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Abstract

We introduce a principled approach to Outlier-
Efficient Attention Layers via associative mem-
ory models to reduce outlier emergence in large
transformer-based model. Our main contribu-
tion is a novel associative memory model that
facilitates outlier-efficient associative memory re-
trievals. This model subsumes the outlier-efficient
attention mechanism (Softmax1) as a special case
of its memory retrieval process. Methodologi-
cally, this enables the introduction of novel outlier-
efficient Hopfield layers as powerful alternatives
to traditional attention mechanisms, offering su-
perior post-quantization performance. Empiri-
cally, we demonstrate the efficacy of the proposed
model across large-scale transformer-based and
Hopfield-based models, including BERT, OPT,
ViT, and STanHop-Net, benchmarking against
state-of-the-art methods like Clipped Softmax

and Gated Attention. Notably, our method
achieves an average reduction of over 22% in
average kurtosis and over 26% in the maximum
infinity norm of model outputs across the four
models, without sacrificing model performance
after quantization.1

*Equal contribution 1Department of Computer Science,
Northwestern University, Evanston, USA 2Department of Physics,
National Taiwan University, Taipei, Taiwan 3Department of Statis-
tics and Data Science, Northwestern University, Evanston, USA.
Correspondence to: Haozheng Luo <hluo@u.northwestern.edu>,
Jerry Yao-Chieh Hu <jhu@u.northwestern.edu>, Pei-
Hsuan Chang <b09202022@ntu.edu.tw>, Hong-Yu
Chen <hong-yuchen2029@u.northwestern.edu>, Wei-
jian Li <weijianli@u.northwestern.edu>, Wei-Po
Wang <b09202009@ntu.edu.tw>, Han Liu <han-
liu@northwestern.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).
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1. Introduction
We tackle the outlier-inefficiency issue in large Transformer-
based models by presenting a new principled approach to
outlier-efficient attention layers, termed OutEffHop. This
problem is of practical importance in the era of Large Foun-
dation Models (Xu et al., 2024b; Zhou et al., 2024b; 2023;
Wu et al., 2023; Bommasani et al., 2021; Ji et al., 2021; Ho
et al., 2020; Brown et al., 2020; Floridi and Chiriatti, 2020).

To see the outlier problem, we consider an input sequence
X = [x1, . . . , xL] ∈ Rd×L and the attention mechanism

Attention(X) = Softmax
(
QKT

)
V = A.

We focus on the part of transformer right after attention

Output = Residual(X +A). (1.1)

If the input X already contains sufficient information and
does not require further feature extraction, the attention
mechanism tends to behave like an identity map, outputting
a zero matrix A. This is known as the no-update situation.
A direct consequence is that the attention mechanism forces
tokens with large values (as in V ) to receive close-to-zero
attention probability (as in Softmax(QKT)), resulting in
small-value tokens having large attention probabilities. Due
to the normalization nature of the softmax function, this
operation forces its input QKT to span a wide range. This
wide range is the fundamental source of outliers: some to-
kens must cause this “wide range” of QKT (termed outliers).
Since attention to these tokens behaves as a “no-op” (no op-
eration), we call these “no-op” outliers. Furthermore, since
the softmax function never reaches exactly zero, it always
sends back a gradient signal, leading to the magnification of
outliers during training (Bondarenko et al., 2023).

To address this, we draw motivation from recent progress
in dense associative memory models (Wu et al., 2024a;b;
Hu et al., 2024b;c; 2023; Chaudhry et al., 2023; Hoover
et al., 2023; Krotov, 2023; Krotov and Hopfield, 2021; Ram-
sauer et al., 2020) and introduce OutEffHop to provide a
principled understanding (theoretical guarantees and empir-
ical evidences) of the outlier problem in transformer atten-
tion heads. This model-based understanding includes the
Softmax1 activation (a quantization-robust alternative to
the Softmax function in vanilla attention) as a special case.
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2. Outlier-Efficient Hopfield Layers
The key idea is to add a ”no-op classification” dimension to
the Hopfield energy function’s state space, identifying ”no-
op” outliers as distinct patterns with no similarity to other
memory patterns. Let x ∈ Rd represent the query patterns
and Ξ = [ξ1, · · · , ξM ] ∈ Rd×M the M memory patterns.
We extend their dimension such that x and ξµ become

x = (x1, . . . , xd, 0), ξµ = (ξµ1 , · · · , ξ
µ
d , ω),

with an extra ω ∈ R. We set ω to be
• ω ̸= 0: non-zero for no-op outliers, and
• ω = 0: zero for the rest memory patterns.
Assuming we are aware of which patterns are outliers, then
we introduce the following function:

Λ(ξµ) =


(ξµ1 , · · · , ξ

µ
d , 0) = ξµop ∈ Rd+1, if ω = 0,

(0, · · · , 0︸ ︷︷ ︸
d

, C) = Ω ∈ Rd+1, if ω ̸= 0 ,

(2.1)

with some C ∈ R and for all µ ∈ [M ], to map all “no-
op patterns” into an unique “no-op memory class vector
Ω.” We term the Λ function (2.1) the “no-op classification
mechanism.” We introduce the outlier-efficient Modern
Hopfield energy as:

H(x) = −lse1
(
β,ΞTx

)
+

1

2
⟨x, x⟩+ Const., (2.2)

where lse1 is a refined log-sum-exponential fucntion:

lse1
(
β,ΞTx

)
(2.3)

:= β−1 log
( M∑
µ=1

exp{β ⟨ξµ, x⟩}+
(I)︷ ︸︸ ︷

exp{β ⟨Ω, x⟩︸ ︷︷ ︸
=0

}
)
.

Here, (I) has an unique “no-op memory class vector Ω ∈ Rd”
whose inner product with the query x ∈ Rd is zero:
⟨Ω, x⟩ = 0. Intuitively, by (2.1), Ω represents an out-
lier of the stored memory set Ξ := [ξ1, · · · , ξM ,Ω], and
⟨Ω, x⟩ = 0 indicates it does not participate the retrieval pro-
cess. Specifically, Hopfield energy (2.2) can be monotomi-
cally minimized by following memory retrieval dynamics:

Lemma 2.1 (Retrieval Dynamics). Let Softmax1(z) :=

exp{z}/
(∑M

µ=1 exp{zµ}+ 1
)

for any z ∈ RM and t be
the iteration number. The memory retrieval dynamics:

TOutEff (xt) := ΞSoftmax1
(
βΞTxt

)
= xt+1, (2.4)

monotonically minimizes the energy (2.2) over t.

Proof. Since (2.3) is concave by design, we prove this by
standard CCCP derivation following (Hu et al., 2023).

Remark 2.1 (1-Iteration TOutEff is Softmax1). Due to the
monotonic decreasing property of Lemma 2.1, for any given
input query x, (2.4) retrieves a memory closest to it by ap-
proaching to the nearest local minimum of H. Interestingly,

when TOutEff is applied only once, (2.4) is equivalent to an
outlier-efficient attention (Miller, 2023).

Connection to Deep Learning By the connection with
attention mechanism as shown above, Outlier-efficient Hop-
field model is applicable to nowadays deep learning ar-
chitectures. Consider the raw query R and memory pat-
tern Y . We define the query and memory associative
(or embedded) spaces through transformations: XT =
RWQ := Q and ΞT = YWK := K, with matrices
WQ and WK . By transposing the retrieval dynamics (2.4)
and multiplying with WV (letting V := KWV ), we get:
QnewWV = Softmax1(βQKT)V . We present the Outlier-
Efficient Hopfield (OutEffHop) layer for deep learning:

Z = OutEffHop (R, Y )

= Softmax1
(
βRWQW

T
KY T

)
YWKWV , (2.5)

which takes R and Y as input, paired with weight matrices
WQ, WK , and WV . This attention-like layer is designed to
be outlier-robust, i.e., it filters out low-relevance tokens in
attention computation. Therefore, OutEffHop serves as a
powerful alternative for quantization and compression, with
strong theoretical foundations. Consequently, it offers a ro-
bust implementation for large foundation models, enabling
more economical training without sacrificing performance.
Remark 2.2. Note that we only have to identify outlier
when our model serves as associtative memory models. For
using OutEffHop as attention-like layer like (2.5), the simi-
larity measurement is automatically done by learning. Thus,
it identifies outliers without extra effort. Patterns with small
inner products with queries get almost zero attention proba-
bility, because of our retrieval dynamic design (2.4).

3. Experimental Studies
We conduct a series of experiments to validate the effective-
ness of the Outlier-Efficient Attention Layers. Specifically,
we benchmark our model against SOTA methods as outlined
in (Bondarenko et al., 2023), employing 3 widely-used large
transformer-based models and 1 Hopfield-based model.

3.1. Outlier Efficiency of OutEffHop

To evaluate the model’s resilience to outliers, we integrate
OutEffHop into various architectures, including BERT (De-
vlin et al., 2019), Open Pretrained Transformers (OPT)
(Zhang et al., 2022), Vision Transformers (ViT) (Dosovit-
skiy et al., 2020), and STanHop-Net (Wu et al., 2024b), by
substituting the standard attention (Vaswani et al., 2017)
and Hopfield layers (Hu et al., 2023; Ramsauer et al., 2020)
with our module. We then train these models from scratch
and evaluate them on the validation set. Each evaluation is
conducted three times using different random seeds, with
the average and standard deviation reported for each metric.
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Table 1. Comparing OutEffHop with Vanilla Attention in BERT, OPT, ViT and STanHop-Net. We showcase the outlier efficiency
of OutEffHop in 3 large transformer-based and 1 Hopfield-based models, using Average Kurtosis and Maximum Infinity Norm ∥x∥∞.
Additionally, we showcase the quantization performance of OutEffHop, by comparing FP16 and W8A8 (Weight-8bit-Activation-8bit)
performance. The best results are highlighted in bold, and the second-best results are underlined. In all settings, OutEffHop delivers
significant outlier reduction, and further enhances its combinations with Clipped Softmax and Gated Attention. ∗For FP16 and
W8A8, we report Perplexity Score for BERT and OPT, Top-1 Accuracy for ViT, and Mean Square Error (MSE) for STanHop-Net.

