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ABSTRACT

Recent advancements in large language model (LLM) unlearning have shown
remarkable success in removing unwanted data-model influences while preserv-
ing the model’s utility for legitimate knowledge. However, despite these strides,
sparse Mixture-of-Experts (MoE) LLMs–a key subset of the LLM family–have
received little attention and remain largely unexplored in the context of unlearn-
ing. As MoE LLMs are celebrated for their exceptional performance and highly
efficient inference processes, we ask: How can unlearning be performed effec-
tively and efficiently on MoE LLMs? And will traditional unlearning methods be
applicable to MoE architectures? Our pilot study shows that the dynamic routing
nature of MoE LLMs introduces unique challenges, leading to substantial utility
drops when existing unlearning methods are applied. Specifically, unlearning dis-
rupts the router’s expert selection, causing significant selection shift from the most
unlearning target-related experts to irrelevant ones. As a result, more experts than
necessary are affected, leading to excessive forgetting and loss of control over
which knowledge is erased. To address this, we propose a novel single-expert un-
learning framework, referred to as UOE, for MoE LLMs. Through expert attribu-
tion, unlearning is concentrated on the most actively engaged expert for the spec-
ified knowledge. Concurrently, an anchor loss is applied to the router to stabilize
the active state of this targeted expert, ensuring focused and controlled unlearn-
ing that preserves model utility. The proposed UOE framework is also compatible
with various unlearning algorithms. Extensive experiments demonstrate that UOE
enhances both forget quality up to 5% and model utility by 35% on MoE LLMs
across various benchmarks, LLM architectures, while only unlearning 0.06% of
the model parameters.

1 INTRODUCTION

Despite the extraordinary ability in generating human-like content (Touvron et al., 2023), the rapid
development of large language models (LLMs) have raised a series of ethical and security concerns,
such as pretraining on copyrighted data (Sun et al., 2024), bias perpetuation (Motoki et al., 2023),
the generation of toxic, biased, or illegal contents (Wen et al., 2023), and facilitating making cyber-
attacks and bio-weapons (Li et al., 2024). As a solution, the problem of Machine Unlearning (MU)
arises (also referred to LLM unlearning) (Liu et al., 2024c), aiming to scrub the influence of the
undesired training data and removing their corresponding generation abilities, while preserving the
influence of other remaining valid data (Jia et al., 2024a; Shi et al., 2024; Jia et al., 2024b).

While LLM unlearning has recently become a major research thrust, past efforts have only focused
on effective unlearning methods for conventional LLMs. In contrast, sparse Mixture-of-Experts
LLM (MoE LLM) (Jiang et al., 2024; xAI, 2024; Databricks, 2024; Abdin et al., 2024; Liu et al.,
2024a), designed to reduce computational burdens during inference, remained unexplored in this
context. As a key member of the LLM family, MoE LLMs offer substantial scalability without a
corresponding increase in computational costs (Jiang et al., 2024; Team, 2024; Dai et al., 2024).
Thanks to their dynamic routing mechanism, MoE LLMs direct inference through different model
components, known as ‘experts’. However, it remains unclear how LLM unlearning interacts with
the sparse MoE architecture and whether unlearning for MoE LLMs presents unique challenges.
This leads us to ask:
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Figure 1: Overview of the key findings in this paper. (a) Illustration of the ineffectiveness of existing un-
learning methods on MoE LLMs. Four unlearning algorithms—GA (Eldan & Russinovich, 2023), GDIFF
(Maini et al., 2024), NPO (Zhang et al., 2024), and RMU (Li et al., 2024)—were applied to two MoE LLMs
(DeepSeek-v2-Lite (Liu et al., 2024a) and Qwen1.5-MoE (Team, 2024)) and two dense LLMs (Phi3.5 (Abdin
et al., 2024) and LLaMA3-8B (Dubey et al., 2024)) using the WMDP benchmark Li et al. (2024). The drop in
target knowledge (accuracy drop on the forget test set, higher is better) and the drop in model utility (accuracy
drop on MMLU Hendrycks et al. (2023), lower is better) are plotted. Ideal performance is in the top left corner,
but MoE LLMs show poor unlearning quality with sharp utility drop. (b) Illustration of ideal versus ineffective
MoE LLM unlearning. Target experts—those most frequently activated given the forget set—are identified for
unlearning. However, existing unlearning algorithms tend to cause substantial expert selection shifts, leading
to excessive and unnecessary unlearning of non-target experts, which significantly impairs model utility.

(Q) Can we develop a principled MU method for MoE LLMs that ensures high forgetting
effectiveness, while maintaining model utility and efficiency?

To the best of our knowledge, the problem (Q) remains unexplored in the current literature. Our
investigation begins with a pilot study that applies existing unlearning methods to MoE LLMs.
Preliminary results indicate that a simple implementation of these methods can lead to a substantial
drop in model utility and even model collapse. This phenomenon is illustrated in Fig. 1(a), which
depicts the performance of the unlearned MoE LLMs predominantly closer to the bottom right
corner, indicating a significant and unacceptable utility drop compared to conventional dense LLMs.

To fully understand this phenomenon, we begin by performing a careful sanity check on unlearning
methods in MoE LLMs and conduct an in-depth analysis of failure cases. Ideally, in MoE LLMs,
given an input, the routers should evaluate and direct it to the most relevant experts, with unlearning
targeting and erasing the corresponding knowledge in these experts. However, by monitoring expert
selection during unlearning, we find that the process often prompts routers to constantly switch
the activated experts. This behavior persists even when routers are fixed. As a result, unlearning
algorithms create “short-cuts”, where instead of targeting the most relevant experts, the routers shift
to less relevant ones to trick for unlearning loss reduction (i.e., irrelevant experts could be unlearned).
This leads to substantial drops in model utility. See Fig. 1(b) for illustration.

To solve the problem, we propose a novel unlearning framework specifically tailored for MoE LLMs,
named UOE, which stands for Unlearning One Experts. UOE employs expert attribution to pinpoint
the expert most actively involved with the forget set, which is designated as the primary target for
unlearning. Unlearning efforts are exclusively focused on this identified expert. Concurrently, an
anchor loss is applied to the router to stabilize the active status of the targeted expert throughout the
unlearning process. This approach prevents the frequent switching of expert selection, ensuring that
unlearning is both focused and controlled. Our contributions are summarized below.

