared to DPR, this is
because the token length per session in MeetingQA is not comparable with LongMemEval and can
be handled by DPR. In tandem, we can conclude that within the capability of DP model, DPR is
better than BGE (Large) and since our most fine-grained granularity in this work is utterance-level
retrieval we opt for DPR as the main retrieving embedding model.
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Question Type Ground-Truth Mem-
ory Evidence

Top-2 Retrieval
(Relevance-Only)

Top-2 Retrieval (As-
soMem)

Q1: Preference reason-
ing
“What do I usually com-
plain at work, can you
give some tips to avoid
it?”

We always start planning
too late, it’s like we’re
just reacting.
Every time we plan, there
seems no room for unex-
pected stuff.
(High-importance opin-
ions repeated across his-
tory.)

Error: I worked late
few nights this week,
working on the new API
integration.
Error: The search team
was complaining our
work progress in the
sync.
(Semantically related to
“work,” but not represen-
tative of core opinions.)

Correct: To be honest,
I think the results on
project memory is too
good to trust.
Correct: To be honest,
I think search team can
help us on the project
launching.
(High-importance,
repeated memory re-
trieved.)

Q2: Temporal reason-
ing
“Which show did I watch
first, the Crown or the
Game of Throne?”

I just finished watching
the third season of ’The
Crown’ on Netflix.
I started watching ’the
Game of Throne’ about
one month ago.
(Provides necessary tem-
poral anchors.)

Error: Do you have
similar show suggestions
such as ’the Crown’, ’the
Game of Throne’?
Error: “Game of
Throne” is an epic show,
I’m pretty sure you’re
hooked. If you’re looking
for some similar shows
to “Game of Throne”, I
have some recommenda-
tions.
(Topically related but
lacks any temporal sig-
nal.)

Correct: I started
watching ’the Game
of Throne’ about one
month ago.
Correct: I just finished
watching the third sea-
son of ’The Crown’ on
Netflix.
(Accurately supports
temporal comparison.)

Table 9: Case study showing limitations of relevance-only retrieval across question types. While
relevance methods retrieve semantically similar content, they often miss task-relevant evidence. As-
soMem incorporates importance and temporal signals to enable more accurate memory selection.

B.5 ASSOMEM WITH DIFFERENT FUSION STRATEGIES

Further, we compare 6 information strategy from two types: Information theory driven weight as-
signment: Information Gain (Datta et al., 2022), Mutual Information (Zhang et al., 2023); Learnable

Table 10: AssoMem with different fusion strategies.
Fusion strategy Recall@6 Recall@10 Acc@6

Learnable weight assignment
Logistic Regression 72.92 78.55 58.43
Random Forest 77.92 80.69 61.71
Linear Network 77.29 80.63 61.74
Support Vector Machine 78.81 81.66 62.11
Information driven weight assignment
Information gain 80.94 86.33 63.84
Mutual information 82.64 88.91 64.20

weight assignment (Shah et al.,
2020): Logistic Regression (LR),
Random Forest (RF), Support Vec-
tor Machine (SVM), Two-layer linear
network (LN).

Impact of Different Information
Fusion Strategy We further present
the results of comparing different
weight assignment strategies as in Ta-
ble 10. We can observe the perfor-
mance of information driven weight
assignment strategies in general out-
performs the learnable weight assign-
ment strategies which we attribute this to the fact in the conversational memory recall question
answering scenario, the memory evidence for each question is sparse which poses difficulties for
simply training a learnable model to do weight assignments. On the other hand, information driven
strategies use the information purity as the signal which mitigates the memory sparsity influence.
Another benefit for using information driven strategy is training-free, we see a great potential of
learnable strategies to handle weight assignment yet the trade-off might also be a factor that hinders
its application in this scenario.
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Table 11: Overview of baseline methods by granularity

Granularity Method Description

Utterance level Long- and short-term mem.
(Zhang et al., 2024)

Partitions user memory into long- and short-term compo-
nents to enable better coordination during memory recall
QA.

Flat Retrieval Retrieves utterances directly based on relevance scores.

Session level Flat Retrieval Retrieves entire sessions based on overall relevance to the
query.

Multi-granularity

Session-utterance First retrieves relevant sessions (based on full session
content), then retrieves relevant utterances within those
sessions.

Session summary-utterance First retrieves sessions based on session summaries, fol-
lowed by utterance-level retrieval within those sessions.

Topic-utterance grouping
(Tan et al., 2025)

Groups utterances by topic, retrieves relevant topics, then
selects utterances within those retrieved topic groups.

MemGAS (Xu et al., 2025a) Uses four granularities (utterance, session, keyword,
summary) with entropy-guided weighting for retrieval
across these levels.

B.6 CASE STUDY

Table 9 presents a case study of retrieval behavior across two question types—preference reasoning
and temporal reasoning—highlighting the limitations of relevance-only retrieval and the improve-
ments achieved by AssoMem. In Q1 (Preference reasoning), the user asks: “What do I usually say
at work?” This question requires retrieval of high-importance utterances that reflect consistent pat-
terns in user opinions. However, the relevance-only method retrieves memories that are superficially
related to “work” but do not reflect the user’s repeated viewpoints. In contrast, AssoMem suc-
cessfully identifies two high-importance memory entries expressing critical opinions about project
memory—these are not only topically relevant but also semantically central to the user’s past behav-
ior. This demonstrates AssoMem’s ability to incorporate an importance signal, which is essential for
preference-centric questions. In Q2 (Temporal reasoning), the user asks: “Which show did I watch
first, the Crown or the Game of Throne?” This question necessitates precise temporal comparison,
which relevance-only methods fail to address. The retrieved responses are thematically related to the
queried shows but offer no chronological cues. In contrast, AssoMem correctly surfaces two time-
anchored memory entries indicating both the start time of The Game of Throne and the completion
of The Crown, enabling accurate temporal reasoning. In tandem, the case study confirms that rele-
vance alone is insufficient for diverse real-world queries. By incorporating importance and temporal
dynamics, AssoMem delivers more contextually accurate retrieval, leading to better generation.