Model Method Avg. kurtosis Max inf. norm FP16∗ W8A8∗ Parameters

B
E

R
T

Vanilla 418.724 ± 0.814 255.859 ± 0.004 6.237 ± 0.001 7.154 ± 0.009

108.9mOutEffHop 26.564 ± 0.022 33.618 ± 0.000 6.209 ± 0.001 6.295 ± 0.001
Clipped Softmax 14.210 ± 0.003 33.619 ± 0.001 6.118 ± 0.002 6.189 ± 0.001

Clipped OutEffHop 11.839 ± 0.001 30.107 ± 0.001 6.133 ± 0.000 6.199 ± 0.001
Gated Attention 17.779 ± 0.014 34.082 ± 0.000 6.230 ± 0.001 6.299 ± 0.003 109mGated OutEffHop 15.625 ± 0.012 32.777 ± 0.000 6.214 ± 0.001 6.279 ± 0.003

O
PT

Vanilla 23341.513 ± 27.363 92.786 ± 0.002 15.974 ± 0.001 42.012 ± 19.514

124.06mOutEffHop 21.542 ± 0.000 13.302 ± 0.001 15.916 ± 0.002 16.429 ± 0.013
Clipped Softmax 9731.110 ± 0.000 43.803 ± 0.000 16.042 ± 0.000 30.825 ± 0.330

Clipped OutEffHop 24127.332 ± 0.000 67.602 ± 0.000 16.118 ± 0.000 29.269 ± 0.184
Gated Attention 90.321 ± 0.000 13.704 ± 0.000 15.677 ± 0.000 16.236 ± 0.074 124.07mGated OutEffHop 11.449 ± 0.000 7.568 ± 0.000 15.751 ± 0.000 16.148 ± 0.005

V
iT

Vanilla 37.104 ± 0.000 272.198 ± 0.000 76.810 ± 0.000 74.935 ± 0.046

22.03mOutEffHop 31.601 ± 0.001 249.163 ± 0.000 76.788 ± 0.000 76.313 ± 0.012
Clipped Softmax 33.868 ± 0.00 257.613 ± 0.00 76.612 ± 0.000 75.179 ± 0.013

Clipped OutEffHop 24.642 ± 0.000 196.199 ± 0.001 76.871 ± 0.001 76.083 ± 0.007
Gated Attention 45.145 ± 0.864 269.279 ± 1.426 69.922 ± 2.436 67.479 ± 1.447 22.04mGated OutEffHop 21.979 ± 0.254 60.169 ± 1.153 74.089 ± 2.585 73.958 ± 3.126

ST
an

H
op

-N
et Vanilla 2.954 ± 0.063 5.048 ± 0.232 0.360 ± 0.008 0.362 ± 0.000

35.13mOutEffHop 2.897 ± 0.011 4.565 ± 0.209 0.360 ± 0.004 0.355 ± 0.000
Clipped Softmax 2.995 ± 0.05 4.890 ± 0.17 0.553 ± 0.03 0.591 ± 0.000

Clipped OutEffHop 2.864 ± 0.06 4.145 ± 0.23 0.506 ± 0.05 0.517 ± 0.000
Gated Attention 2.487 ± 0.017 4.277 ± 0.163 0.380 ± 0.006 0.375 ± 0.000 35.15mGated OutEffHop 2.459 ± 0.041 4.240 ± 0.155 0.376 ± 0.007 0.367 ± 0.000

Metrics. We report the maximum infinity norm ∥x∥∞ and
average kurtosis of the activation tensors x across all trans-
former layers as a metric of outliers. For BERT, we average
the output tensors from the Feed-Forward Network (FFN)
layer and Layer Normalization. Both are known for the
presence of outliers, as confirmed by our experiments and
previous studies (Bondarenko et al., 2023; Wei et al., 2022;
Bondarenko et al., 2021). For OPT, ViT, and STanHop, we
average over every output component in transformer layers.
These metrics demonstrate strong correlations with model
quantizability, reflecting robustness against outliers (Bon-
darenko et al., 2021; Shkolnik et al., 2020). Prior research
(Dettmers et al., 2022; Wei et al., 2022; Bondarenko et al.,
2021) highlight a substantial decline in model performance
after quantization when outliers exist. Consequently, we
record the models’ performance both before and after quan-
tization. For pre-quantization performance, we evaluate the
Perplexity Score for BERT and OPT using FP16 (16-bit
floating-point), the Top-1 Accuracy for ViT using FP32 (32-
bit floating-point), and the Mean Square Error (MSE) for

STanHop-Net. For post-quantization performance in W8A8
(8-bit floating-point), we report the same metrics.