• We for the first time identify the unique challenge of unlearning in MoE LLMs. Our analysis
elucidates the root causes of observed failures, offering novel insights into how unlearning impacts
the routers and experts within an MoE LLM.

• We propose a novel parameter-efficient unlearning framework, UOE, tailored for MoE LLMs.
UOE effectively pinpoints, fixates, and unlearns the most pertinent expert relative to the forget set.
UOE enjoys high flexibility and works in a plug-in-and-play mode with any existing unlearning
methods to boost forget quality, model utility, and efficiency at the same time.

•We conduct extensive experiments to demonstrate the effectiveness of UOE across various MoE
architectures, MU benchmarks, and unlearning methods. Our results show that when integrated with
UOE, all tested unlearning methods achieve significant improvements in model utility up to 35%
and concurrently enhance the quality of forgetting with only 0.06% parameters being updated.
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2 RELATED WORKS

Machine Unlearning for LLMs. A growing body of research has investigated the problem of un-
learning in large language models (LLMs) (Yao et al., 2024; Lu et al., 2022; Jang et al., 2022; Kumar
et al., 2022; Zhang et al., 2023a; Pawelczyk et al., 2023; Eldan & Russinovich, 2023; Ishibashi &
Shimodaira, 2023; Yao et al., 2023; Maini et al., 2024; Zhang et al., 2024; Li et al., 2024; Wang
et al., 2024a; Jia et al., 2024b; Liu et al., 2024c;b; Thaker et al., 2024). These studies have practical
applications, such as removing sensitive information (Jang et al., 2022; Eldan & Russinovich, 2023;
Wu et al., 2023) and preventing the generation of harmful or biased content (Jang et al., 2022; Eldan
& Russinovich, 2023; Wu et al., 2023; Lu et al., 2022; Yu et al., 2023; Yao et al., 2023; Liu et al.,
2024d), memorized sequences (Jang et al., 2022; Barbulescu & Triantafillou, 2024), and copyrighted
material (Eldan & Russinovich, 2023; Jang et al., 2022). To facilitate unlearning, recent methods
aim to bypass the need for retraining models from scratch by excluding the forget set containing
the targeted data to be removed (Ilharco et al., 2022; Liu et al., 2022; Yao et al., 2023; Eldan &
Russinovich, 2023; Jia et al., 2024b; Zhang et al., 2024; Li et al., 2024; Thaker et al., 2024; Liu
et al., 2024b). Techniques like task arithmetic also enable efficient model editing through parameter
merging (Hu et al., 2024; Ilharco et al., 2022). Although these methods do not provide exact unlearn-
ing akin to full retraining, they remain efficient and effective under empirical unlearning evaluation
metrics. Approaches often include model fine-tuning and optimization (Liu et al., 2022; Yao et al.,
2023; Eldan & Russinovich, 2023; Jia et al., 2024b; Zhang et al., 2024; Li et al., 2024), or input
prompting and in-context learning (Thaker et al., 2024; Pawelczyk et al., 2023; Liu et al., 2024b).
Other approaches, such as localization-informed unlearning, identify and locally edit model units
(e.g., layers or neurons) closely related to the data or tasks being unlearned (Meng et al., 2022; Wu
et al., 2023; Wei et al., 2024). Despite these efforts, studies have shown that forgotten knowledge
can often still be extracted from models post-unlearning (Patil et al., 2024; Liu et al., 2024e; Lynch
et al., 2024; Shostack, 2024). However, most existing research has focused on dense LLMs, leav-
ing unlearning in MoE LLMs largely unexplored. For example, the unlearning of Mixtral-8 × 7B
is discussed in Li et al. (2024), but only a single method with ad-hoc adjustments was examined.
This work aims to fill this gap by conducting a comprehensive study of various unlearning methods,
benchmarks, and MoE models, addressing the specific challenges posed by the MoE architecture.

MoE-based LLMs. Sparse Mixture-of-Experts (MoE) models are designed to activate only a subset
of expert networks for each input, enabling substantial model scaling with minimal computational
overhead (Shazeer et al., 2017). Current approaches to MoE model development can be categorized
into two types: training from scratch (Fedus et al., 2022; Zoph et al., 2022a; Shen et al., 2023) and
building from dense checkpoints (Zhang et al., 2021; Komatsuzaki et al., 2022; Zhu et al., 2024).
Over recent years, MoE models have seen key advancements, including improvements in scala-
bility (Riquelme et al., 2021; Kim et al., 2021; Zhou et al., 2022; Zoph et al., 2022a), efficiency
optimization (Fedus et al., 2022; Lepikhin et al., 2020; Chowdhery et al., 2023), and expert bal-
ancing techniques (Cong et al., 2024; Zoph et al., 2022b; Dai et al., 2022). The implementation of
transformer-based MoE models has been successfully integrated into LLMs, significantly enhancing
inference efficiency (Jiang et al., 2024; Dai et al., 2024; Team, 2024; xAI, 2024; Hong et al., 2024;
Abdin et al., 2024; Lieber et al., 2024; Yang et al., 2024; Zhu et al., 2024; Databricks, 2024; Xue
et al., 2024). For example, DeepSeekMoE (Dai et al., 2024) improves expert specialization by seg-
menting experts into smaller subsets for flexible activation, while isolating shared experts to reduce
redundancy and capture common knowledge. Similarly, Qwen1.5-MoE (Team, 2024) partitions
a standard FFN layer into smaller segments to create multiple experts, introducing a fine-grained
routing mechanism that enables Qwen1.5-MoE to match the performance of 7B models while us-
ing only one-third of the activation parameters. Despite the efficiency gains provided by MoE’s
dynamic routing system, existing research highlights additional challenges compared to traditional
dense models, including unstable training (Zoph et al., 2022a; Dai et al., 2022), robustness issues
(Zhang et al., 2023b; Puigcerver et al., 2022), and complications in parallel deployment (Hwang
et al., 2023; Gale et al., 2023). In this work, we show that the root cause of the ineffectiveness of
existing unlearning methods for MoE LLMs also stems from the dynamic routing system.

