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ABSTRACT

In this work, we propose norm-bounded low-rank adaptation (NB-LoRA) for
parameter-efficient fine tuning. NB-LoRA is a novel parameterization of low-rank
weight adaptations that admits explicit bounds on each singular value of the adap-
tation matrix, which can thereby satisfy any prescribed unitarily invariant norm
bound, including the Schatten norms (e.g., nuclear, Frobenius, spectral norm). The
proposed parameterization is unconstrained, smooth, and complete, i.e. it covers
all matrices satisfying the prescribed rank and singular-value bounds. Natural lan-
guage generation experiments show that NB-LoRA matches or surpasses perfor-
mance of competing LoRA methods, while exhibiting stronger hyper-parameter
robustness. Vision fine-tuning experiments show that NB-LoRA can avoid model
catastrophic forgetting without minor cost on adaptation performance, and com-
pared to existing approaches it is substantially more robust to a hyper-parameters
such as including adaptation rank, learning rate and number of training epochs.

1 INTRODUCTION

Large pre-trained vision and language models have demonstrated impressive generalization capa-
bility across a wide variety of tasks; see, e.g. Achiam et al. (2023); Touvron et al. (2023). When
a more specific target task is identified, however, it has been observed that parameter-efficient fine-
tuning (PEFT) techniques, e.g. Houlsby et al. (2019); Hu et al. (2022), can improve performance
via quick model adaption with low computation and data requirements. The primary goal for an
effective PEFT method is to achieve good adaptation performance with high training efficiency, i.e.,
dramatically fewer trainable parameters and training epochs. Since training efficiency is the target,
ideally such a method will be quite robust to hyperparameters. Alongside this primary goal, it is
often also desirable to maintain the generalization performance of the original pre-trained model as
much as possible, i.e. avoid “catastrophic forgetting” Qiu et al. (2023); Biderman et al. (2024).

Low-rank adaption (LoRA) (Hu et al., 2022) is a widely applied PEFT method, which parameterizes
the update of pretrained weights Wp P Rmˆn during finetuning as

y “ pWp ` W qx “

´

Wp `
α

r
BJA

¯

x (1)

where A P Rrˆn, B P Rrˆm are the learnable matrices, α is a scaling factor, and r ! minpm,nq

is the rank budget of weight adaptation W . Matrix rank is a one way to quantify the “size” of a
weight, corresponding the underlying dimensionality of its operation. But matrix norms – such as
nuclear, Frobenius, or spectral norms – provide another notion of size, quantifying the magnitude of
a matrix’s elements and of its operation on vectors.

Recent works show that it is beneficial to control the rank and norm of the weight adaption. Jang
et al. (2024); Kim et al. (2025) show that the global minimum of fine-tuning has low rank and
small magnitude while spurious local minima (if they exist) have high rank and large magnitude.
Moreover, bounding the magnitude of W can enhance training robustness (Bini et al., 2025). In Hu
et al. (2025), LoRA training can achieve sub-quadratic time complexity under certain norm-bound
conditions.

Motivated by those findings, we propose norm-bounded low-rank adaptation (NB-LoRA), a novel
finetuning method that admits explicit bounds on both the rank and norm of weight update through
matrix reparameterization (see Fig. 1). Our approach can control a family of matrix norms, called
Schatten p-norms (i.e. p-norms of the singular value sequence), which include the nuclear norm,
Frobenius norm, and spectral norm as special cases. We summarize our contributions as follows.
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Figure 1: Visualization (Left) of the original LoRA Hu et al. (2022) and (Right) of our proposed
method NB-LoRA, where bounded rank and norm are enforced by reparameterization WS .

• Our parameterization is a smooth map W “ WSpÃ, B̃q which takes as argument two
free matrix variables of the same size as A,B, but the resulting W automatically satisfies
user-prescribed bounds on both rank and all individual singular values of W , which further
allows any Schatten p-norm bound on W to be specified.

• Our parameterization is complete, i.e., for any W P Rmˆn satisfying the prescribed bounds
on singular values, there exists a (not necessarily unique) Ã, B̃ such that W “ WSpÃ, B̃q.

• LLM fine-tuning experiments show that NB-LoRA can substantially improve training sta-
bility, overall performance and robustness to learning rates.

• Vision transformer fine-tuning experiments illustrate that NB-LoRA can achieve similar
adaptation performance to LoRA and other existing methods while exhibiting less “forget-
ting” of the source model. Also, norm bounds appear to significantly reduce sensitivity to
hyperparameter variation.

2 RELATED WORK

LoRA can be highly sensitive to learning rate (Bini et al., 2024; Biderman et al., 2024), model
initialization (Hayou et al., 2024), and it is susceptible to over-training (Qiu et al., 2023). To mitigate
these effects, several recent works have proposed regularization techniques for LoRA. For example,
Gouk et al. (2021); Chen et al. (2023) propose an approach that preserves the Euclidean weight
distances between pre-trained and fine-tuned models. In Liu et al. (2024), DoRA was proposed
based on investigation of the vector-wise norm of the adaption matrix, and introduces an adaptive
scaling of W . Bini et al. (2025) proposed DeLoRA - a PEFT method that decouples the angular
learning from adaptation strength. VeRA is another method which learns a scaling vector for LoRA
weights (Kopiczko et al., 2024b). Our method also contains a learnable scaling vector, which can be
used to explicitly control bounds on each singular value of the weight adaptation.

Another line of LoRA methods are closely related to singular value decomposition (SVD). Meng
et al. (2024) proposed a novel SVD-based LoRA initialization, called PiSSA, which can significantly
speed up the training of LoRA. Zhang et al. (2023) proposed a dynamical rank allocation scheme,
called AdaLoRA, which adaptively update the rank bound in each LoRA layer. In Lingam et al.
(2024); Bałazy et al. (2024), the singular vectors of pretrained weights are re-used and a small
square matrices are learned during fine-tuning. No explicit control of norm bounds or constraint on
singular values were considered in these methods.

3 MOTIVATING ANALYSIS OF LORA

In this section we provide some brief analyses of LoRA that motivate consideration of alternative
parameterizations of A and B.