Datasets. We employ 4 real-world datasets for our eval-
uations: Bookcorpus (Zhu et al., 2015) and wiki40b/en
(Guo et al., 2020) are for language models such as OPT and
BERT; ImageNet-1k (Russakovsky et al., 2015) is for the
vision model, i.e. ViT; and ETTh1 (Zhou et al., 2021) is for
the time series model, i.e. STanHop-Net.

Models. Following Bondarenko et al. (2023), we evaluate
our approach (OutEffHop) across four prominent models:
two language models (BERT, OPT), one vision model (ViT),
and one time series model (STanHop). For BERT, we utilize
the BERT-base-uncased model, which contains 109 million
parameters, and pretrain it using the masked language mod-
eling (MLM) technique as outlined in (Devlin et al., 2019).
The OPT model, equipped with 125 million parameters, is
pretrained using causal language modeling (CLM). We con-
figure the sequence lengths to 128 for BERT and 512 for
OPT to enhance training efficiency. The ViT-S 16 variant,
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Figure 1. The Impact of OutEffHop on Maximum Infinity Norm ∥x∥∞ Changes During Pretraining of (a) BERT, (b) OPT, (c) ViT,
and (d) STanHop-Net. The plots, from left to right, compare OutEffHop with the vanilla attention baseline and their combination with
Clipped Softmax and Gated Attention as per (Bondarenko et al., 2023). Each figure’s y-axis scale varies. For better visualization, we
focus on the outlier reduction in layer 10 of the BERT, ViT and OPT model, and in layer 9 of the STanHop-Net. In all settings, OutEffHop
delivers significant reduction of the ∥x∥∞ compared to the vanilla attention and improves Clipped Softmax and Gated Attention.

with 22.03 million parameters, is pretrained using a conven-
tional image classification task. Lastly, the STanHop-Net
model, possessing 35.13 million parameters, is pretrained
on a multivariate time series prediction task.

Results. In Table 1 and Figure 1, our findings reveal that
OutEffHop matches the outlier reduction capabilities of
Clipped Softmax and Gated Attention. When com-
bined with these methods, OutEffHop further enhances
their effectiveness, achieving an average reduction of ap-
proximately 22% in average kurtosis and 26% in maximum
infinity norm across four tested models. An exception is
the Clipped OutEffHop in the OPT model, which, as Bon-
darenko et al. (2023) suggests, does not perform well with
the Clipped Softmax method. Notably, OutEffHop low-
ers the maximum infinity norm during pre-training, partic-
ularly in layer 10 of BERT, ViT, and OPT models, and in
layer 9 of the STanHop model, as shown in Figure 1. This
underscores OutEffHop’s superiority in reducing outliers
during pre-training compared to baseline methods, with
significant enhancements particularly in the OPT model.

4. Conclusion and Discussion
We introduce the Outlier-Efficient Modern Hopfield Model
to tackle the computational difficulties associated with out-
liers in large transformer-based models. This model not
only improves the desirable properties of modern Hopfield
networks, but also incorporates the OutEffHop layers as
innovative deep learning components that enhance outlier
reduction in large transformer architectures. Empirical eval-
uations show that OutEffHop achieves an average reduction
of 22% in average kurtosis and 26% in maximum infinity
norm across four different models.

Limitation and Future Work. The main limitation of
OutEffHop is its inability to address outliers induced by
LayerNorm, as indicated in the First Residual LayerNorm
in Figure 3. Indeed, Wei et al. (2022) note that the origins
of outliers in LayerNorm differ from those in the attention
mechanisms we study. Future research focuses on integrat-
ing these outliers within the OutEffHop framework.
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Impact Statement
We believe this methodology offers an opportunity to en-
hance the cores of foundation models, including large lan-
guage models, through insights from associative memory
models. However, this approach could intensify biases in
the training data, potentially resulting in unfair or discrimi-
natory outcomes for underrepresented groups.
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Supplementary Material