3 PRELIMINARIES

In this section, we start by presenting the mathematical formulation of LLM unlearning. The lack of
exploration on MoE LLM unlearning inspires us to investigate whether existing unlearning methods
keep effective in these models. Our pilot study reveals that methods designed for conventional LLMs
are ineffective in unlearning MoE LLMs.
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Preliminaries on MoE LLM unlearning. Based on the generic formulation of LLM unlearning
outlined in Liu et al. (2024c), the task of LLM unlearning can be formulated as eliminating the
influence of a specific ‘unlearning target’–whether it is related to data, knowledge, or model capa-
bilities–from a pretrained LLM (denoted by θo). The unlearning target is typically defined by a
forget set Df , which contains the information or knowledge to be removed. To ensure the model
retains its generation ability (i.e., utility) after unlearning, a retain set Dr is introduced, consisting
of data unrelated to the unlearning target. With this setup, the LLM unlearning problem is usually
formed as a regularized optimization problem, finetuned from θo using both the forget set Df and
the retain set Dr:

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr). (1)

Here, θ represents the model parameters to be updated during unlearning, ℓf and ℓr denote the
forget loss and retain loss, respectively, with λ ≥ 0 serving as a regularization parameter to balance
between unlearning and preserving utility.

Next, we provide a brief introduction to how the routing system operates in the MoE LLM architec-
ture. In MoE LLMs, e.g., DeepSeek-v2-Lite (Liu et al., 2024a), the feed-forward networks (FFNs)
of Transformers are split into multiple experts and activated by the output of the router in front of
the expert layers, see Fig. 1(b) for illustration. In the l-th layer, given the input u(l)

t corresponding
to the t-th token, router layers calculate the score of each token and assign them to top-K experts:

s
(l)
i,t = Softmax(Router(u(l)

t ))

g
(l)
i,t =

{
s
(l)
i,t if s(l)i,t ∈ TopK({s(l)k,t | 1 ≤ k ≤ N})
0 otherwise

Here, Router(·) denotes the router layer, si,t is the token-to-expert affinity, TopK(·) selects the
highest K value in the set, N is the number of experts, and g

(l)
i,t is the score assigned by router

for the i-th expert. Then, the hidden state h′(l)
t of FFNs can be calculated as: h′(l)

t = u
(l)
t +∑N

i=1 g
(l)
i,t FFN(l)

i (ut), where FFN(l)
i (·) denotes the i-th expert. Then, h′(l)

t is sent to the next layer
of Transformer blocks for further processing.

Table 1: Unlearning performance when control-
ling tunable parameters in MoE LLMs.

Tunable Module Forget Quality ↓ Retain Quality ↑
Qwen

Original 0.4192 0.5979

Experts & Router 0.2953 0.3393
Routers Only 0.2526 0.2977
Experts Only 0.2536 0.3242

DeepSeek

Original 0.3804 0.5500

Routers & Expert 0.2457 0.3145
Routers Only 0.2375 0.3315
Experts Only 0.2601 0.3435

Unlearning for MoE LLM is not trivial: a pi-
lot study. The goal of unlearning is twofold: (1)
to ensure the model forgets the targeted informa-
tion and knowledge stored in Df , and (2) to pre-
serve the model utility without significant degrada-
tion. Our pilot study reveals that the special rout-
ing system in MoE LLMs introduces additional chal-
lenges to unlearning, rendering existing methods in-
effective. We applied four widely used LLM un-
learning methods: GA (Gradient Ascent) (Eldan &
Russinovich, 2023), GDIFF (Gradient Difference)
(Maini et al., 2024), NPO (Negative Preference Op-
timization) (Zhang et al., 2024), and RMU (Representation Misdirection for Unlearning) (Li et al.,
2024) with the WMDP benchmark (Li et al., 2024) on two MoE LLMs, Qwen1.5-MoE (Team, 2024)
and DeepSeek-V2-Lite (Liu et al., 2024a), as well as two dense LLMs for reference, LLaMA3-8B
(Dubey et al., 2024) and Phi-3.5-mini-instruct (Abdin et al., 2024), where the task aims to unlearn
hazardous knowledge in LLMs. In Fig. 1(a), to ease the comparison, we report the forget quality
(performance drop on the forget test set, where higher is better) against retain quality (performance
drop on the MMLU (Hendrycks et al., 2020) utility benchmark, where lower is better). Each data
point represents the best result of a model-method combination with hyper-parameter tuning, with
ideal performance located near the top left corner, signifying high unlearning effectiveness with
minimal impact on model utility. As we can see, most MoE LLM data points cluster in the lower
right, indicating severe utility drops and poor unlearning performance compared to dense models.
In Fig. 1(a), all model parameters (including routers and experts) are involved in unlearning. To
ensure that these poor results are not due to improper parameter settings, Tab. 1 presents additional
experiments using two other parameter configurations (routers-only and experts-only) for GA, yet
no significant improvements are observed in either forget or retain quality (more than 20% utility
drop). The results above imply the problem of MoE LLM unlearning is more challenging and far
from trivial, even if LLM unlearning is well-studied.
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Figure 2: Proportion of tokens assigned to each expert of the pre-trained DeepSeek-v2-Lite (K=6 in Topk)
with samples from the forgotten set of WMDP benchmark (Li et al., 2024) in different model layers. The dashed
horizontal line marks 6/64, i.e., the proportion expected with uniform expert selection. The expert selection
distribution clearly follows a long-tailed pattern when the input is sampled from a topic within a narrow scope.

4 OUR PROPOSAL: UNLEARNING ONE EXPERT (UOE)

In this section, we delve into the failure cases highlighted in Sec. 3 by analyzing the behavior of
routers and their expert selection patterns. We then identify two primary root causes underlying the
poor unlearning performance in MoE LLMs. Based on these insights, we introduce UOE, a new
unlearning paradigm designed to achieve controllable and effective unlearning for MoE LLMs.

