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ABSTRACT

In this work, we propose norm-bounded low-rank adaptation (NB-LoRA) for
parameter-efficient fine tuning. NB-LoRA is a novel parameterization of low-rank
weight adaptations that admits explicit bounds on each singular value of the adap-
tation matrix, which can thereby satisfy any prescribed unitarily invariant norm
bound, including the Schatten norms (e.g., nuclear, Frobenius, spectral norm). The
proposed parameterization is unconstrained, smooth, and complete, i.e. it covers
all matrices satisfying the prescribed rank and singular-value bounds. Natural lan-
guage generation experiments show that NB-LoRA matches or surpasses perfor-
mance of competing LoORA methods, while exhibiting stronger hyper-parameter
robustness. Vision fine-tuning experiments show that NB-LoRA can avoid model
catastrophic forgetting with minor cost on adaptation performance, and compared
to existing approaches it is substantially more robust to a hyper-parameters such
as including learning rate, adaptation rank and number of training epochs.

1 INTRODUCTION

Large pre-trained vision and language models have demonstrated impressive generalization capa-
bility across a wide variety of tasks; see, e.g. |Achiam et al.| (2023)); [Touvron et al.| (2023). When
a more specific target task is identified, however, it has been observed that parameter-efficient fine-
tuning (PEFT) techniques, e.g. [Houlsby et al.| (2019); [Hu et al.| (2022)), can improve performance
via quick model adaption with low computation and data requirements. The primary goal for an
effective PEFT method is to achieve good adaptation performance with high training efficiency, i.e.,
dramatically fewer trainable parameters and training epochs. Since training efficiency is the target,
ideally such a method will be quite robust to hyperparameters. Alongside this primary goal, it is
often also desirable to maintain the generalization performance of the original pre-trained model as
much as possible, i.e. avoid “catastrophic forgetting” (Qiu et al.|[2023; Biderman et al.| 2024)).

Low-rank adaption (LoRA) (Hu et al.,[2022) is a widely applied PEFT method, which parameterizes
the update of pretrained weights W), € R"™*" during finetuning as

y= (W, + W)z = (W, + %BTA) z (1)

where A € R™*" B € R"*™ are the learnable matrices, « is a scaling factor, and r « min(m,n)
is the rank budget of weight adaptation . Matrix rank is one way to quantify the “size” of a
weight, corresponding the underlying dimensionality of its operation. But matrix norms — such as
nuclear, Frobenius, or spectral norms — provide another notion of size, quantifying the magnitude of
a matrix’s elements and of its operation on vectors.

Recent works show that it is beneficial to control the rank and norm of the weight adaption. Jang
et al.[ (2024)); [Kim et al.| (2025) show that the global minimum of fine-tuning has low rank and
small magnitude while spurious local minima (if they exist) have high rank and large magnitude.
Moreover, bounding the magnitude of W can enhance training robustness (Bini et al., 2025). In|{Hu
et al.| (2025), LoRA training can achieve sub-quadratic time complexity under certain norm-bound
conditions.

Motivated by those findings, we propose norm-bounded low-rank adaptation (NB-LoRA), a novel
finetuning method that admits explicit bounds on both the rank and norm of weight update through
matrix reparameterization (see Fig.[I). Our approach can control a family of matrix norms, called
Schatten p-norms (i.e. p-norms of the singular value sequence), which include the nuclear norm,
Frobenius norm, and spectral norm as special cases. We summarize our contributions as follows.
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Figure 1: Visualization (Left) of the original LoRA (Hu et al. [2022) and (Right) of our proposed
method NB-LoRA, where bounded rank and norm are enforced by reparameterization Ws.

* Our parameterization is a smooth map W = Wg(A, B) which takes as argument two
free matrix variables of the same size as A, B, but the resulting W automatically satisfies
user-prescribed bounds on both rank and all individual singular values of W, which further
allows any Schatten p-norm bound on W to be specified.

* Our parameterization is complete, i.e., for any W € R™*" satisfying the prescribed bounds
on singular values, there exists a (not necessarily unique) A, B such that W = Wg(A, B).

* Theoretical analysis on training dynamics and LLM fine-tuning experiments show that NB-
LoRA can improve training stability, overall performance and robustness to learning rates.

* Through ViT fine-tuning and subject-driven image generation tasks, we show that tight
bound control can effectively prevent catastrophic forgetting and model overfitting in the
low-data regime.

2 RELATED WORK

LoRA can be highly sensitive to learning rate (Bini et al., |2024} |Biderman et al., [2024), model
initialization (Hayou et al.,|[2024)), and it is susceptible to over-training (Qiu et al.,|2023). To mitigate
these effects, several recent works have proposed regularization techniques for LoRA. For example,
Gouk et al| (2021); |Chen et al.| (2023)) propose an approach that preserves the Euclidean weight
distances between pre-trained and fine-tuned models. In |Liu et al. (2024), DoRA was proposed
based on investigation of the vector-wise norm of the adaption matrix, and introduces an adaptive
scaling of W. Bini et al.|(2025) proposed DeLoRA - a PEFT method that decouples the angular
learning from adaptation strength. VeRA is another method which learns a scaling vector for LoRA
weights (Kopiczko et al.,[2024b). Our method also contains a learnable scaling vector, which can be
used to explicitly control bounds on each singular value of the weight adaptation.

Another line of LoRA methods are closely related to singular value decomposition (SVD). [Meng
et al.|(2024) proposed a novel SVD-based LoRA initialization, called PiSSA, which can significantly
speed up the training of LoRA. |Zhang et al.| (2023) proposed a dynamical rank allocation scheme,
called AdalLoRA, which adaptively update the rank bound in each LoRA layer. In|Lingam et al.
(2024); Batazy et al.| (2024)), the singular vectors of pretrained weights are re-used and a small
square matrices are learned during fine-tuning. No explicit control of norm bounds or constraint on
singular values were considered in these methods.

3 MOTIVATING ANALYSIS OF LORA

In this section we provide some brief analyses of LoRA that motivate our parameterization.

Analysis of Training Dynamics. We first rewrite the LORA parameterization (T)) as the form of
W =BTA )

where A = /a/rA and B = 4/ @/rB. The main purpose of (2)) is to give a uniform presentation
for analyzing the training dynamics of different low-rank weight parameterizations. Under this
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Figure 2: Training dynamics of LoRA (r = 128) for LLaMA-2-7B fine-tuning. We report the loss,
gradient norm and matrix norms of weight increment AW and weight W under two learning rates:
5e-5 (Top) and 1e-3 (Bottom). Matrix norms are maximized over all LoRA blocks.

representation, the increments on A, B can be approximated by

. ot . . or .
AA~ —n— = —nBD,,, AB~ -—n— =-nAD] 3
naA U] Y naB U] y (3)

where 7) is the learning rate, ¢ is the loss function, and D,,, = (0¢/ dy)x " is typically not large at
the beginning of fine-tuning. The standard LoRA initialization takes B = 0 and small random A,

which implies AA = 0and AB is small and noisy at the beginning of fine-tuning. Then, the weight
update AW could be small and uninformative for a large number of training steps, since it depends
on A and B quadratically:

AW ~ BT(AA) + (AB)TA = —n(D,,A"A + B"BD,,). (4)

The top row of Figure [2] illustrate this behavior. Increasing the learning rate 7 or scaling factor
« can speed up the training but it may cause instability, see the bottom row of Figure 2] This
phenomenon has been reported and analyzed in [Meng et al.| (2024)); Zhang et al.| (2025)), which
proposed alternative initializations.