Analysis of Gradients and Initialization. For LoRA the standard approach is to initialize with
one of A or B equal to zero, so that W “ 0 initially, and the other as a small random matrix to enable
learning but avoid training instability (see Hayou et al. (2024) for a discussion of approaches). Based
on Equation (1), we can obtain the gradients of the loss ℓp¨q with respect to A and B as follows:

Bℓ

BA
“

α

r
B

ˆ

Bℓ

By

˙

xJ,
Bℓ

BB
“

α

r
Ax

ˆ

Bℓ

By

˙J

.
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The component Bℓ{By is typically not large, since the pre-trained base model has reasonable gen-
eralization capability over a wide range of tasks. Thus, at the beginning of fine-tuning, if B “ 0
and A is a small random matrix, then the gradient Bℓ{BA “ 0 and Bℓ{BB is small and can be noisy.
Therefore, both gradients could be small and uninformative for a large number of training steps,
leading to slow convergence and poor performance since fine-tuning is often carried out for a few
epochs. Large learning rate can help to speed up but it may cause training instability. The above
phenomenon has been reported and analyzed in a recent work (Meng et al., 2024), which proposed
PiSSA as an alternative initialization.

In this work, we provide a novel model reparameterization, and we note that this impacts training
behavior since gradient descent is affected by changes of coordinates. In our approach, the low-
rank matrices A,B are constructed from new free variables Ã, B̃ which share the same size as A
and B, respectively. Under this reparameterization (detailed in Section 4), A and B cannot be both
very small matrices. For example, if B is a zero matrix, then by construction A is a relatively large
matrix, which in turn provides sufficiently large gradient for A to move away from zero in a few
steps. However, the Frobenius norms of A,B are guaranteed to be bounded, thus the gradients of
A,B are also bounded assuming that x pBℓ{Byq

J is bounded, and thus large gradient steps can be
taken without training instability, i.e. we expect norm bounds to assist with robustness to learning
rate. This informal argument is supported by experimental results in Section 5.

Analysis of Model Forgetting. Let tpxs
i , y

s
i qu1ďiďM be the pretrained input-output pair of equa-

tion 1 under the source training dataset DS . After fine-tuning the adaption weight W based on some
target dataset DT , we can approximate the loss changes on DS by

ℓDspWp ` W q ´ ℓDspWpq «
1

M

M
ÿ

i“1

ˆ

Bℓ

Bysi

˙J

Wxs
i .

To prevent catastrophic forgetting we need to bound the left-hand side. Since xs and Bℓ
Bys

i
are fixed,

we argue that constraining the norm of W is a natural approach. If we have access to DS during
finetuning, one could incorporate source loss into the training to mitigate forgetting. However, DS

is often not available in fine-tuning applications.

4 NB-LORA

In this section we present our main contribution: a parameterization of low-rank matrices that admits
bounds on each individual singular value, and hence on any unitarily invariant matrix norm.

4.1 PRELIMINARIES AND PROBLEM FORMULATION

The problem we are interested in can be formalized as follows:
min ℓpW q s.t. rankpW q ď r, }W }Sp

ď δ (2)

where ℓ is some training loss and }W }Sp
“

`
řr

i“1 σ
p
i

˘1{p
for p P r1,8q and }W }S8

“ σ1, where
σ1 ě σ2 ě ¨ ¨ ¨ ě σr ě 0 are the singular values of W . Since Schatten p-norm is the vector p-norm
of the singular value sequence, it is unitarily invariant, i.e., }W }Sp

“ }UWV }Sp
for any orthogonal

matrices U, V .

We first define some notation. Since our approach involves comparing singular values of matrices
of potentially different ranks and sizes, for convenience we define σjpW q “ 0 if j ą rankpW q. We
now introduce the relation ĺσ .
Definition 4.1. Let X,Y be two matrices. We say X ĺσ Y if σjpXq ď σjpY q, @j P N.

Note the ĺσ is reflexive (X ĺσ X) and transitive (X ĺσ Y, Y ĺσ Z ñ X ĺσ Z). But it is
not antisymmetric, i.e., X ĺσ Y, Y ĺσ X œ X “ Y , e.g., when X,Y are distinct orthogonal
matrices. Most importantly for our purposes: if X ĺσ Y , then }X}Sp

ď }Y }Sp
for all p P r1,8s.

Let s P Rr
`, where R` “ r0,8q, and S “ diagpsq be the diagonal matrix with Sjj “ sj . We define

the set of matrices whose singular values are bounded by S by
WS :“ tW P Rmˆn | W ĺσ Su.

3
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Note that for any W P WS , we have rankpW q ď rankpSq “ r and }W }Sp
ď }S}Sp

.

4.2 NB-LORA PARAMETERIZATION

We now present so-called direct parameterization of WS , a smooth mapping WS from free matrix
variables to W which maps onto the entire set WS . Then, we can transform (2) into an unconstrained
problem by further parameterizing the positive diagonal matrix S such that }S}Sp

“ δ.

Our parameterization takes Ã P Rrˆn, B̃ P Rrˆm as the free parameters and produces W via

W “ WSpÃ, B̃q :“ 2BJSA, where
„

AJ

BJ

ȷ

“ Cayley

ˆ„

ÃJ

B̃J

ȷ˙

. (3)

Here the Cayley transformation for a tall matrix
„

X
Y

ȷ

with X P Rrˆr and Y P Rqˆr is defined by

Cayley

ˆ„

X
Y

ȷ˙

:“

„

pI ´ ZqpI ` Zq´1

´2Y pI ` Zq´1

ȷ

, where Z “ X ´ XJ ` Y JY. (4)

Note that G “ CayleypF q is a semi-orthogonal matrix, i.e., GJG “ I for any tall matrix F (Golub
& Van Loan, 2013), however it is not by itself a complete parameterization for the set of semi-
orthogonal matrices, e.g., there does not exist an F such that CayleypF q “ ´I . Despite this, we
have the following, which is the main theoretical result of the paper.
Theorem 4.2. The NB-LoRA parameterization in (3) is a direct (smooth and complete) parameter-
ization of WS , i.e. WS is differentiable and WSpRN q “ WS .
Remark 4.3. A special case of the above theorem is S “ I , which is a complete parameterization
of all 1-Lipschitz linear layer, i.e. fpxq “ Wx with }W }S8

ď 1, see Proposition 3.3 of Wang &
Manchester (2023). One can further extend it to a nonlinear layer with low-rank and norm-bounded
Jacobian. Specifically, we take a nonlinear layer of the form fpxq “ 2BJD1ϕpD2Axq where A,B
are constructed from (3), D1, D2 are diagonal matrices satisfying 0 ĺ D1D2 ĺ S and ϕ is a scalar
activation with slope-restricted in r0, 1s. Then, we have Bf{Bx P WS for all x P Rn.