Uncovering the root cause: ‘short-cut’ in MoE LLM unlearning and expert selection shift. In
order to fully understand the failure cases of MoE LLM unlearning, we begin by inspecting and
monitoring the expert selection pattern of the unlearned model. In Fig. 2, we show the proportion
of tokens assigned to each selected expert on the data samples from WMDP dataset (Li et al., 2024).
For the input of a specific topic, a small portion of experts (around 6 to 9 out of 64 experts) were
assigned with the majority of the tokens in each layer, which was also confirmed in Wang et al.
(2024b). Thus, we have the following insight:

Insight 1: For the inference related to a certain topic within a narrow scope (e.g., the forget set of
an unlearning task), expert selection by MoE routers follows a long-tailed distribution, with only a
few experts being activated significantly more frequently than others.
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Figure 3: (a) Expert selection overlap ratio between the original
pretrained model and the unlearned model with different unlearn-
ing iterations using GA on WMDP benchmark. (b) Forget loss vs.
the number of unlearning iterations, when controlling parameters
to unlearn in MoE LLM.

Based on the insight above, we de-
fine the frequently activated experts
as topic-target experts, and the oth-
ers as non-target. Thus, by elimi-
nating the knowledge stored in these
target experts, MoE LLM unlearn-
ing can be achieved more effectively.
Next, we examine how the expert
selection pattern evolves during un-
learning. Specifically, we track the
average expert selection overlap ra-
tio across all layers between the un-
learned model at different stages and
the original pretrained model, when
processing the forget set. The results,
shown in Fig. 3 (a), reveal a steady
decline in the overlap ratio as unlearning progresses, indicating that previously selected target ex-
perts are gradually replaced by non-target ones that do not contain the target knowledge. This shift
persists even when routers are fixed, as unlearning can still indirectly influence router selection: a
router’s decision at one layer depends on the output of the previous layer, which may have been af-
fected by an updated expert of this previous layer in unlearning. Meantime, we observe a consistent
reduction in forget loss, as shown in Fig. 3 (b). Thus, we can derive the following insight:
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Insight 2: Existing unlearning methods tend to prompt the routers to shift expert selection from tar-
get to non-target experts unintentionally. This can create unlearning ‘shortcuts’ in expert selection
to trick for low forget loss and lead to fake unlearning.

As unlearning proceeds, non-target experts are more frequently activated to handle samples related
to the unlearning target, thereby being forced to participate in the unlearning task, even though they
did not contain the intended target knowledge. Meanwhile, the true objective of unlearning, i.e., the
target experts, remain hidden out of the reach of the forward propagation. Existing literature (Liu
et al., 2024c) has already demonstrated that forcing unlearning models that do not contain knowledge
related to the unlearning target can cause a significant drop in model utility. This accounts for the
sharp decline in model utility observed in Sec. 3, which leads to the following insight:

Insight 3: The sharp degradation in model utility during MoE LLM unlearning is primarily due to
excessive unlearning applied to non-target experts caused by expert selection shift.

Algorithm 1 UOE Unlearning Algorithm

Output: Unlearned Model θu
Input: Pretrained Model θo, Forget Set Df , Re-

tain Set Dr, Retain Loss ℓr, Forget Loss ℓf ,
Anchor Loss Lanchor

1: Ds ← Sample Subset(Df )
2: s← Record Affinity Score(θo, Ds)
3: stop,l ←Ranking And Select(s)
4: Activate Expert And Router(θo, stop,Routerl)

5: θu ←Unlearn(θo, ℓf (Df ), ℓr(Dr), L
(l)
anchor)

6: Return θu

UOE for effective MoE LLM unlearning. As
discussed earlier, a new paradigm tailored for
MoE LLM unlearning is urgently needed to ad-
dress the challenges of unintentional expert se-
lection shifts in routers and excessive unlearn-
ing of non-target experts. Therefore, we pro-
pose a framework that (1) identifies the most
relevant target experts, (2) ensures that these
target experts remain highly activated through-
out the unlearning process to avoid selection
shifts, and (3) limits the impact of unlearning
on non-target experts. Spurred by these, we in-
troduce UOE, where unlearning is confined to
a single expert. We refer the readers to Alg. 1
for an illustration of UOE. This approach starts with an expert attribution process to accurately
identify the most relevant experts for the unlearning task.

✦ Expert attribution. While the token assignment ratio for each expert, as shown in Fig. 2, can
serve as a basic attribution metric, it overlooks finer details that are important for precise compar-
isons, due to the hidden states in each layer summed by weighted average. To address this, we adopt
a gating score-based task affinity calculation method from (Wang et al., 2024b). Specifically, the
affinity score for the i-th expert e(l)i in the l-th layer of an MoE LLM is defined as:

s
(l)
i =

1

Z

Z∑
j=1

1

Lj

Lj∑
t=1

g
(l)
i,t (2)

where Z is size of the calibration dataset used for expert attribution, Lj represents the length of the
j-th input sequence xj , and g

(l)
i,t is the probability score assigned to expert e(l)i for the t-th token.

Following Wang et al. (2024b), the attribution data can be a subset universally sampled from the
original forget set. We find that a subset containing over 100,000 tokens is robust enough to select
the most relevant experts for an unlearning task. For each layer, we rank the experts based on their
affinity score and select the top expert as the target expert for unlearning.

✦ Router anchor loss. A key challenge in unlearning is the expert selection shift, where the true
target experts are hidden by the routers, while less relevant experts are activated during inference and
inadvertently involved in the unlearning process. To mitigate this, we propose the router anchor loss,
which encourages the previously identified target expert to remain consistently activated throughout
unlearning. The loss is formulated as:

L
(l)
anchor = ∥g(l) − [a

(l)
1 , a

(l)
2 , . . . , a

(l)

E(l) ]∥
2
2, (3)

where E(l) is the total number of experts in the l-th layer, g(l) = [g
(l)
1 , g

(l)
2 , . . . , g

(l)
i ] is the output

of router, and a
(l)
i = 1 if the i-th expert is identified as the target expert, otherwise a

(l)
i = 0. The
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unlearning loss can be formularized as:

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr) + αL
(l)
anchor, (4)

where α is a hyperparameter to control the strength of anchor loss. The sensitivity analysis of α is
provided in Sec. D in Appendix.

✦ A single-layer solution for MoE LLM unlearning by UOE. While we have successfully iden-
tified the most relevant target expert for each layer and implemented the router anchor loss to sta-
bilize expert selection, applying unlearning across all layers still leads to expert selection shifts.