In this work, we provide a novel LoORA reparameterization such that | A|% + | B|% is close to certain
constant. This prevents the matrices Aand B becoming simultaneously very small or very large.
For example, if B is a zero matrix, then by construction Aisa relatively large matrix, which in
turn produces large AB. As the norm of B increases, the norm of A will automatically decrease,

ensuring that BT A remains within certain prescribed norm bound. This coupling behavior can help
to improve train stability and robustness.

Although enforcing a bound norm on W may limit the adaptation performance, it could be beneficial
for many fine-tuning tasks. For example, when the target dataset D is small, a tight norm bound
on W can help to prevent overfitting. Another application is to avoid catastrophic forgetting. After
fine-tuning, we can approximate the loss changes on the source dataset D by

o (W, + W) — tp. (W) 1§<%>Tws
Dy p — D, p s s xi
Mi:l oy;

where z7, y; are the input and output of the pretrained layer, evaluated on D;. If D is not available,
then constraining the norm of W becomes a natural approach. In particular, our parameterization is
complete, i.e., it covers all weights with the prescribed norm bound. Thus, it can prevent overfitting
and catastrophic forgetting with minor cost on adaptation performance.

4 NB-LORA

In this section we present our main contribution: a parameterization of low-rank matrices that admits
bounds on each individual singular value, and hence on any unitarily invariant matrix norm.
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4.1 PRELIMINARIES AND PROBLEM FORMULATION

The problem we are interested in can be formalized as follows:

min  £(W) s.t. rank(W) <7, [W]s, <6 (5)
where / is some training loss and |[W||s, = (3i_; o) e for p € [1,0) and |W||s,, = o1, where

01 = 09 = --- = 0, = 0 are the singular values of W. Since Schatten p-norm is the vector p-norm
of the singular value sequence, it is unitarily invariant, i.e., [W|s, = |[UW Vs, for any orthogonal
matrices U, V.

We first define some notation. Since our approach involves comparing singular values of matrices
of potentially different ranks and sizes, for convenience we define o;(W) = 0if j > rank(W). We
now introduce the relation <,;.

Definition 4.1. Let X, Y be two matrices. We say X <, Y if 0;(X) < 0;(Y), Vj e N.

Note the <, is reflexive (X <, X) and transitive (X <, Y,Y <, Z = X <, Z). Butitis
not antisymmetric, i.e., X <, YV, Y <, X = X =Y, e.g, when XY are distinct orthogonal
matrices. Most importantly for our purposes: if X <, Y, then | X||s, < |Ys, forall p € [1,o0].

Let s € R, where R = [0,0), and S = diag(s) be the diagonal matrix with S;; = s;. We define
the set of matrices whose singular values are bounded by S by

Wg := {WeR™"™|W <, S}.
Note that for any W € Wg, we have rank(WW) < rank(S) = rand [W|s, < |[95]s,-

4.2 NB-LORA PARAMETERIZATION

We now present so-called direct parameterization of Wg, a smooth mapping Wg from free matrix
variables to W which maps onto the entire set Wg. Then, we can transform @) into an unconstrained
problem by further parameterizing the positive diagonal matrix .S such that |[S|s, = J.

Our parameterization takes AeR™" B e R™™ as the free parameters and produces W via

-~ T AT AT
W =Ws(A, B) :=2B' SA, where BT = Cayley al) (6)

Here the Cayley transformation for a tall matrix [‘;{] with X e R"™*" and Y € R?7*" is defined by

Cayley ([iﬁ]) = [(I_;YZ()[(I-iZ?)II] ,where Z=X - XT+Y'TY. @)

Note that G = Cayley(F) is a semi-orthogonal matrix, i.e., G'G = I for any tall matrix F'
(Trockman & Kolter, |2021), however it is not by itself a complete parameterization for the set of
semi-orthogonal matrices, e.g., there does not exist an F' such that Cayley(F') = —I. Despite this,
we have the following, which is the main theoretical result of the paper.

Theorem 4.2. The NB-LoRA parameterization in (@) is a direct (smooth and complete) parameter-
ization of W, i.e. Wy is differentiable and Ws(R"Y ) = Wg.

Remark 4.3. A special case of the above theorem is S = I, which is a complete parameterization
of all 1-Lipschitz linear layer, i.e. f(z) = Wz with |[W| g, < 1, see Proposition 3.3 of [Wang &
Manchester (2023)). One can further extend it to a nonlinear layer with low-rank and norm-bounded
Jacobian. Specifically, we take a nonlinear layer of the form f(x) = 2B Dy¢(DyAx) where A, B
are constructed from @, D1, Dy are diagonal matrices satisfying 0 < D1 D5 < S and ¢ is a scalar
activation with slope-restricted in [0, 1]. Then, we have 0f/dx € W for all x € R™.

Model initialization. We take the standard LoRA initialization to NB-LoRA’s free parameters:
sampling A as a small random matrix and setting B = 0. After applying the Cayley transformation,
we have AAT = I and B = 0, yielding a zero initialization for V.
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Imposing the Norm Bound on IW. From Theorem[4.2] if we construct a complete parameteriza-
tion for the set of singular bound vector s € R, such that |s||, = ¢, then the proposed NB-LoRA
(6) covers all adaptation matrices W satisfying the prescribed rank and norm bounds. For p = o0,
we simply take s = (4,0,...,0). For p € [1,00), one approach is s = §|5|/| 5|, where § € R" is
a free non-zero vector. However, this parameterization is not smooth at § = 0. Instead, we use the
following parameterization in our experiments:

s = 05 := § [Softmax (5/%)]1/17 (8)

Technically, it omits some boundary cases with [IW|s, = ¢ and o,.(W) = 0 since softmax has
strictly positive outputs. However, since it covers the interior of the feasible set and can approxi-
mate the boundary, there is no practical impact on optimization performance. If there is no strict
requirement on the norm bound, one can directly learn s via gradient-based or adaptive methods.