Imposing the Norm Bound on W . From Theorem 4.2, if we construct a complete parameteriza-
tion for the set of singular bound vector s P Rr

` such that }s}p “ δ, then the proposed NB-LoRA
(3) covers all adaptation matrices W satisfying the prescribed rank and norm bounds. For p “ 8,
we simply take s “ pδ, δ, . . . , δq. For p P r1,8q, one approach is s “ δ|s̃|{}s̃}p, where s̃ P Rr is
a free non-zero vector. However, this parameterization is not smooth at s̃ “ 0. Instead, we use the
following parameterization in our experiments:

s “ δ
“

Softmax
`

s̃{
?
r
˘‰1{p

.

Technically, the above parameterization omits some boundary cases with }W }Sp “ δ and σrpW q “

0 since softmax has strictly positive outputs. However, since it covers the interior of the feasible set
and can approximate the boundary, there is no practical impact on optimization performance.

Model Initialization and Gradient analysis. Here we return to the motivating analysis from Sec-
tion 3 and show why NB-LoRA helps resolve the issue of small gradients. We can adapt the standard
LoRA initialization to NB-LoRA’s free parameters: sampling Ã as a small random matrix and set-
ting B̃ “ 0. After applying the Cayley transformation, we have AAJ “ I and B “ 0, yielding a
zero initialization for W . The gradients of A,B can be written as

Bℓ

BA
“ 2SB

ˆ

Bℓ

By

˙

xJ “ 2B̂

ˆ

Bℓ

By

˙

xJ,
Bℓ

BB
“ 2SAx

ˆ

Bℓ

By

˙J

“ 2Âx

ˆ

Bℓ

By

˙J

where Â, B̂ satisfy
ÂÂJ ` B̂B̂J “ SpAAJ ` BBJqS “ S2

with }S}Sp “ δ ą 0. Hence Â, B̂ cannot be both arbitrarily small matrices, implying that Bℓ{BA
and Bℓ{BB cannot be both arbitrarily small initially. On the other hand, the Frobenius norms of
Â, B̂ are also bounded by cδ where c is the constant satisfying }S}S2 ď c}S}Sp for all S. Thus,
if xpBℓ{ByqJ remains bounded, then Bℓ{BA and Bℓ{BB are bounded, allowing stable training for a
wider range of learning rates than LoRA.

4
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δ

γ

NB-LoRA
DeLoRA

Initial W = 0

Fixed γ = 0.5δ

NB-LoRA
DeLoRA

γ

Fixed γ = 0.8δ

Initial W = 0

Free γ with γ0 = 0.5δ

Initial W = 0

NB-LoRA

DeLoRA

γ0

γ = δ + γ0

Figure 2: Visualization of the reachable sets WNBLoRA (red) and WDeLoRA (blue). (Left) With frozen
scaling factor γ “ 0.5δ, DeLoRA provides the same certified norm bound as NB-LoRA while
WDeLoRA is much smaller than WNBLoRA. (Middle) Further increasing the fixed γ can enlarge WDeLoRA

but it does not cover WNBLoRA. (Right) DeLoRA can cover WNBLoRA if γ is free and sufficiently large,
i.e., γ ě δ ` γ0. However, its norm bound δ ` 2γ0 is much larger than NB-LoRA.

Computational cost of Cayley Transformation. Due to the low-rank nature (r is often less than
256), computing the inverse of an r ˆ r matrix is not overly expensive. While matrix inversion is
one part of the total training cost, another computationally intensive part is the backward pass for
the Cayley transformation (4). We provide an efficient custom backward step in Appendix C.

DeLoRA vs NB-LoRA. Similarly to our method, DeLoRA (Bini et al., 2025) can also control the
Frobenius norm bound of weight adaption based on the following parameterization:

W “
γ

r
BJΞA ´

γ0
r
BJ

0 Ξ0A0 (5)

where the scaling factor γ and weight parameter A,B are initialized as γ0 and A0, B0. Ξ is a
diagonal matrix that normalizes each row of A,B. Similar to PiSSA Meng et al. (2024), the second
term in (5) can be absorbed into the pretrained weight Wp. Note that our method can control other
Schatten norms (e.g. nuclear, spectral), which were not considered in Bini et al. (2025).

As shown in Appendix D, both DeLoRA and NB-LoRA can be represented as sum of NB-LoRA
matrices with both rank and norm bound of 1. The main difference comes from their reachable sets
WNBLoRA and WDeLoRA when an explicit norm bound is specified. From Theorem 4.2 we have that
WNBLoRA covers the feasible region of W with norm bound of δ. Moreover, the initial point W “ 0 of
NB-LoRA lies at the center of the feasible region, allowing searching for all directions, see Figure 2.
Due to the residual type initialization, DeLoRA requires a fixed γ “ 0.5δ to ensure the same norm
bound guarantee, see the left of Figure 2. Since its initial W lies at the boundary of WDeLoRA, the
searching directions of DeLoRA are constrained in certain ranges that depend on the random initial
guess. Although these issues can be resolved by making γ learnable, DeLoRA allows an unbounded
Frobenius norm and needs a larger bound to cover the range of NB-LoRA, see the right of Figure 2.

PiSSA vs NB-LoRA. PiSSA (Meng et al., 2024) addresses the small initial gradient issue of LoRA
via a residual-type initialization, i.e., W “ α

r pBJA´BJ
0 A0q where A0, B0 are the initial values of

A,B, respectively. Since the term α
rB

J
0 A0 can be absorbed into the pretrained weight Wp, it does

not cause any extra computation cost compared with LoRA. Moreover, PiSSA has much lager initial
gradients than LoRA by constructing A0, B0 from the reduced SVD of Wp. Thus, PiSSA can speed
up the fine-tuning process, however, its performance might be sensitive to learning rate as A,B
are unbounded. Different from PiSSA, the proposed NB-LoRA approach address the small initial
gradient issue through reparameterization. Since A,B live on a compact manifold by construction,
thus NB-LoRA allows for a wide range choice of learning rates.

DoRA vs NB-LoRA. DoRA (Liu et al., 2024) decouples angular and magnitude components of
weight adaptation via W “ m

pWp`BJAq

}Wp`BJA}c
with } ¨ }C as the column-wise vector norm. Note that the

normalization vector }Wp`BJA}c requires computing BJA P Rmˆn, whose forward computation
time could be much larger than r ˆ r-matrix inverse, see Table 7 of Appendix E.
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5 LLM FINE-TUNING EXPERIMENTS

In this section, we evaluate our proposed NB-LoRA method for natural language generation (NLG)
tasks. Our main objectives are as follows: i) NB-LoRA can avoid small initial gradients while still
maintain training stability for a wide range of learning rates; ii) Controlling the norm is beneficial
for robust performance; iii) Due to the ability of tight bound control, our method can outperform
existing approaches with the same certified norm bound.