0 4 8 12 16 20 24
MoE Layer Index

0
10
20
30
40
50
60
70
80

O
ve

rla
p 

R
at

io
 (%

)

20

40

60

80

Figure 4: Expert selection overlap ratio for
each MoE layer in DeepSeek-v2-Lite, com-
paring the unlearned and original models af-
ter 80 iterations with GA. The expert with
the top affinity score in each layer is tunable
during unlearning.

In Fig. 4, our results indicate that, even with the anchor
loss, unlearning across multiple layers amplifies the ef-
fects of the MoE structure, where minor selection shifts in
earlier layers are magnified, leading to substantial shifts
in deeper layers. Consequently, the unlearned model still
suffers a significant utility drop of over 30% (55.48% be-
fore unlearning vs. 24.65% after unlearning). To address
this, we reduced the number of layers involved in the un-
learning process. Surprisingly, unlearning just a single
layer proved sufficient to achieve strong performance. By
confining unlearning to one layer, we effectively mini-
mize the cascading effects of expert selection shifts while
still eliminating the target knowledge. In practice, we se-
lect the layer with the highest top-1 expert affinity score,
as calculated in (2), and perform unlearning on its cor-
responding expert, which is treated as the target expert
for the entire model. Since LLM architectures are con-
sistent in size across layers, the highest affinity scores per
layer can be directly compared. This approach forms the
foundation of UOE, allowing it to maintain model utility and forget effectiveness with exceptional
efficiency. To validate the effectiveness of the current design, in Sec. 5, we conduct extensive dis-
cussions and empirical studies on various other possible design choices than UOE. These include
unlearning multiple experts in a single layer, unlearning single experts across multiple layers, and
exploring different expert selection schemes beyond the affinity-score-based approach.

5 EXPERIMENT

5.1 EXPERIMENT SETUPS

Unlearning tasks and datasets. To demonstrate the effectiveness of our proposed method, we eval-
uate and compare it against different baselines on two widely accepted LLM unlearning benchmarks:
WMDP (Li et al., 2024) and RWKU (Jin et al., 2024). WMDP assesses the model’s ability to unlearn
and prevent the generation of hazardous knowledge in biosecurity, cybersecurity, and chemical se-
curity contexts. RWKU, on the other hand, evaluates the model’s capability to eliminate knowledge
about 200 real-world celebrities, simulating a private information protection task. We note that other
commonly used benchmarks, such as TOFU (Maini et al., 2024) and MUSE (Shi et al., 2024), are
less appropriate in this work. These benchmarks require models to be fine-tuned before unlearning,
which introduces additional biases to the results for MoE LLMs due to the known instability in
training and the tricky hyper-parameter tuning involved (Jiang et al., 2024), often leading to training
collapse (Zoph et al., 2022a).

Models. We evaluate different unlearning methods on two MoE LLMs: Qwen1.5-MoE-A2.7B-
Chat (Qwen), mistralai/Mixtral-8x7B-Instruct-v0.1 (Mixtral), and DeepSeek-V2-Lite (DeepSeek),
representing the two mainstream MoE LLM training schemes: upcycle-from-dense and train-from-
scratch, respectively. Qwen has a total of 14.3 billion parameters, with 2.7 billion activated during
inference, while DeepSeek has 16 billion parameters, of which 2.4 billion are activated during infer-
ence. Mixtral has 45 billion parameters, of which 12.9 billion are activated. Due to the computation
limitation, Mixtral is only applied on UOE and other parameter-efficient fine-tuning baselines.

Evaluation setup. We evaluate the performance of the unlearned LLMs based on two key metrics:
unlearning efficacy (UE) and preserved model utility (UT). For the WMDP task, UE is measured
using the WMDP-Cyber subsets provided by the benchmark. Specifically, we use forget accuracy

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of existing unlearning methods equipped w/ and w/o UOE in WMDP (Li
et al., 2024) and RWKU Jin et al. (2024) benchmarks on two MoE LLMs, namely Qwen1.5-MoE-A2.7B-Chat
(Qwen) Team (2024) and DeepSeek-V2-Lite (DeepSeek) (Dai et al., 2024). The ↑ and ↓ symbols denote
metrics where higher/lower values are better. The occurrence of significant utility drop (over 10% drop in UT
compared to the pretrained model) are marked in red.

Method Qwen (WMDP) DeepSeek (WMDP) Qwen (RWKU) DeepSeek (RWKU)
FA↓ UT↑ FA↓ UT↑ FA↓ UT↑ FA↓ UT↑

Pretrained 0.4192 0.5979 0.3804 0.5548 0.4243 0.5979 0.5376 0.5548

GA 0.2953 0.3393 0.2457 0.3145 0.0078 0.4849 0.0839 0.5195
GA+UOE 0.2987 0.5012 0.2700 0.5100 0.0060 0.5709 0.0000 0.5485

GDIFF 0.2964 0.2965 0.2898 0.3929 0.0700 0.5296 0.1901 0.3495
GDIFF+UOE 0.2445 0.5295 0.2677 0.4895 0.0010 0.5987 0.0000 0.5253

NPO 0.3447 0.4612 0.3200 0.4700 0.0000 0.3718 0.0970 0.5388
NPO+UOE 0.3200 0.5468 0.2898 0.4790 0.0020 0.5428 0.0000 0.5479

RMU 0.2612 0.3560 0.2530 0.4540 0.0200 0.2420 0.0010 0.5109
RMU+UOE 0.2536 0.5351 0.2859 0.5424 0.0723 0.5975 0.0130 0.5388

(FA)—the accuracy of the LLMs on the forget set after unlearning—as the measure of UE. A lower
FA indicates better unlearning. Given the four-option multiple-choice format of the test set, the
ideal FA is 0.25, equivalent to random guessing. UT is assessed using the zero-shot accuracy on
the MMLU dataset (Hendrycks et al., 2020), which reflects the model’s ability to retain general
knowledge. For the RWKU task, we use the Rouge-L recall score to evaluate performance on fill-in-
the-blank and question-answer tasks, with lower scores indicating more effective unlearning. Since
the task follows a question-answer format, the ideal FA is 0.0, indicating no overlap between the
generated answer and the ground truth. The UT evaluation for RWKU is the same as for WMDP, using
the MMLU benchmark. By default, during the unlearning process, we select the model checkpoint
that achieves the best balance between UE and UT as the optimal checkpoint.