Computational cost of Cayley Transformation. Due to the low-rank nature (r is often less than
256), computing the inverse of an 7 x r matrix is not overly expensive. While matrix inversion is
one part of the total training cost, another computationally intensive part is the backward pass for
the Cayley transformation (7). We provide an efficient custom backward step in Section

4.3 TRAINING DYNAMICS ANALYSIS

Here we return to the motivating analysis from Section [3| and show why NB-LoRA helps resolve
the issue of small gradients. We first rewrite NB-LoRA (06)) into the uniform representation (2) with

A= \/§S%A and B = ﬁS%B. Then, we have
AAT + BBT =283(AAT + BBT)S? = 28. 9)
Together with (8) we have that A, B evolves on a compact manifold of the form
| A% + |B|3 = 2trace(S) = 20]3]1 := 7. (10)

If nuclear or spectral norm bound is considered, the right hand side of (1_1;01) becomes a constant, i.e.,
7 = 20 or 4 = 2rd, respectively. For Frobenius norm bound, we have ¥ € [26,24/r4]. And 7 is
close to 24/76 as we initialize 8; ~ 1/4/r, i.€., § is initialized as a small random vector. Equation (10)
implies that fl, B cannot be both arbitrarily small or large matrices. Thus, AA, AB and AW have
bounded gain w.r.t. Dy, allowing stable training for a wider range of learning rates than LoRA.

PiSSA vs NB-LoRA. PiSSA (Meng et al.,[2024) addresses the small initial gradient issue of LoORA

via a residual-type initialization, i.e., W = 2(B"A — BJ Ay) where the initial values of A, B are
Ap, By, respectively. Similar to LoRA, we can cast PiSSA into the form of
W =DBTA- B A (11)

with A = WA and B = WB. Since B%T Ag is frozen during training, the increments of
A, B follow lb and . The difference is that the residual-type initialization allows one to construct
much larger A and By, see Meng et al. (2024)). This can speed up the fine-tuning process, however,
its performance might be sensitive to learning rate as A, B and W are unbounded. Different from
PiSSA, NB-LoRA constraints A, Bona compact manifold defined in , which allows for a wide
range of learning rates without increasing the norm bounds of A, Band W.

DeLoRA vs NB-LoRA. Similarly to our method, DeLLoRA (Bini et al.||2025) can also control the
Frobenius norm bound of weight adaption based on the following parameterization:

’Y

1
W = BT:A - —BO E0Ag with Z=diag | — |, (12)
|ai|2|bil2

where a;, b; are the ith rows of A, B respectively. The scaling factor « and weight parameter A, B
are initialized as -y and Ay, By, respectively. Similar to PiSSA, we can rewrite DeLoRA into (IT]

with A = \f diag ( ) Aand B = \/7 diag (Ib B ) B. From this, we can obtain a similar

manifold constraint as NB LoRA: . .
[AIE +1BlF = (13)



Under review as a conference paper at ICLR 2026

When certified Frobenius norm bound of § is considered, DeLoRA needs a fixed v = v = §/2,
see Section @ Since the ratio 7/v ~ 4,/r, NB-LoRA is more expressive than DeLoRA since it
allows for much larger A, B, especially when the rank r is relatively large. This also indicates that
DeLoRA needs much larger learning rate than NB-LoRA, see Figure 5] Further discussions on the
connections and differences between these two approaches can be found in Section D}

5 EXPERIMENTS

Here we evaluate the proposed NB-LoRA approach for natural language generation (NLG), ViT
fine-tuning, and image generation tasks. We show that NB-LoRA not only matches or exceeds the
performance of LoRA and other related variants but also improves robustness to hyper-parameters.

5.1 NATURAL LANGUAGE GENERATION

Our main objectives are as follows: i) NB-LoRA can avoid small initial gradients while still maintain
training stability for a wide range of learning rates; ii) Controlling the norm is beneficial for robust
performance; iii) Due to the ability of tight bound control, our method can outperform existing
approaches with the same certified norm bound.

NLG Task. We fine-tuned the LLaMA model family (Touvron et al., [2023) and Mistral-7B-v0.1
(Jiang et al., 2023) on the MetaMathQA dataset (Yu et al.l |2023) to evaluate their mathematical
problem-solving capability on the GSM8K (Cobbe et al.,[2021])) and MATH (Hendrycks et al., 2021)
test datasets. We also fine-tuned the models on the the CodeFeedback dataset (Zheng et al., [2024)
and evaluated for coding proficiency using the HumanEval (Chen et al.| [2021)) and MBPP (Austin
et al.| 2021). We adopt the implementation strategy from Taori et al.[(2023). We follow the setup in
Meng et al.| (2024) with default rank » = 128 and scaling o = r for LoRa, DoRA and PiSSA, see
Section [F] for more details. The choice of norm bound ¢ for NB-LoRA is discussed in Section

Large Initial Gradients and Training Stability. We con-

ducted experiments on LLaMA-2-7B fine-tuning across a wide 1

range of learning rates from 5e-5 to le-3. Figure [3] shows 5> 7Nz %
that LoORA and DoRA both suffer from poor performance with  °_ | mal N N

small learning rates, due to the small initial gradients. Increas- A el Y 4

ing the learning rate helps up to a point but then training goes R e P A e PR s 4
unstable. In contrast, NB-LoRA achieves good performance  *
for a wide range of learning rates. PiSSA outperforms NB-
LoRA in terms of peak performance on GSM8K, but under-
performs on other tasks and is more sensitive to learning rate.
In contrast, NB-LoRA achieves good performance for a wide
range of learning rates, outperforming all other models on %55 w4 sa s Tsls e s e
most tasks. o o

304

HumanEval

26 4

.. . . . . Figure 3: Comparison of LoRA, DoRA,
The training dynamics shown in Figure @] match the analysis  piSSA and NB-LoRA on LLaMA-2-7B with dif-

in Section[4.3] LoRA exhibits very small updates AW for an ferent learning rates.

extended period when the learning rate is small. larger learning rate alleviates this issue during the
early phase, but may cause training instability. As shown in Section 4.3] (col 4), LoRA shows a
relatively small nuclear norm but a much larger spectral norm, indicating that the updates tend to
concentrate on a very low-rank subspace, which might be the cause of training instability.

Different from LoRA, PiSSA initializes A and B based on dominant singular components of the pre-
trained weights, leading to significantly larger updates even when the learning rate is small. How-
ever, without explicit control, its norm increases substantially for large learning rates, sometimes
overwriting useful pretrained structure. This explains its sensitivity to the learning rate observed in
Figure[3]and Table 2]

NB-LoRA ensures that A and B lies on a compact manifold (10), e.g., | 4|2 + HBHF 256 = 2r
from FlgureI(Col 3). Hence, NBLORA can exhibit larger updates HAAHF and |AB]  than LoRA.
On the other hand, because increasing | B|  will also deceases || A| simultaneously, the norm of
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Figure 4: Training dynamics for LoRA, PiSSA and NBLoRA two learning rates.

W remains tightly controlled. With a larger learning rate, NB-LoRA attains the active bound while
maintaining stability due to its more uniform singular-value distribution.

Scalability to Larger Models. We trained NB-LoRA
to LoRA and PiSSA on the LLaMA-3-70B model for
GSMB8K and compared them in terms of computational Method
resources, accuracy, and learning-rate robustness. In Ta- LoRA
ble [T] it can be seen that NB-LoRA achieved the high- JissA
est accuracy overall. It uniformly outperformed PiSSA,

while standard LoRA achieved good performance for T . !