NLG Tasks. We start with comparing LoRA, DoRA and PiSSA on NLG tasks. We fine-tuned
the LLaMA model family (Touvron et al., 2023) and Mistral-7B-v0.1 (Jiang et al., 2023) on the
MetaMathQA dataset (Yu et al., 2023) to evaluate their mathematical problem-solving capability on
the GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) test datasets. We also fine-
tuned the models on the the CodeFeedback dataset Zheng et al. (2024) and evaluated for coding
proficiency using the HumanEval Chen et al. (2021) and MBPP Austin et al. (2021). We adopt the
implementation strategy from Taori et al. (2023). We follow the training setup in Meng et al. (2024)
with default rank budget of r “ 128 and scaling parameter α “ r for LoRa and PiSSA. For the
proposed NB-LoRA method, since the scaling components in S of (3) are initialized close to 1{r,
we then choose the nuclear norm bound of δ “ r, leading to the same scaling factor as LoRA and
PiSSA. More training details can be found in Appendix E.

Large Initial Gradients and Training Stability. The analysis in Section 3 suggested that norm
bounds may improve robustness to learning rates by mitigating the effect of small initial gradients
in LoRA. We conducted experiments on LLaMA-2-7B fine-tuning across a wide range of learning
rates from 5e-5 to 1e-3 on math and python coding datasets. Figure 3 (a) and (b) show that LoRA
and DoRA both suffer from poor performance with small learning rates, due to the small gradients
problem. Increasing the learning rate helps up to a point but then training goes unstable. In contrast,
NB-LoRA achieves good performance for a wide range of learning rates, outperforming all other
models on most tasks. PiSSA outperforms NB-LoRA in terms of peak performance on GSM8K, but
under-performs on other tasks and is more sensitive to learning rate.

Figure 3 (c) and (d) show loss and gradient norm vs training steps. It can be seen that with a small
learning rate (5e-5) NB-LoRA (and PiSSA) train similarly, both faster than LoRA and DoRA and
with larger gradient norms. With a larger learning rate (1e-3) LoRA and DoRA were unstable, and
NB-LoRA trains fastest. Note that PiSSA has a larger gradient norm but slower training: since the
parameterizations are different the gradient norms are not directly comparable.

Hyperparameter Robustness. Table 2 compiles the results of a comprehensive sweep across
tasks, base models and learning rates, comparing NB-LoRA to LoRA, DoRA, and PiSSA in terms
of their robustness to these variations (see table caption for details). While different methods were
competitive for different particular scenarios, when averaging across models and tasks NB-LoRA is
clearly superior.

Table 1: Scalability to larger models: Compari-
son of LoRA, PiSSA and NB-LoRA on LLaMA-
3-70B with learning rates from 5e-5 to 5e-4.

Method Learning Rate Computation
5e-5 1e-4 5e-4 GPU Mem. Train Time

LoRA 86.2 86.2 failed 65.57GB 169m
PiSSA 83.6 79.0 41.8 65.57GB 170m

NB-LoRA 87.1 85.4 83.3 69.15GB 185m

Scalability to Larger Models. We trained
NB-LoRA to LoRA and PiSSA on the LLaMA-
3-70B model for GSM8K and compared them
in terms of computational resources, accuracy,
and learning-rate robustness. In Table 1 it can
be seen that NB-LoRA achieved the highest
accuracy overall. It uniformly outperformed
PiSSA, while standard LoRA achieved good
performance for low learning rates but was un-
stable for larger learning rates. NB-LoRA re-
quired slightly more computational resources
than LoRA and PiSSA: „6% more memory
and „9% longer training time.

Comparison with DeLoRA. Figure 4 compares NB-LoRA with DeLoRA Bini et al. (2025) with
δ set to 10, 20, and free (see Section 4 and Figure 2 for discussion). Firstly, in panel (a) we see
that NB-LoRA achieves the highest test accuracy, outperforming DeLoRA with an equivalent norm

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5e-5 1e-4 5e-4 1e-3
Learning rates

45.0

47.5

50.0

52.5

55.0

57.5

60.0

GS
M

8K
FullFT
LoRA
DoRA
PiSSA
NBLoRA

5e-5 1e-4 5e-4 1e-3
Learning rates

6

7

8

9

10

11

12

13

M
AT

H

(a) Test accuracy for math problem

5e-5 1e-4 5e-4 1e-3
Learning rates

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Hu
m

an
Ev

al

5e-5 1e-4 5e-4 1e-3
Learning rates

32.5

35.0

37.5

40.0

42.5

45.0

47.5

M
BP

P

(b) Test accuracy for python coding

0 250 500 750
steps

0.2

0.3

0.4

0.5

0.6

Lo
ss

700 740 781
0.18

0.20

0.22

0 250 500 750
steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gr
ad

 n
or

m

0 25 50
0

1

2

3

(c) Learning rate of 5e-5

0 250 500 750
steps

0.2

0.3

0.4

0.5

0.6

Lo
ss

700 740 781
0.16

0.18

0.20

0.22

0 250 500 750
steps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gr
ad

 n
or

m

0 50 100
0

1

2

3

(d) Learning rate of 1e-3

Figure 3: (Top) the evaluation accuracy over a range of learning rates and (Bottom) the loss and grad
norm over the training steps for two learning rates.

Table 2: Fine-tuning three base models based on LoRA (Lo), DoRA (Do), PiSSA (Pi) and NB-
LoRA (NB) over different learning rates ({1e-5, 5e-5,1e-4} for Mistral and {5e-5, 1e-4, 5e-4} for
LLaMA). We report the minimum, maximum and averaged test results, where the metrics for math
and coding are 1

2 pGSM8K ` MATHq and 1
2 pHumanEval ` MBPPq, respectively.

Base Model Mistral-7B-v0.1 LLaMA-3-8B LLaMA-2-13B Model Avg.