• Appendix A. Related Works

• Appendix B. Additional Numerical Experiments

A. Related Works
Associative Memory Models for Deep Learning. The classical Hopfield models (Hopfield, 1984; 1982; Krotov and
Hopfield, 2016) emulate the associative memory functions of the human brain, emphasizing the storage and retrieval of
distinct memory patterns. Recent renewed interest in associative memory models can be attributed to (i) improvements
in memory storage capabilities (Wu et al., 2024a; Chaudhry et al., 2023; Krotov and Hopfield, 2016; Demircigil et al.,
2017), (ii) innovative architectural developments (Wu et al., 2024b; Hoover et al., 2023; Seidl et al., 2022; Fürst et al., 2022;
Ramsauer et al., 2020), and (iii) their biological plausibility (Burns, 2024; Kozachkov et al., 2022; Krotov and Hopfield,
2021). Modern associative memory networks, or contemporary Hopfield models (Hu et al., 2024a;b; 2023; Wu et al.,
2024b; Burns and Fukai, 2023; Brandstetter, 2021; Ramsauer et al., 2020), demonstrate advantageous properties such as
rapid convergence and exponential memory capacity. These models create a link to Transformer architectures (Hu et al.,
2024b; Gu et al., 2024c; Hu et al., 2023; Wu et al., 2024b; Cabannes et al., 2024; Bietti et al., 2023; Ramsauer et al., 2020),
effectively acting as advanced extensions of attention mechanisms. As a result, their applications span various domains,
including drug discovery (Schimunek et al., 2023), immunology (Widrich et al., 2020), time series forecasting (Wu et al.,
2024b; Auer et al., 2023; Zhang et al., 2024b), tabular learning (Xu et al., 2024a), out-of-distribution detection (Hofmann
et al., 2024), reinforcement learning (Paischer et al., 2022), and computer vision (Fürst et al., 2022). Our study advances
this research direction by focusing on more efficient models. We believe this work is essential for steering future research
towards a Hopfield-driven design paradigm, particularly for large-scale models.

Outlier-Efficient Methods. Quantization is a technique used to lessen the computational demands of expansive models
via low-bit precision computing (Huang et al., 2024; Qin et al., 2024; Luo et al., 2023b; Horowitz, 2014; Tang and Kwan,
1993; Marchesi et al., 1993). Common quantization strategies, such as INT8 and INT4, reduce the models’ weights and
activations to 8-bit or 4-bit integers, respectively (Chee et al., 2024; Lin et al., 2024; Xiao et al., 2023; Kim et al., 2023;
Dettmers and Zettlemoyer, 2023; Frantar et al., 2022; Wei et al., 2022; Yao et al., 2022; Dettmers et al., 2022; Zafrir et al.,
2019; Bhandare et al., 2019; Junczys-Dowmunt et al., 2018). Nonetheless, the quantization efficacy of transformer-based
models is often hampered by the presence of outliers, which lead to disproportionately large attention weights (Bondarenko
et al., 2023; 2021). To address this, Wei et al. (2022) revise LayerNorm to facilitate the quantization of activation tensors
devoid of outliers and introduced Token-Wise Clipping to optimize the clipping ranges for each token. Dettmers et al. (2022)
apply varying degrees of precision to quantize outlier features and other features. Additionally, Meo et al. (2024) adopt a
Bayesian perspective by employing a prior distribution on quantization levels, effectively helping in mitigating outliers.
Despite these advancements, since outliers originate from the Softmax function, these methods do not tackle the root cause
of the issue. In response, Bondarenko et al. (2023) develope Clipped Softmax and Gated Attention, which enforce the
attention mechanism to produce exact zeros, thus addressing the source of outliers. Specifically, Clipped Softmax expands
the output range of the softmax function beyond (0,1), and Gated Attention decides whether to retain or eliminate
updates. However, these methods require hyperparameter tuning for optimal performance, with Clipped Softmax showing
suboptimal results in the OPT model and Gated Attention adding extra training parameters. In our paper, we introduce a
novel approach using the modern Hopfield model, which inherently supports outlier-efficient computation. Surprisingly, its
retrieval dynamics include Softmax1 outlier-efficient attention as a specific instance2. Preliminary experimental findings
(johnowhitaker, 2023) validate its efficacy in managing outliers. We anticipate our work illuminate the theoretical and
methodological research into (Hopfield-based) large foundation models.

Transformer-Based Foundation Models. In recent years, foundation models achieve significant advancements within
the field of artificial intelligence, concentrating on diverse key research areas such as reasoning (Zhou et al., 2024a; Pan
et al., 2024a;b; Wang et al., 2022), question and answering (Zhu et al., 2021; Luo et al., 2021; Qin et al., 2021; Perez et al.,
2020), safety (Luo et al., 2024; Yu et al., 2024; 2023a), prompting (Jin et al., 2024; Liu et al., 2023; Lester et al., 2021; Gao
et al., 2020), multi-modality (Liu et al., 2024; Girdhar et al., 2023; Luo et al., 2023a; Samel et al., 2021), theory (Li et al.,

2For any x ∈ Rd, Softmax1(x)i =
exp(xi)

1+
∑

j exp(xj)
.