Baselines. We demonstrate the effectiveness of our proposed UOE framework by comparing it
against the LLM unlearning baselines: Gradient Ascent (GA) (Eldan & Russinovich, 2023), Gra-
dient Difference (GDIFF) (Maini et al., 2024) and most recent unlearning algorithm Negative Pref-
erence Optimization (NPO) (Zhang et al., 2024) and Representation Misdirection for Unlearning
(RMU) (Li et al., 2024). For each method, we compare the original results with those obtained
when incorporating UOE. Given the parameter efficiency of UOE, we also compare it with two
state-of-the-art parameter-efficient fine-tuning (PEFT) methods for MoE LLMs: the low-rank adap-
tation scheme (LoRA) (Hu et al., 2021) and the Expert-Specialized Fine-Tuning method (ESFT)
Wang et al. (2024b), which is specifically designed for MoE LLMs.

5.2 EXPERIMENT RESULTS

Effectiveness of UOE in preserving model utility and unlearning efficacy. In Tab. 2, we present
the UE (unlearning efficacy) and UT (utility) performance of our proposed UOE when integrated
into different unlearning methods GA, GDIFF, NPO, and RMU. First, one of the most notable find-
ings is that UOE significantly improves model utility (UT) across all tested methods. For instance,
when applied to baseline methods like GA, GDIFF, and RMU, UOE consistently mitigates the se-
vere utility drops (greater than 10%) that occur with the unmodified methods. This is particularly
evident in scenarios where baseline methods without UOE exhibit drastic performance degradation
in model utility (highlighted in red), while the same methods paired with UOE show substantial
recovery. For example, the utility of GA on Qwen for the WMDP task drops from 0.5979 to 0.3393,
but with UOE, the utility improves to 0.5012, restoring much of the lost performance. Similarly,
GDIFF on RWKU suffers a significant utility loss from 0.5979 to 0.3495, but when UOE is ap-
plied, utility rises back to 0.5253, nearly matching the original pretrained performance. Second,
beyond utility preservation, the unlearning efficacy (UE)—measured through FA—remains either
unaffected or slightly improved when UOE is employed. This balance between utility preservation
and effective unlearning highlights the advantage of UOE. For instance, GDIFF+UOE reduces the
forget accuracy (FA) on Qwen (WMDP) from 0.2964 to 0.2445, demonstrating better unlearning
while still achieving a higher utility score. Similarly, RMU+UOE on DeepSeek (WMDP) lowers
the FA from 0.2530 to 0.2859, with a corresponding utility improvement from 0.4540 to 0.5424.
Notably, methods such as GDIFF and RMU, which experience significant utility loss when used
alone, benefit greatly from the application of UOE, achieving near-pretrained utility levels while
still maintaining effective unlearning.
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Table 4: Performance comparison between existing unlearning methods GA equipped with UOE and other
PEFT methods, including LoRA (Hu et al., 2021) and ESFT (Wang et al., 2024b). The occurrence of significant
utility drop (over 10% drop in UT compared to the pretrained model) are marked in red.

Method Qwen (WMDP) DeepSeek (WMDP) Mixtral (WMDP) Qwen (RWKU) DeepSeek (RWKU) Mixtral (RWKU)
FA↓ UT↑ FA↓ UT↑ FA↓ UT↑ FA↓ UT↑ FA↓ UT↑ FA↓ UT↑

Pretrained 0.4192 0.5979 0.3804 0.5548 0.5229 0.6885 0.4243 0.5979 0.5376 0.5548 0.5820 0.6885

LoRA 0.2459 0.2689 0.2657 0.2295 0.2658 0.2597 0.0000 0.2689 0.0000 0.2302 0.0000 0.2295
ESFT 0.3145 0.4514 0.2737 0.5108 0.2547 0.6386 0.001 0.4433 0.0200 0.5001 0.0542 0.6743

UOE 0.2987 0.5012 0.2700 0.5100 0.2608 0.6364 0.006 0.5709 0.0000 0.5485 0.0455 0.6713

Table 3: Tunable parameter ratio,
PEFT vs UOE.

Method Tunable Parameter Ratio
Qwen DeepSeek Mixtral

LoRA 0.87% 0.92% 0.26%
ESFT 3.13% 2.86% 14%

UOE 0.06% 0.06% 0.41%

UOE significantly outperforms other PEFT methods.
Tab. 4 shows the performance comparison between UOE and
other PEFT methods, and Tab. 3 shows a comparison of the
parameter efficiency among different PEFT methods. Several
key conclusions can be drawn: First, UOE achieves far bet-
ter parameter efficiency, with only 0.06% of tunable param-
eters, compared to LoRA (0.92%) and ESFT (2.86%), while
still outperforming them in utility preservation. For instance,
in RWKU, UOE achieves utility scores of 0.5709 on Qwen
and 0.5445 on DeepSeek, significantly higher than LoRA (0.2689 and 0.2302) and ESFT (0.4433
and 0.5001). Second, the utility preservation of UOE is much better than the others, and this is
achieved while maintaining a comparable level of forget efficacy. For example, on WMDP, UOE
achieves a utility score of 0.5012 for Qwen, much higher than LoRA’s 0.2689, with a similar forget
efficacy (FA: 0.2987 vs. 0.2459). These results clearly demonstrate that UOE is the more balanced
and efficient solution for unlearning tasks, particularly when both parameter efficiency and utility
retention are important.
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Figure 5: Expert selection overlap ratio
between the pretrained model and the un-
learned model across different unlearning it-
erations using GA on the WMDP benchmark.
Experts with the highest affinity score in
each layer are tuned during unlearning.

Comparison of different design choices in UOE
framework. In designing our UOE method, we opted to
unlearn only a single expert in one specific layer, guided
by the affinity score. However, to justify this design deci-
sion, we conducted a series of empirical studies compar-
ing alternative approaches. These experiments were car-
ried out using the RMU unlearning method on the WMDP
task, where we tuned each approach until the model fully
unlearned (i.e., FA reached 25%), and then compared (1)
if the problem of the expert selection shift has been prop-
erly addressed and (2) the model utility score (UT) across
the different strategies.