Method Lo Do Pi NB Lo Do Pi NB Lo Do Pi NB Lo Do Pi NB

Math
min 43.8 44.2 45.9 46.7 49.6 50.4 41.6 48.5 35.1 35.1 38.2 38.1 42.8 43.2 41.9 44.4
max 48.2 48.2 47.0 48.0 51.5 51.8 52.0 52.9 41.7 41.0 40.5 41.3 47.1 47.0 46.5 47.4
avg 46.6 46.4 46.5 47.4 50.7 51.3 48.2 51.2 38.1 38.0 39.3 39.7 45.1 45.2 44.7 46.1

Code
min 52.4 53.7 55.6 57.8 59.5 61.1 44.4 59.8 42.5 42.5 44.4 44.0 51.5 52.4 48.1 53.9
max 58.3 59.2 59.0 59.7 63.2 62.6 63.0 63.1 46.6 45.9 45.6 48.8 56.0 55.9 55.9 57.2
avg 56.2 56.5 57.0 58.8 61.6 61.8 55.0 61.9 44.7 44.3 45.2 47.0 54.2 54.2 52.4 55.9

Task Avg.
min 48.1 49.0 50.8 52.2 54.5 55.8 43.0 54.1 38.8 38.8 41.3 41.0 47.1 47.8 45.0 49.1
max 53.2 53.7 53.0 53.9 57.4 57.2 57.5 58.0 44.2 43.5 43.0 45.0 51.6 51.5 51.2 52.3
avg 51.4 51.5 51.8 53.1 56.2 56.5 51.6 56.5 41.4 41.1 42.2 43.4 49.7 49.7 48.5 51.0

bound δ “ 10 by about 10%. Secondly, in (b) we see that the NB-LoRA parameterization achieves
very tight norm bounds, whereas with DeLoRA they are quite loose: with δ “ 10, the observed
Frobenius norm only reached around 2.5. With δ free, the Frobenius norm grew beyond the norm
bound. Panel (c) shows that NB-LoRA achieves lower loss and higher gradient norm than DeLoRA.
Note that the higher gradient norm explains the apparent “offset” in panel (a) w.r.t. learning rate.

Computation Cost. Table 3 compares computational costs against two methods, PiSSA and
DoRA, across different ranks on LLaMA 2-7B. Due to the extra reparameterization layer, NB-LoRA
takes slightly more GPU memory and training time. NB-LoRA with the largest rank r “ 256 still
takes less computational resources than DoRA with the smallest rank r “ 2. The main reason is that
DoRA requires explicit calculation of the full adaptation matrix, which can be avoided with LoRA
and NB-LoRA.
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Figure 4: (a) Comparison of DeLoRA and NB-LoRA over a range of learning rates; (b) Frobenius
norm bound (maximized over all adaptation modules); (c) loss and grad norm vs training steps.

Table 3: Computation comparison of DoRA, PiSSA and NB-LoRA with rank choice from 2 to 256.
Experiments are conducted with 4 H200 GPUs.

Rank 2 4 8 16 32 64 128 256

Training Time
DoRA 24m46s 24m33s 24m03s 24m04s 24m05s 24m02s 24m18s 24m53s
PiSSA 17m44s 17m35s 17m09s 17m10s 17m12s 17m15s 17m32s 18m09s

NB-LoRA 18m53s 18m55s 18m26s 18m38s 18m51s 19m13s 20m15s 22m40s

Peak GPU Mem. (GB)
DoRA 102.41 102.44 102.51 102.64 102.90 103.41 104.47 106.53
PiSSA 60.92 60.96 61.02 61.15 61.41 61.93 62.96 65.04

NB-LoRA 60.94 60.99 61.08 61.28 61.67 62.45 64.05 67.19

6 VIT EXPERIMENTS

To further explore the potential benefits of NB-LoRA, we conducted experiments in fine-tuning a
vision transformer (ViT) model. In particular, we explore adaptation performance to a target dataset
vs forgetting of the source (pretraining) dataset as well as hyperparameter robustness. We compare
to standard LoRA and several recently-proposed methods.

Adaptation vs Forgetting The main goal of this experiment is to explore the utility of norm
bounds in preventing catastrophic model forgetting McCloskey & Cohen (1989); French (1999);
Wang et al. (2024). Our hypothesis is that tight control of the adaption norm will prevent loss of
performance on the pre-trained model as per the analysis in Section 3, while still enabling good
adaptation performance. We perform experiments (Bafghi et al., 2024) on ViT-B/16 model (Doso-
vitskiy et al., 2020), which is pre-trained on ImageNet-21k (Deng et al., 2009) and then fine-tuned to
ImageNet-1k. For the proposed NB-LoRA, we choose the norm bound as δ “ γ}Wp}Sp

, where the
ratio γ is a hyper-parameter. Similar to the setup in Kopiczko et al. (2024a), we adapt Q,V matrices
and learn the classification head for the Street View House Number (SVHN) dataset. Here we report
the results for NB-LoRA using nuclear norm with bound ratio of γ between 0.1 and 1.6, see Ap-
pendix F for additional results with different setups and datasets including CIFAR-100 Krizhevsky
et al. (2009) and Food-101 Bossard et al. (2014).

The metric for model forgetting is the test accuracy of the fine-tuned model on the source dataset:
ImageNet-1k, which can be compared against performance on the target dataset. As shown in Fig-
ure 5(Left), the linear adapter (i.e. just learning the classification head) avoids forgetting of the
source but has poor performance on the target set. In contrast, LoRA, DoRA and PiSSA achieve
high adaptation performance to the target data set, but with a dramatic loss of performance on the
source data set (from around 80% to less than 10%). AdaLoRA achieves good target adaptation with
less severe but still significant forgetting. VeRA and NB-LoRA can both achieve a good balance of
both, but NB-LoRA outperforms in terms of both source and target performance. It can also be seen
that tuning of γ allows a trade-off between source and target performance.

The middle panels of Figure 5 show the evolution of source and target accuracy vs training steps.
All models (except linear) perform quite similarly in terms of adaptation to the target, whereas on
the source dataset NB-LoRA (shown with γ “ 0.1q maintains high accuracy throughout training,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

60 70 80 90

SVHN (→ better adaptation)

20

40

60

80

Im
ag

eN
et

-1
k

(→
le

ss
fo

rg
et

ti
n

g
)

Full
Linear
AdaLoRA
LoRA
DoRA
PiSSA

VeRA
NB-LoRAγ=0.1

NB-LoRAγ=0.4

NB-LoRAγ=0.8

NB-LoRAγ=1.6

0 2000 4000 6000

Steps

0

20

40

60

80

Im
ag

eN
et

-1
k

A
cc

.

0 2000 4000 6000

Steps

20

40

60

80

100

S
V

H
N

A
cc

.