11



OutEffHop: A Principled Outlier-Efficient Attention Layer from Dense Associative Memory Models

2024a;b; Gu et al., 2024d;b; Chen et al., 2024; Fu et al., 2024; Hu et al., 2024e; Dou et al., 2024; Guo et al., 2024; Wu et al.,
2024d; Zhang et al., 2023), data cleaning (Zhang et al., 2024a; Ahmad et al., 2023; Liu et al., 2022) and parameter-efficient
fine-tuning (PEFT) (Dettmers et al., 2024; Yu et al., 2023b; Wu et al., 2022; Hu et al., 2021). They hold a central position
not only in machine learning but also across various scientific fields, prominently including natural language processing
(Touvron et al., 2023a;b; Jiang et al., 2023; Le Scao et al., 2023; Floridi and Chiriatti, 2020; Brown et al., 2020), vision
(Saharia et al., 2022; Ramesh et al., 2022; Dosovitskiy et al., 2020), finance (Wang et al., 2023; Wu et al., 2023), genomics
(Zhou et al., 2024b; 2023; Ji et al., 2021), human mobility (Wu et al., 2024c) and many others.

Outlier Related Transformer Theories. Recent studies demonstrate the benefits of outlier removal from attention heads
in large transformer-based foundation models. Alman and Song (2023) demonstrate that efficient transformers, including
vanilla and tensor versions, require bounded attention weights through precise reduction methods. Hu et al. (2024c) indicate
that efficient modern Hopfield models and their networks also require bounded query and key patterns for sub-quadratic time
complexity using fine-grained reduction techniques. Additionally, Hu et al. (2024d) theoretically show that the existence of
outliers hamper the efficiency and performance of LoRA fine-tuning. Further, Gu et al. (2024a;c); Alman and Song (2024);
Gao et al. (2023) find that bounded weight matrices are essential for the efficient training of transformer-based models.
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Figure 2. The trend of Feed-Forward Network (FFN) output maximum infinity norm values in layers 3, 6, 9, and 10 of a BERT encoder
is analyzed using two softmax variations: OutEffHop (represented in red) and vanilla Softmax (in grey). The findings indicate that
OutEffHop significantly reduces outliers in the model compared to the vanilla Softmax.
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Figure 3. Maximum infinity norm ∥x∥∞ for different tensor components within layer 10 of BERT. Our work is analysed using two
softmax variations: OutEffHop (represented in red) and vanilla Softmax (in grey). We find OutEffHop suppresses the outliers growing
in both FFN layers.

B. Additional Numerical Experiments
B.1. Supplemental Experimental Results (Figure 2 and Figure 3)

We conduct extensive case studies on the BERT model. In Figure 2, we analyze the outlier performance across different
layers, observing an increase in outlier strength in the deeper layers of the standard model, consistent with the observations
by Bondarenko et al. (2021). The OutEffHop model demonstrates robust control over the maximum infinity norm ∥x∥∞
across all layers, highlighting its effective outlier management capabilities. In Figure 3, we assess the maximum infinity
norm ∥x∥∞ in the 10th layer’s components—post-attention layer, initial residual LayerNorm following attention, and
the first and second FFN layers. As noted by (Bondarenko et al., 2023), FFN layers significantly contribute to outlier
amplification during training in standard attention models. In contrast, OutEffHop limits this growth in both FFN layers
by employing a no-operation (no-op) mode that engages when updates are unnecessary, thus preventing the inadvertent
learning of outlier values. Furthermore, the initial residual LayerNorm post-attention is observed to exacerbate outliers, a
phenomenon also reported in Wei et al. (2022)’s research. Despite this, OutEffHop, primarily focusing on the attention
mechanism, demonstrates effective reduction of outliers, showcasing its potential in our model.
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B.2. Verifying Theoretical Results

We also verify our theoretical findings following the settings in (Hu et al., 2023).

Figure 4. Memory Capacity. Our extensive evaluation of memory capacity across various Hopfield Networks, including Vanilla Modern
Hopfield, Sparse Hopfield, 10th Order Hopfield, and our OutEffHop, is conducted on two image datasets: MNIST and CIFAR10. We
observe that OutEffHop outperforms its baselines, especially when the memory set size is large.

Figure 5. Noise-Robustness. Our extensive evaluation of noise robustness across various Hopfield Networks, including Vanilla Modern
Hopfield, Sparse Hopfield, 10th Order Hopfield, and our OutEffHop, is conducted on two image datasets: MNIST and CIFAR10. The
results show that as the noise level rises, the impact of OutEffHop on the error rate is minimal.

Memory Capacity. For memory capacity evaluation, we contrast our Outlier-Efficient Modern Hopfield Model
(OutEffHop) with traditional Dense (Softmax) (Ramsauer et al., 2020), Sparse (Hu et al., 2023), and 10th order polyno-
mial Hopfield models (Krotov and Hopfield, 2016) using the MNIST (LeCun et al., 1998) (high sparsity) and CIFAR10
(Krizhevsky et al., 2009) (low sparsity) datasets. In all Hopfield models, we employ a fixed β = 1. As depicted in Figure 4,
OutEffHop surpasses its counterparts, particularly noticeable when the memory set size is extensive.