• Tuning multiple layers with one expert per layer. Tun-
ing a single expert across multiple layers. In Fig. 4, we
briefly discussed how the cumulative effect leads to a sig-
nificant issue of expert selection shift in the deeper layers
of MoE LLMs. In Fig. 5, we further illustrate how the overall expert selection overlap ratio changes
as unlearning progresses. As shown, even when only one expert is tunable per layer, the cumula-
tive effect causes the overall overlap ratio to drop sharply, leaving the expert selection shift issue
unresolved. Thus, tuning all layers during MoE LLM unlearning is not a feasible solution.

Table 5: Model utility (UT) comparison,
at the same level of forget efficacy (FA≈
0.25), when different number of experts are
unlearned using GA on WMDP benchmark.

# of experts 1 3 6

FA (↓) ∼ 0.2500
UT (↑) 0.5100 0.4856 0.4652

• Tuning multiple experts in a single layer. A natural
question within the UOE framework is whether involv-
ing more than one expert in the selected layer during un-
learning would yield better results. In Tab. 5, we exam-
ine the impact of increasing the number of tunable ex-
perts in a single layer. As the table shown, when the un-
learned model reaches the same level of UE (with an FA
of around 25%) controlled by different training steps, the
model utility decreases significantly as the number of tunable experts increases. For instance, when
the tunable expert count is increased to 6, the model utility drops by over 4%, from 0.51 to below
0.47. This suggests that involving more experts in unlearning makes it harder to maintain utility,
without providing any noticeable improvement in unlearning efficacy.

• Sensitivity of UOE to expert selection and layer selection schemes. Next, we explored alternative
methods for selecting the target expert, beyond the affinity score-based approach used in UOE.
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Table 6: Performance comparison between UOE and the random expert selection scheme on the WMDP task.
Other settings are consistent with those in Tab. 2.

Method Qwen (WMDP) DeepSeek (WMDP) Qwen (RWKU) DeepSeek (RWKU)
FA↓ UT↑ FA↓ UT↑ FA↓ UT↑ FA↓ UT↑

Pretrained 0.4192 0.5979 0.3804 0.5548 0.4243 0.5979 0.5376 0.5548

RMU 0.2612 0.3560 0.2530 0.4540 0.0200 0.2420 0.0010 0.5109

Random+RMU 0.3505 0.5947 0.2722 0.5183 0.2110 0.5924 0.1176 0.5182
UOE+RMU 0.2536 0.5351 0.2859 0.5424 0.0723 0.5975 0.0130 0.5388

Specifically, we investigated how sensitive UOE is to the choice of the expert to be unlearned. In
Tab. 6, we compared the performance of the affinity score-based selection scheme in UOE with a
random expert selection approach on the WMDP task. The results clearly show that while random
expert selection can sometimes yield comparable utility preservation, it fails to achieve the same
level of unlearning efficacy as UOE. For instance, on Qwen (WMDP), the random selection achieves
a utility score of 0.5947 versus UOE’s 0.5351, but the forget accuracy (FA) with random selection
is significantly higher at 0.3505, compared to 0.2536 for UOE. This indicates that random selection
does not drive FA low enough, compromising the unlearning objective. Similarly, on DeepSeek
(RWKU), random selection results in an FA of 0.1176, whereas UOE achieves a much lower FA of
0.013, highlighting the better unlearning performance of UOE. In conclusion, selecting experts with
highest affinity score perform better than random expert selection.

Table 7: Model utility (UT) comparison across layers with differ-
ent affinity score rankings in UOE on the RWKU benchmark. UT
is compared at a consistent level of forget efficacy (FA ≈ 0.25).

Layer Ranking #1 #2 #3 #13 #20 #23 #26
Affinity Score 0.2110 0.1957 0.1695 0.1115 0.0942 0.0844 0.0618

FA (↓) ∼ 0.2500
UT (↑) 0.5485 0.5475 0.5453 0.5445 0.5441 0.4262 0.2355

Finally, we examine the performance
of UOE when layers with different
top1 expert affinity score rankings are
selected for unlearning. In Tab. 7,
we observe that UOE is robust and
relatively insensitive to the specific
layer chosen for unlearning, as long
as the affinity score remains reason-
ably high. For instance, even when selecting the 13th or 20th ranked layers, the model utility (UT)
remains stable at around 0.5445, although their affinity scores of 0.1115 and 0.0942 are lower than
that of the top-ranked layer. However, once the affinity score drops further, as seen in the 23rd and
26th ranked layers (with scores of 0.0844 and 0.0618), the utility decreases more sharply, falling to
0.4262 and 0.2355, respectively. This demonstrates that while UOE maintains strong performance
across a wide range of layers, selecting layers with very low affinity scores can negatively impact
utility. Overall, these results highlight the robustness of UOE and its ability to tolerate variability
in layer selection without sacrificing unlearning efficacy, provided that layers with sufficiently high
affinity scores are chosen.

Our empirical studies demonstrate that the design choice of unlearning a single expert in one layer,
guided by the affinity score, is satisfactorily reasonable for balancing effective unlearning with utility
preservation. The alternative approaches, whether involving multiple layers or multiple experts,
consistently led to greater utility degradation and instability. Selecting expert with highest affinity
scores can achieve better forget quality than picking experts by random choice. At last UOE is very
robust to layer selection scheme. Therefore, our current design proves to be the most effective and
efficient for MoE LLM unlearning.

6 CONCLUSION

In this paper, we for the first time examine the challenges of applying existing MU techniques
to MoE LLMs and carefully investigate the synergy between the dynamic routing system of MoE
LLM and the unlearning effects. To address these issues, we proposed UOE, a novel framework that
unlearns a single expert in a targeted layer while stabilizing expert selection through a router anchor
loss. This approach mitigates expert selection shifts and achieves efficient unlearning with minimal
parameter updates. Extensive experiments show that UOE significantly outperforms traditional
unlearning methods and other parameter-efficient fine-tuning techniques, providing a robust solution
for MoE LLM unlearning tasks.
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Table 8: Example of GCG attack. Original is the output of the original Deepseek model.