. . able 1: GSMSK accuracy of LoRA, PiSSA and NB-
low learning rates but was unstable for larger learning [ ora on I.LaMA-3-70B with different learning rates.
rates. NB-LoRA required slightly more computational
resources than LoRA and PiSSA: ~6% more memory and ~9% longer training time. More com-
parison on computation cost can be found in Section [E]

Computation
GPU Mem. Train Time

Learning Rate
2e-5 5e-5 le-4 5e-4

86.0 86.2 86.2 failed
85.7 83.6 79.0 41.8
855 87.1 854 833

65.57GB 169m
65.57GB 170m
69.15GB 185m

Hyperparameter Robustness. Table [2] compiles the results of a comprehensive sweep across
tasks, base models and learning rates, comparing NB-LoRA to LoRA, DoRA, and PiSSA in terms
of their robustness to these variations (see table caption for details). While different methods were
competitive for different particular scenarios, when averaging across models and tasks NB-LoRA is
clearly superior.

Comparison with DeL.oRA. Figure compares NB-LoRA with DeLLoRA (Bini et al.|[2025) with
6 set to 10, 20, and free (see Sections [4| and @] for discussion). As shown in Figure E], NB-LoRA
achieves substantially larger parameter updates (Afl, AB, AW) than DeLoRA—even though NB-
LoRA uses a smaller learning rate (1e-3 vs. 5e-3). Making ¢§ learnable alleviates this limitation to
some extent, but it eliminates the norm-bound guarantee, and the GSM8K accuracy of DeLLoRA is
still lower than NB-LoRA.

5.2  VIT FINE-TUNING

The main goal is to explore the utility of norm bounds in preventing catastrophic model forgetting
(McCloskey & Cohen, |1989; [Frenchl |1999; [Wang et al., [2024)). Our hypothesis is that tight control
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Base Model ‘ Mistral-7B-v0.1 ‘ LLaMA-3-8B ‘ LLaMA-2-13B H Model Avg.

Method ‘Lo Do Pi NB ‘ Lo Do Pi NB ‘ Lo Do Pi NB H Lo Do Pi NB

min [43.9 44.2 422 42.0[49.5 49.6 379 47.8|35.1 35.1 36.8 38.1 ||42.9 43.0 389 42.6
Math | max |49.1 48.1 47.0 47.9|51.5 51.8 52.0 52.9|41.8 41.0 404 422|474 470 465 47.7
avg |47.2 46.8 454 46.0|50.5 50.9 45.6 50.3|38.9 38.8 38.7 40.4 | 455 455 432 45.6

min | 52.4 53.7 529 53.6|56.3 56.5 44.4 574|425 425 40.1 44.0 504 509 458 51.7
Code |max |57.8 59.2 59.0 59.7|63.2 62.6 63.0 68.1|46.6 472 456 49.4 | 559 564 559 59.1
avg | 56.1 57.0 56.0 57.5|60.3 60.5 52.6 62.0|44.7 45.0 43.9 47.6 | 53.7 542 50.8 55.7

min [48.1 48.9 47.5 47.8|52.9 53.1 41.2 52.6(38.8 38.8 38.5 41.0 ||46.6 469 424 47.2
Task Avg. | max | 53.5 53.7 53.0 53.8|57.4 572 57.5 60.5|44.2 44.1 43.0 458 | 51.7 51.7 51.2 534
avg |51.7 51.9 50.7 51.8|55.4 557 49.1 56.2|41.8 41.9 41.3 44.0 || 49.6 49.8 47.0 50.6

Table 2: Fine-tuning three base models based on LoRA (Lo), DoRA (Do), PiSSA (Pi) and NB-
LoRA (NB) over different learning rates ({ le-5, 5e-5, le-4, 2e-4} for Mistral and {5e-5, le-4, 5e-4,
7e-4} for LLaMA). We report the minimum, maximum and averaged test results, where the metrics
for math and coding are £ (GSM8K + MATH) and % (HumanEval + MBPP), respectively.
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Figure 5: Training dynamics comparison Between NB-LoRA and DeL.oRA.

of the adaption norm will prevent loss of performance on the pre-trained model as per the analysis
in Section 3] while still enabling good adaptation performance.

Adaptation vs Forgetting We perform experiments (Bafghi et al., 2024) on ViT-B/16 model
(Dosovitskiy et al., [2020), which is pre-trained on ImageNet-21k (Deng et al., |2009) and then fine-
tuned to ImageNet-1k. For the proposed NB-LoRA, we choose the norm bound as 6 = | W,|s,,
where the ratio +y is a hyper-parameter. Similar to the setup in [Kopiczko et al.| (2024a), we adapt
@,V matrices and learn the classification head for the Street View House Number (SVHN) dataset.
Here we report the results for NB-LoRA using nuclear norm with bound ratio of v between 0.1
and 1.6, see Section [H|for additional results with different setups and datasets including CIFAR-100
(Krizhevsky et al., |2009) and Food-101 (Bossard et al., 2014)).

The metric for model forgetting is the test accuracy of the fine-
tuned model on the source dataset: ImageNet-1k, which can be
compared against performance on the target dataset. As shown
in Figure [6{Left), the linear adapter (i.e. just learning the clas-
sification head) avoids forgetting of the source but has poor per-
formance on the target set. In contrast, LoORA, DoRA and PiSSA
achieve high adaptation performance to the target data set, but
with a dramatic loss of performance on the source data set (from
around 80% to less than 10%). VeRA and NB-LoRA can both
achieve a good balance of both, but NB-LoRA outperforms in s Ta—
terms of both source and target performance. It can also be seen i

that tuning of ~y allows a trade-off between source and target per- Figure 6: Adaptation to a target dataset
formance vs forgetting of a source dataset.

SVHN (= better adaptation) Steps.

SVHN Acc
ImageNet-1k Acc

Figure [6] shows the evolution of source and target accuracy vs training steps. All models (except
linear) perform quite similarly in terms of adaptation to the target, whereas on the source dataset NB-
LoRA (shown with v = 0.1) maintains high accuracy throughout training, while most other methods
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—e— NB-LoRA

2
£

7 —e— NB-LoRA
-~ Bound

Figure 7: Analysis of hyperparameter robustness of different methods in terms of geometric mean
of source (ImageNet-1k) and target (SVHN) dataset accuracies.

quickly forget source performance. For PiSSA, DoRA, and LoRA the source performance drops
significantly before target accuracy has converged, so early stopping can not solve the problem.
Figure[6] (top right) plots the maximum nuclear norm ratio of the models. NB-LoRA remains below
the bound, while several others are more than an order of magnitude larger.

As seen in the top left of Figure [7, when the norm budget 4 of NB-LoRA increases, the corre-
sponding adapter norm also increases and the model forgets more on the source task (ImageNet-1k).
Similar trends are observed in other adapters. However, across methods, this relationship does not
necessarily hold—for example, VeRA may have larger norms but less forgetting than AdaLoRA.
Due to its tight norm control, NB-LoRA consistently exhibits substantially less forgetting than other
methods while maintaining good adaptation performance.