Noise-Robustness. For the robustness against noise queries, we inject Gaussian noises varying variances (σ) into the
images. The results, as shown in Figure 5, show that OutEffHop excels when the signal-to-noise ratio in patterns is low.
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Faster Convergence. We numerically analyze the convergence of OutEffHop alongside the Dense and Sparse Hopfield
models by assessing their loss and accuracy on two distinct datasets. We employ the Vision Transformer (ViT) (Dosovitskiy
et al., 2020) as the backbone architecture, replacing its attention layer with various Hopfield layers. The hyperparameters
utilized in our experiments are detailed in Table 2. As illustrated in Figure 6, our model consistently outperforms its original
counterpart across all datasets.
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Figure 6. Faster Convergence. Our extensive evaluation of faster covergence across various Hopfield Networks, including Vanilla
Modern Hopfield, Sparse Hopfield, and our OutEffHop, is conducted on two image datasets: CIFAR10 and CIFAR100. The results show
that OutEffHop has faster convergence than baselines.

Table 2. Hyperparameter used in the fast convergence task.

parameter values

learning rate 1e− 4
embedding dimension 512
Feed forward dimension 1024
Dropout 0.3
activation function GELU
Epoch 100
Batch size 512
Model optimizer Adam
Patch size 32
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B.3. Computational Cost Comparison

We evaluate the computational resource utilization of four different models compared to the vanilla Softmax and OutEffHop,
as outlined in Table 3. We document the pre-training metrics for all models. Memory usage for the OPT, BERT, and ViT
models is monitored using Wandb3, while for the STanHop model, it is tracked via system logs. The model configurations
for this experiment are as described in Section 4.1. Our experimental infrastructure includes a Slurm system equipped
with two 80G A100 GPUs and a 24-core Intel(R) Xeon(R) Gold 6338 CPU at 2.00GHz. Additionally, the Wandb diagram
illustrating the system memory usage is presented in Figure 7.

Table 3. The computational resource comparison of vanilla Softmax and OutEffHop in 4 models. We compare the Time and average of
the Memory RAM usage in the model pre-training periods.

Model Method Memory Usage (Gb)

ViT Vanilla 47.47
OutEffHop 49.69

ERT Vanilla 7.56
OutEffHop 7.20

OPT Vanilla 3.75
OutEffHop 3.75

STN Vanilla 5.30
OutEffHop 5.28

B.4. OutEffHop Improves Hopfield-Centric Deep Learning Model: A Case Study on STanHop-Net

We also test our method on STanHop-Net (Wu et al., 2024b), a Hopfield-based time series prediction model. We compare
our method with common modern Hopfield layers (Hu et al., 2023; Ramsauer et al., 2020).

Data. Following Wu et al. (2024b); Zhang et al. (2024b), we employ three realistic datasets for our multivariate time
series prediction tasks: ETTh1 (Electricity Transformer Temperature-hourly), ETTm1 (Electricity Transformer Temperature-
minutely), and WTH (Weather). These datasets are partitioned into training, validation, and test sets with a ratio of 14/5/5.
For each dataset, we perform evaluations across a range of prediction horizons.

Metrics. To assess outlier efficiency, we employ the same metrics as used in previous experiments: the maximum infinity
norm ∥x∥∞ and average kurtosis across 12 decoder layers. For evaluating prediction accuracy, we utilize Mean Squared
Error (MSE) and Mean Absolute Error (MAE). Each experiment is conducted ten times to ensure reliability, and the results
reported are the averages of these runs.

Results. In Table 4, our findings highlight the efficacy of OutEffHop in augmenting the outlier efficiency of modern
Hopfield network architectures. OutEffHop achieves significant enhancements in outlier efficiency with only a minor
compromise in model performance. It secures top-tier outlier efficiency in 25 out of 30 evaluated scenarios, ranking either
first or second in these assessments. Within the STanHop-Net framework, the OutEffHop model exhibits a noticeable
improvement in outlier efficiency relative to the Vanilla and Sparse, Generalized Sparse Modern Hopfield Models. This
includes reductions of 3% and 4% in ∥x∥∞ and average kurtosis, respectively.

3https://wandb.ai/
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(a) BERT

(b) OPT

(c) ViT

Figure 7. The computational resource comparison between Vanilla Softmax and OuTEffHop involves measuring RAM usage via Wandb
in a system equipped with 180G RAM under the Slurm system.
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Table 4. STanHop-Net (Wu et al., 2024b): Outlier Reduction of Multivariate Time Series Predictions. We implement 4 STanHop
variants, Hopfiled with Dense Hopfield layer (Ramsauer et al., 2020), SparseHopfiled with Sparse SparseHopfield layer (Hu et al.,
2023), STanHop-Net with GSH layer (Wu et al., 2024b) and OutEffHop with our Softmax1 layer respectively. To evaluate outlier
reduction performance, we report the maximum infinity norm and average kurtosis metrics. We also report the average Mean Square
Error (MSE) and Mean Absolute Error (MAE) metrics with variance omitted as they are all ≤ 2%. We evaluate each dataset with different
prediction horizons (shown in the second column). We have the best results bolded and the second best results underlined. In 25 out
of 30 settings, OutEffHop ranks either first or second. Our results indicate that our proposed OutEffHop delivers consistent top-tier
outlier-reduction performance compared to all the baselines.