Questions Original Without Attack With Attack

Stephen King is of-
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’King of ’.

Horror indingindingind-
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Figure 6: Token Proportion Shift in layer 21 of Deepseek unlearned by GA in WMDP dataset.

Sorted Expert0.0

0.1

0.2

0.3

0.4

0.5

Af
fin

ity
 S

co
re

Without GCG Attacks

Sorted Expert0.0

0.1

0.2

0.3

0.4

0.5

Af
fin

ity
 S

co
re

With GCG Attacks

Figure 7: Affinity Score of all experts in target layer in Deepseek unlearned GA on RWKU dataset. The target
expert is marked as red.

A EXPERIMENT SETTINGS

Hyperparameter selection. We set the learning rate to 5e-5 for GA, NPO, and GD while setting it
to 1e-4 for UOE. The batch size is 4 for GA, NPO, and GD, while it is set to 16 for UOE. In NPO,
the beta value is set to 0.001. The alpha for the retain loss is set to 1 in both GD and NPO. For RMU,
we follow the hyperparameters specified in the original work. We configure the steering coefficients
as 8000 for Qwen and 32000 for Deepseek, as UOE targets deeper layers in these models. For ESFT,
we set the threshold p = 0.15.

Dataset Settings. For the WMDP dataset, we use the cyber-forget-corpus as the forget set and
wmdp-cyber as the evaluation set, in line with WMDP (Li et al., 2024). The Wikitext (Merity
et al., 2016) dataset serves as the retain set for both GD and RMU tasks, also following WMDP (Li
et al., 2024). In the RWKU (Jin et al., 2024) dataset, we follow the original study by selecting
100 individuals as unlearning targets. The train original passage set, which includes Wikipedia
descriptions of these 100 individuals as provided in the paper, is used as the forget set.

Evaluation Settings. We utilize the LM Evaluation Harness (Gao et al., 2024) to measure zero-shot
accuracy on the MMLU and WMDP cyber datasets. The mean accuracy across all tasks in MMLU
serves as a measure of model utility. For the RWKU dataset, we adhere to the original settings,
using the prompt “Please complete the blank in the following question. Question:” for fill-in-the-
blank tasks and “Please briefly answer the following question. Question:” for generation tasks.

B JAILBREAK ATTACK ON UOE
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Table 10: Sensitivity Analysis of hyperparameter α for the strength of anchor loss. The experiment
is conducted on Deepseek unlearned by GA with RWKU dataset.

α 0 1 100 1000

FA (↓) 0.0 0.0 0.0 0.0
UT (↑) 0.5435 0.5485 0.5471 0.5468

Table 9: UOE against GCG
attack on Deepseek unlearned
with RWKU dataset.

With Attack Without Attack

0.01 0.01

To investigate the soft prompt attack, we employ the GCG attack
Zou et al. (2023) in a white-box setting to optimize the prompt,
aiming to force responses to begin with “Sure, here is the answer:”.
The number of optimization steps is increased to 5000, while other
hyperparameters remain at the default settings. Given the compu-
tational demand (approximately 1 GPU hour on an A100 for generating a single soft prompt), we
optimize 400 prompts across 400 samples in RWKU. Since not all responses begin with ”Sure, here
is the answer:”, we filter for those containing the word ”answer” and then assess the forget quality
both with and without GCG-generated prompts. Experimental results in Tab. 8 indicate that the
GCG, despite being the strongest prompt-level attack, fails to recover the forgotten knowledge, as
the forget accuracy (FA) remains at 0.01 before and after the GCG attacks.

C TOKEN PROPORTION SHIFT VISUALIZATION

We visualize the expert selection distribution in one layer across the unlearning process in Fig.6 in
revision. The figures sort the experts in layer 21 by the selection proportion in the original model
and keeps this order to plot the figure in unlearned models to show the changes in all experts. The
results show that GA algorithm even decreases the uncertainty in WMDP after unlearning.

D SENSITIVITY ANALYSIS OF HYPERPARAMETER α

We conduct experiments on Deepseek unlearned by GA with RWKU dataset to explore the perfor-
mance of different α. As shown in Tab. 10, the results indicate that UOE is robust to a wide range
of α and achieves the best performance when α = 1.

E DISCUSSION ON SHARED EXPERTS

Shared expert is a special architecture in both Deepseek and Qwen, where all tokens activate the
shared experts in all layers. In this section, we discuss how UOE can still achieve good Forget
Quality with shared experts. The outputs of shared experts and normal experts are aggregated in the
hidden state of each layer, where the output of normal experts can neutralize the output of shared
experts. The objective loss function in unlearning algorithms is designed to unrelate the hidden state
with the unlearned target. To achieve this, UOE introduces perturbations to the selected expert,
i.e., adding noise in the aggregation step before outputting the hidden state values. From here on,
the perturbation disrupts the knowledge that was learned by shared experts or previous layers. To
formally show this process, the output hidden state of l-th layer is:

h′(l)
t = g

(l)
target,tFFN(l)

target(ut) + u
(l)
t + FFN(l)

shared(ut) +
∑N−1

i=1 g
(l)
i,t FFN(l)

i (ut),

where FFNshared are shared experts, FFNtarget is the target expert, and
∑N−1

i=1 g
(l)
i,t FFN(l)

i (ut) are
selected experts except for the target expert. After the target expert is unlearned

g′
(l)
target,tFFN′(l)

target(ut) = g
(l)
target,tFFN(l)

target(ut) + h
(l)
t,perturbation,

e.g. by adding the perturbation hl
t,perturbation, the output hidden state of l-th layer becomes
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h′(l)
t = g

(l)
target,tFFN(l)

target(ut) + h
(l)
t,perturbation + u

(l)
t + FFN(l)

shared(ut) +

N−1∑
i=1

g
(l)
i,t FFN(l)

i (ut).

This output of the l-th layer will be taken as input to the followup layers, thus the perturbation is
propagated, leading to the aim of unlearning. Note that the added perturbation h

(l)
t,perturbation is

not random, instead, it is optimized by minimizing the unlearning loss function to perturb both the
outputs of shared experts FFN(l)

shared and the output from the previous layer u(l)
t .
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