5.3 SUBJECT-DRIVEN IMAGE GENERATION

Our goal of this experiment is to demonstrate that with tight norm control, NB-LoRA can prevent
overfitting for downstream tasks in the low-data regime.

Task description. Following |Qiu et al. (2023), we evaluate the proposed method in the Deam-
Booth setting (Ruiz et al., [2023). We fine-tune Stable Diffusion (Rombach et al.l [2022) to contex-
tualize a subject shown in a small set of images together with a given prompt containing a unique
token. Following the DreamBooth (Ruiz et al., 2023, we train and evaluate on generating 25 sub-
jects, each of which corresponds to 30 prompts.

Comparison study. We conducted comparison exper-
iments of LoRA, DoRA, and NBLoRA with the same

learning rate (2e-6) and training horizon (1600 steps). The e | DINOT CLP T CLPTT LR
generated images are evaluated via three crucial aspects: f::;mag“ | EZZ zzzz — zjz
subject fidelity (DINO (Caron et al., [2021}), CLIP-I (Rad- DoRA, 14 0718 0834 0217 0704
ford et al, 2021)), textual prompt fidelity (CLIP-T (Rad-] 5S4 0720 0835 0218 0704

. . NB-LoRA,_1 s— 0.702 0.816 0.238 0.717

ford et all 2021)) and sample diversity (LPIPS |Zhang NB,LgkA;;;;i;;Z 0648 0781 0261 0743

et al.| (2018))). Table [3| reports the results at the training NB-LoORAs-1.5-4 0593 0750 0274 0.761

: o o NB-LoRA,—2 s=1. 0.657 0.790 0.258 0.740

step where <?ach method gchlev.es its hlghest DINO score.  (giropa” 270" | garr 079 0261 0743

LoRA and its variants yield high fidelity scores but low NB-LoRA,—»5-1.0 | 0592 0748 0275 0761

1 1 1 1 1 NB-LoRA o 5— 0.709 0.823 0.235 0.717

prompt'ﬁdel.lty gnd sample d1v§r51ty, see the qualitative NSOl I YR Ry A

comparison in Flgure@ Interestingly, the norm bound be-  NB-LoRA,_o 5-025 | 0594 0750 0275 0761

haves like a regularization factor. That is, as the bound

decreases, the fidelity metrics decrease. Meanwhile, the Table 3: Quantitative comparison of subject fidelity
prompt fidelity and diversity metric increases, indicating ~(PINO: CLIP-D. prompt fidelity (CLIP-T) and diversity

. . metric (LPIPS).
the less forgetting for the pretrained model.

Prolonged training. We further investigate the behavior of different methods via the weight norm
changes during fine-tuning. Figure[9|shows that LoRA and its variants (DoRA, PiSSA) continuously
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a [v] dog in a firefighter outfit a [v] cat wearing a red hat

w—1) ] =
g S |

s | " e
Input image X NB-LoRA, 155 NB-LoRA, 15

st y v rale S WA et =
Input image LoRA NB-LoRA, 1512 NB-LoRA, 15 NB-LoRA, 151

a [v] clock on top of green grass with sunflowers around it a [v] vase with the Eiffel Tower in the background

o

Input image ) NB-LoRA, 1 5-12 NB-LoRA,—1 55 NB-LoRA,— 5—; Input image NB-LoRA, — 5-12 NB-LoRA, 1 - NB-LoRA, 1 51

a [v] toy in the snow a [v] stuffed animal with a city in the background

Figure 8: Qualitative comparison of subject-driven generation among LoRA and NB-LoRA with
different nuclear norm bounds.

step 0 step 600 step 1200 step 1800 step 2400 step 3000
5 - — =55 =

Input image
=3 ot

Spectral norm of I/

0 1000 2000 3000
steps

(a) Norms of weight W (b) Validation prompt: a [v] dog on a cobblestone street

Figure 9: (Left) Norms of fine-tuned weights as a function of training steps. (Right) Qualitative
examples show that LoRA, DoRA and PiSSA exhibits significant overfitting compared with NB-
LoRA, which maintains better prompt fidelity and diversity.

depart from the pretrained weights as the norm increase substantially, which leads to overfitting
issues due to tiny dataset (5 6 images). Due to the tight bound control, NB-LoRA exhibits prolonged
training robustness and effectively avoid model overfitting.

6 LIMITATIONS

Although we show norm-controlled low-rank adaption is useful, there are fine-tuning tasks that do
require high—spectral-norm update in order to encode the new knowledge from downstream dataset.
For such tasks, vanilla LoRA may indeed be more suitable than NB-LoRA.

7 CONCLUSION

In this paper we propose a norm-bounded low-rank adaptation (NB-LoRA) for model fine tuning.
In particular, we introduce a new parameterization which is smooth and complete, i.e. it covers all
matrices of a specified rank and singular value bounds. The proposed parameterization address some
issues related to the initialization of LoRA and its impact on learning rate, and can also mitigate the
tendency of LoRA to forget source model performance and overfit small target dataset.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Reza Akbarian Bafghi, Nidhin Harilal, Claire Monteleoni, and Maziar Raissi. Parameter effi-
cient fine-tuning of self-supervised vits without catastrophic forgetting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3679-3684, 2024.

Klaudia Batazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

Rajendra Bhatia and Fuad Kittaneh. On the singular values of a product of operators. SIAM Journal
on Matrix Analysis and Applications, 11(2):272-277, 1990.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine Learning
Research, 2024.

Massimo Bini, Karsten Roth, Zeynep Akata, and Anna Khoreva. Ether: Efficient finetuning of
large-scale models with hyperplane reflections. In /ICML, 2024.

Massimo Bini, Leander Girrbach, and Zeynep Akata. Delora: Decoupling angles and strength in
low-rank adaptation. In International Conference on Learning Representations, 2025.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
nents with random forests. In Computer vision—-ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446-461. Springer, 2014.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient
fine-tuning design spaces. In International Conference on Learning Representations, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. IEEE, 20009.

11



Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135, 1999.

Henry Gouk, Timothy Hospedales, et al. Distance-based regularisation of deep networks for fine-
tuning. In International Conference on Learning Representations, 2021.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on loRA finetuning dynam-
ics. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=sn3UrYRItk!

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In /CLR, 2022.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) fine-tuning for transformer models. In ICLR 2025 Workshop on Deep
Generative Model in Machine Learning: Theory, Principle and Efficacy, 2025.