Models Hopfield SparseHopfield STanHop-Net (GSH) OutEffHop

Metric MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm

E
T

T
h1

24 0.360 0.401 2.954 ± 0.063 5.048 ± 0.232 0.388 0.411 3.311 ± 0.082 4.954 ± 1.064 0.395 0.415 3.269 ± 0.117 4.947 ± 0.173 0.361 0.397 2.897 ± 0.011 4.565 ± 0.209
48 0.405 0.424 2.968 ± 0.039 4.969 ± 0.033 0.466 0.452 3.295 ± 0.136 4.749 ± 0.517 0.458 0.448 3.271 ± 0.200 4.644 ± 0.341 0.409 0.426 2.965 ± 0.004 4.570 ± 0.424

168 0.881 0.710 2.545 ± 0.004 3.923 ± 0.115 1.422 0.921 3.149 ± 0.015 4.348 ± 0.085 1.422 0.926 3.093 ± 0.065 4.160 ± 0.285 0.872 0.704 2.526 ± 0.011 3.865 ± 0.035
336 0.755 0.648 2.436 ± 0.003 3.536 ± 0.230 1.223 0.851 3.071 ± 0.009 4.156 ± 0.199 1.381 0.909 3.043 ± 0.021 4.248 ± 0.159 0.780 0.658 2.433 ± 0.009 3.416 ± 0.042
720 0.852 0.709 2.443 ± 0.006 3.266 ± 0.132 1.134 0.824 3.030 ± 0.015 4.179 ± 0.054 1.360 0.904 3.062 ± 0.089 4.238 ± 0.197 0.894 0.788 2.450 ± 0.035 3.218 ± 0.142

E
T

T
m

1

24 0.272 0.339 3.617 ± 0.003 4.717 ± 0.353 0.265 0.331 3.357 ± 0.045 4.334 ± 0.087 0.261 0.328 3.547 ± 0.096 4.696 ± 0.279 0.347 0.429 3.584 ± 0.136 4.212 ± 0.262
48 0.352 0.387 4.211 ± 0.113 5.603 ± 0.854 0.304 0.355 4.280 ± 0.102 6.296 ± 0.479 0.328 0.367 4.384 ± 0.415 5.557 ± 4.188 0.375 0.409 3.967 ± 0.253 5.816 ± 0.209
96 0.396 0.412 3.102 ± 0.026 4.534 ± 0.328 0.345 0.383 3.568 ± 0.127 4.441 ± 0.650 0.344 0.375 3.609 ± 0.364 4.618 ± 0.319 0.529 0.487 3.014 ± 0.042 4.333 ± 0.394

288 0.600 0.540 2.643 ± 0.005 3.179 ± 1.798 0.500 0.471 2.783 ± 0.075 3.172 ± 0.048 0.515 0.483 2.803 ± 0.101 3.228 ± 0.056 0.572 0.513 2.498 ± 0.031 3.151 ± 0.072
672 0.784 0.627 2.674 ± 0.079 3.740 ± 0.318 0.537 0.495 3.429 ± 0.206 3.875 ± 0.380 0.571 0.519 3.427 ± 0.138 3.439 ± 0.093 0.752 0.607 2.553 ± 0.081 3.641 ± 0.091

W
T

H

24 0.357 0.404 3.616 ±0.117 6.668± 1.102 0.378 0.429 3.656 ±0.082 5.609 ±0.154 0.370 0.394 3.726± 0.231 9.126± 0.322 0.378 0.423 3.711± 0.017 5.428 ±0.093
48 0.441 0.464 3.904 ± 0.090 6.481 ±0.417 0.441 0.474 3.957± 0.184 7.409± 1.445 0.472 0.500 3.911± 0.282 6.730± 0.150 0.464 0.480 3.663 ±0.144 6.649 ±0.586

168 0.549 0.562 2.617 ±0.046 3.028± 0.097 0.575 0.575 2.835± 0.012 3.364± 0.045 0.561 0.565 2.712± 0.040 3.087± 0.089 0.562 0.561 2.552 ± 0.031 2.931 ± 0.068
336 0.572 0.579 2.565 ± 0.082 3.185 ± 0.055 0.598 0.593 2.849 ± 0.031 3.640 ± 0.078 0.552 0.557 2.710 ± 0.072 3.087 ± 0.043 0.613 0.604 2.516 ± 0.057 3.383 ± 0.063
720 0.727 0.670 2.578 ± 0.027 3.617 ± 0.443 0.591 0.587 2.737 ± 0.009 3.228 ± 0.078 0.571 0.573 2.737 ± 0.009 3.219 ± 0.073 0.794 0.710 2.543 ± 0.006 3.524 ± 0.261
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