0 2000 4000 6000

Steps

10−2

10−1

100

M
ax

n
u

cl
ea

r
n

or
m

ra
ti

o
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served during training.
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Figure 6: Analysis of hyperparameter robustness of different methods in terms of geometric mean
of source (ImageNet-1k) and target (SVHN) dataset accuracies.

while most other methods quickly forget source performance. For PiSSA, DoRA, and LoRA the
source performance drops significantly before target accuracy has converged, so early stopping can
not solve the problem. Figure 5 (Right) plots the maximum nuclear norm ratio of the models. NB-
LoRA remains below the bound, while several others are more than an order of magnitude larger.

Figure 6 shows an analysis of hyperparameter robustness of the different models, in terms of geo-
metric mean of source and target accuracy. It can be seen that NB-LoRA is almost invariant with
respect to these hyperparameters, while most other methods (except VeRA) are highly sensitive to
some or all of them.

7 LIMITATIONS

Compared to LoRA, the proposed method incurrs slightly higher computational cost (peak memory
and training time). In addition, it requires selection of an additional hyperparameter (the norm
bound), although our experiments indicate that it improves robustness to other hyperparameters
making their selection less critical.

8 CONCLUSION

In this paper we propose a norm-bounded low-rank adaptation (NB-LoRA) for model fine tuning.
In particular, we introduce a new parameterization which is smooth and complete, i.e. it covers all
matrices of a specified rank and singular value bounds, which can then be used to impose a Schatten
p-norm bound (e.g. Frobenius, nuclear, spectral norm).

We argue that the proposed parameterization mitigates addresses some challenges related to the
initialization of LoRA and its impact on learning rate, and can also mitigate the tendency of LoRA
to forget source model performance. In experiments on fine tuning of language models, we compare
to standard LoRA and other existing methods and demonstrate that NB-LoRA can substantially
improve overall performance and robustness to learning rate. We showed that NB-LoRA is scalable
to larger models (LLaMa-3-70B) with only a moderate computational penalty relative to standard
LoRA.
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A KEY TECHNICAL LEMMAS

Here we present some key lemmas which are used in our proofs later.
Lemma A.1. For any Q P Rnˆn, there exists a diagonal matrix P with Pjj P t´1, 1u such that
I ` PQJ is invertible.

Proof. Let ek, qk be the kth column of I and Q, respectively. We construct Ak via

A´1
k “ A´1

k´1 ´
skA

´1
k´1ekq

J
k A

´1
k´1

1 ` skqJ
k A

´1
k´1ek

, (6)

where A0 “ I and sk “ sign
`

vJ
k A

´1
k´1ek

˘

with signp0q “ 1. From Sherman-Morrison formula, Ak

is well-defined (i.e., invertible) and satisfies Ak “ Ak´1`skekq
J
k . By taking P “ diagps1, . . . , snq,

we have An “ I `
řn

k“1 skekq
J
k “ I ` PQJ is also invertible.

Lemma A.2. Let G P Rrˆr and H P Rsˆr such that GJG ` HJH “ I . Then,
„

G
H

ȷ

“ Cayley

ˆ„

X
Y

ȷ˙

“

„

pI ´ ZqpI ` Zq´1

´2Y pI ` Zq´1

ȷ

(7)

for some X P Rrˆr and Y P Rsˆr if and only if I ` G is invertible.
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Proof. From the Cayley transformation (4) we have the following relationships:

G “ pI ´ ZqpI ` Zq´1, H “ ´2Y pI ` Zq´1, Z “ X ´ XJ ` Y JY. (8)

(if). From the above equation we have I ` G “ pI ` Zq´1 invertible.

(only if). The proof is constructive, i.e., finding X,Z P Rrˆr and Y P Rsˆr satisfying (8). We
consider a candidate solution as follows:

Z “ pI ` Gq´1pI ´ Gq, Y “ ´
1

2
HpI ` Zq, X “

1

2
Z. (9)

It is easy to check that the above solution satisfies the first two equations in (8). We now verify the
last equation as follows:

Z ` XJ ´ X ´ Y JY “
1

2
pZ ` ZJq ´ Y JY

“
1

2
rpI ` Gq´1pI ´ Gq ` pI ´ GJqpI ` GJq´1s ´ pI ` GJq´1HJHpI ` Gq´1

“
1

2
rpI ´ GqpI ` Gq´1 ` pI ` GJq´1pI ´ GJqs ´ pI ` GJq´1HJHpI ` Gq´1

“
1

2
pI ` GJq´1rpI ` GJqpI ´ Gq ` pI ´ GJqpI ` Gq ´ 2HJHspI ` Gq´1

“pI ` GJq´1rI ´ GJG ´ HJHspI ` Gq´1 “ 0,

where the second line is due to that pI ` Gq´1 and pI ´ Gq are commutative.

Lemma A.3. Let A P Rrˆm and B P Rrˆn with AAJ ` BBJ “ I . Then, there exist a diagonal
matrix P P Rrˆr with Pjj P t´1, 1u and Ã P Rrˆm, B̃ P Rrˆn satisfying

rPA PBs
J

“ Cayley
´

“

Ã B̃
‰J

¯

. (10)

Proof. From the assumption we have that
„

AJ

BJ

ȷ

is a tall matrix, i.e., r ď m ` n. We then take

the partition
„

AJ

BJ

ȷ

“

„

Ḡ
H̄

ȷ

with Ḡ P Rrˆr and H̄ P Rpm`n´rqˆr. We introduce G “ ḠP and

H “ H̄P , where P is a diagonal matrix with Pjj P t´1, 1u. Then, we can obtain

GJG ` HJH “ P pḠJḠ ` H̄JH̄qP “ P pAAJ ` BBJqP “ P 2 “ I

for all diagonal such P . From Theorem A.1, we can pick a particular P such that I ` G “ I ` ḠP
is invertible. We then follow Theorem A.2 to compute X P Rrˆr and Y P Rpm ` n ´ rq ˆ r
satisfying (7). Finally, we take the partition

“

XJ Y J
‰

“
“

Ã B̃
‰

.

B PROOF OF THEOREM 4.2

The proof includes two parts: I) W “ WpÃ, B̃q P WS for any Ã P Rrˆm and B̃ P Rrˆn; II) for
any W P WS , there exists a pair of Ã P Rrˆm and B̃ P Rrˆn such that W “ WpÃ, B̃q.