Uijeong Jang, Jason D Lee, and Ernest K Ryu. Lora training in the ntk regime has no spurious local
minima. In International Conference on Machine Learning, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Junsu Kim, Jaeyeon Kim, and Ernest K Ryu. Lora training provably converges to a low-rank global
minimum or it fails loudly (but it probably won’t fail). In International Conference on Machine
Learning, 2025.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Elora: Efficient low-rank adaptation
with random matrices. In The Twelfth International Conference on Learning Representations,
2024a.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vijay Lingam, Atula Tejaswi Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joy-
deep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and sujay sanghavi. SVFT:
Parameter-efficient fine-tuning with singular vectors. In 2nd Workshop on Advancing Neural Net-
work Training: Computational Efficiency, Scalability, and Resource Optimization (WANT@ICML
2024), 2024.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-

Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

12


https://openreview.net/forum?id=sn3UrYRItk
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038-121072, 2024.

Luca Oneto, Sandro Ridella, and Davide Anguita. Tikhonov, ivanov and morozov regularization for
support vector machine learning. Machine Learning, 103(1):103-136, 2016.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Scholkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320-79362, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500—
22510, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca)l 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
In International Conference on Learning Representations, 2021.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Ruigang Wang and Ian Manchester. Direct parameterization of lipschitz-bounded deep networks. In
ICML, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

13


https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2026

Zicheng Zhang, Haoran Li, Yifeng Zhang, Guoqgiang Gong, Jiaxing Wang, Qixia Jiang, Junxing Hu,
et al. The primacy of magnitude in low-rank adaptation. In The Thirty-ninth Annual Conference
on Neural Information Processing Systems, 2025.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

14



Under review as a conference paper at ICLR 2026

A KEY TECHNICAL LEMMAS

Here we present some key lemmas which are used in our proofs later.
Lemma A.1. For any Q € R"*™, there exists a diagonal matrix P with P;; € {—1,1} such that
I+ PQT is invertible.

Proof. Let e, q; be the kth column of I and @, respectively. We construct Ay via
_ skAl;ilekql—crAI;il

1+ skq;A;_llek ’

At =AY (14)

where Ag = I and s, = sign(v,IA;ilek) with sign(0) = 1. From Sherman-Morrison formula, Ay,
is well-defined (i.e., invertible) and satisfies A, = Ak_1+skekq;. By taking P = diag(s1, ..., Sn),
we have A, = I +Y'_, skerql = I+ PQ" is also invertible. O

Lemma A.2. Let G € R"™*" and H € R**" such that GTG + H"H = I. Then,
G| XN\ _ |U-2)I+2)7!
[H] = Cayley ([YD = [ —oy (I + 2)°! (15)
forsome X € R"™*" andY € R**" if and only if I + G is invertible.

Proof. From the Cayley transformation (7)) we have the following relationships:
G=(I-2)I+2)"', H=-2YI+2)"', Z=X-X"+Y'"Y. (16)

(if). From the above equation we have I + G = (I + Z)~! invertible.

(only if). The proof is constructive, i.e., finding X, Z € R™" and Y € R**" satisfying . We
consider a candidate solution as follows:

1 1
Z=I+G)'I-G), Y= —5HI+2), X=32 (17)
It is easy to check that the above solution satisfies the first two equations in (I6). We now verify the
last equation as follows:

1
Z+X"-X-Y'Y=_(Z+Z")-YTY

2
=%[(I LG M-+ (-G I+CT) |~ T+ G H H(I+G)
%[(1 I+ G (TG I~ G = (T + G HTH(I + G)~!

1
=5+ GHHI+GNHI-G)+(I-GYI+G)—2H H|(I+G)!
=(I+G") Y I-G'"G-H"H|I+G)'=0,
where the second line is due to that (I + G)~! and (I — G) are commutative. O

Lemma A3. Let Ac R"™*™ and B € R’”f” with AA~T + BBT = I. Then, there exist a diagonal
matrix P € R™*" with Pj; € {—1,1} and A € R™*™, B € R™*" satisfying

[PA PB]" = Cayley ([/I B]T) . (18)
. AT . ..
Proof. From the assumption we have that BT] is a tall matrix, i.e., r < m + n. We then take

AT
the partition [ BT

H = HP, where Pisa diagonal matrix with P;; € {—1,1}. Then, we can obtain
G'G+H'H=P(G'G+H H)P=PAAT + BB")P=P*=1

for all diagonal such P. From Theorem|A.1} we can pick a particular P such that I + G = I + GP

is invertible. We then follow Theorem to compute X € R"™" and Y € R(m +n—r) xr

satisfying . Finally, we take the partition [XT Y] =[A BJ. O

] = [g] with G € R™" and H € R(™*T7=7")%" We introduce G = GP and
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B PROOF OF THEOREM [4.2]
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Figure 10: Diagram of NB-LoRA parameterization.
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The proof includes two parts: I) W = W(A, B) € Wy for any A e R™™ and B € R™*"; II) for
any W € W, there exists a pair of A € R"*™ and B € R"*" such that W = W(A, B).

PartI Itis obvious that rank(W) < r. The jth singular value of W satisfies

o;(W) =20;(BTS2.52A4) < 0; (QQT + KKT) = 0;(S2(AAT + BB")S%) = 0;(S) (19)
QT K I

where the inequality is the matrix arithmetic-geometric mean inequality (Bhatia & Kittaneh), [1990}
2013)), and the last equality follows by the Cayley transformation.

Part I Without loss of generality, we assume that the diagonal elements of .S is in descending
order, i.e., aj(S) = §j; for j = 1,...,7. Since W has maximally r non-zero singular values,

we can take the reduced SVD decomposition W = UwEwVwT where U,, € R™*" V,, € R™"*"
are semi-orthogonal, and the positive diagonal matrix S, € R"*". We now consider the following
candidates for A, B:

A=Px,V,), B=P5U/, (20)

where P € R"*" is a diagonal matrix with P;; € {—1,1}, and ¥,, 3, € R"*" are positive diagonal

matrices. The first constraint for A and B is that [A B]T is semi-orthogonal since it is an output
of the Cayley transformation. Thus, we have

I=AAT +BB" =P(22+9)P"T = 224+ %7 =1 1)
The second constraint for A, B is W = 2BT S A, which implies
UpXoV,] = 20,2, PTSPSV,] = U, (25,5,9)V,]
Eq. (1) and (22) yield a solution of

> NI+ J+VI—J > VI+J—VI—-J (23)
a = B b — .
2 2

— 2%, %, =Y.S" (22

where J = ¥,,5 ! satisfies 0 < J < T since S,, < S for W € Wg. Note that we need to deal with
the case where S is not full rank, i.e., there exists an k < r such that Sy, = 0 and S_1 —1 > 0.
Since 0 < E < S we have ¥;; = 0 for all > k and simply take J;; = 1. It is easy to verlfy that
Equations (21) - (23) still hold. Finally, Theorem|A.3[shows that we can recover A, Bfrom A, B by
picking a proper P in (20) based on Theorem ,.!_l
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Method Peak Mem. Train Time GSMS8K Acc.

AutoDiff 69.52GB 23m51s 58.0
Custom  67.19GB 22m40s 57.8

Table 4: Computation comparison for training NB-LoRA with AutoDiff and custom backward step.