B.7 LATENCY ANALYSIS

Table 12: AssoMem latency statistics.
Operation Avg. Latency (s)

Graph Construction 1948.99
Node Addition 0.01
Edge Adding 13.96
RIT Scoring 0.39
Weight Assignment 0.26
Answer Generation 0.74

We report the average latency (in seconds) of each core
component in the AssoMempipeline to assess its effi-
ciency. The most time-consuming operation is mem-
ory construction, taking approximately 1948.99 seconds
on average, which occurs as a one-time offline process
to build the structured memory graph. In contrast, in-
cremental operations during inference are significantly
faster. Node addition and edge addition require only
0.01 and 13.96 seconds respectively, enabling dynamic
updates with low overhead. RIT scoring and weight
assignment, which compute information-theoretic rele-
vance and balance multi-dimensional signals, incur negligible latency of 0.39 and 0.26 seconds.
The final inference stage, which utilizes retrieved and weighted memory as context for LLM gen-
eration, completes within 0.74 seconds on average. These results demonstrate that although initial
memory graph construction is computationally expensive, the online inference and memory aug-
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mentation steps remain efficient, ensuring the system is practical for real-time applications with
dynamic memory updates.

C BASELINES

The detailed descriptions are presented in Table 11.

D APPENDIX. PROMPTS

Generation Prompt:

### TASK DESCRIPTION
You are a helpful assistant that answers user’s question. In this

sense, you
will have access to user’s memory records which contain user’s

historical information.
Please note you will need to identify if the memories are useful or

not for you to respond to the query.
If the memories are useful then answer the question based on the

memories, otherwise answer the question based on your knowledge or
answer "IDK".

### INPUT
User memory: {memory}
User query: {question}

### OUTPUT REQUIREMENT
Output the answer to the question only. Not matter you use the memory

or not, please only output the answer and nothing else.

Topic Generation Prompt:

### TASK DESCRIPTION
You are a helpful assistant that helps users to organize their memory

records. Next, you’ll help me in organzing a user’s memory records
.

Given a user historical dialogue session, please summarize the session
into a concise topic summary without key information lost.

Output the topic summary sentence.

### INPUT
Dialogue session: {session}

### OUTPUT REQUIREMENT
Generate a topic summary for the given session.
Please only output the topic summary and nothing else.

LLM-as-a-Judge Prompt:

### TASK DESCRIPTION
You are a helpful judge to evaluate the quality of the response to a

user question.
You will be given a user question and two responses: one is the golden

response, one is the generated response.
Please evaluate the quality of the generated response based on the

following criteria:
a) If the response is relevant to the user question.
b) If the response answers the question or not.
c) If the response is consistent and coherent.
If you think the generated response meet these criterias or

semantically responds user as the golden response does, you should
output "Win", otherwise "Lose".
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### INPUT
User query: {question}
Golden Response: {response_1}
Generated Response: {response_2}

### OUTPUT REQUIREMENT
Output "Win" or "Lose" only. Do not output anything else.

Fine-tuning Sample:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Aug 2025

### TASK DESCRIPTION
You are a helpful assistant that answers user’s questions. In this

sense, you will have access to user’s memory records which contain
user’s historical information.

Please note you will need to identify if the memories are useful or
not for you to answer the query.

If the memories are useful then answer the question based on the
memories, otherwise answer the question based on your knowledge or
answer "IDK".

### OUTPUT REQUIREMENT
Output the answer to the question only. No matter you use the memory

or not, please only output the answer and nothing else.<|eot_id
|><|start_header_id|>user<|end_header_id|>

### The user query is:
What is the order of the three events: ’I signed up for the rewards

program at ShopRite’, ’I used a Buy One Get One Free coupon on
Luvs diapers at Walmart’, and ’I redeemed $12 cashback for a $10
Amazon gift card from Ibotta’?

### The memory is:
I’m planning a trip to Walmart this weekend and I’m looking for some

deals on baby essentials. Do you have any info on their current
sales or promotions on diapers? By the way, I used a Buy One Get
One Free coupon on Luvs diapers at Walmart today, which was a
great deal!;I’m planning a shopping trip to Target this weekend
and I’m wondering if you have any info on their current sales and
promotions. By the way, I just redeemed $12 cashback for a $10
Amazon gift card from Ibotta today, so I’m feeling pretty good
about my savings so far!;I’m trying to plan my grocery shopping
trip for this week. Can you help me find any good deals or sales
on diapers and formula at ShopRite? By the way, I signed up for
their rewards program today, so I’m hoping to maximize my points
and savings.<|eot_id|><|start_header_id|>assistant<|end_header_id
|>

### The answer is:First, I used a Buy One Get One Free coupon on Luvs
diapers at Walmart. Then, I redeemed $12 cashback for a $10 Amazon
gift card from Ibotta. Finally, I signed up for the rewards
program at ShopRite.<|eot_id|>

E USE OF LLM

In paper writing, we use LLMs solely for checking typos and grammar errors; they are not used for
any other purposes beyond this.
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