Part I It is obvious that rankpW q ď r. The jth singular value of W satisfies

σjpW q “ 2σjpBJS
1
2

loomoon

QJ

S
1
2A

loomoon

K

q ď σj

`

QQJ ` KKJ
˘

“ σjpS
1
2 pAAJ ` BBJ

loooooomoooooon

I

qS
1
2 q “ σjpSq (11)

where the inequality is the matrix arithmetic-geometric mean inequality (Bhatia & Kittaneh, 1990;
Bhatia, 2013), and the last equality follows by the Cayley transformation.

13
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Learnable variables

Intermediate variables

Adaptation weight

Matrix partition

Unique solution

Multiple solution

Figure 7: Diagram of NB-LoRA parameterization.

Part II Without loss of generality, we assume that the diagonal elements of S is in descending
order, i.e., σjpSq “ Sjj for j “ 1, . . . , r. Since W has maximally r non-zero singular values,
we can take the reduced SVD decomposition W “ UwΣwV

J
w where Uw P Rmˆr, Vw P Rnˆr

are semi-orthogonal, and the positive diagonal matrix Sw P Rrˆr. We now consider the following
candidates for A,B:

A “ PΣaV
J
w , B “ PΣbU

J
w , (12)

where P P Rrˆr is a diagonal matrix with Pjj P t´1, 1u, and Σa,Σb P Rrˆr are positive diagonal
matrices. The first constraint for A and B is that rA Bs

J is semi-orthogonal since it is an output
of the Cayley transformation. Thus, we have

I “ AAJ ` BBJ “ P pΣ2
a ` Σ2

bqPJ ùñ Σ2
a ` Σ2

b “ I. (13)

The second constraint for A,B is W “ 2BJSA, which implies

UwΣwV
J
w “ 2UwΣaP

JSPΣbV
J
w “ Uwp2ΣaΣbSqV J

w ùñ 2ΣaΣb “ ΣwS
´1 (14)

Eq. (13) and (14) yield a solution of

Σa “

?
I ` J `

?
I ´ J

2
, Σb “

?
I ` J ´

?
I ´ J

2
. (15)

where J “ ΣwS
´1 satisfies 0 ĺ J ĺ I since Sw ĺ S for W P WS . Note that we need to deal with

the case where S is not full rank, i.e., there exists an k ă r such that Skk “ 0 and Sk´1,k´1 ą 0.
Since 0 ĺ Σw ĺ S, we have Σii “ 0 for all i ě k and simply take Jii “ 1. It is easy to verify that
Equations (13) - (15) still hold. Finally, Theorem A.3 shows that we can recover Ã, B̃ from A,B by
picking a proper P in (12) based on Theorem A.1.

C CUSTOM BACKWARD FOR CAYLEY TRANSFORMATION

We first rewrite the forward computation of Cayley transformation pX,Y q Ñ pG,Hq as follows:

Z “ X ´ XJ ` Y JY, M “ I ` Z, W “ M´1, G “ pI ´ ZqW, H “ ´2YW (16)

where G,X,Z,M,W P Rrˆr and H,Y P Rsˆr. We provide a custom backward p∇G,∇Hq Ñ

p∇X ,∇Y q with ∇A “ pBℓ{BAqJ for (16) as follows:
„

∇̃G

∇̃H

ȷ

“

„

∇G

∇H

ȷ

WJ, SZ “

„

I ` G
H

ȷJ „

∇̃G

∇̃H

ȷ

,

∇X “ SJ
Z ´ SZ , ∇Y “ ´

1

2
HMpSJ

Z ` SZq ´ 2∇̃H ,

(17)

where W,M,G,H can be reused from the Cayley forward step. Note that when applying AutoDiff
to (16), it is necessary to store the input X,Y , output G,H as well as some intermediate steps, which

14
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Table 4: Computation comparison for training NB-LoRA with AutoDiff and custom backward step.

Method Peak Mem. Train Time GSM8K Acc.

AutoDiff 69.52GB 23m51s 58.0
Custom 67.19GB 22m40s 57.8

requires more memory than our custom backward step (17) since Y P Rsˆr is much larger than
W,M P Rrˆr. In our approach, we can recover Y from other stored variables, i.e., Y “ ´ 1

2HM .
To give detail derivation for (17), we first differentiate the forward step (16):

dZ “ dX ´ dXJ ` Y JdY ` dY JY, dW “ ´WdZW,

dG “ ´dZW ` pI ´ ZqdW, dH “ ´2dYW ´ 2Y dW.
(18)

The differential of loss function dℓ satisfies

dℓ “ Tr
`

∇J
XdX

˘

` Tr
`

∇J
Y dY

˘

“ Tr
`

∇J
GdG

˘

` Tr
`

∇J
HdH

˘

. (19)

By further substituting (18) into (19), we have

Tr
`

∇J
GdG

˘

` Tr
`

∇J
HdH

˘

“ ´Tr
`

∇J
GdZW ` ∇J

GpI ´ ZqWdZW
˘

´ 2Tr
`

∇J
HdYW ´ ∇J

HYWdZW
˘

“ ´Tr
`

W p∇J
G ` ∇J

GpI ´ ZqW ´ 2∇J
HYW qdZ

˘

´ Tr
`

2W∇J
HdY

˘

“ ´Tr
`

W p∇J
G ` ∇J

GG ` ∇J
HHqdZ

˘

´ Tr
`

2W∇J
HdY

˘

“ ´Tr
`

SJ
ZdZ

˘

´ Tr
`

2W∇J
HdY

˘

“ ´Tr
`

pSJ
Z ´ SZqdX

˘

´ Tr
`

ppSZ ` SJ
Z qY J ` 2W∇J

HqdY
˘

“ Tr
`

∇J
XdX

˘

` Tr
`

∇J
Y dY

˘

which yields the custom backward step (17) by substituting Y “ ´ 1
2HM . As shown in Table 4, the

custom backward pass can save both GPU memory and training time.

D CONNECTIONS BETWEEN DELORA AND NB-LORA

DeLoRA (Bini et al., 2025) is a fine-tuning method which can control both rank and Frobenius norm
bound of weight adaptation W . Specifically, DeLoRA takes the form of

W “
δ

r
BJΞA :“

δ

r
BJ diagp|bi|2 ¨ |ai|2qA (20)

where ai, bi are the ith row of A P Rrˆn and B P Rrˆm, respectively. The above parameterization
can be rewritten as sum of NB-LoRA matrices with both rank and norm bound of 1:

W “
δ

r

r
ÿ

i“1

2

ˆ

bi
?
2|bi|2

˙J ˆ

ai
?
2|ai|2

˙

“
δ

r

r
ÿ

i“1

2b̄J
i āi “

δ

r

r
ÿ

i“1

W̄i,

where r āi b̄i s is a set of of decoupled unit vectors. By Theorem 4.2 we have that }W̄i}F ď 1 and
}W }F ď δ{r

řr
i“1 }W̄i}F ď δ. NB-LoRA in (3) also has a similar representation:

W “ 2BJSA “

r
ÿ

i“1

sip2b̂
J
i âiq “

r
ÿ

i“1

siŴi.