C CUSTOM BACKWARD FOR CAYLEY TRANSFORMATION

We first rewrite the forward computation of Cayley transformation (X,Y) — (G, H) as follows:
Z=X-X"+Y'Y, M=1+2, W=M"' G=I-2)W, H=-2YW (24)

where G, X, Z, M,W € R"™*" and H,Y € R**". We provide a custom backward (Vg,Vg) —
(Vx, Vy) with V4 = (2¢/0A)T for (24) as follows:

~ T ~

wal = [sa] s =[50 5]

= = w, Sz = = )
VX:S—ZF—Sz, Vy:—%HM(S—Zr-i-Sz)—Q@H,

where W, M, G, H can be reused from the Cayley forward step. Note that when applying AutoDiff
to ([24), it is necessary to store the input X, Y, output G, H as well as some intermediate steps, which
requires more memory than our custom backward step since Y € R**" is much larger than
W, M € R"". In our approach, we can recover Y from other stored variables, i.e., Y = —%H M.
To give detail derivation for (25)), we first differentiate the forward step (24):

dZ =dX —dXT+YTdYy +dY"Y, dW = -WdZW, 26)
dG = —dZW + (I — Z)dW, dH = —2dYW —2YdW.
The differential of loss function d/ satisfies
Al = Tr (VxdX) + Tr (VydY) = Tr (V5AG) + Tr(VdH). 27)

By further substituting (26)) into (27), we have
Tr(VEdG) + Te(VydH)

= —Tr(VLAZW + VLI — 2)WAZW) = 2Te (VLAY W — VY WAZW)

= —Te(W(VE+VET - Z2)W -2V YW)AZ) — Tr(2WV ;dY)

= -Tt(W(VE + VEG + Vi H)AZ) — Tr(2WVdY)
—Tr(S;dZ) — Tr(2WV dY)
= —Tr((S] — Sz)dX) — Tr(((Sz + SZ)Y T +2WV)dY) = Tr (VLdX) + Tr (VydY)

which yields the custom backward step 1i by substituting Y = — %H M. As shown in Table@ the
custom backward pass can save both GPU memory and training time.

D CONNECTIONS BETWEEN DELORA AND NB-LORA

DeLoRA (Bini et al.}2025) is a fine-tuning method which can control both rank and Frobenius norm
bound of weight adaptation W. Specifically, DeLoRA takes the form of

W= OpTza.—pT diag(|bil2 - |ai]2) A (28)
T r

where a;, b; are the ith row of A € R™*™ and B € R"*™, respectively. The above parameterization
can be rewritten as sum of NB-LoRA matrices with both rank and norm bound of 1:

5o b\ [ a 5 5o
w8 Sa( ) (o) St S
r 2 V2|bi|2 V2|ails r Z; r 2;

i=1
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Y=0+%

DeLoRA *

Fixed 7 = 0.5 Fixed 7 = 0.85 Free v with 7o = 0.56

Figure 11: Visualization of the reachable sets Wygrory (red) and Wperora (blue). (Left) With frozen
scaling factor v = 0.5, DeLoRA provides the same certified norm bound as NB-LoRA while
WheLora 18 much smaller than Wygoza. (Middle) Further increasing the fixed « can enlarge Wpepora
but it does not cover Wygprora. (Right) DeLoRA can cover Wygrory if 7y is free and sufficiently large,
i.e., ¥ = d + 7. However, its norm bound § + 2~q is much larger than NB-LoRA.

where [a; b; ] is a set of of decoupled unit vectors. By Theorem [4.2] we have that |W;|r < 1 and
IWr <d/r>i_, [Wi|r <. NB-LoRA in (EI) also has a similar representation:

i=1

i=1

Different from DeLoRA, [ @; b; ] is a set of coupled unit vectors as they are orthogonal to each other.
This coupling behavior allows us to specify the bound for each singular value of W, providing tight
control of a wide family of matrix norms.

Another main difference is model initialization. Since it is not straightforward to initialize A, B
satisfying W = 0 for (28), the residual-type initialization (Meng et al., 2024) is adopted, leading
to different reachable sets Wygropa and Wperora When an explicit norm bound is specified. From
Theorem@we have that Wy .gs covers the feasible region of W with norm bound of §. Moreover,
the initial point W = 0 of NB-LoRA lies at the center of the feasible region, allowing searching
for all directions, see Figure [T1] Due to the residual type initialization, DeLoRA requires a fixed
v = §/2 to ensure the same norm bound guarantee, see the left of Figure Since its initial
W lies at the boundary of Wperora, the searching directions of DeLLoRA are constrained in certain
ranges that depend on the random initial guess. Although these issues can be resolved by making
v learnable, DeLLoRA allows an unbounded Frobenius norm and needs a larger bound to cover the
range of NB-LoRA, see the right of Figure[IT]

E COMPOTATION COST COMPARISON

Table [5| compares computational costs against two methods, PiSSA and DoRA, across different
ranks on LLaMA 2-7B. Due to the extra reparameterization layer, NB-LoRA takes slightly more
GPU memory and training time. NB-LoRA with the largest rank = 256 still takes less computa-
tional resources than DoRA with the smallest rank » = 2. The main reason is that DoRA requires
explicit calculation of the full adaptation matrix, which can be avoided with LoRA and NB-LoRA.
Specifically, DoRA decouples angular and magnitude components of weight adap-
tation via

W,+ BTA
W Tt BT
Wy + BT Al
with | - |¢ as the column-wise vector norm. Note that the normalization vector |W, + BT A|.

requires computing BT A € R™*", whose forward computation time could be much larger than
r X r-matrix inverse, see Table|§l
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Rank \ 2 4 8 16 32 64 128 256
DoRA |24m46s 24m33s 24m03s 24m04s 24m05s 24m02s 24m18s 24m53s
Training Time PiSSA | 17m44s 17m35s 17m09s 17m10s 17ml12s 17mlS5s 17m32s 18m09s
NB-LoRA | 18m53s 18m55s 18m26s 18m38s 18mS1s 19m13s 20m15s 22m40s

DoRA 102.41 102.44 102.51 102.64 10290 103.41 10447 106.53

Peak GPU Mem. (GB) | PiSSA 60.92 6096 61.02 61.15 6141 61.93 6296 65.04
NB-LoRA | 60.94 60.99 61.08 6128 61.67 6245 64.05 67.19

Table 5: Computation comparison of DoRA, PiSSA and NB-LoRA with rank choice from 2 to 256.
Experiments are conducted with 4 H200 GPUs.

Matrix Operation | 2 4 8 16 32 64 128 256

BTAeR™*™ |314.142.5 311.9+1.6 312.1+2.4 310.742.0 288.3+2.0 323.9+1.9 421.9+2.0 792.6+1.1
M~1eR™" | 292409 30.7409 35.1+14 483409 729+1.1 97.0+2.0 169.7+1.4 361.3+1.7

Table 6: Computation time (us) of the rank-r matrix BT A € R™*" in DoRA and M~ € R"*" in
NB-LoRA. We use m = 4096, n = 4m and rank r from 2 to 256. Computation time is measured
based on 500 samples with 500 warm-up steps on RTX4090.