Different from DeLoRA, r âi b̂i s is a set of coupled unit vectors as they are orthogonal to each other.
This coupling behavior allows us to specify the bound for each singular value of W , providing tight
control of a wide family of matrix norms. Another main difference is model initialization. Since it
is not straightforward to initialize A,B satisfying W “ 0 for (20), the residual-type initialization
(Meng et al., 2024) is adopted, resulting a smaller reachable set than NB-LoRA when an explicit
bound is specified, see detailed discussion in Section 4.
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Table 5: Summary of incremental design choices from LoRA to NB-LoRA.

Design choice Method W formulation

LoRA α
rB

JA

+(Cayley transform) NB-LoRA with }W }S8
ď δ 2δBJA with pA,Bq “ CayleypÃ, B̃q

+(learnable scaling) NB-LoRA with }W }Sp
ď δ 2δBJSA with S “ diagpsq and }s}p ď δ

Table 6: We report the GSM8K accuracy for ablation of NB-LoRA on fine-tuning LLaMA-2-7B
models with different ranks and learning rates.

Rank Method Learning Rate
1e-4 5e-4 1e-3

128
LoRA 52.8 58.3 failed

NB-LoRA (spectral) 57.7 60.5 60.0
NB-LoRA (nuclear) 57.8 59.7 59.2

16
LoRA 43.2 55.8 57.5

NB-LoRA (spectral) 47.9 55.3 56.5
NB-LoRA (nuclear) 49.4 56.8 55.6

E LLM EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Training Details. In our LLM experiments, we use the same training setup as Meng et al. (2024);
Taori et al. (2023), i.e., AdamW Loshchilov & Hutter (2019) with no weight decay. We use the
cosine annealing scheduler with a warm-up ratio of 0.03. The default batch size is 128. We ensure
α “ r for all adapters, although NB-LoRA does not use this parameter. We choose the norm bound
of δ “ r with nuclear norm, which results in the same scaling factor as the other adapters. When
Frobenius or spectral norm is used, we set the default bound as δ “

?
r and δ “ 1, respectively,

which also results in the same scaling factor as other adapters. We set lora dropout to 0, and
insert the adapters into all linear layers of the base model. We use BFloat16 for both the base model
and the adapters.

Ablation of NB-LoRA Design Choice. We summarize the incremental design choices that trans-
form LoRA into NB-LoRA in Table 5. We conduct an ablation study on LLaMA-2-7B fine-tuning
in Table 6. For a large rank (r “ 128), NB-LoRA with spectral norm bound achieves slightly better
performance, whereas the nuclear norm performs better under a low-rank budget. Both methods
yield more robust performance compared to LoRA.

Robust Performance for Prolong Training. We conduct a full epoch training of LLaMA-2-7B
on the MetaMathQA dataset. The learning rates are chosen to be 1e-4 and 5e-4, which achieve good
performance for different adapters in short horizon training (see Figure 3). We can observe that NB-
LoRA consistently outperforms other methods. In particular, NB-LoRA is more stable for the large
learning rate, due to the norm saturation on weight adaptation. Meanwhile, DoRA depicts unstable
training and PiSSA has poor performance due to excessive increase in weight norm.

Experiments on Various Ranks. Figure 9 explores the impact of rank on LoRA, DoRA, PiSSA
and NB-LoRA with learning rate of 1e-4. Under the setup, PiSSA achieves the best GSM8K ac-
curacy. As the rank decrease, the gap between NB-LoRA and PiSSA narrows. And NB-LoRA
outperforms PiSSA for low ranks when r ă 16. NB-LoRA outperforms LoRA and DoRA by ap-
proximately 5% across all ranks. We also examine the effect of varying learning rates at rank 16,
demonstrating robustness to learning rate choices across different ranks.

Addition Computation Comparison between DoRA and NB-LoRA. We first report the forward
computation time of key operations in DoRA and NB-LoRA in Table 7, showing that inverting
a small low rank matrix is much computationally cheaper than computing a large low-ran weight
matrix.
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Table 7: Computation time (µs) of the rank-r matrix BJA P Rmˆn in DoRA and M´1 P Rrˆr in
NB-LoRA. We use m “ 4096, n “ 4m and rank r from 2 to 256. Computation time is measured
based on 500 samples with 500 warm-up steps on RTX4090.

Matrix Operation 2 4 8 16 32 64 128 256

BJA P Rmˆn 314.1˘2.5 311.9˘1.6 312.1˘2.4 310.7˘2.0 288.3˘2.0 323.9˘1.9 421.9˘2.0 792.6˘1.1
M´1 P Rrˆr 29.2˘0.9 30.7˘0.9 35.1˘1.4 48.3˘0.9 72.9˘1.1 97.0˘2.0 169.7˘1.4 361.3˘1.7
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Figure 8: The evaluation accuracy, the nuclear norm bound, loss and grad norm over a full training
epoch on MetaMathQA. The norm bound is computed by maximizing over all adaptation modules.
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Figure 9: Comparison among LoRA, DoRA, PiSSA and NB-LoRA across ranks from 2 to 128. We
also test the learning rate robustness for the case with r “ 16.

F VIT EXPERIMENTS

Training Details. A similar ViT fine-tuning experiments for the model forgetting issue can be
found in Bafghi et al. (2024). We take the ViT-B/16 model Dosovitskiy et al. (2020) and insert
adaption blocks into the Q,V matrices Kopiczko et al. (2024a). We choose AdamW Loshchilov
& Hutter (2019) as the optimizer with default learning rate of 5e-3 and weight decay of 0.01. For
the full fine-tuning, we reduce the learning rate to 5e-4. We take one-cycle learning rate scheduler
with warm-up ratio of 0.1. We use batch size of 128 for SVHN dataset and 256 for CIFAR-100 and
Food-101 dataset.

Extra results. We report the ViT examples with different target datasets: CIFAR-100 and Food-
101 in Figure 10. A similar conclusion as the SVHN experiment can be drawn from two datasets.
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Figure 10: Geometric mean of CIFAR-100 (top) and Food-101 (bottom) with different adapters on
various of hyper-parameter setup.
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