Design choice Method | W formulation

LoRA apTA o
+(Cayley transform) NB-LoRA with [W|s, < &|20BT A with (A, B) = Cayley(4, B)
+(learnable scaling) NB-LoRA with [W|s, <J |26BTSA with S = diag(s) and | s, < &

Table 7: Summary of incremental design choices from LoRA to NB-LoRA.

Learning Rate

Rank Method le-d 5e-4 le-3

LoRA 52.8 58.3 failed
128 NB-LoRA (spectral) | 57.7 60.5 60.0
NB-LoRA (nuclear) | 57.8 59.7 59.2

LoRA 43.2 55.8 575
16 NB-LoRA (spectral) |47.9 553 56.5
NB-LoRA (nuclear) |49.4 56.8 55.6

Table 8: We report the GSM8K accuracy for ablation of NB-LoRA on fine-tuning LLaMA-2-7B
models with different ranks and learning rates.

F LLM EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Training Details. In our LLM experiments, we use the same training setup asMeng et al.|(2024);
Taor1 et al.| (2023)), i.e., AdamW |Loshchilov & Hutter| (2019) with no weight decay. We use the
cosine annealing scheduler with a warm-up ratio of 0.03. The default batch size is 128. We ensure
« = r for all adapters, although NB-LoRA does not use this parameter. We choose the norm bound
of § = r with nuclear norm, which results in the same scaling factor as the other adapters. When
Frobenius or spectral norm is used, we set the default bound as § = 1/r and § = 1, respectively,
which also results in the same scaling factor as other adapters. We set lora_dropout to 0, and
insert the adapters into all linear layers of the base model. We use BFloat16 for both the base model
and the adapters.

Ablation of NB-LoRA Design Choice. We summarize the incremental design choices that trans-
form LoRA into NB-LoRA in Table|/} We conduct an ablation study on LLaMA-2-7B fine-tuning
in Table[8] For a large rank (r = 128), NB-LoRA with spectral norm bound achieves slightly better
performance, whereas the nuclear norm performs better under a low-rank budget. Both methods
yield more robust performance compared to LoRA.
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Figure 12: The evaluation accuracy, the nuclear norm bound, loss and grad norm over a full training
epoch on MetaMathQA. The norm bound is computed by maximizing over all adaptation modules.
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Figure 13: Comparison among LoRA, DoRA, PiSSA and NB-LoRA across ranks from 2 to 128.
We also test the learning rate robustness for the case with r = 16.

Robust Performance for Prolong Training. We conduct a full epoch training of LLaMA-2-7B
on the MetaMathQA dataset. The learning rates are chosen to be le-4 and 5e-4, which achieve good
performance for different adapters in short horizon training. As shown in Figure[I2] we can observe
that NB-LoRA consistently outperforms other methods. In particular, NB-LoRA is more stable for
the large learning rate, due to the norm saturation on weight adaptation. Meanwhile, DoRA depicts
unstable training and PiSSA has poor performance due to excessive increase in weight norm.

Experiments on Various Ranks. Figure|l3|explores the impact of rank on LoRA, DoRA, PiSSA
and NB-LoRA with learning rate of le-4. Under the setup, PiSSA achieves the best GSM8K ac-
curacy. As the rank decrease, the gap between NB-LoRA and PiSSA narrows. And NB-LoRA
outperforms PiSSA for low ranks when » < 16. NB-LoRA outperforms LoRA and DoRA by ap-
proximately 5% across all ranks. We also examine the effect of varying learning rates at rank 16,
demonstrating robustness to learning rate choices across different ranks.

Addition Computation Comparison between DoRA and NB-LoRA. We first report the forward
computation time of key operations in DoRA and NB-LoRA in Table [6] showing that inverting
a small low rank matrix is much computationally cheaper than computing a large low-ran weight
matrix.

G CHOICE OF NORM BOUND

Here we give a theoretical explanation that for the proposed NB-LoRA approach, the norm bound ¢
can be understood as a regularization coefficient. NB-LoRA reparameterizes the following Ivanov
regularization problem:

mwi/n (W) st W] <6

which is closely related to the Tikhonov formulation:

min 4(W) + A[|W].
W

Under mild assumptions, these two problems are equivalent |(Oneto et al|(2016). Since NB-LoRA
provides a complete parameterization over the feasible set, the constrained problem can be expressed
as an unconstrained one without loss of expressivity. Thus, § has a similar effect to A, which can
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Hyper Param. | 32 64 128 256 512

LoRA (Ir=5e-4) | 57.9 58.3 583 60.3 57.8
LoRA (Ir=2e-4) | 51.0 54.2 55.8 58.6 59.9
LoRA (Ir=1e-4) |48.7 52.2 54.0 57.0 56.6

Hyper Param. 0| 16 32 64 128 256

NB-LoRA (Ir=5¢-4) | 55.8 582 60.6 59.7 58.8
NB-LoRA (Ir=2e-4) | 51.4 54.5 58.1 59.1 61.1
NB-LoRA (Ir=1e-4) | 51.4 54.7 57.8 60.1 59.4

Table 9: We report the GSM8K accuracy of fine-tuning LoRA and NB-LoRA with different choices
of hyper-parameters.

be verified via the empirical results in Table[0] It is worth wo mention that for Table [2] the default
choice of « also shows similar U-shape behavior as the learning rate changes, where doubled or half
« can lead to either training instability or substantial performance degradation on average.

H VIT EXPERIMENTS

Training Details. A similar ViT fine-tuning experiments for the model forgetting issue can be
found in Bafghi et al.| (2024). We take the ViT-B/16 model Dosovitskiy et al.[(2020) and insert
adaption blocks into the @, V' matrices [Kopiczko et al.| (2024a). We choose AdamW [Loshchilov
& Hutter| (2019) as the optimizer with default learning rate of 5e-3 and weight decay of 0.01. For
the full fine-tuning, we reduce the learning rate to 5e-4. We take one-cycle learning rate scheduler
with warm-up ratio of 0.1. We use batch size of 128 for SVHN dataset and 256 for CIFAR-100 and
Food-101 dataset.

Extra results. We report the ViT examples with different target datasets: CIFAR-100 and Food-
101 in Figure[T4] A similar conclusion as the SVHN experiment can be drawn from two datasets.

I SUBJECT-DRIVEN IMAGE GENERATION

In this section we report further details about experiments in Section We adopt the code im-
plementation form examples/boft_dreambooth in the Hugging Face PEFT library. We tuned
the learning rate from 6e-4 (i.e., the default choice in Bini et al.| (2025)) to 2e-4, since we observed
that LoRA with Ir=6e-4 exhibits overfitting at early stage in our experimental setup.
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Figure 14: Geometric mean of CIFAR-100 (top) and Food-101 (bottom) with different adapters on
various of hyper-parameter setup.
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